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ABSTRACT
This paper describes a method for transforming any given
set of Datalog rules into an efficient specialized implemen-
tation with guaranteed worst-case time and space complexi-
ties, and for computing the complexities from the rules. The
running time is optimal in the sense that only useful com-
binations of facts that lead to all hypotheses of a rule being
simultaneously true are considered, and each such combi-
nation is considered exactly once. The associated space
usage is optimal in that it is the minimum space needed
for such consideration modulo scheduling optimizations that
may eliminate some summands in the space usage formula.
The transformation is based on a general method for algo-
rithm design that exploits fixed-point computation, incre-
mental maintenance of invariants, and combinations of in-
dexed and linked data structures. We apply the method to
a number of analysis problems, some with improved algo-
rithm complexities and all with greatly improved algorithm
understanding and greatly simplified complexity analysis.
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1. INTRODUCTION
Many computational problems are most clearly and easily

specified using relational rules. Examples include database
queries and problems in program analysis and model check-
ing. Datalog [10, 2] is an important rule-based language for
specifying how new facts can be inferred from existing facts.
It is sufficiently powerful for expressing many practical anal-
ysis problems.

While a Datalog program can be easily implemented in,
say, a Prolog system, evaluated using various existing meth-
ods, or rewritten using methods such as magic sets to allow
more efficient evaluation, such implementation is typically
for fast prototyping. Moreover, the running times of Dat-
alog programs implemented using these methods can vary
dramatically depending on the order of rules and the order
of hypotheses in a rule, and even less is known about the
space usage. Developing and implementing efficient algo-
rithms specialized for any given set of rules and with time
and space guarantees is a nontrivial, recurring task.

This paper describes a powerful, fully automatable method
for generating efficient specialized algorithms and implemen-
tations from Datalog rules. The heart of this paper consists
of two main results:

• The first is a method that, given any set of Datalog
rules, transforms them into an efficient specialized im-
plementation that, given any set of facts, computes
exactly the set of facts that can be inferred.

• The second is a method that computes the guaranteed
worst-case time and space complexities of the imple-
mentation from the set of rules and allows easy sim-
plification of the complexity formulas based on char-
acterizations of the set of facts.

The running time is optimal in the sense that only useful
combinations of facts that lead to all hypotheses of a rule be-
ing simultaneously true are considered, and each such com-
bination is considered exactly once. The associated space



usage is optimal in that it is the minimum space needed
for such consideration modulo scheduling optimizations that
may eliminate some summands in the space usage formula.
For space complexity, our method separately analyzes the
output space and the auxiliary space.

These two results are formally derived together using a
systematic algorithm development method [31, 8, 30], gen-
eralized in this paper to support the design of necessary and
more sophisticated data structures. The formal derivation
starts with a fixed-point specification and has three steps:
(i) transform the fixed-point expression into a loop that han-
dles a single new fact in each iteration, (ii) replace expensive
computations in the loop with efficient incremental opera-
tions, and (iii) design data structures, built from records,
arrays, and linked lists, that efficiently support every incre-
mental operation. The analysis of the complexities is based
on a thorough understanding of the transformation process,
reflecting the complexities of the implementation back to
the rules.

We apply these results to a number of nontrivial analysis
problems. We obtain improved algorithm complexities for
some problems and gain a deeper understanding of all the
algorithms. The complexity analysis based on the rules is
quite easy, significantly easier than the ad hoc analysis done
previously for individual problems.

The rest of the paper is organized as follow. Sections 2
and 3 introduce Datalog rules and our derivation approach,
respectively. Sections 4 and 5 describe our formal derivation
that involves (i) incremental computation of expensive set
expressions and (ii) design of a combination of indexed and
linked data structures, respectively. Section 6 presents com-
plexity analysis and optimality of the derived complete al-
gorithms. Section 7 describes extensions. Section 8 presents
example applications. Section 9 discusses related work and
concludes.

2. PROBLEM
We consider finite sets of relational rules of the form

P1(X11, ..., X1a1
) ∧ ... ∧ Ph(Xh1, ..., Xhah

) → Q(X1, ..., Xa)
(1)

where h is a finite natural number, each Pi (respectively
Q) is a relation of finite number ai (respectively a) of argu-
ments, each Xij and Xk is either a constant or a variable,
and variables in Xk’s must be a subset of the variables in
Xij ’s. If h = 0, then there are no Pi’s or Xij ’s, and Xk’s
must be constants, in which case Q(X1, ..., Xa) is called a
fact. For the rest of the paper, “rule” refers only to the case
where h ≥ 1. Each Pi(Xi1, ..., Xiai

) is called a hypothesis of
the rule, and Q(X1, ..., Xa) is called the conclusion.

Such rules and facts are captured exactly by Datalog [10,
2], a database query language based on the logic program-
ming paradigm. Recursion in Datalog allows queries not
expressible in relational algebra or relational calculus.

Example. We use transitive closure of edges in a graph
as a running example. An edge from a vertex u to a vertex v

is represented by a fact edge(u,v). The following two rules
capture transitive closure, i.e., all pairs of vertices u and v

such that there is a path from u to v.

edge(u,v) → path(u,v)

edge(u,w) ∧ path(w,v) → path(u,v)

The meaning of a set of rules and a set of facts is the
least set of facts that contains all the given facts and all the
facts that can be inferred, directly or indirectly, using the
rules. The problem considered in this paper is to efficiently
compute this set.

Variables occurring in exactly one hypothesis and not in
the conclusion of a rule are called wildcards. Their names
do not affect the meaning of the rule and can be replaced
with underscores.

For ease of exposition, we give formal derivation for rules
with at most two hypotheses, where wildcards occur only
in rules with one hypothesis, and where arguments of rela-
tions appear to be grouped and possibly reordered. We will
see in Section 7 that rules with more hypotheses or with
wildcards in rules with multiple hypotheses can be reduced
to rules with at most two hypotheses and where wildcards
occur only in rules with one hypothesis, and that this does
not affect the complexity guarantees. We will see through
the derivation that grouping and reordering of arguments do
not affect the results either. Precisely, our formal derivation
considers rules and facts of the following forms:

form 2: P1(X1s,Ys,C1s) ∧ P2(X2s,Ys,C2s)

→ Q2(X1s,X2s,Y’s,C3s)

form 1: P(Zs,As) → Q1(Z’s,Bs)

form 0: Q(Cs)

(2)

Each of X1s, X2s, Ys, Y’s, Zs, and Z’s abbreviates a group of
variables, possibly including multiple occurrences of a vari-
able. Each of C1s, C2s, C3s, As, Bs, and Cs abbreviates a
group of constants, possibly including multiple occurrences
of a constant. Variables in Y’s and Z’s are subsets of the
variables in Ys and Zs, respectively. In form 2, variables in
Ys are exactly those shared between the two hypotheses; if
a shared variable occurs different times in the two hypothe-
ses, we assume that the two Ys’s in the respective hypotheses
capture the respective occurrences.

