Solving Regular Path Queries*

Yanhong A. Liu and Fuxiang Yu

Computer Science Dept., State University of New York, Stony Brook, NY 11794
{1iu,fuxiang}@cs.sunysb.edu

Abstract. Regular path queries are a way of declaratively specifying
program analyses as a kind of regular expressions that are matched
against paths in graph representations of programs. These and similar
queries are useful for other path analysis problems as well. This paper
describes the precise specification, derivation, and analysis of a com-
plete algorithm and data structures for solving regular path queries. We
first show two ways of specifying the problem and deriving a high-level
algorithmic solution, using predicate logic and language inclusion, re-
spectively. Both lead to a set-based fixed-point specification. We then
derive a complete implementation from this specification using Paige’s
methods that consist of dominated convergence, finite differencing, and
real-time simulation. This formal derivation allows us to analyze the
time and space complexity of the implementation precisely in terms of
size parameters of the graph and the deterministic finite automaton that
corresponds to the regular expression. In particular, the time and space
complexity is linear in the size of the graph. We also note that the prob-
lem is PSPACE-complete in terms of the size of the regular expression.
In applications such as program analysis, the size of the graph may be
very large, but the size of the regular expression is small and can be
considered a constant.

1 Introduction

Regular path queries are a way of declaratively specifying program analyses as
a kind of regular expressions that are matched against paths in graph repre-
sentations of programs [5]. Related queries are also used in model checking [9].
Program analysis and model checking are important for many applications. For
example, program analysis is critical for program optimization, and model check-
ing is important for formal verification. In fact, regular expressions provide a
general framework for capturing many path problems [18,17]. Program analysis
and model checking are just two of many applications.

This paper describes the precise specification, derivation, and analysis of a
complete algorithm and data structures for solving regular path queries. The
specification and derivation consist of two parts. First, specify the problem and
derive a high-level algorithm that can be expressed using a set-based language

* This work was supported in part by ONR under grants N00014-01-1-0109 and
N00014-99-1-0132.

with fixed-point operations. Then, start with a set-based fixed-point specifica-
tion and derive a complete implementation with precise data structures and
operations on them. This formal derivation allows us to analyze the time and
space complexity of the implementation precisely in terms of size parameters of
the graph and the deterministic finite automaton that corresponds to the regu-
lar expression. In particular, the time and space complexity is linear in the size
of the graph. We also note that the problem is PSPACE-complete in terms of
the size of the regular expression. In applications such as program analysis and
model checking, the size of the graph may be very large, but the size of the
regular expression is small and can be considered a constant [5].

The derivation from a set-based fixed-point specification to a complete imple-
mentation uses Paige’s methods that are centered around finite differencing [10,
14,11], i.e., computing expensive set expressions incrementally. We first use dom-
inated convergence [3] at the higher level to transform fixed-point operations
into loops. We then apply finite differencing [14,11] to transform expensive set
expressions in loops into incremental operations. Finally, we use real-time sim-
ulation [12,2] at the lower level to implement sets and set operations using effi-
cient data structures. The derivation is completely systematic, and the resulting
algorithm and data structures can be analyzed precisely and map to physical
implementations directly.

In contrast, starting at some initial specification of the problem and arriving
at a set-based fixed-point specification have not been as systematic. A fixed-
point specification often corresponds to some high-level algorithm already. How
should one obtain it? In a most recent work by de Moor et al. [5], specification
and derivation that arrive at such a high-level algorithm are given, using calculus
of relations and universal algebra. This paper shows two other ways of specify-
ing the problem and deriving a high-level algorithmic solution, using predicate
logic and language inclusion, respectively. Both derivations are extremely suc-
cinct, and both results lead easily to a set-based fixed-point specification. The
initial specification using predicate logic corresponds rather directly to the given
English description of the problem.

The rest of the paper is organized as follows. Section 2 describes the prob-
lem specification and two ways of arriving at a high-level algorithmic solution.
Section 3 expresses the high-level solution using a set-based language with fixed-
point operations, and introduces Paige’s approach for computing fixed points
iteratively. Sections 4 and 5 derive the precise incremental computation steps
and data structures, respectively. Section 6 discusses related issues. Section 7
compares with related work and concludes.

