Cheng-Chun Tu

Interrupts Delivery in a Multi-host

Environment

V1.Sep 24, 2012

V2.Sep 25, 2012

Cheng-Chun Tu

Infro: Problems of Pin-lbbased Interrupt

Shared interrupt

O Usually shared between multiple devices, depends on kernel
interrupt handler to associate the destined device

O Poor performance

Qut-of-order

O When device writes to memory and rises an interrupft, it's

possible that the interrupt arrives before all data has arrived
in memory

Single interrupt per function
O You have only one pin

http://qit.kernel.org/2p=linux/kernel/git/torvalds/linux-2.6.qit;a=blob;f=Documentation/PCI/MSI-HOWTO.txt;hb=HEAD

Cheng-Chun Tu

Message Signaled Interrupt

MSls are never shared among devices
O Don't bother the kernel to check and multiplex

Ordered delivery

O PCl transaction ordering: Interrupt generating write comes after the
data writes

Multiple interrupt per device
O Each interrupt is specialized to different purposes
O A VF has three interrupt: RX / TX / MSG

MSI v.s MSI-X
O MSI: address + data (multiple data value creates multiple int)

O MSI-X: multiple address + data (up to 2048 INTs per device)

Cheng-Chun Tu

Everything becomes read/write

With MSI/MSI-X, everything in PCle boils down to PCle
read/write

A device

O Signals interrupt to its host using MSI address (write from the
bus to the MSI areaq, interpreted by the chipset.)

O DMA read/write data to host’'s memory

A host
O Read/write its memory

O Configure its devices using memory-mapped 1O

Cheng-Chun Tu

MSI/MSI-X Format

Address:

O Address recognized by chipset, start with OxFEE (Local APIC)

O Contains fields: 31 20 19 12 1 4 3 2 1 0
destination CPU ID OFEEH Destination ID | Reserved | RH | DM | XX

redirection info.

31 16 15 14 13 1 10 8 7 0
D d TO . Reserved Reserved Vector

O Contains field:
Vector: interrupt vector

. . Trigger Mode Delivery Mode
associated with the 0 Edge 000 - Fixed
1-Level 001 - Lowest Priority
message
010 - SMI
. " - 011 - Reserved
Delivery mode Levelfor Trigger Mode =0 100 - NMI
. Level for Trigger Mode = 1 101 - INIT
Trlgger mode 0 - Deassert 110 - Reserved
1 - Assert 111 - ExtINT

Cheng-Chun Tu

MSI/MSI-X In Device and Kernel

A PCl device keeps an MSI-X table in its HW's register

DWord 3 DWord 2 DWord 1 DWord 0 Entry
Vector Control Message Data Msg Upper Addr | Message Address | 0
Vector Control | Message Data | Msg Upper Addr | Message Address | 1
Vector Control | Message Data Msg Upper Addr | Message Address | n

Vector Conftrol is only for mask bit (enabled/disabled)

Device driver registers INT to OS, an 1:1 vector-to-entry
mapping is constructed

O struct msix_entry {

ulé vector; /* kernel uses to write allocate vector */

ulé entry; /* device driver uses to specify entry in HW */ }
O Driver specifies entry number in its HW MSI-X table
O Kernel assigns vector number

http://www.mjmwired.net/kernel/Documentation/MSI-HOWTO.txt
6

Cheng-Chun Tu

IOMMU Interrupt Remapping

Interrupt-remapping enables system software to control
and censor external interrupt generated by

O Inferrupt controllers (I/OxAPICs),
O MSI/MSI-X capable devices including endpoints,

INT remapping requests

O From MSI addr/data sent from devices and I/O APIC, compute
the interrupt_index (slide 20, 21)

O Lookup the IRTE in the remapping table using interrupt_index

IRTE (Interrupt Remapping Table Entry) (side 22)

O Destination ID: specify interrupt’s target processor(s)
O Vector: interrupt vector number