Note that different relation names in these forms may refer
to the same relation. We use different names for different oc-
currences of relations so that in the description that follows,
we can tell which one is from where. For similar reasons,
we use different names for different groups of constants and
variables.

3. APPROACH
We use a set-based language for the formal derivation and

analysis. The language is based on SETL [34, 35] extended
with a fixed-point operation [8]; we allow sets of heteroge-
neous elements and extend the language with pattern match-
ing. Primitive data types include sets, tuples, and maps, i.e.,
binary relations represented as sets of 2-tuples. Their syn-
tax and operations on them are summarized in Figure 1. We
use the notation below for pattern matching against tuples
whose components may be constants or variables. It returns
false if X is not a tuple of length n or if any Yi is a constant
but the ith component of X is not the same constant; other-
wise, it binds each Yi that is a variable to the ith component
of X.

X of [Y1 ... Yn] matching X against [Y1 ... Yn]

We use the notation below for set comprehension. Each Yi



{X1 ... Xn} a set with elements X1,...,Xn

[X1 ... Xn] a tuple with elements X1,...,Xn in order
{[X1 Y1] ... [Xn Yn]} a map that maps X1 to Y1, ..., Xn to Yn

{} empty set
exists X in S whether S is empty and, if not, binding X to any element of S

S + T, S − T union and difference, respectively, of sets S and T

S with X, S less X S + {X} and S − {X}, respectively
S ⊆ T whether S is a subset of T

X in S, X notin S whether or not, respectively, X is an element of S

#S number of elements in set S

dom(M) domain set1 of map M , i.e., {X : [X Y ] in M}
M{X} image set of X under map M , i.e., {Y : [X Y ] in M}

Figure 1: Sets, tuples, maps, and operations on them.

enumerates elements of Si; for each combination of Y1, ..., Yn,
if the value of Boolean expression Z is true, then the value
of expression X forms an element of the resulting set. Each
Yi can be a tuple, in which case an enumerated element of
Si is first matched against it. If Z is omitted, it is implicitly
the constant true.

{X : Y1 in S1, ..., Yn in Sn | Z} set former (3)

LFP(S0, F ) denotes the minimum element S, with respect
to the subset ordering ⊆, that satisfies the condition S0 ⊆ S

and F (S) = S. We use standard control constructs while,
for, if , and case, and we use indentation to indicate scope.
We abbreviate X := X op Y as X op := Y .

The fixed-point specification. Using the above language,
we represent a fact of the form Q(Cs) using [Q Cs], which
abbreviates a tuple whose first component is a constant Q

and whose other components are the constants in Cs; and
we represent a hypothesis of the form P(Xs,Cs) using [P Xs

Cs], where P and the components in Cs are constants and
those in Xs are variables.

Let e0 be the set of all given facts. Since all rules of the
same forms are processed in the same way, we will describe
the compilation method for only one rule of form 1 and one
rule of form 2. Given any set of facts R, for the rule of form 1,
let e1(R) be the set of facts Q1(Z’s,Bs) such that P(Zs,As)
is in R, and for the rule of form 2, let e2(R) be the set of
facts Q2(X1s,X2s,Y’s,C3s) such that P1(X1s,Ys,C1s) and
P2(X2s,Ys,C2s) are in R. That is,

e0 = {[Q Cs] : Q(Cs) in givenFacts}

e1(R) = {[Q1 Z’s Bs] : [P Zs As] in R}

e2(R) = {[Q2 X1s X2s Y’s C3s] :

[P1 X1s Ys C1s] in R and

[P2 X2s Ys C2s] in R}

(4)

The meaning of the given set of rules and facts is

LFP(e0,F), where F(R) = R+e1(R)+e2(R). (5)

Note we allow sets to contain elements of different types, i.e.,
facts of different relations. Such union types allow simpler
and clearer algorithm derivation at a high level before data
structure design.

1Note the difference between the domain of an argument of
a relation and the domain set of a map. The former is the
set of possible values for the argument of the relation; the
latter is the domain of the first component of the map.

Compilation and analysis. Transforming a set of rules
into an efficient implementation has three steps. Step 1
transforms the fixed-point specification into a while-loop.
The idea is to perform a small update operation in each
iteration. The fixed-point expression in (5) is equivalent to

LFP({},F), where F(R) = e0+R+e1(R)+e2(R)

and is transformed into the following loop. When it termi-
nates, R is the result.

R := {}

while exists x in e0+e1(R)+e2(R)-R

R with:= x
(6)

Step 2 transforms expensive set operations in the loop into
incremental operations. The idea is to replace each expen-
sive expression exp in the loop with a fresh variable, say E,
and maintain the invariant E = exp by inserting appropri-
ate initializations and updates to E where variables in exp

are initialized and updated, respectively. Step 3 designs ap-
propriate data structures for representing each set so that
operations on it can be implemented efficiently. The idea
is to design sophisticated linked structures, whenever pos-
sible, based on how sets and set elements are accessed, so
that each operation can be performed in worst-case constant
time and with at most a constant (a small fraction) factor
of overall space overhead. Note, however, to compile Data-
log rules, indexed structures (arrays) must also be exploited
extensively in order to achieve the best running time.

These three steps are called dominated convergence [8], fi-
nite differencing [31, 29], and real-time simulation [30, 7], re-
spectively, by Paige et al. Step 2 is the driving force; Liu [18]
gives references to much work that exploits similar ideas.
Step 3 is the enabling mechanism; the main difficulty here
is that linked structures using based representations [30, 7]
do not suffice, and sophisticated indexed structures must be
used extensively and set up carefully.

The complexity results are obtained by carefully bound-
ing the numbers of facts actually used and produced by the
rules rather than approximating them crudely using sizes of
separate domains of arguments.

Correctness. Correctness of the transformations follows
from the correctness of each of the three steps, as proven
by Paige et al. in [8, 31, 29, 30, 7], and the correctness of
our extensions to Step 3. For Step 3, determining appropri-
ate data structures is difficult, but correctness of the basic
operations supported by the resulting data structures fol-
lows from simple properties of records, arrays, and linked



lists. Correctness of the complexity results follows from the
careful analysis in Section 6 of the sizes of the sets and maps
used and the number of combinations of facts considered by
the algorithm.