2 Problem specification and high-level algorithmic solution

We describe how the problem can be specified and how a high-level algorithm
for solving it can be derived succinctly in two ways, using predicate logic and
language inclusion, respectively.

The regular path query problem. Consider an edge-labeled directed graph
G and a regular-expression pattern P. We say that a path in G matches P if the
sequence of edge labels on the path is in the regular language generated by P.
The regular path query problem is:

Given an edge-labeled directed graph G with a special vertex v0, and
a regular expression P, compute all vertices v in G such that all paths
from v0 to v match P.

Precisely, we regard the given graph as a set G of labeled edges of the form
{v1,a,v2), with source and target vertices v1 and v2 respectively and edge label
a, where v0 is a special vertex in the graph. We consider a deterministic finite
automaton (DFA) corresponding to the given regular expression, where P is a
set of labeled transitions of the form (sl,a, s2), with source and target states
(vertices) s1 and s2 respectively and transition (edge) label a, and where s0 is
the start state, and F' is the set of final states. We assume that for each state
there is an outgoing edge for each label; a trap state can be added to achieve
this if needed. The initial specifications (1) and (4) below are correct even if P is
nondeterministic. We discuss why we use a DFA instead of the regular expression
or its corresponding nondeterministic finite automaton (NFA) in Section 6.

Using predicate logic. The problem as described above can be written directly
as: Given G, v0, P, s0, and F, compute the set

{v € vertices(G) | Vp (p € path(v0,v,G) = Is (p € path(s0,s,P) AseF))} (1)
where vertices(G) is the set of all vertices in G, path(v0,v,G) is the set of all

sequences of edge labels on paths from v0 to v in G, and path(s0, s, P) is similar.
Since P is a DFA, i.e., it is deterministic, the right side of = in (1) equals

—3s (p € path(s0,s,P)As ¢ F)
Vs (—p € path(s0,s,P)V s € F).

Now, move Vs above out of =, and move negated left operand of V to left of =.
We have that (1) equals
{v € vertices(G) | Vp Vs (p € path(v0,v,G) A p € path(s0,s,P) = s € F)}

which, letting G x P = {{{(v1, s1), a, (v2, s2)) | {(v1,a,v2) € G A (s1,a,s2) € P}
be the product of P and @, equals

{v € vertices(G) | Vp Vs (p € path({v0,s0),{v,s),G x P) =>s€ F)} (2)

We can see that (2) computes the set of vertices v in G such that, if there is a
path from (v0, s0) to (v, s) in G x P, i.e., if (v, s) is reachable from (v0, s0), then
s is in F. Precisely, moving Vp inside yields Jp (p € path({v0, s0), (v, s), G x P))
on the left side of =. If we let reach(G x P, (v0, s0)) be the set of nodes reachable
from (v0, s0) in G x P, then Jp (p € path({v0, s0), (v, s), G x P)) equals (v, s) €
reach(G x P, (v0, s0)), and (2) equals

{v € vertices(G) | Vs ({v,s) € reach(G x P, {v0,s0)) = s € F)} 3)
Either (2) or (3) expresses the same high-level algorithm derived earlier [5].

which equals

Using language inclusion. We can regard the given graph G as a labeled
transition system, or an NFA | with start state v0 and the set of final states not
yet defined. Then the problem is to compute a subset U of the vertices in G,
such that if v0 is the start state and U is the set of final states, then the language
L(G,v0,u) generated by the NFA (G,v0,U) is a subset of the language L(p 50, r)
generated by the DFA (P, s0, F), and U is the largest such set. That is, given
G, v0, P, s0, and F, the problem is to compute

max{U C vertices(G) | Ligwo,u) € L(p,s0,r)} (4)

where max follows the partial order of set inclusion C.
Since P is a DFA, if S¢ denotes the complement of set S, we have

