Role-Based Access Control as a Programming Challenge

Yanhong A. Liu*

This programming challenge description focuses on a small but rich set of problems from
an important practical application domain, Role-Based Access Control (RBAC). The goal
is to allow the use of a wide variety of essential programming constructs to first specify the
problems clearly and then solve the problems efficiently, as much as possible.

e Role-Based Access Control (RBAC) is a security policy framework for controlling user
access to resources based on roles [3, 9]. Tt is extremely important for reducing the
cost of policy administration, especially in large organizations.

e The problems include updates, for actions and transactions, and queries, for checking,
analysis, optimization, and planning, in the presence of constraints, naturally organized
into a set of components for ease of use by the applications.

The RBAC programming challenge is described in the next two pages.

Among the five RBAC components described, functionalities of the first four are cre-
ated based on the ANSI standard for RBAC [4, 1| but reduced to contain only the most
essential concepts and improved to avoid discovered anomalies [8, 6]. Functionalities in the
last component are created to correspond to role mining [2] and generalize from user-role
reachability [10].

e As a programming challenge, any subset of self-contained components and functional-
ities can be used, and the rest can be made optional.

e Additional RBAC components and functionalities can also be added, for example, for
sessions and for dynamic separation of duty (DSD) constraints in the ANSI standard |4,
1], for role mining with probabilistic models [5], and for trust management [7] (also
called distributed RBAC) in decentralized systems.

e Furthermore, one may add a verification component for proving or checking the con-
straints, a Graphical User Interface (GUI) component, a particular RBAC policy for
an RBAC system, and a test component for correctness and performance testing.

This programming challenge is created for the Workshop on Logic and Practice of Pro-
gramming (LPOP) at the Federated Logic Conference (FLOC), Oxford, UK, July 18, 2018.
The emphasis is on clearly expressing the problem logic first before improving the program
efficiency. Any languages and systems can be used.

*Author’s contact: Computer Science Department, Stony Brook University, Stony Brook, New York.
Email: liu@cs.stonybrook.edu



RBAC programming challenge

We consider Role-Based Access Control (RBAC) with 5 components:

Core RBAC

Hierarchical RBAC

Core RBAC with Static Separation of Duty (SSD) constraint (a.k.a. Constrained RBAC)
Hierarchical RBAC with SSD constraint

Administrative RBAC

Core RBAC keeps several sets including the following:

USERS: set of users
ROLES: set of roles
PERMS: set of permissions
UR: set of user-role pairs
PR: set of permission-role pairs
with constraints:
UR is subset of USERS * ROLES
PR is subset of PERMS * ROLES
update functions for each set, subject to the constraints above:
AddUser, DeleteUser, AddRole, DeleteRole, AddPerm, DeletePerm
AddUR, DeleteUR, AddPR, DeletePR, where
each Add has pre-conditions: the element is not in and no constraints will be violated, and
each Delete has the pre-condition that the element is in, and maintains the constraints by
updates if needed
and query functions including the following:
AssignedRoles(user): the set of roles assigned to user in UR
UserPermissions(user): the set of permissions assigned to the roles assigned to user
CheckAccess(user, perm): whether some role is assigned to user and is granted perm

Hierarchical RBAC extends CoreRBAC and keeps also a role hierarchy:

RH: set of pairs of roles, called ascendant and descendant roles,
where an ascendant role inherits permissions from a descendant role

with constraints:
RH is subset of ROLES * ROLES, and RH is acyclic
update functions for RH, subject to the constraints above:

AddInheritance(asc, desc), DeleteInheritance(asc, desc), where
each update has the same kinds of pre-conditions as updates in CoreRBAC

and query functions including the following:

Trans(): the transitive closure of role hierarchy unioned with the reflexive role pairs
AuthorizedRoles (user): the set of roles of user and their transitive descendant roles