4. INCREMENTAL COMPUTATION
We transform (6) to compute expensive set expressions in

the loop incrementally in each iteration. That is, we hold
the values of expensive expressions in variables, initialize the
values of these variables for the initial value of R before en-
tering the loop, use the values of these variables where the
values of the corresponding expressions are needed, and up-
date the values of these variables incrementally as the value
of R is updated. This eliminates repeated recomputations of
the expensive expressions in the loop.

Identifying expensive subexpressions and auxiliary

maps. A set expression is expensive if it is a set former
(3) or involves high-level set operations such as union and
difference. Therefore, the expensive expressions in (6) are
e0, e1(R), e2(R), and e0+e1(R)+e2(R)-R. We use fresh vari-
ables E0, E1, E2, and W to hold their respective values and
thus have the following invariants:

E0 = e0 = as in (4)
E1 = e1(R) = as in (4)
E2 = e2(R) = as in (4)
W = e0+e1(R)+e2(R)-R = E0+E1+E2-R

(7)

As an example of incremental maintenance of the value of an
expensive expression, consider maintaining the invariant for
E1. Clearly, E1 can be initialized to {} with the initialization
R:={}. E1 can also be updated easily together with the
update R with:=x : if x is of the form [P Zs As], then E1

is updated by adding the corresponding [Q1 Z’s Bs] if it is
not already in E1, otherwise nothing needs to be done.

For set expressions such as e2(R) formed by joining ele-
ments from sets, efficient incremental computation may re-
quire maintaining auxiliary maps. To update E2 incremen-
tally with the update R with:= x, if x is of the form [P1

X1s Ys C1s], then we consider all matching tuples [P2 X2s

Ys C2s] in R and add the corresponding tuple [Q2 X1s X2s

Y’s C3s] to E2. To form the tuples to add, we need to effi-
ciently find the appropriate values of X2s, so we maintain an
auxiliary map that maps variables in Ys to variables in X2s

for all [P2 X2s Ys C2s] in R. We store this map in variable
E2P2YsX2s, indicating that it is used for maintaining E2 and
built from P2 and maps variables in Ys to variables in X2s:

E2P2YsX2s = {[Ys X2s] : [P2 X2s Ys C2s] in R} (8)

Note that we overloaded Ys and X2s in the auxiliary map to
represent sets of variables, i.e., without duplicates and the
order of elements does not matter. We don’t care how many
times these variables occur in either of the two hypothesis
or the conclusion. Note also that, if arguments of the hy-
pothesis P2(X2s,Ys,C2s) start with unduplicated variables
in Ys, followed by unduplicated variables in X2s, and pos-
sibly followed by constants, then E2P2YsX2s is not needed
and facts of P2 that are in R can be used directly; having no
shared variables, i.e., Ys being empty, is a trivial case of this.
Symmetrically, if x is a tuple of P2, we need to consider each
matching tuple of P1 and add the corresponding tuple of Q2

to E2. To efficiently form the tuples to add, we maintain

E2P1YsX1s = {[Ys X1s] : [P1 X1s Ys C1s] in R} (9)

We call the first set of arguments in an auxiliary map the
anchor and the second set of arguments the non-anchor.
Being able to directly find only the matching tuples allows
us to consider only combinations of facts that make both
hypotheses simultaneously true and to consider each combi-
nation only once.

Example. For the transitive closure example, E0, E1,
E2, and W are defined straightforwardly. We also maintain
the auxiliary map E2edgewu = {[w u] : [edge u w]in R},
which is an inverse of edge. No auxiliary map E2pathwv is
needed, since facts of path that are in R can be used directly.

Initializations and incremental updates. Variables hold-
ing the values of expensive subcomputations and auxiliary
maps are initialized together with the assignment R:={}

and updated incrementally together with the assignment R

with:= x in each iteration.
By definitions (7), (8) and (9), when R is {}, we have:

E0 = {[Q Cs] : Q(Cs) in givenFacts}

E1 = {}

E2 = {}

W = E0 = {[Q Cs] : Q(Cs) in givenFacts}

E2P2YsX2s = {}

E2P1YsX1s = {}

(10)

and when x is added to R in the loop body, these variables
can be updated as follows:

case x of [P Zs As]

E1 with:= [Q1 Z’s Bs]

if [Q1 Z’s Bs] notin R then W with:= [Q1 Z’s Bs]

case x of [P1 X1s Ys C1s]

E2 +:= {[Q2 X1s X2s Y’s C3s]: X2s in E2P2YsX2s{Ys}}

W +:= {[Q2 X1s X2s Y’s C3s]: X2s in E2P2YsX2s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

E2P1YsX1s with:= [Ys X1s]

case x of [P2 X2s Ys C2s]

E2 +:= {[Q2 X1s X2s Y’s C3s]: X1s in E2P1YsX1s{Ys}}

W +:= {[Q2 X1s X2s Y’s C3s]: X1s in E2P1YsX1s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

E2P2YsX2s with:= [Ys X2s]

W less:= x

(11)
Adding these initializations and updates and using W in

place of e0+e1(R)+e2(R)-R in (6), we obtain the following
complete code. It is easy to see that W serves as the workset.

initialize using (10)
R := {}

while exists x in W

update using (11)
R with:= x

(12)

Eliminating dead code and cleaning up. To compute
the result R, only W, E2P2YsX2s, and E2P1YsX1s are needed.
So E0, E1, and E2 are dead. Eliminating them from (12), we



obtain the following algorithm:

W := {[Q Cs] : Q(Cs) in givenFacts}

E2P2YsX2s := {}

E2P1YsX1s := {}

R := {}

while exists x in W

case x of [P Zs As]

if [Q1 Z’s Bs] notin R then W with:= [Q1 Z’s Bs]

case x of [P1 X1s Ys C1s]

W +:= {[Q2 X1s X2s Y’s C3s]: X2s in E2P2YsX2s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

E2P1YsX1s with:= [Ys X1s]

case x of [P2 X2s Ys C2s]

W +:= {[Q2 X1s X2s Y’s C3s]: X1s in E2P1YsX1s{Ys}

| [Q2 X1s X2s Y’s C3s] notin R}

E2P2YsX2s with:= [Ys X2s]

W less:= x

R with:= x

(13)
Finally, the code is cleaned up to contain only uniform

element-level operations for data structure design. That is,
we decompose R into Ri’s, where each Ri is for a single rela-
tion that occurs in the rules. Similarly, we decompose W into
Wi’s. For a relation Qi that occurs in the conclusion of a rule,
we write RQi and WQi instead of Ri and Wi. We also elimi-
nate relation names from the first component of tuples and
transform the while-clause and case-clauses appropriately.
Then, we do the following three sets of transformations.