O Other fields see spec

Cheng-Chun Tu

Put together

AN S IDT

_ 4 vector

Write to APIC according to IRTE

—

Lookup devViCe gt e——— Compute interrupt_index
Page Table —=—> DMAR INTR :—> Lookup INT remapping table
\ I Find IRTE

DEV DEV IO APIC [¢&—— DEV
Send DMA Find the RX entry Send pin-based INT
R/W fransaction in MSI-X table
RX DMAR: DMA Remapping

INTR: Interrupt Remapping

Cheng-Chun Tu

Example of RX inferrupt

AT IOMMU, IRTE at index 40 contains
Destination ID = CPUO, Vector = 65
Write to CPUQ’'s APIC, CPU finds RX handler at index 40 in its IDT

An incoming packet triggers RX
Device write (Oxfee00518, 0)

Compute Interrupt index = addr.handle + data.subhandle = 40

=

Kernel creates 1:1 vector-to-entry mapping
(65, 0), (66, 1), (67, 2), where vector table contains INT handler's code
65: RX handler, 66: TX handler, 67: Msg handler

DeviceA has 3 MSI-X interrupt (RX/TX/MSG):
MSI-X table (addr, data) has three entries

(Oxfee00518, 0), (Oxfee00518, 1), (Oxfee00518, 2) at entry 0,1,2

Cheng-Chun Tu

Requirements

Assumption:

O The device, could be VF or legacy PCI device, belongs to the
MH's PCI hierarchy

Requirementl:

O The device is able to directly send interrupts to its assigned host
behind NTB.

Requirement?2:

O The device assigned to a host and further directly pass-through
toa VM can directly send interrupts to the VM's kernel

Requirement3:
O The device's INT could be forwarded to the MH for optimization

Cheng-Chun Tu

R1: Cross-domain Interrupt delivery

MH's PCI Domain
For each pair, MH sets-up the NTB mapping and address in MSI-X table.

Cheng-Chun Tu

Example 0: single host

MH
: CPU i MSI tablel:
B O RX:
: : Address: Oxfee00518
:“J- ______ : Data: 0x0
: v o B
: tab]1. | Address: Oxfee00598
i DEV | Data: 0x1

MH's PCI Domain

Cheng-Chun Tu

Example: Mulfi-host

MH CH1's addr domain MH setup NTB mapping and
fC—_ | f—_— h MSI-X tab?2
: CPU I : CPU I
) S) R MS! table?:
: : : OxfeeD0598 O RX:
i a___al ~m Lo Address: 0xfa000518
: T oxtcooosts Data: 0x0
| MSI Msl | g
! tab1 tap2. |! Address: Oxfa000598
| | Data: Ox]
: DEV DEV ! .
! | NTB mapping:

--------------------------- O Oxfa000000 -> Oxfee00000
MH's PCI Domain

Cheng-Chun Tu

R2: Direct delivery 1o VM

When a VM is scheduled to run on a core, the direct-
assigned device's interrupt goes to the core directly

If the VM is not running, send the device's inferrupt to
VMM (Fall back to standard operation)

Cheng-Chun Tu

Implementation

When a VM X is scheduled on a core, a
shadow IDT is set up for the core so that
an inferrupt not meant for X would trigger
a VMexit and invoke the hypervisor

O Different VMs on a PM are assigned
different interrupt numbers

If a VM is scheduled on a core Y, setup
the VM device’s INT to coreY, by one of:

O Configure the MSI-X address field (dst ID)

CH

Guest Interrupt
IDT Handler
Assigned
Interrupt

O Configure the INT remapping table in

IOMMU

| Physical

Interrupt

Cheng-Chun Tu

Example

Suppose VM1 is meant to handle INT3, VM2 is meant to handle INT/
and both are supposed to run on Core?2

Shadow IDT:
O Only the entry that guest directly handles has Present bit = 1
O The rests are 0, causing VMexit