L(P,SO,F) = (L(p,SO,Fc))C
Thus, the language inclusion in (4), with the new right side (L(p,0,5<))¢, equals
LG vo,u) N Lpso,pey =0

which equals
LG P,wo,50),uxFe) = 0 (5)

where the second x is a simple Cartesian product.
Using the reach notation in (3), (5) equals

reach(G x P,{v0,s0)) N (U x F¢) =
which equals
Y{v,s) ((v,s) € reach(G x P,{v0,50)) As € F°=>v ¢ U)
Thus, (4) equals
max{U C vertices(G) | ¥{v, s) ({v, s) € reach(Gx P, (v0,s0))As € F¢ = v ¢ U)}
which equals
vertices(G) — {v | s ({v, s) € reach(G x P,{v0,s0)) A s € F°)} (6)
Note that (6) equals (3) except for the double negation based on the rule
{zx € S| predicate(z)} = S — {z € S | - predicate(z)}.
Starting with either (6) or (3) will lead to not only the same complete algorithm

but also the same derivation except for the initial appearance of set difference.
We will use (6) for no particular reason.

3 Approach for deriving a complete implementation

Notation. We use a set-based language for deriving a complete implementation.
The language is based on SETL [15, 16] extended with a fixed-point operation [3].
Primitive data types are sets, pairs, and maps, i.e., binary relations represented
as sets of pairs. Their syntax and operations on them are summarized below:

{X1,..., Xn} a set with elements Xi,...,X,

[X1, X>] a pair with elements X; and X

{[X1,Y1],...,[X#n,Ys]} a map that maps X; to Y1, ..., X to Y,

{} empty set

S+T, S—-T union and difference, respectively, of sets S and T

S with X, Sless X S+ {X} and S — {X}, respectively

SCT whether S is a subset of T

XesS X¢gS§ whether or not, respectively, X is an element of S

dom(M) domain of map M, ie., {X :[X,Y] € M}

ran(M) range of map M, i.e, {Y : [X,Y] € M}

M{Z} image set of Z under map M, ie., {Y:[X,Y]e M | X = Z}
M[S] image set union of S under M, ie., {Y:[X,Y]e M | X € S}

We use the notation below for set comprehension. Y;’s enumerate elements of all
S;’s; for each combination of Y7, ...,Y,, if the Boolean value of expression Z is
true, then the value of expression X forms an element of the resulting set.

{X:Y1€851,..,.Y,€8, | Z} set former

LFP ¢ 5,(F(S),S) denotes the minimum element S, with respect to partial
ordering C, that satisfies the condition Sy C S and F(S) = S. We use standard
control constructs while, for, and if, and we use indentation to indicate scoping.
We abbreviate X := X op Y as X op :=Y.

A set-based fixed-point specification. We represent a set of labeled edges
of the form (z1,a,z2) using a set of pairs of the form [z1,[a, 22]], which can be
built straightforwardly in the same loop that reads in the 3-tuple form. Thus, if
[z1,[a,z2]] is a labeled edge in G, then z1 is in dom(G), a is in dom(ran(G)),
and z2 is in ran(ran(G)). So vertices(G) = dom(G) + ran(ran(Q)), and (6)
can be expressed directly using set and fixed-point notation as

dom(G) + ran(ran(G)) — {v : [v, s] € LFP¢ (1,0,.01}((G X P)[R],R) | s ¢ F} (7)

where G x P = {[[v1, s1],[a, [v2,s2]] : [v1,[a,v2]] € G A[s1,[b,s2]] € P | a = b}.

Approach. The method has three steps: (1) dominated convergence, (2) finite
differencing, and (3) real-time simulation.

Dominated convergence [3] transforms a set-based fixed-point specification
into a while-loop. The idea is to perform a small update operation in each
iteration. The fixed-point expression LFP ¢ (1,050} ((G x P)[R], R) in (7) is

transformed into the following while-loop, making use of AR.F(R) U R being
monotone and inflationary at [v0, s0]:
R := {[v0, s0]};
while exists [v,s] € (G x P)[R] — R (8)
R with := [v, s];
This code is followed by
O :=dom(G) + ran(ran(G)) — {v: [v,s] € R| s ¢ F};

When the loop in (8) terminates, R is the set of nodes in G x P reachable from
[v0, s0]. O is the output set.