(i) Straightforwardly transform set-level operations (unions
here) into loops that use element-level operations. In
particular, replace an assignment or addition of a set
{X : Y in S |Z} to W with a for-loop that adds ele-
ments one at a time: for Y in S if Z then W with :=
X.

(ii) Replace tuples and tuple operations with maps and
map operations. In particular, replace tuples of more
than two components with tail nested tuples of two
components, e.g., [X Y Z V ] becomes [X [Y [Z V ] ] ];
then, for each 2-tuple Z and map M , replace

while exists Z in M ... Z...

with

while exists X in dom(M)
while exists Y in M{X}

... [X Y ]...,

replace for-loops in a similar way, and replace M 6= {}
with dom(M) 6= {}; finally, replace [X Y ] notin M

with Y notin M{X}, and replace M with := [X Y ]
with M{X} with := Y .

(iii) Make all element-level updates easy by testing mem-
bership first. In particular, replace S with := X

with if X notin S then S with := X. Note that
W less:=x does not need the test x in W, since x is
retrieved from W. Also, R with:=x does not need the
test x in R since elements are moved from W to R one
at a time and each element is put into W and thus R

only once.

Example. For the transitive closure example, after rep-
resenting R as Redge and Rpath and representing W as Wedge

and Wpath but before applying the three sets of transforma-
tions, we obtain the algorithm in Figure 2. Note that the
first two cases in (13) are merged for this example since both
rules for this example have a hypothesis that contains edge.
Also, Rpath, i.e., facts of path that are in R, is used in place
of an auxiliary relation E2pathwv.

5. DATA STRUCTURE DESIGN
We describe how to guarantee that each set operation in

the cleaned-up version of (13) takes worst-case O(1) time.
The operations are of the following kinds: set initializa-
tion S := {}, computing domain set dom(M), comput-
ing image set M{X}, element retrieval in for X in S and
while exists X in S, membership test X in S and X notin S,
and element addition S with X and deletion S less X. We
use associative access to refer to membership test (X in S

and X notin S) and computing image set (M{X}). Such
an operation requires the ability to locate an element (X)
in a set (S or dom(M)).

Based representations. Consider using a singly linked
list for each set, for the domain set of each map, and for
each of the image sets of each map. Let each element in
a domain set linked list contain a pointer to its image set
linked list. In other words, represent a set as a linked list,
and represent a map as a linked list of linked lists. It is
easy to see that, if associative access can be done in worst-
case O(1) time, so can all other primitive operations. To
see this, note that computing a domain set or an image set
simply returns a pointer to the set; retrieving an element
from a set only needs to locate any element in the set; and
adding or deleting an element from a set can be done in con-
stant time after doing an associative access. An associative
access would take linear time if a linked list is naively tra-
versed to locate an element. A classical approach to address
this problem is to use hash tables [4] instead of linked lists.
However, this gives average, rather than worst-case, O(1)
time for each operation, and has the overhead of computing
hashing-related functions for each operation.

Paige et al. [30, 7] describe a technique for designing linked
structures that support associative access in worst-case O(1)
time with little space overhead for a general class of set-
based programs. Consider

for X in W, or while exists X in W

...X in S..., or ...X notin S...,

or ...M{X}... where the domain set of M is S

We want to locate value X in S after it has been located in
W . The idea is to use a set B, called a base, to store values
for both W and S, such that retrieval from W also locates
the value in S. Base B is represented as a set (this set is only
conceptual) of records, with a K field storing the key (i.e.,
value). Set S is represented using a S field of B: records
of B whose keys belong to S are connected by a linked list
whose links are stored in the S field; records of B whose
keys are not in S store a special value for undefinedness in
the S field. Set W is represented as a separate linked list
of pointers to records of B whose keys belong to W . Thus,
an element of S is represented as a field in the record, and
S is said to be strongly based on B; an element of W is
represented as a pointer to the record, and W is said to be
weakly based on B. This representation allows an arbitrary
number of weakly based sets but only a constant number of



Wedge := {[u v] : edge(u,v) in givenFacts}

Wpath := {}

E2edgewu := {} //inverse map for edge

Redge := {}

Rpath := {}

while Wedge != {} or Wpath != {}

while exists [u,w] in Wedge

if [u w] notin Rpath then Wpath with:= [u w] //rule 1

Wpath +:= {[u v]: v in Rpath{w} | [u v] notin Rpath} //rule 2, and use of Rpath

E2edgewu with:= [w u] //update of inverse map

Wedge less:= x

Redge with:= x

while exists [w,v] in Wpath

Wpath +:= {[u v]: u in E2edgewu{w} | [u v] notin Rpath} //rule 2, and use of inverse map

Wpath less:= x

Rpath with:= x

Figure 2: Transitive closure algorithm after decomposing relations R and W and before other clean-up trans-

formations.

strongly based sets. Essentially, base B provides a kind of
indexing to elements of S starting from elements of W .

However, often a non-constant number of sets must be
strongly based for constant-time associative access [19, 24],
and this is particularly the case here for compiling gen-
eral forms of rules. Specifically, for the cleaned-up version
of (13), there is associative access in the domain of each
component of the

(i) result sets RQi’s and worksets WQi’s for relations Qi’s
that occur in the conclusions of rules, by tests of whether
a fact of Qi to be added to WQi is already in RQi or WQi,

(ii) anchors of the auxiliary maps E2PiYsXis’s, by the im-
age set operations in E2PiYsXis{Ys}’s, and

(iii) auxiliary maps E2PiYsXis’s, by tests of whether a tu-
ple [Ys Xis] built from Pi(Xis,Ys,Cis) and to be
added to E2PiYsXis is already in it.

Since each value accessed in the domain of a non-last compo-
nent yields an image set for the domain of the next compo-
nent whose values need to be accessed efficiently again, and
there are a non-constant number of values in the domain
of a component, these non-constant number of image sets
can not be all strongly based directly on the set of possible
domain values. Therefore, based representations do not ap-
ply. Nevertheless, we may extend them to use arrays for all
the non-constant numbers of image sets, as described below.
This guarantees worst-case constant running time for each
operation.

Data structures. The data structures need to support the
three kinds of associative access (i) to (iii) described above
and the following two kinds of element retrieval. Note that
an associative access of kind (iii) is not needed if the relation
Pi from which E2PiYsXis is built does not appear in any con-
clusion, because in that case, every tuple [Ys Xis] added to
E2PiYsXis is built from a unique given fact Pi(Xis,Ys,Cis)
and thus must be new. Element retrieval is by traversals in
the domain of each component of the

(i) worksets Wi’s, by the nested while-loops transformed
from the single while-loop in (13), and

(ii) non-anchors of the auxiliary maps E2PiYsXis’s, by the
nested for-loops in the cleaned-up version of (13) that
add elements to the worksets Wi’s.

