
On Programming with Logic Rules and

Everything Else

Yanhong A. Liu
Computer Science Department, Stony Brook University

liu@cs.stonybrook.edu

September 14, 2022

Abstract

Logic rules are powerful for expressing complex reasoning and anal-
ysis problems. At the same time, they are inconvenient or impossible
to use for many other aspects of practical applications. Integrating
logic rules in a language with sets and functions, and furthermore with
updates to objects, has been a subject of significant study. What’s
lacking is a language that integrates all constructs seamlessly.

This paper gives an overview of such a language, Alda, especially
including how declarations can be used to support more powerful rules
for knowledge representation and reasoning, and how methods and
systems for efficient implementations of rules can used to build an
integrated implementation.

1 Alda: A powerful high-level language

Alda [LST+22] supports all of logic rules, sets, functions, updates, and ob-
jects as seamlessly integrated built-ins, including concurrent and distributed
processes. The key idea is to support predicates in rules as set-valued vari-
ables that can be used and updated directly, and support queries using rules
as either explicit or implicit automatic calls to an inference function.

Alda has a formal semantics, is implemented in a prototype compiler
that builds on an object-oriented language (DistAlgo [LS09, Dis] extending
Python [Pyt22]) and an efficient logic rule system (XSB [SW12, SWS+22]),
and has been used successfully on benchmarks and problems from a wide
variety of application domains. The current implementation supports Dat-
alog rules extended with unrestricted negation and computes well-founded
semantics [VRS91] using XSB, but more general forms of rules and queries
can be compiled to XSB rules and queries in a similar fashion.

1



2 Declarations for more powerful logic rules

For advanced knowledge representation and reasoning, Alda is designed to
support declarations for predicates, even though this is not yet implemented
and typical defaults are assumed. The declarations can express scopes and
types of predicates as usual but, more fundamentally, different underlying
assumptions about the predicates, as in founded semantics and constraint se-
mantics [LS20]. The key idea is that each predicate can be declared certain,
complete, or closed, or otherwise (e.g., being complete means all rules with
the predicate in the conclusion have been given); then the same inference
using least fixed point computation and constraint solving yield different
desired semantics: well-founded, stable models, etc., and all possible combi-
nations for different predicates.

Furthermore, to support easy use of different desired semantics, espe-
cially with modular use of rules, the knowledge units in DA-logic [LS21] can
be mapped to rule sets in modules in Alda.

3 Efficient implementations

For efficient inference and queries, Alda is designed to allow any methods
and systems to be used, so long as they provide a function for taking a set
of rules, facts, and queries, and returning the results of the queries. This
is the current implementation of inference using XSB, through an external
interface (with data passing via files and invocation via command lines), and
the performance is already generally good for our benchmarks.

For complex practical applications and for implementation details to
be hidden completely from programmers, efficient implementations with
performance guarantees are highly desired, as studied previously for Dat-
alog [LS09, TL10, TL11]. Additionally, Alda also supports direct updates
to predicates that automatically trigger calls to the inference function to
maintain dependent predicates so as to preserve the declarative seman-
tics of rules. For efficiency, this requires use of incremental query evalu-
ation [RL08, LBSL16] including for circular dependencies [SR03].

References

[Dis] DistAlgo. distalgo.cs.stonybrook.edu. Accessed September 14,
2022.

[LBSL16] Yanhong A. Liu, Jon Brandvein, Scott D. Stoller, and Bo Lin. Demand-
driven incremental object queries. In Proceedings of the 18th Interna-

2

distalgo.cs.stonybrook.edu


tional Symposium on Principles and Practice of Declarative Program-
ming, pages 228–241. ACM Press, 2016.

[LS09] Yanhong A. Liu and Scott D. Stoller. From Datalog rules to efficient
programs with time and space guarantees. ACM Transactions on Pro-
gramming Languages and Systems, 31(6):1–38, 2009.

[LS20] Yanhong A. Liu and Scott D. Stoller. Founded semantics and constraint
semantics of logic rules. Journal of Logic and Computation, 30(8):1609–
1638, Dec. 2020. Also http://arxiv.org/abs/1606.06269.

[LS21] Yanhong A. Liu and Scott D. Stoller. Knowledge of uncertain worlds:
Programming with logical constraints. Journal of Logic and Computa-
tion, 31(1):193–212, Jan. 2021. Also https://arxiv.org/abs/1910.
10346.

[LST+22] Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin, and K. Tun-
cay Tekle. Programming with rules and everything else, seamlessly.
Computing Research Repository, arXiv:2205.15204 [cs.PL], May 2022.
http://arxiv.org/abs/2205.15204.

[Pyt22] Python Software Foundation. Python. http://python.org/, Accessed
September 14, 2022.

[RL08] Tom Rothamel and Yanhong A. Liu. Generating incremental imple-
mentations of object-set queries. In Proceedings of the 7th International
Conference on Generative Programming and Component Engineering,
pages 55–66. ACM Press, 2008.

[SR03] Diptikalyan Saha and C. R. Ramakrishnan. Incremental evaluation of
tabled logic programs. In Proceedings of the 19th International Confer-
ence on Logic Programming, pages 392–406. Springer, 2003.

[SW12] Terrance Swift and David S Warren. XSB: Extending Prolog with tabled
logic programming. Theory and Practice of Logic Programming, 12(1-
2):157–187, 2012.

[SWS+22] Theresa Swift, David S. Warren, Konstantinos Sagonas, Juliana Freire,
Prasad Rao, Baoqiu Cui, Ernie Johnson, Luis de Castro, Rui F. Mar-
ques, Diptikalyan Saha, Steve Dawson, and Michael Kifer. The XSB
System Version 5.0,x, May 2022. http://xsb.sourceforge.net. Lat-
est release May 12, 2022.

[TL10] K. Tuncay Tekle and Yanhong A. Liu. Precise complexity analysis for
efficient Datalog queries. In Proceedings of the 12th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Pro-
gramming, pages 35–44, 2010.

[TL11] K. Tuncay Tekle and Yanhong A. Liu. More efficient Datalog queries:
Subsumptive tabling beats magic sets. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, pages 661–
672, 2011.

[VRS91] Allen Van Gelder, Kenneth Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM, 38(3):620–
650, 1991.

3

http://arxiv.org/abs/1606.06269
https://arxiv.org/abs/1910.10346
https://arxiv.org/abs/1910.10346
http://arxiv.org/abs/2205.15204
http://python.org/
http://xsb.sourceforge.net

	Alda: A powerful high-level language
	Declarations for more powerful logic rules
	Efficient implementations