To simplify the initialization code, we can move initialization of R into the
loop body, yielding:

R:={}
while exists [v, s] € {[v0, s0]} + (G x P)[R] — R (9)
R with := [v,];

O :=dom(G) + ran(ran(G)) — {v: [v,s] € R | s ¢ F'};

Finite differencing [14, 11] transforms expensive set operations in a loop into
incremental operations. The idea is to replace expensive expressions exp, ...,
expn in a loop LOOP with fresh variables Fi, ..., E,, respectively, and maintain
the invariants Ey = exp:, ..., B, = exp, by inserting appropriate initializa-
tions or updates to Ei, ..., E, at each assignment in LOOP. We denote the
transformed loop as

A Ey,...,E,{LOOP)
For our program (9), expensive expressions, i.e., non-constant-time expressions
here, are the one that computes O and others that are needed for computing
{[v0, 0]} + (G x P)[R] — R. We use fresh variables to hold their values. These
variables are initialized together with the assignment R := {} and are updated
incrementally as R is augmented by [v, s] in each iteration. Liu [7] gives references
to much work that exploits similar ideas.

Real-time simulation [12, 2] selects appropriate data structures for represent-
ing sets so that operations on them can be implemented efficiently. The idea is
to design sophisticated linked structures based on how sets and set elements are
accessed, so that each operation can be performed in worst-case constant time
and with at most a constant (a small fraction) factor of overall space overhead.

4 Finite differencing
This section transforms (9) to compute expensive set operations incrementally.

Identifying expensive subexpressions. The expensive subcomputations in
(9) are named as follows,

I =GxP // product graph
S = I[R] // successors in product graph (10)
W = {[v0,s0]} + S— R /] workset

O = dom(G) +ran(ran(G)) —{v:[v,s] € R | s ¢ F} // output set

We want to compute these computations incrementally using finite differencing.
That is, we want to update the sets I, S, W, and O whenever we update R.
Thus, the overall computation in (9) becomes

AISW,O(R:={};
while exists [v,s] € W (11)
R with := [v, s];)

Initialization and incremental maintenance. First, sets I, S, W, and O
need to be initialized together with R := {} before the loop in (11). That is, they
need to be set to values that correspond to R = {} based on their definitions
in (10). This yields

I =G x P;
S =1}
W := {[v0, s0]};

O := dom(G) + ran(ran(G));

Then, sets I, S, W, and O also need to be maintained incrementally together
with R with := [v, s] in the loop body in (11). That is, we need to update their
values corresponding to the update R with := [v, s] based on their definitions
n (10). Clearly, set I remain unchanged, and the other sets can be updated as
follows, where the two updates to W are with respects to the update to S and
R, respectively.

S + :={[v2,52] : [v,[a,v2]] € G,[s,[b,s2]] € P | a=bA[v2,s2] & S};
W+ = {[v2,s2] : [v,[a,v2]] € G,[s,[b,s2]] € P | a =bA[v2,52] € W A [v2,s2] € R};
W less := [v, s];
if s¢ FAv € O then
O less :=v;

Adding these initialization and incremental updates to the initialization and
the body of the loop in (11), we obtain the following complete program:

I =G x P;

S =1}

W := {0, s0]};

O := dom(G) + ran(ran(G));
R = {}

while exists [v,s] € W
S +:={[v2,2]: [v,[a,v2]] € G,[s,[b,82]] € P | a =bA[v2,s2] € S}
W+ = {[v2,2] : [v,]a,v2]] € G,[s,[b,82]] € P | a =bA[v2,52] ¢ W A[v2,s2] € R};
W less := [v, s];
if s¢ FAve€ O then
O less := v;
R with := [v, s];

(12)

Eliminating dead code. It is easy to see that sets I and S can be eliminated,
and (12) becomes

W = {[v0, s0]}; // initialize W
O := dom(G) + ran(ran(G)); // initialize O
R = {}; // initialize R

while exists [v,s] € W
W+ = {[v2,s2] : [v,[a,v2]] € G,[s,[b,52]] € P | a =bA [v2,52] ¢ W A[v2,s2] € R};

// add to W
W less := [v, s]; // delete from W
if s¢g FAve€ O then
O less := v; // update O
R with := [v, s; // update R
(13)

Finally, transform all aggregate set operations into explicit loops that process
set elements one at a time. We obtain the following complete algorithm after
finite differencing; for completeness, we also show the input and output explicitly.