We describe a uniform method for representing all these sets
and maps, using an array for each non-constant number of
sets that have associative access, a linked list for each set
that is traversed by loops, and both an array and a linked
list when both kinds of operations are needed.

Consider all domains from which arguments of relations
take values. For each domain D, we map the values in D one-
to-one to the integers from 1 to #D, and use these integers to
refer to the values in D. Recall that Qi’s denote relations that
occur in the conclusions of rules. We represent RQi’s, WQi’s
and other Wi’s, and E2PiYsXis’s, respectively, as follows.

• Each RQi of, say, a components, is represented using
an a-level nested array structure. The first level is
an array indexed by values in the domain of the first
component of RQi; the k-th element of the array is null
if there is no tuple of RQi whose first component has
value k, and otherwise is true if a=1, and otherwise
is recursively an (a-1)-level nested array structure for
the remaining components of tuples of RQi whose first
component has value k.

• Each WQi is represented the same as RQi with two addi-
tions. First, for each array, we add a linked list linking
indices of non-null elements of the array. Second, to
each linked list, we add a tail pointer, i.e., a pointer
to the last element, to form a queue. One or more
records are used to put each array, linked list, and tail
pointer together. Each other Wi is represented simply
as a nested queue structure (without the underlying
arrays), one level for each component of Wi, linking
the elements (which correspond to indices of the ar-
rays) directly.

• Each E2PiYsXis such that Pi appears in the conclu-
sion of some rule uses a nested array structure as RQi

and WQi do and additionally linked lists (without the
tail pointers) for each component of the non-anchor
as WQi does. Associative access of kind (iii) above
is not needed for other E2PiYsXis’s, so each other



E2PiYsXis uses a nested array structure only for the
anchor, where elements of arrays for the last compo-
nent of the anchor are each a nested linked-list struc-
ture (without the tail pointers or the underlying ar-
rays) for the non-anchor.

Note that we did not discuss representations for relations
Ri’s that do not occur in the conclusion of any rule. These
sets contain only given facts, not newly inferred facts. They
are not used in any way by our derived algorithms, except
that their elements are simply taken from the given facts via
the Wi’s. Elements of RQi’s and other Ri’s could be linked
together as we do for WQi’s and other Wi’s if these results
sets need to be traversed in subsequent computations.

A small natural improvement is to avoid using completely
separate data structures for the different kinds of tuples in
Ri’s, Wi’s, and E2PiYsXis’s. For all kinds of tuples whose
first components are from the same domain, we use a single
1st-level array of records, as a base, for the domain, and
use a field for each kind of tuples that shares the 1st-level
array. This does not change the asymptotic complexities but
allows the use of a single indexing operator to locate the first
component of multiple tuples that are always accessed next
to each other, e.g., Ri and Wi in each of the three cases
of (13), and E2P2YsX2s and E2P1YsX1s in each of the last
two cases of (13). This also allows all the data structures to
fall back to completely based representations when there is
no associative access into a non-constant number of sets.

Example. For the transitive closure example, we use 1 to
#vertex to refer to the vertices. A base for the domain of
all vertices is used, since both arguments of both edge and
path are from this domain. Elements of the base are stored
in an array indexed by the vertices, for efficient access of
the first component of Rpath, Wpath, and E2edgewu. Each
element u of the base array is a record.

An RpathArray field of u is for Rpath; it is null if no el-
ement of Rpath starts with u and otherwise is an array for
the second component of Rpath, indexed by the vertices and
whose element at v is true if the pair of u and v is an element
of Rpath and null otherwise.

A similar WpathArray field is used for Wpath. A linked
list with tail pointer is used to link indices of the base array
elements whose WpathArray field is not null. A WpathQueue

field of u is a linked list with tail pointer linking indices of
non-null elements of the array in WpathArray; it is null if
WpathArray is null.

A linked list with tail pointer is used to link vertices in
the first component of Wedge. A WedgeQueue field of u is
a linked list of successor vertices v for all tuples [u v] in
Wedge.

An E2edgewuList field of u is used for the inverse map
E2edgewu; it is a linked list of vertices v for all predecessors
v of u.

Time and space trade-offs. When elements in a set are
sparse over a domain, array representations may result in
non-optimal use of space. Note that initialization of the
arrays does not affect the time complexity, as per the note
in [4, Exercise 2.12]. When a set over a domain is sparse,
we could use linked lists instead of arrays for accessing the
set elements. This makes the space usage for this domain
optimal but incurs an extra factor of the length of the lists
for the time complexity. When worst-case time is not a
concern, one could also use hash tables in place of arrays or

linked lists, yielding another set of trade-offs involving also
the overheads of hashing.

6. DETERMINING COMPLEXITY
We describe how to compute time and space complexi-

ties precisely from the rules, and express the complexities in
terms of characterizations of the facts. The size of the rules
is considered a constant. The idea is to analyze precisely the
number of facts actually processed, avoiding approximations
that use only the sizes of individual argument domains.

Size parameters and basic constraints. We use P.i to
denote the projection of P on its i-th argument. We use P.I,
where I = {i1,i2,...,ik}, to denote the projection of P
on its i1-th, i2-th, ..., and ik-th arguments.

The analysis uses the following sizes to characterize the
set of given facts, called relation size, domain size, argument

size, and relative argument size, respectively:

• #P: the number of facts that actually hold for relation
P.

• #D(P.i): the size of the domain from which P.i takes
its value.

• #P.i: the number of different values that P.i can ac-
tually take.
#P.I: the number of different combinations of values
that elements of P.I together can actually take. For I
= ∅, we take #P.I = 1.

• #P.i/j: the maximum number of different values that
P.i can actually take for each possible value of P.j,
where i 6= j.
#P.I/J: the maximum number of different combina-
tions of values that elements of P.I together can ac-
tually take for each possible combination of values of
elements of P.J, where I ∩ J = ∅. For I = ∅, we take
#P.I/J = 1. For J = ∅, we take #P.I/J = #P.I.

Example. For the transitive closure example, #edge is
the number of pairs in relation edge, i.e., the number of
edges in the graph; #D(edge.1) is the number of vertices;
#edge.1 is the number of vertices that are sources of edges;
and #edge.1/2 is the maximum number of predecessors of a
vertex, i.e., the maximum in-degree of vertices.