Casel: VM1 runs on core?
O [INT3 entry present = 1, the rests are 0

Case2: VM2 runs on core?2
O INT7 entry present = 1, the rests are 0

Case3: VM3 runs on core?
O All entries’ present bit are 0

Cheng-Chun Tu

R3: Interrupt Management

Let MH centrally schedules all or parts of the interrupts
O Prevent livelock, reduce CH's loading
O coalesce bunch of Interrupts and deliver once

MH is able to interrupt CH's kernel or VM on CH
O By writing the NTB mapped address and data at Link side
O The virtual side translates to legitimate MSI-X

Example:
O Let DEV3 for CH3 write its MSI to MH (with msiaddr OXFEEO0598)
O INT handler at MH’s corel receives it and keeps a counter

O If counter > threshold, MH sends a write to OXxFAO00598, which
maps fo CH3's OXFEEO0598, a real inferrupt message at CH3

Summary of Interrupt Delivery

MH CH1 CH2 CH3 CH4
: INT Mgmt | : VMM/ | | : | VM | | VM/ |
: nit |4 YO B B N VIV
A R e R I I :
| | | |
: T L L L :
L i NTB kL__J_ NTB L _ L] NTB 11 NTB Li_

P |
—>
—>
—>

€ DEV DEV DEV DEV
PCle Switch Fabrc T - !
Casel. Case?2. Cased. Cased.
Forward interrupt to MH Interrupt Delivery Direct Interrupt Disable Interrupt,
- Livelock avoidance to VMM Delivery to VM Enable polling

- Interrupt coalescing

Cheng-Chun Tu

Cheng-Chun Tu

Example

DeviceX has 3 MSI-X interrupt (RX/TX/MSG):
O Indevice A's MSI-X table (addr, data), it has three entries
O (Oxfee00518, 0), (Oxfee00518, 1), (Oxfee00518, 2) at entry 0,1,2

Kernel creates 1:1 vector-to-entry mapping
O (65, 0), (66, 1), (67, 2), where vector table contains INT handler’'s code
O 65:RX handler, 66: TX handler, 67: Msg handler

An incoming packet triggers RX

O Device write (Oxfee00518, 0)

O addrhandle: [19:5], data.subhandle: [15:0] bit

O Computed Interrupt index = addr.handle + data.subhandle = 40

At IOMMU, IRTE at index 40 contains

O Destination ID = CPUO

O Vector=65

O Write to CPUQO’s APIC, CPU finds RX handler at index 40 in its IDT

20

Cheng-Chun Tu

INTR: Interrupt remapping request fmt

To determine the interrupt_index:

If (address.SHV == 0) {
interrupt_index = address.handle;
} else {

}

interrupt_index = (address.handle + data.subhandle);

31 09

543 21 0

1 XX
|

L Don’t Care

- HANDLE[15]
- » SHV

‘o Interrupt Format

» HANDLE [14:0]
» FEEh

Data
31

(o 2 S
U =

0

Oh

= SUBHANDLE (if SHV==1)
» Reserved (0)

Figure 5-11. Remappable Format Interrupt Request

21

Cheng-Chun Tu

MSI-X addr. supports remapping

The field Interrupt_Index [14:0] indicate the IRTE

Figure 5-14 illustrates the programming of MSI/MSI-X address and data registe|
remapping of the message signalled interrupt.