input(G, P, v0, s0, F);

W = {[v0, s0]}; // initialize W
0 ={} // initialize O
for vl € dom(G) // using for-loops
if v1 € O then
O with := vl

for a € dom(G{v1})
for v2 € (G{v1}){a}
if v2 ¢ O then

O with := v2;
R ={} // initialize R
while exists v € dom(W) // iterate through W
while exists s € W{v} // using while-loops
for a € dom(G{v}) // iterate through (G x P){[v, s]}
for v2 € (G{v}){a} // using for-loops
for s2 € (P{s}){a} // toaddtoW
if s2 ¢ W{v2} A s2 ¢ R{v2} then
W{v2} with := s2; // add to W
W{v} less :=s; // delete from W
if s¢ FAv €O then
O less := v; // update O
R{v} with :=s; // update R
output(0);

(14)

Analysis of time complexity. Assume each primitive operation in the above
algorithm takes (1) time, which will be achieved using data structures in the
next section. The algorithm considers each edge in G x P at most twice, once
for adding to and once for deleting from W. Therefore, the time complexity of
the above algorithm is O(|G| * |P]).

5 Data structure selection

We describe how to guarantee that each set operation in algorithm (14) takes
worst-case O(1) time.

All set operations in (14) are of the following primitive forms: set initialization
S := {}, computing domain set dom(M), computing image set M{z}, element
retrieval for X € S and while exists X € S, membership test X € S and
X &€ S, and element addition S with X and deletion S less X.

We use associative access to refer to membership test (X € S and X ¢ 5)
and computing image set (M{X}). Such an operation requires one to be able to
locate an element (X) in a set (S or dom(M)).

Based representations. Consider using a singly linked list for a set and for
each of the domain and image sets of a map, and letting each element in a
domain linked list contain a pointer to its image linked list. That is, represent
a set as a linked list, and represent a map as a linked list of linked lists. It is
easy to see that, if associative access can be done in worst-case O(1) time, so
can all other primitive operations. To see this, note that computing a domain set
or an image set needs to return only a pointer to the set; retrieving an element
from a set needs to locate only any element in the set; and adding or deleting an
element from a set can be done in constant time after doing an associate access.
An associative access would take linear time if a linked list is naively traversed
to locate an element. A classical approach to solve this problem is to use hash
tables [1] instead of linked lists. However, this gives average, rather than worst-
case, O(1) time for each operation, and has an overhead of computing hashing
related functions for each operation.

Paige et al. [12,2] describe a technique for designing linked structures that
support associative access in worst-case (1) time with little space overhead for
a general class of set-based programs. Consider

for X € W or while exists X €¢ W
X €S or..X¢gS..or..M{X}... where the domain of M is S

We want to locate value X in S after it has been located in W. The idea is to
use a finite universal set B, called a base, to store values for both W and S, so
that retrieval from W also locates the value in S. B is represented as a set (this
set is only conceptual) of records, with a K field storing the key (i.e., value).
Set S is represented using a S field of B: records of B whose keys belong to S
are connected by a linked list where the links are stored in the S field; records
of B whose keys are not in S store a special value for undefined in the S field.
Set W is represented as a separate linked list of pointers to records of B whose
keys belong to W. Thus, an element of S is represented as a field in the record,
and S is said to be strongly based on B; and element of W is represented as a
pointer to the record, and W is said to be weakly based on B. This representation
allows an arbitrary number of weakly based sets but only a constant number of
strongly based sets. Essentially, base B provides a kind of indexing.

It is easy to see the S field can be a single bit if S is not traversed; otherwise,
if there is no deletion from S, then elements in S only need to be linked using a
singly linked list. Only when S is traversed and there is any deletion operation
from S do we need a doubly linked list.

Data structures. Consider the while-loops in (14). The outer while-loop
retrieves elements (named v) from the domain of W and locates it in the domain
of G (by G{v}),in set O (by v € O), and in the domain of R (by R{v}). The inner
while-loop retrieves elements (named s) from a image set of W and locates it in
the domain of P (by P{s}) and in set F' (by s ¢ F'). There are also associative
accesses into the domain of the range of G (by (G{v}){a}) and the domain of
the range of P (by (P{v}){a}). Finally, there are associative accesses into both
the domains and ranges of both W (by s2 € W{v2}) and R (by 52 € R{v2}).
Note that the kinds of accesses in the while-loops include also those needed for
initialization before the while-loops.