It is easy to see that the following basic constraints hold:

#P= #P.{1,...,a} for relation P of a arguments
#P.i≤ #D(P.i)

#P.I≤ #P.J for I⊆ J

#P.(I∪J)≤ #P.I×#P.J/I and #P.J/I≤ #P.J for I∩J=∅

These imply commonly used constraints, including in par-
ticular #P≤ #D(P.1)× ...× #D(P.a) for relation P of a argu-
ments, which is especially useful when #P is not an input
parameter, i.e., when P occurs in the conclusion of a rule.

Example. For the transitive closure example, let vertex
be the domain of the arguments of edge, and thus also the
domain of the arguments of path. We have

#path.2/1≤ #path.2≤ #D(path.2)= #vertex

#path≤ #D(path.1)×#D(path.2) = #vertex2

#edge.1/2≤ #edge.1≤ #D(edge.1)= #vertex

#edge≤ #D(edge.1)×#D(edge.2) = #vertex2



Time complexity and optimality. In our derived algo-
rithms, each fact is added to W once and then moved from
W to R once. Each fact that makes the hypothesis of a rule
of form 1 true and each combination of facts that makes
both hypotheses of a rule of form 2 simultaneously true is
considered exactly once, called a firing of the corresponding
rule. To see that each combination of facts that makes both
hypotheses P1 and P2 of a rule simultaneously true is con-
sidered only once, note that the auxiliary map entry for a
fact f of P1 or P2 is built after retrieving f from a workset
and used afterwards. So, a fact f1 of P1 combines once with
each fact of P2 retrieved before f1 is retrieved, and each fact
of P2 retrieved after f1 is retrieved combines once with f1.

It is therefore easy to see that the time complexity is the
total number of firings of all rules, analyzed below. Since
each firing as defined above may imply a new fact as an
instance of the conclusion, it must, in general, be considered
at least once. In this sense the running times of our derived
algorithms are optimal.

For each rule r, let r.#firedTimes denote the total num-
ber of times r is fired. Use IXs to denote the set of indices
of arguments Xs in a hypothesis. For a rule of form 1 in (2),
we have

r.#firedTimes= #P.

For a rule of form 2 in (2), we have

r.#firedTimes≤ min(#P1× #P2.IX2s/IYs,

#P2× #P1.IX1s/IYs).

Consider any given set of rules. Let characteristics of facts
be given in terms of the four kinds of sizes defined above,
and consider the constraints on these sizes described above.
The total time complexity is the sum of #firedTimes over all
rules, minimized symbolically with respect to the given sizes
and the constraints. In particular, if a relative argument
size is needed but not given, we use the corresponding non-
relative argument size; if an argument size #P.I is used but
not given, we use the minimum of (i) the product of domain
sizes for arguments of P that are in I and (ii) the argument
size of P for arguments that are a superset of I, if given.

Example. For the transitive closure example, the time
complexity is the sum of #edge for the first rule and
min(#edge×#path.2/1, #path×#edge.1/2) for the second
rule. When only #edge and #vertex are given, this sum
is bounded by min(#edge×#vertex, #vertex3) based on the
constraints above. Simplifying it based on #edge≤ #vertex2,
we obtain the worst-case time complexity O(#edge×#vertex).

Additional constraints that capture dependencies among
relations and relation arguments can be constructed from
the rules to further bound the sizes for symbolic minimiza-
tion. They can provide more precise results of symbolic min-
imization for rules that have longer chains of non-circular de-
pendencies among relations and relation arguments. They
can also help understand the complexity in terms of output
size, rather than input size alone. Basically, we can bound,
for each rule, the number of instances of the conclusion based
on the number of instances of the hypotheses combined, and
we can bound the number of instances of a hypothesis by
summing all the facts that are instances of the hypothesis
based on the given facts and on the rules that can conclude
these instances. These constraints are relatively straightfor-
ward to formalize based on the size characteristics defined
above. We omit the details here.

Space complexity and optimality. We consider the space
needed besides the space taken by the input. The total such
space is the sum of the space needed for each of the result
sets RQi’s and other Ri’s, worksets WQi’s and other Wi’s, and
auxiliary maps E2PiYsXis’s, described separately as follows:

• RQi’s are only for relations that occur in the conclu-
sions of the rules, i.e., relations for which new facts
may be inferred. For each such relation Qi of, say, a
arguments, the space of RQi is for the a-level nested ar-
ray structures that RQi uses. These arrays are indexed
by the values in the domains and thus take

#D(Qi.1)× ...× #D(Qi.a)

space. Other Ri’s take the same amount of space as
the given facts for the corresponding relations take.

• WQi’s use the same amount of space for their nested-
array structures as RQi’s use. The queues for WQi’s
take no more space than the arrays. The queues for
other Wi’s take the same amount of space as the given
facts for the corresponding relations take.

• E2PiYsXis’s are only for relations that occur in the
hypotheses of rules of form 2. If associative access of
kind (iii) is needed, then the space of E2PiYsXis is
for the arrays used for accessing all the components;
linked lists for the components in the non-anchor take
no more space. Otherwise, the space is taken by the
arrays for the components in the anchor plus linked
lists for the non-anchor.

Let the domains of Ys be DY1 to DYj and of Xis be DXi1
to DXik. If associative access of kind (iii) is needed, the
total space for E2PiYsXis is

#DY1× ...× #DYj× #DXi1× ...× #DXik.

Otherwise, the product after the anchor is replaced
with the amount of space taken by the nested linked-
list structures for the non-anchor, one such structure
for each element of the arrays for the last component
of the anchor; it is hard to sum the space used by
these structures directly, but it is easy to express it as
the difference between the space for a nested linked-
list structure for all components and the space for a
nested linked-list structure for the anchor. Recall that
Ys and Xis in auxiliary maps are sets of variables, and
each variable may occur multiple times in arguments of
Pi, so in general, the minimum space over all possible
indices IXis for Xis and IYs for Ys is taken, and the
total space is

#DY1× ...× #DYj+ min{#Pi.(IYs∪IXis)− #Pi.IYs:

all possible IXis and IYs}.

We call the space taken by result sets RQi’s output space,
and the space taken by auxiliary maps E2PiYsXis’s auxil-

iary space. Worksets WQi’s take the same space asymptoti-
cally as RQi’s, and other Wi’s and Ri’s take no more space
asymptotically than the given facts take.

In our data structures for the auxiliary map for each in-
dividual relation, and for the result set for each individual



rule, arrays are used only where needed—each array sup-
ports constant-time associative access by index for a non-
constant number of sets that have associative access—and
linked structures with minimum space overhead are used for
the rest. However, optimizations that schedule the order in
which elements in the worksets are considered may allow
reuse of space by considering relations and rules in a certain
order. Therefore the total space used is optimal in that it
is the minimum space needed to support all the operations
in the derived algorithms modulo scheduling optimizations
that may eliminate some summands in the space usage for-
mula.

