
Interrupts Delivery in a Multi-host
Environment

V1. Sep 24, 2012

V2. Sep 25, 2012

Cheng-Chun Tu

1

Intro: Problems of Pin-based Interrupt

¤  Shared interrupt
¤  Usually shared between multiple devices, depends on kernel

interrupt handler to associate the destined device
¤  Poor performance

¤  Out-of-order
¤  When device writes to memory and rises an interrupt, it’s

possible that the interrupt arrives before all data has arrived
in memory

¤  Single interrupt per function
¤  You have only one pin

Cheng-Chun Tu

2

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/PCI/MSI-HOWTO.txt;hb=HEAD

Message Signaled Interrupt

¤  MSIs are never shared among devices
¤  Don’t bother the kernel to check and multiplex

¤  Ordered delivery
¤  PCI transaction ordering: Interrupt generating write comes after the

data writes

¤  Multiple interrupt per device
¤  Each interrupt is specialized to different purposes
¤  A VF has three interrupt: RX / TX / MSG

¤  MSI v.s MSI-X
¤  MSI: address + data (multiple data value creates multiple int)
¤  MSI-X: multiple address + data (up to 2048 INTs per device)

Cheng-Chun Tu

3

Everything becomes read/write

¤  With MSI/MSI-X, everything in PCIe boils down to PCIe
read/write

¤  A device
¤  Signals interrupt to its host using MSI address (write from the

bus to the MSI area, interpreted by the chipset.)

¤  DMA read/write data to host’s memory

¤  A host
¤  Read/write its memory

¤  Configure its devices using memory-mapped IO

Cheng-Chun Tu

4

MSI/MSI-X Format

¤  Address:
¤  Address recognized by chipset, start with 0xFEE (Local APIC)
¤  Contains fields:

¤  destination CPU ID
¤  redirection info.

Cheng-Chun Tu

5

¤  Data:
¤  Contains field:

¤  Vector: interrupt vector
associated with the
message

¤  Delivery mode

¤  Trigger mode

MSI/MSI-X in Device and Kernel

¤  A PCI device keeps an MSI-X table in its HW’s register

¤  Device driver registers INT to OS, an 1:1 vector-to-entry
mapping is constructed
¤  struct msix_entry {

 u16 vector; /* kernel uses to write allocate vector */
 u16 entry; /* device driver uses to specify entry in HW */ }

¤  Driver specifies entry number in its HW MSI-X table
¤  Kernel assigns vector number

Cheng-Chun Tu

6
http://www.mjmwired.net/kernel/Documentation/MSI-HOWTO.txt

Vector Control is only for mask bit (enabled/disabled)

IOMMU Interrupt Remapping

¤  Interrupt-remapping enables system software to control
and censor external interrupt generated by
¤  Interrupt controllers (I/OxAPICs),
¤  MSI/MSI-X capable devices including endpoints,

¤  INT remapping requests
¤  From MSI addr/data sent from devices and I/O APIC, compute

the interrupt_index (slide 20, 21)

¤  Lookup the IRTE in the remapping table using interrupt_index

¤  IRTE (Interrupt Remapping Table Entry) (Slide 22)

¤  Destination ID: specify interrupt’s target processor(s)
¤  Vector: interrupt vector number
¤  Other fields see spec

Cheng-Chun Tu

7

Put together

Cheng-Chun Tu

8

DMAR

DEV

INTR

CPU0

APIC

CPU1

APIC

IO APIC DEV

Send to memory
controller

Compute interrupt_index
Lookup INT remapping table
Find IRTE

Write to APIC according to IRTE

Send pin-based INT
Find the RX entry
in MSI-X table

DMAR: DMA Remapping
INTR: Interrupt Remapping

IOMMU

DEV
Send DMA
R/W transaction

Lookup device
Page Table

Memory

RX

IDT
vector

Example of RX interrupt

Cheng-Chun Tu

9

DeviceA has 3 MSI-X interrupt (RX/TX/MSG):
MSI-X table (addr, data) has three entries
(0xfee00518, 0), (0xfee00518, 1), (0xfee00518, 2) at entry 0,1,2