We use a base B1 for the set of vertices in G and a base B2 for the set
of states in P. The domain of G and set O are strongly based on B1, and the
domain of P and set F' are strongly based on B2. The domains of W and R are
also strongly based on B1. However, due to associative accesses into the image
sets of G, P, W, and R, there are more than a constant number of sets that also
need to be strongly based. Therefore, the based-representation method does not
completely apply. Nevertheless, we may use arrays for the image sets of G, P,
W, and R. This still guarantees the worst-case constant running time for each
primitive operation in (14).

The precise data structures are as follows. First, we have a set of records for
vertices in GG, and each record has the following fields:

1. a key representing the vertex;

2. an array for the image set of this vertex under G, indexed by labels (for
outgoing edges), and where each element includes the head of a singly linked
list of vertices (for target vertices following an edge with the indexing label)
in G and includes a link that links elements in the image set in a singly
linked list; plus a header for the linked list of elements in the image set;

3. a bit for whether the vertex is in O;

4. an array for the image set of this vertex under W, indexed by the states
in P, and where each element includes a bit for whether the state is in the
image set and includes a link that links elements in the image set in a singly
linked list; plus a header for the linked list of elements in the image set;

5. an array for the image set of this vertex under R, indexed by the states in P,
and where each element includes a bit for whether the state is in the image
set.

We also have a set of records for states in P, and each record has the following
fields:

1. a key representing the state;

10

2. an array for the image set of this state under P, indexed by labels (for
outgoing transitions), and where each element includes the pointer to a state
(target state following an edge with the indexing label) in P;

3. a bit for whether the state is in F.

We also link vertices in G in a singly linked list for traversal in the initialization
of W and O. Finally, we use a singly linked list to link elements in dom(W) for
traversal by the outer while-loop. Any other variable in the program is just a
pointer to one of these two kinds of records.

Items 2 to 5 in the first set of records are for representing G, O, W, and R,
respectively, and items 2 to 3 in the second set of records are for representing
P and F, respectively. Note that the first three items in the two sets of records
are similar, except that item 2 for P is simpler than item 2 for G, because P is
deterministic, and because elements in the image sets for P do not need to be
traversed. Also, item 5 is similar to item 4 but is simpler, because elements in
the image sets for R do not need to be traversed.

It is easy to see that, with the above data structures, each primitive operation
can be done in O(1) time. For example, to remove a vertex v from O, we only
need to change the bit field for O in the record for v from 1 to 0.

Analysis of space complexity. Let N be the number of nodes in Gj; let S
be the number of states in P, and let A be the number of distinct labels (i.e.,
the alphabet) in G and P. For the first set of records, item 2 together takes
O(|G| + N = A) space, for edges in input graph G plus for each vertex the array
indexed by labels; items 4 and 5 both take O(NN x S) space. For the second set of
records, item 2 together takes O(|P| + S x A) space, for transitions in the DFA
P plus for each state the array indexed by labels. Others take space associated
with parts of the above data structures. Therefore, the space complexity is

O(G|+|P|+ NxA+Sx A+ N x09).

Note that the input size is O(|G| + |P|), and reach(G x P,[v0, s0]) is of size
O(N x5).

6 Discussion

This section discusses related issues about special cases in the input graph,
about the computational complexity of the problem with respect to the regular-
expression pattern, and about variables in regular-expression patterns.

Unreachable vertices and epsilon edges in input graph. There may be
vertices in G that are not reachable from vertex v0. Since there is no path
from v0 to these vertices, they satisfy any property about paths. Therefore,
according to the specification of the problem, these vertices belong to the output
set. Our algorithm computes exactly as specified and includes these vertices in
the output. If, in some applications, we are not interested in those unreachable

11

vertices. Starting from a slightly revised specification, we can easily obtain a
slightly revised algorithm, using exactly the same derivation method.