Example. For transitive closure, the output path takes
space #D(path.1)×#D(path.2), which is O(#vertex2). The
auxiliary space usage is #D(edge.2)+#edge.{2,1}−#edge.2,
which is O(#edge) for vertex being the domain of the argu-
ments of edge, i.e., vertex= edge.1∪edge.2.

7. EXTENSIONS
The time complexity of the compilation process described

above is linear in the number of rules. It can handle ad-
ditions of new rules incrementally—one just needs to add
case-clauses and data structures that correspond to the new
rules. The generated algorithms can handle additions of
facts incrementally—one just needs to start with the previ-
ously computed result R and add new facts to the workset W.

Datalog rules with more hypotheses. For rules with
more than two hypotheses, we can both transform them into
rules with two hypotheses and generalize our derivation to
handle such rules directly.

The transformations simply introduce auxiliary relations
with necessary arguments to hold the results of combining
two hypotheses at a time. Precisely, we repeatedly apply the
following transformations to each rule with more than two
hypotheses until only rules with at most two hypotheses are
left: (i) replace any two hypotheses, say Pi(Xi1, ..., Xiai

)
and Pj(Xj1, ..., Xjaj

), of the rule with a new hypothesis,
Q(X1, ..., Xa), where Q is a fresh relation, and Xk’s are
variables in the arguments of Pi or Pj that occur also in the
arguments of other hypotheses or the conclusion of this rule,
and (ii) add a new rule Pi(Xi1, ..., Xiai

)∧Pj(Xj1, ..., Xjaj
) →

Q(X1, ..., Xa). For a rule with h hypotheses, there are (2h−
3)!! (i.e., 1× 3× · · · × (2h− 3)) ways of decomposing it into
rules with two hypotheses, but h is typically a very small
constant, most often no more than two. Each decomposi-
tion leads to certain time and space complexities, calculated
easily using our method; the only modification is that the
space taken by the introduced auxiliary relations should be
counted as auxiliary space not output space. The complexi-
ties resulting from different decompositions can be compared
to determine which one is best.

Transforming rules is higher-level, more declarative, sim-
pler, and clearer than treatment in the derivation process,
but the space taken by the auxiliary relations may be un-
necessary. Treatment in the derivation process considers all
hypotheses directly, by trying all possible decompositions
into fewer but more than two hypotheses and, for each part,
following all possible sequences of adding one hypothesis at a
time. The best running time this approach can achieve is the
same as the transformational method. However, it can avoid
storing intermediate relations in considering a sequence of
more than two hypotheses and thus lead to minimum pos-

sible auxiliary space. The regular path query examples in
Section 8 illustrate this.

Datalog rules with wildcards in rules with multi-

ple hypotheses. We can either eliminate wildcards by sim-
ple transformations or handle them easily in the derivation
process. Both approaches result in exactly the same algo-
rithms and complexities. We present the transformational
approach since it is higher-level, more declarative, simpler,
and clearer.

If a hypothesis of a rule contains wildcards, we introduce
an auxiliary relation to hold only the non-wildcard argu-
ments of the hypothesis. Precisely, for every hypothesis of a
rule that contains wildcards, we (i) replace the hypothesis,
say P (X1, ..., Xa), with a new hypothesis, Q(X ′

1, ..., X
′

a′),
where Q is a fresh relation, and X ′

k’s are the non-wildcard
arguments of P , and (ii) add a new rule P (X1, ..., Xa) →
Q(X ′

1, ..., X
′

a′). The only effect of this transformation on our
complexity analysis is that the space taken by introduced
auxiliary relations should be counted as auxiliary space not
output space. This space is asymptotically no more than the
input space plus output space for the original given prob-
lem. In our derived algorithms for the transformed rules,
all instances of a hypothesis that differ only in the wildcard
components are considered only once together for different
values of the wildcard components.

Extension of Datalog rules with negation. Datalog
rules do not contain negated hypotheses, but negation is
useful for expressing some analysis problems. The two most
well-known semantics for Datalog with negation are strati-
fied semantics and well-founded semantics [2].

Our derivation and complexity analysis work naturally
for rules with stratified semantics. The first step of our
derivation is modified to do a fixed-point computation fol-
lowing the order of stratification. The rest of the derivation
needs no change, since our data structures support associa-
tive access for testing of both positive and negative hypothe-
ses. The complexity analysis remains the same also, simply
ignoring negations in the negative hypotheses, since they
are processed using the same time and space as the corre-
sponding positive hypotheses. We think that our derivation
method should work for other least fixed-point semantics,
such as well-founded semantics, as well. The precise deriva-
tion is a subject for further study.

Extension of Datalog rules with data constructors.
Datalog rules do not contain data constructors, i.e., functors
in logic programs. Recursion with data constructors yields
recursively structured data and is necessary for many anal-
ysis problems, including many combinatorial optimization
problems.

We have developed a general and systematic method,
called incrementalization [22, 18, 23], for incremental com-
putation of recursive functions that use data constructors.
The method is able to derive dynamic programming algo-
rithms for these problems when they are specified using re-
cursive functions [21, 20]. We believe that the same ideas
can be applied to specifications of these problems using Dat-
alog rules extended with data constructors as well as with
arithmetic.



On-demand computation and other optimizations.
The programs our method generates compute all facts that
can be inferred, which can then be used to answer queries
of specific facts. If only facts of a particular relation P are
needed, then we can first do a reachability analysis to in-
clude only rules on which P depends and then transform
only those rules. If only the truth value of P on a particular
set of arguments is needed, a more sophisticated on-demand
(top-down) computation method is needed. The method
describe in this paper is bottom-up. How to achieve ef-
ficient top-down computation, or an efficient combination
of bottom-up and top-down computations, completely by a
transformational method is a topic that needs future study.
We are currently developing methods to combine magic sets
transformations [6] with our transformations to achieve effi-
cient on-demand computation with time and space guaran-
tees.

Optimizations that schedule the order in which elements
in worksets are considered also need to be studied, to achieve
optimal space usage in a more absolute sense.

8. APPLICATIONS
We applied our transformation and complexity analysis

to a number of nontrivial analysis problems and obtained
improved algorithm complexities for some and greatly im-
proved algorithm understanding and greatly simplified com-
plexity analysis for all of them.

We summarize the worst-case complexities of our derived
algorithms for seven example problems in Table 1: transitive
closure (the running example), graph reachability [8], four
kinds of regular path queries [24, 14], and simplification of
regular tree grammar based constraints [19].