Kernel creates 1:1 vector-to-entry mapping
(65, 0), (66, 1), (67, 2), where vector table contains INT handler’s code
65: RX handler, 66: TX handler, 67: Msg handler

An incoming packet triggers RX
Device write (0xfee00518, 0)
Compute Interrupt index = addr.handle + data.subhandle = 40

At IOMMU, IRTE at index 40 contains
Destination ID = CPU0, Vector = 65
Write to CPU0’s APIC, CPU finds RX handler at index 40 in its IDT

Requirements

¤  Assumption:
¤  The device, could be VF or legacy PCI device, belongs to the

MH’s PCI hierarchy

¤  Requirement1:
¤  The device is able to directly send interrupts to its assigned host

behind NTB.

¤  Requirement2:
¤  The device assigned to a host and further directly pass-through

toa VM can directly send interrupts to the VM’s kernel

¤  Requirement3:
¤  The device’s INT could be forwarded to the MH for optimization

Cheng-Chun Tu

10

R1: Cross-domain Interrupt delivery

Cheng-Chun Tu

11

CPU

CH1’s addr domain

NTB

CPU

CHn’s addr domain

NTB

CPU

MH

DEV

MH’s PCI Domain

DEV DEV

…

MSI
tab2.

MSI
tab3.

MSI
tab1.

For each pair, MH sets-up the NTB mapping and address in MSI-X table.

Example 0: single host

Cheng-Chun Tu

12

CPU

MH

DEV

MH’s PCI Domain

MSI
tab1.

¤  MSI table1:
¤  RX:

¤  Address: 0xfee00518

¤  Data: 0x0

¤  TX:

¤  Address: 0xfee00598

¤  Data: 0x1

Example: Multi-host

Cheng-Chun Tu

13

CPU

CH1’s addr domain

NTB

CPU

MH

DEV

MH’s PCI Domain

DEV

MSI
tab2.

MSI
tab1.

¤  MH setup NTB mapping and
MSI-X tab2

¤  MSI table2:
¤  RX:

¤  Address: 0xfa000518
¤  Data: 0x0

¤  TX:
¤  Address: 0xfa000598
¤  Data: 0x1

¤  NTB mapping:
¤  0xfa000000 -> 0xfee00000

0xfa000598

0xfee00598

R2: Direct delivery to VM

Cheng-Chun Tu

14

¤  When a VM is scheduled to run on a core, the direct-
assigned device’s interrupt goes to the core directly

¤  If the VM is not running, send the device’s interrupt to
VMM (Fall back to standard operation)

Implementation

Cheng-Chun Tu

15

CH
¤  When a VM X is scheduled on a core, a

shadow IDT is set up for the core so that
an interrupt not meant for X would trigger
a VMexit and invoke the hypervisor
¤  Different VMs on a PM are assigned

different interrupt numbers

¤  If a VM is scheduled on a core Y, setup
the VM device’s INT to coreY, by one of:
¤  Configure the MSI-X address field (dst ID)

¤  Configure the INT remapping table in
IOMMU

NTB

Example

¤  Suppose VM1 is meant to handle INT3, VM2 is meant to handle INT7
and both are supposed to run on Core2

¤  Shadow IDT:
¤  Only the entry that guest directly handles has Present bit = 1
¤  The rests are 0, causing VMexit

¤  Case1: VM1 runs on core2
¤  INT3 entry present = 1, the rests are 0

¤  Case2: VM2 runs on core2
¤  INT7 entry present = 1, the rests are 0

¤  Case3: VM3 runs on core2
¤  All entries’ present bit are 0

Cheng-Chun Tu

16

R3: Interrupt Management

Cheng-Chun Tu

17

¤  Let MH centrally schedules all or parts of the interrupts
¤  Prevent livelock, reduce CH’s loading
¤  coalesce bunch of Interrupts and deliver once