There might be epsilon edges in G in general. In this case, one has to compute
the product of G and P slightly differently. The idea is to add an epsilon edge
from each state to itself in P before computing the product graph. After this
addition, our method works as shown. Note that, in either case, our algorithm
does not actually build the product of G and P. Building it would incur a
substantial space and time overhead which is unacceptable for analyzing large
graphs.

PSPACE-completeness with respect to input regular expression. We
have used a DFA instead of the regular expression or its corresponding NFA to
solve this problem. However, there is yet no polynomial time algorithm to convert
a regular expression to a DFA. Is it possible to use the regular expression or its
corresponding NFA directly and obtain an efficient overall algorithm?

We have proved that the regular path query problem is PSPACE-complete
and thus NP-hard with respect to the regular expression. Basically, we can reduce
the regular path query problem to the totality of regular expression problem [6],
and vice versa, both in polynomial time. Since the totality of regular expression
problem is PSPACE-complete [6], so is the regular path query problem. Therefore
we consider using a DFA the best we can do for now.

In practice, typical in program analysis and model checking, the size of the
input graph may be very large, but the size of the regular expression is small and
is considered a constant [5]. Therefore, we can just convert the regular expression
to a DFA and then use our derived algorithm.

We have skipped the step that converts a regular expression to a DFA, since
there are standard algorithms. Those who are interested in this may find an
algorithm by Chang and Paige [4], also derived using Paige’s methods, that
improves over previous algorithms for this.

Variables in regular-expression patterns. For applications in program anal-
ysis and model checking, it is often desirable to include variables in regular-
expression patterns. Such a variable can match any labels in the program graph.
To handle such variables, two extensions are needed.

First, the mapping between a pattern variable and the label it is instantiated
to must be maintained so that multiple occurrences of the same variable are
instantiated to the same label in the query result. Such a mapping is established
when a variable is matched against a label for the first time; afterwards, all
occurrences of the variable are treated as the instantiated label.

Second, all possible instantiations of all variables must be explored. One way
of implementing this is to use backtracking; if coded in Prolog, this is achieved
automatically by the Prolog engine. Another way is to maintain all possible
instantiations at the same time, by incrementally adding new possible instan-
tiations and removing failed instantiations. This achieves a kind of bottom-up
computation.

12

A complete formal derivation that arrives at precise algorithmic steps and
data structures, together with precise time and space complexity analysis, is
yet to be studied. Based on our experience with derivation that exploits finite
differencing in particular and incrementalization [7] in general, we believe that
the derived algorithm would not be a backtracking algorithm; instead it would
perform a bottom-up computation that exploits and maintains all instantiations
incrementally at the same time.

7 Related work and conclusion

Tarjan showed, over two decades ago, that regular expressions provide a gen-
eral approach for path analysis problems [18], and he gave efficient algorithms
for constructing regular-expression patterns for various path problems [17]. The
regular path query problem considered in this paper is a kind of inverse to the
single-source path expression problem [17] Tarjan studied.

The regular path query problem was studied by de Moor et al. recently for
program analysis and compiler optimization [5], where the problem was specified,
and a high-level algorithm for solving it was derived, formally using calculus
of relations and universal algebra. They analyze this high-level algorithm and
conclude that the time complexity is linear in the size of the input graph. They
also describe an implementation using a tabled Prolog system.

In contrast, we show how a high-level algorithm can be derived formally and
easily using tools such as predicate logic. The initial specification using predicate
logic corresponds rather directly to the given English description of the problem.
We further derive a complete algorithm and data structures with precise analysis
of both time and space complexity. We also describe related issues explicitly
including the PSPACE-completeness of the problem with respect to the input
regular expression.

The derivation of the complete algorithm and data structures uses Paige’s
methods [10,14,11, 3,12, 2] with no invention, except that arrays have to be used
since based representations [12, 2] do not apply to this problem completely. Even
though Paige’s method for data structure selection advocates the use of no arrays
but pointers for low-level implementation, we found through our experience that
arrays are necessary for many applications not only to achieve better asymptotic
complexity but also to reduce significant constant factors. Systematic methods
for the use of arrays in place of pointers, with precise analysis of time and space
trade offs, is an important subject that needs further study.