Graph reachability finds all vertices reachable (reach(v))
starting from a given set of source vertices (source(v))
and following a given set of edges (edge(u,v)). Our de-
rived algorithm uses no auxiliary maps; its time complexity
is #source+min(#reach×#edge.2/1,#edge), and its output
space is #reach. These formulas give more information than
the simplified formulas in Table 1. For example, when few
vertices are reachable and the out-degrees of vertices are
small, the running time is approximately #source+#reach,
which is significantly better than #source+#edge.

Regular path queries of four kinds are considered. Con-
sider an edge-labeled directed graph G, a vertex v0 of G,
and a regular expression P . An existential query computes
all vertices v in G such that there is a path from v0 to v

that matches P , where state and transition describe a
non-deterministic finite automaton that corresponds to P .
A universal query computes all vertices v in G such that all
paths from v0 to v match P , where state and transition

describe a deterministic finite automaton that corresponds
to P . Parametric queries allow labels to have parameters
and compute substitutions (subst) of variables to constants
together with the matched vertices. #param is the num-
ber of parameters in the pattern. The output space has
a factor of #state×#vertex because the rules infer a rela-
tion match(v,s) on vertex v and state s. All four kinds
of queries naturally have a rule with three hypotheses. De-
composing it into two rules, each with two hypotheses, yields
two possibilities: one has the complexities given in Table 1,
and the other has running time O(#edge×#transition) and
auxiliary space O(#vertex2+#state2), for non-parametric
queries. Considering all three hypotheses together gives bet-

ter auxiliary space, O(#label×#vertex+#label×#state),
with running time O(#edge×#transition); these are the
same as in [24]. The time complexity in Table 1 improves
over [24, 14]; the trade-off is the additional factor #label,
though very small in practice, in total space. For paramet-
ric queries, similar results hold, except with an additional
factor of #subst in the complexities.

Simplification of regular tree grammar based constraints is
used to analyze recursive data structures in programs [19]. It
expresses seven kinds of constraints using seven kinds of rela-
tions. It uses ten rules to infer simplified forms of constraints
from given constraints. The cubic time complexity in Ta-
ble 1 is the worst-case bound for #simp× min(k+ #copy.1/2,

k× #simp.{2,3,...,k+2}/1) that is obtained using our meth-
od, where simp is the set of constraints of simplified forms,
copy is the set of constraints of copy forms, and k is the max-
imum arity of data constructors in programs. This is exactly
the running time analyzed in [19], which helped better un-
derstand the practical performance of the algorithm. The
analysis here is drastically simpler; it also improves over the
analysis in [19] on some of the non-worst-case rules.

These and similar problems have applications in program
analysis [13, 16, 33, 5], model checking [12], and queries of
semi-structured databases [1, 3, 9, 17]. Many more analysis
problems in these applications can easily be specified as Dat-
alog rules and implemented with time and space guarantees
using our method.

9. RELATED WORK AND CONCLUSION
Datalog and optimization methods for Datalog have been

studied extensively in logic programming and database ar-
eas [10, 2]. What distinguishes our results is (i) the direct
transformation of any set of Datalog rules into a complete
algorithm and data structures specialized for those rules,
and (ii) precise analysis of the worst-case time and space
complexities supported by the algorithm and the data struc-
tures.

Optimization methods for Datalog include smart eval-
uation methods and rewriting methods [10]. The former
includes bottom-up evaluation [10, 26], semi-naive evalua-
tion [10], and top-down evaluation with tabling [36, 11]. The
latter includes magic sets transformation [6], among oth-
ers [10]. Our method is not an evaluation method because
it transforms the rules rather than evaluating them; our
method is not a rewriting method in that it does not trans-
form within the frameworks of rules or some algebras. In-
stead, it compiles the rules directly into an implementation
in a standard imperative programming language. The gen-
erated implementation performs a kind of bottom-up com-
putation based on careful incremental updates with data
structure support.

Previous methods for evaluating or rewriting Datalog rules
mostly do not provide complexity analysis [10]. In fact, such
analysis can be very difficult. For example, for top-down
evaluation with tabling and indexing [36, 11, 32], a graph
reachability program may have several different time com-
plexities between linear and quadratic, depending on the
order of the rules, the order of the hypotheses in a rule, the
indexing used, etc. It is well known that a Datalog program
runs in O(nk) time where k is the largest number of vari-
ables in any single rule, and n is the number of constants
in the facts and rules. This has been refined significantly
by McAllester [25], using prefix firings to capture time com-



problem running time output space auxiliary space

transitive closure O(#edge×#vertex) O(#vertex2) O(#edge)
graph reachability O(#source+#edge) O(#vertex) O(1)
existential and universal
regular path queries (RPQ)

O(#edge×#state+
#vertex×#transition)

O(#vertex×
#state)

O(#label×
#vertex×#state)

existential and universal
parametric RPQ

O(above×
#subst×#param)

O(above×
#subst)

O(above×
#subst)

constraint simplification O(#node3) O(#node2) O(#node2)

Table 1: Summary of worst-case complexities for example applications.

plexity. However, the time complexity there is sensitive to
the order of hypotheses in the rules. Space complexity is
not discussed. The proposed implementation method is in-
terpretive, and uses space liberally for extensive hashing, so
space consumption is often unnecessarily large, and there
are no tight worst-case guarantees on time and space. Also,
there was no attempt to automate the complexity analysis.
A recent follow-up [27] discusses how to automate the com-
plexity analysis but does not address the other limitations.

Our derivation of complete algorithms and data structures
from fixed-point specifications uses Paige’s method [28, 31,
29, 8, 30, 7] for languages like SETL [34, 35], except that
based representations [30, 7] in his method do not apply
and a more general and sophisticated combination of ar-
rays, linked lists, and records is needed. Paige’s method also
did not handle union types, i.e., sets with different element
types. Our precise complexity analysis for both time and
space as well as the trade-offs, and using detailed size char-
acterizations of the given facts, can help better understand
the practical performance of the generated algorithms.

There are many other program analysis and model-checking
methods that use equations, constraints, automata, and for-
mal languages [13, 16, 33, 5, 15], and there are other query
languages, but using rules is typically more direct and more
general. Furthermore, the algorithms and implementations
our method generates are formally derived using a system-
atic method, in contrast to the ad hoc development of other
analysis algorithms and query evaluation methods; this helps
assure the correctness and complexity guarantees for the
generated algorithms and implementations. We are cur-
rently implementing the method and developing techniques
to handle extensions of Datalog.
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