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Abstract

Logic rules are powerful for expressing complex reasoning and anal-
ysis problems. At the same time, they are inconvenient or impossible
to use for many other aspects of practical applications. Integrating
logic rules in a language with sets and functions, and furthermore with
updates to objects, has been a subject of significant study. What’s
lacking is a language that integrates all constructs seamlessly.

This paper gives an overview of such a language, Alda, especially
including how declarations can be used to support more powerful rules
for knowledge representation and reasoning, and how methods and
systems for efficient implementations of rules can used to build an
integrated implementation.

1 Alda: A powerful high-level language

Alda [LST+22] supports all of logic rules, sets, functions, updates, and ob-
jects as seamlessly integrated built-ins, including concurrent and distributed
processes. The key idea is to support predicates in rules as set-valued vari-
ables that can be used and updated directly, and support queries using rules
as either explicit or implicit automatic calls to an inference function.

Alda has a formal semantics, is implemented in a prototype compiler
that builds on an object-oriented language (DistAlgo [LS09, Dis] extending
Python [Pyt22]) and an efficient logic rule system (XSB [SW12, SWS+22]),
and has been used successfully on benchmarks and problems from a wide
variety of application domains. The current implementation supports Dat-
alog rules extended with unrestricted negation and computes well-founded
semantics [VRS91] using XSB, but more general forms of rules and queries
can be compiled to XSB rules and queries in a similar fashion.
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2 Declarations for more powerful logic rules

For advanced knowledge representation and reasoning, Alda is designed to
support declarations for predicates, even though this is not yet implemented
and typical defaults are assumed. The declarations can express scopes and
types of predicates as usual but, more fundamentally, different underlying
assumptions about the predicates, as in founded semantics and constraint se-
mantics [LS20]. The key idea is that each predicate can be declared certain,
complete, or closed, or otherwise (e.g., being complete means all rules with
the predicate in the conclusion have been given); then the same inference
using least fixed point computation and constraint solving yield different
desired semantics: well-founded, stable models, etc., and all possible combi-
nations for different predicates.

Furthermore, to support easy use of different desired semantics, espe-
cially with modular use of rules, the knowledge units in DA-logic [LS21] can
be mapped to rule sets in modules in Alda.

3 Efficient implementations

For efficient inference and queries, Alda is designed to allow any methods
and systems to be used, so long as they provide a function for taking a set
of rules, facts, and queries, and returning the results of the queries. This
is the current implementation of inference using XSB, through an external
interface (with data passing via files and invocation via command lines), and
the performance is already generally good for our benchmarks.

For complex practical applications and for implementation details to
be hidden completely from programmers, efficient implementations with
performance guarantees are highly desired, as studied previously for Dat-
alog [LS09, TL10, TL11]. Additionally, Alda also supports direct updates
to predicates that automatically trigger calls to the inference function to
maintain dependent predicates so as to preserve the declarative seman-
tics of rules. For efficiency, this requires use of incremental query evalu-
ation [RL08, LBSL16] including for circular dependencies [SR03].
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