Another important issue is how to find an appropriate high-level specification
to start a derivation. Paige’s methods are completely systematic for derivations
starting with set-based fixed-point specifications. While such specifications can
be obtained straightforwardly for many program analysis problems, it is not
true in general, which is the case for the problem considered in this paper. The
fact that obtaining a high-level algorithmic solution for this problem requires
substantial exposition in [5] confirms that this is not a trivial issue. We make

13

this step easier for this problem using tools such as predicate logic which captures
the English description of the problem more directly.

Much previous work has studied specification and derivation starting with
predicate logic, e.g., deductive synthesis [8]. However existing techniques are not
systematic or automatable, unlike Paige’s methods (when they apply of course)
and system [13]. How to make these methods and techniques more systematic is
a subject for future research.

Acknowledgments. We would like to thank Ernie Cohen for initially suggest-
ing the use of predicate logic for the high-level specification and derivation. We
are grateful to Ker-I Ko for his advice on how to explain and prove PSPACE-
complete problems precisely. We thank Eerke Boiten and anonymous referees
whose detailed comments helped improve the paper.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, Mass., 1983.

2. J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg. Type analysis and data
structure selection. In B. Mdller, editor, Constructing Programs from Specifications,
pages 126-164. North-Holland, Amsterdam, 1991.

3. J. Cai and R. Paige. Program derivation by fixed point computation. Sci. Comput.
Program., 11:197-261, Sept. 1988/89.

4. C.-H. Chang and R. Paige. From regular expressions to DFA’s using compressed
NFA’s. Theoret. Comput. Sci., 178(1-2):1-36, May 1997.

5. O. de Moor, D. Lacey, and E. V. Wyk. Universal regular path queires, Nov.
2001. Revised and being reviewed for Special Issue of Higher-Order and Symbolic
Computation dedicated to Bob Paige.

6. D.-Z. Du and K.-1. Ko. Theory of Computational Complexity. John Wiley & Sons,
2000.

7. Y. A. Liu. Efficiency by incrementalization: An introduction. Higher-Order and
Symbolic Computation, 13(4):289-313, Dec. 2000.

8. Z. Manna and R. Waldinger. The Deductive Foundations of Computer Program-
ming. Addison-Wesley, Reading, Mass., 1993.

9. M. Miiller-Olm, D. Schmidt, and B. Steffen. Model-checking: A tutorial introduc-
tion. In Proceedings of the 6th International Static Analysis Symposium, volume
1694 of Lecture Notes in Computer Science, pages 331-354. Springer-Verlag, Berlin,
Sept. 1999.

10. R. Paige. Formal Differentiation: A Program Synthesis Technique, volume 6 of
Computer Science and Artificial Intelligence. UMI Research Press, Ann Arbor,
Michigan, 1981. Revision of Ph.D. dissertation, New York University, 1979.

11. R. Paige. Programming with invariants. IEEE Software, 3(1):56-69, Jan. 1986.

12. R. Paige. Real-time simulation of a set machine on a RAM. In Computing and
Information, Vol. II, pages 69-73. Canadian Scholars Press, 1989. Proceedings of
ICCI ’89: The International Conference on Computing and Information, Toronto,
Canada, May 23-27, 1989.

14

13

14.

15.

16.

17.

18.

R. Paige. Viewing a program transformation system at work. In M. Hermenegildo
and J. Penjam, editors, Proceedings of Joint 6th International Conference on Pro-
gramming Languages: Implementations, Logics and Programs and 4th International
Conference on Algebraic and Logic Programming, volume 844 of Lecture Notes in
Computer Science, pages 5—24. Springer-Verlag, Berlin, Sept. 1994.

R. Paige and S. Koenig. Finite differencing of computable expressions. ACM
Trans. Program. Lang. Syst., 4(3):402-454, July 1982.

J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming
with Sets: An Introduction to SETL. Springer-Verlag, Berlin, New York, 1986.
W. K. Snyder. The SETL2 Programming Language. Technical report 490, Courant
Institute of Mathematical Sciences, New York University, Sept. 1990.

R. E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594-614,
July 1981.

R. E. Tarjan. A unified approach to path problems. J. ACM, 28(3):577-593, July
1981.

15