Core RBAC with SSD extends CoreRBAC and keeps also a set of SSD items, where
each item has: a name, a set of roles, and a cardinality
with constraints:

all roles in all SSD items are in ROLES

for each SSD item, its cardinality is greater than 0 and less than the number of its roles

for each user, for each SSD item, the number of assigned roles (AssignedRoles) of the user
that are in the item’s set of roles is at most the item’s cardinality

update functions, subject to the constraints above:

CreateSsdSet (name, roles, c¢): add SSD item having name, roles, and cardinality c

DeleteSsdSet (name): delete SSD item having name

AddSsdRoleMember (name, role): add role to roles of SSD item having name

DeleteSsdRoleMember (name, role): delete role from roles of SSD item having name

SetSsdSetCardinality(name, ¢): set ¢ to be cardinality of SSD item having name, where

each update has the same kinds of pre-conditions as updates in CoreRBAC, except that
all updates have also pre-conditions that no constraints will be violated

and query functions including the following:

SsdRoleSets(): the set of names of SSD items
SsdRoleSetRoles(name): the set of roles in SSD item having name
SsdRoleSetCardinality(name): the cardinality of SSD item having name

Hierarchical RBAC with SSD extends both Hierarchical RBAC and Core RBAC with
SSD and combines all from both except that the SSD constraint uses AuthorizedRoles in
place of AssignedRoles

Administrative RBAC could extend each of the previous 4 components; we consider ex-
tending the last, Hierarchical RBACwithSSD, with optimization and planning functions:

MinRoleAssignments:

find ROLES’, UR’, and PR’ with the smallest total size of UR’ and PR’

such that each user has the same permission through AuthorizedRoles as before
MinRoleAssignmentsWithHierarchy:

find ROLES’ , UR’, PR’, and RH’ with the smallest total size of UR’, PR’, and RH’

such that each user has the same permissions through AuthorizedRoles as before
GetRolesPlan(user, roles, acts):

find a sequence of actions, i.e., updates, in acts that allows user to get roles
GetRolesShortestPlan(user, roles, acts):

find a shortest sequence of actions, i.e., updates, in acts that allows user to get roles

and an operation:

GetRoles(user, roles, acts):
perform a sequence of actions in acts that allows user to get roles if possible

Any subset of updates can be used as acts. All constraints must hold after each update.



Acknowledgment

Many thanks to Scott Stoller for helpful references and discussions and to Marc Denecker
and Scott Stoller for helpful comments and suggestions.

References

1]

2]

3]

4]

[5]

(6]

7]

8]

19]

[10]

ANSI INCITS. Role-Based Access Control. ANSI INCITS 359-2004, American National
Standards Institute, International Committee for Information Technology Standards,
Feb. 2004.

A. Ene, W. G. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan. Fast
exact and heuristic methods for role minimization problems. In Proceedings of the 13th
ACM Symposium on Access Control Models and Technologies, pages 1-10, 2008.

D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings of the 15th NIST-
NSA National Computer Security Conference, pages 554-563, Blatimore, Maryland,
1992.

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed
NIST standard for role-based access control. ACM Transactions on Information and
Systems Security, 4(3):224-274, 2001.

M. Frank, J. M. Buhmann, and D. A. Basin. Role mining with probabilistic models.
ACM Transactions on Information and System Security, 15(4):1-28, 2013.

N. Li, J.-W. Byun, and E. Bertino. A critique of the ANSI standard on role-based access
control. IEEE Security and Privacy, 5(6):41-49, 2007.

N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-management

framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages
114-130, 2002.

Y. A. Liu and S. D. Stoller. Role-based access control: A corrected and simplified
specification. In Department of Defense Sponsored Information Security Research: New
Methods for Protecting Against Cyber Threats, pages 425-439. Wiley, 2007.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models.
IEEE Computer, 29(2):38-47, 1996.

S. D. Stoller, P. Yang, C. Ramakrishnan, and M. I. Gofman. Efficient policy analysis for
administrative role based access control. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, 2007.