¤  MH is able to interrupt CH’s kernel or VM on CH
¤  By writing the NTB mapped address and data at Link side
¤  The virtual side translates to legitimate MSI-X

¤  Example:
¤  Let DEV3 for CH3 write its MSI to MH (with msiaddr 0xFEE00598)
¤  INT handler at MH’s core1 receives it and keeps a counter
¤  If counter > threshold, MH sends a write to 0xFA000598, which

maps to CH3’s 0xFEE00598, a real interrupt message at CH3

Summary of Interrupt Delivery

VMM

NTB

INT Mgmt
Unit

MH

DEV

VM

NTB

DEV

VM/
VMM

NTB

DEV

VMM/
VM

NTB

DEV

CH1 CH2 CH3 CH4

Case1.
Forward interrupt to MH
- Livelock avoidance
- Interrupt coalescing

Case2.
Interrupt Delivery
to VMM

Case3.
Direct Interrupt
Delivery to VM

Case4.
Disable Interrupt,
Enable polling

PCIe Switch Fabric

End

Cheng-Chun Tu

19

Example

¤  DeviceX has 3 MSI-X interrupt (RX/TX/MSG):
¤  In device A’s MSI-X table (addr, data), it has three entries
¤  (0xfee00518, 0), (0xfee00518, 1), (0xfee00518, 2) at entry 0,1,2

¤  Kernel creates 1:1 vector-to-entry mapping
¤  (65, 0), (66, 1), (67, 2), where vector table contains INT handler’s code
¤  65: RX handler, 66: TX handler, 67: Msg handler

¤  An incoming packet triggers RX
¤  Device write (0xfee00518, 0)
¤  addr.handle: [19:5], data.subhandle: [15:0] bit
¤  Computed Interrupt index = addr.handle + data.subhandle = 40

¤  At IOMMU, IRTE at index 40 contains
¤  Destination ID = CPU0
¤  Vector = 65
¤  Write to CPU0’s APIC, CPU finds RX handler at index 40 in its IDT

Cheng-Chun Tu

20

INTR: Interrupt remapping request fmt

Cheng-Chun Tu

21

To determine the interrupt_index:
if (address.SHV == 0) {

 interrupt_index = address.handle;
} else {

 interrupt_index = (address.handle + data.subhandle);
}

MSI-X addr. supports remapping

Cheng-Chun Tu

22

The field Interrupt_Index [14:0] indicate the IRTE

INTR: IRTE

Cheng-Chun Tu

23

Destination ID determines which CPU to INT,
Vector determines the handler in IDT

MSI-X Address

Cheng-Chun Tu

24

MSI-X data

Cheng-Chun Tu

25

Cheng-Chun Tu

26

System Address Map

Cheng-Chun Tu

27

Example

¤  DeviceX has 3 MSI-X interrupt (RX/TX/MSG):
¤  In device A’s MSI-X table (addr, data), it has three entries
¤  (0xfee00518, 0), (0xfee00518, 1), (0xfee00518, 2) at entry 0,1,2

¤  Kernel creates 1:1 vector-to-entry mapping
¤  (65, 0), (66, 1), (67, 2), where vector table contains INT handler’s code
¤  65: RX handler, 66: TX handler, 67: Msg handler

¤  An incoming packet triggers RX
¤  Device write (0xfee00518, 0)
¤  addr.handle: [19:5], data.subhandle: [15:0] bit
¤  Computed Interrupt index = addr.handle + data.subhandle = 40

¤  At IOMMU, IRTE at index 40 contains
¤  Destination ID = CPU0
¤  Vector = 65
¤  Write to CPU0’s APIC, CPU finds RX handler at index 40 in its IDT

Cheng-Chun Tu

28

References

¤  http://forum.osdev.org/viewtopic.php?
f=1&t=24813&p=204113&hilit=William#p204113

Cheng-Chun Tu

29