Address
63/
31 % é 54321 0
OFEEh 111 XX
|
|~>Don't Care
— Interrupt_Index [15]
Data ———SHV (1)
L. pInterrupt Format (1)
31/ »Interrupt_index[14:0]
15

Oh

Figure 5-14. MSI-X Programming

22

Cheng-Chun Tu

INTR: IRTE

| | | . SID

Destination ID determines which CPU to INT, —— %3¢

Vector determines the handler in IDT ———— Reserved (0)

6 33 22 1111
3 21 43 6521 87 543210

|

— £op
P Destination Mode
e Redirection Hint

e Trigger Mode

P Delivery Mode
P AVAIL

p Reserved (0)
P Vector

P Reserved (0)
P Destination 1D

Figure 9-28. Interrupt Remapping Table Entry Format

Cheng-Chun Tu

MSI-X Address

31 20 19 12 11 4 3 2 1 0

OFEEH Destination 1D | Reserved | RH | DM | XX

Figure 10-24. Layout of the MSI Message Address Register

Cheng-Chun Tu

NB.@elelfe

63

32
Reserved
31 16 15 14 13 11 10 8 7 0
Reserved Reserved Vector
Trigger Mode Delivery Mode
0 - Edge 000 - Fixed
1-Level 001 - Lowest Priority

Level for Trigger Mode = 0
X - Don't care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

010 - SMI

011 - Reserved
100 - NMI

101 - INIT

110 - Reserved
111 - ExtINT

25

Tab&ﬁegn'g]—'Chun TJ’CI Configuration Space

Section Byte Offset Byte 3 Byte 2 Byte 1 Byte 0
0x0 Device ID Vendor ID
0x4 Status Register Control Register
0x8 Class Code (0x020000/0x010000) Revision ID
Header Type (0x0/ Cache Line Size

0xC Reserved 0x80) Latency Timer (0x10)
0x10 Base Address Register 0
0Ox14 Base Address Register 1
0x18 Base Address Register 2

Man_datory PCI 0x1C Base Address Register 3

Register 0x20 Base Address Register 4
0x24 Base Address Register 5
0x28 CardBus CIS pointer (0x0000)
0x2C Subsystem ID Subsystem Vendor ID
0x30 Expansion ROM Base Address
0x34 Reserved Cap Ptr (0x40)
0x38 Reserved
0x3C Max Latency (0x00) | Min Grant (0x00) [(Gier "6 Fo% Interrupt Line (0x00)
0x40...0x47 Power management capability
0x50...0x67 MSI Capability

PCI / PCle y -

Capabilities 0x70...0x78B MSI-X Capability
0xA0...0xDB PCle Capability
0xEO0...OxE7 VPD Capability
0x100...0x128B AER Capability

Extended PCle 0z140...0x148 Serial ID Capability

Configuration 0x150...0x157 ARI Capability
0x160...0x18C SR-IOV Capability

26

Cheng-Chun Tu

System Address Map

High BIOS, Optional
extended SMRAM

Hub Interface_A
(always)

Local APIC Space

Hub Interface_A
(always)

Hub Interface_B-D,
I/O APIC Space

Hub interface_A,
I/O APIC Space

1_0000_000(

FF00_0000

FEFO_0000

FEEO_0000

FEDO_0000

FEC8_0000

FECO0_0000

27

Cheng-Chun Tu

Example

DeviceX has 3 MSI-X interrupt (RX/TX/MSG):
O Indevice A's MSI-X table (addr, data), it has three entries
O (Oxfee00518, 0), (Oxfee00518, 1), (Oxfee00518, 2) at entry 0,1,2

Kernel creates 1:1 vector-to-entry mapping
O (65, 0), (66, 1), (67, 2), where vector table contains INT handler’'s code
O 65:RX handler, 66: TX handler, 67: Msg handler

An incoming packet triggers RX

O Device write (Oxfee00518, 0)

O addrhandle: [19:5], data.subhandle: [15:0] bit

O Computed Interrupt index = addr.handle + data.subhandle = 40

At IOMMU, IRTE at index 40 contains

O Destination ID = CPUO

O Vector=65

O Write to CPUQO’s APIC, CPU finds RX handler at index 40 in its IDT

28

Cheng-Chun Tu

References

http://forum.osdev.org/viewtopic.php?¢

f=1&1=24813&p=204113&hilit=William#p204113

29

