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Abstract are far from being supported in debugging tools, because
of the significant overhead in computing the query results
This paper describes a framework that supports power- from scratch and the sheer difficulty in manually writing

ful queries in debugging tools, and describes in particular code that computes the query results incrementally as the
the transformations, alias analysis, and type analysisluse program executes.

to make the queries efficient. The framework allows queries This paper describes a framework that allows powerful
over the states of all objects at any point in the execution queries to be used in debugging tools, and describes in par-
as well as over the history of states. The transformationsticular the transformations, alias analysis, and typeyanal
are based on incrementally maintaining the results of ex- sis used to make the queries efficient. The framework al-
pensive queries studied in previous work. The alias anglysi lows queries over the states of all objects at any point in
extends the flow-sensitive intraprocedural analysis tofan e the execution as well as over the history of states. The
ficient flow-sensitive interprocedural analysis for an @bje  transformations are based on incrementally maintaining
oriented language with also a form of context sensitivitg. W the results of expensive queries studied in previous work.
also show the power of the framework and the effectivenessThe alias analysis extends the algorithm for flow-sensitive
of the analyses through case studies and experiments witltontext-insensitive, intraprocedural analysis in [123hcef-
XML DOM tree transformations, an FTP client, and others. ficient flow-sensitive interprocedural analysis for an abje
We were able to easily determine the sources of all injectedoriented language, with limited context sensitivity. Thpe
bugs, and we also found an actual bug in the case study onanalysis uses iterative computation of abstract data salue
the FTP client. yielding more precise analysis results than standard type
analysis while keeping the analysis efficient. Both anayse
are critical in detecting precise changes where increrhenta

1. Introduction :
o o maintenance of query results should be performed.
Debugging is the process of determining the source of an e also describe an implementation and experiments that

error given the symptoms of the error. While itis about pro- show the power of the framework and the effectiveness of
gram executions on particular inputs, itis necessarilg als  the alias analysis and type analysis. Case studies in the ex-
process that requires significant effort analyzing the@®ur  periments include finding when certain properties of XML
code and often manipulating the code, manually, even with pom representations are violated, determining sources of
the help of good debugging tools. Methods and tools that oyt of bounds exceptions for array indices, and finding out-

can help reduce the effort needed are greatly desired. of-order commands sent by an FTP client. We were able
Query-based debugging is a framework that allows pow- 4 e4sily determine the sources of all injected bugs, and we

erful queries to be used in debugging. Unlike techniques jc5 found a non-injected bug in the FTP client.

that allow only values in a single scope to be used, it al- Query-based debugging has been studied for at least a
lows the use of all values in the program state, and even indecade [19] and has received increased attention in recent
the history of states. The results of these queries are useg,ears [18, 24, 22, 30], and much other related work has also
to watch conditions and trigger actions as the program exe-peen done, as discussed in Section 6. To the best of our
cutes. Although powerful queries can help make debuggingiknowledge, no previous work supports the general forms of
much easier, they are also much more expensive to comyyeries that our framework allows and achieves the level of
pute, and the values that the queries depend on change constficiency that our methods do. Compared with our own
tinuously as the program executes. These powerful queriesyork on incrementalization and run-time invariant check-

*This work was supported by NSF under grants CCF-0613913-CNS ing [20, 11], this paper for the first time studies debugging

0509230, and CCR-0306399, and by ONR under grant N00012-07- and describes our alias analysis and type analysis prgcisel
0928. and supports their efficiency as part of the experiments. Our




flow-sensitive alias analysis for an object-oriented laaggs  until incorrect output is produced, can make it much easier
extends prior work [12]. to find and diagnose bugs.
For example, tree data structures in the Python XML
2. Framework DOM implementation have the invariant that when nade
The premise of query-based debugging is that allowing is in thechi | dr en set of nodeb, a. par ent must re-
users to easily write expressive queries about the progranter to b. Finding the node that the child was added to us-
execution helps them find and diagnose bugs. ing standard debugging techniques is difficult, due in part
In this section, we describe thpiery languaggits fea- g aliasing. For example, the following code aliaseso

tures, and three classes of errors, as well as queries i)at he par ent . chi | dr en, and then updates the set through
to find the bugs that cause the errors. Then, we discuss thyjthout accessing thehi | dr en field:

efficient implementation of the language.

. . = t.child
Debugging rules and queries. The general form of a de- i ESL?Zhi ch|) ren

bugging rule is shown in Figure 1.
The debugging rule in Figure 2 says to stop the DOM im-

foi?;};(query) : plementation when a child and parent are inconsistent. For
(de in scope (field_decl|method_decl)?)* simplicity, consistency is checked at every program point.
(at updatep i B ' To check consistency only at specified program points (e.g.,

method return points), we could extend theion with an

. i N
(if condition)? i f statement that checks whether we are at such a point.

(de (in scope (field|method)™)*)?

do (before maint (after maint)?) | foreach (n in extent(Node),
(instead maint) min extent(Node)
)* min n.children and
mparent !'=n ):
Figure 1: General form of a debugging rule. report("Child ", m "is a child of ",
A queryhas the form+; i n Sy, ..., v, i n Si: condi- n, ", but %, L " Is not the”,

. o . . . parent of ",n)
tion); conditionis a conjunction where each conjunct has stop()
the forme; op es, opis==,!=,in, ornot in, e; be-
ingv orv. f, with v a variable and a field; or a boolean Figure 2: A child’s par ent field must point to its parent.

expression whose value depends only the objects in the con- For every clasg’, ext ent (T) is a special set defined
tainers iterated over by the quer§y( ..., S), the fields of by our framework to contain all currently existing objects
these objects, and any immutable objects. The set of tuplesf type T. r eport andst op are functions in the subject
of values ofuvy, ..., vx, such thatconditionholds is called  programming language:epor t takes any number of ar-
the query result actionis a sequence of statements to be guments and prints the concatenation of their string repre-

executed for each tuple in the query result. sentationsst op stops the program and drops into a de-
The rest of the syntax is based on InvTS [20]. Bte  pugger. Theconditionin this case isn i n n. chi | dren
clause contains a code pattezpdate that gets matched and m parent != n. Itis a conjunction of relational

against expressions in the program. Tipelateclause may joins (because each conjunct contains multiple variables)
contain Python code and meta-variables. Meta-variabées ar It is easy to write this rule in our framework, but it is dif-

denoted by prefixing their name witl$*, and they match  ficult to manually write code that would compute the value
expressions in the program. For each part of the code in theof the query efficiently for the following reasons: (1) The

subject program that matches the pattern ingheclause, result of the query may be changed by any statement that
if the conditionin thei f clause is satisfied, then the decla- adds an object to a collection, such as=o. chi | dr en;
rations in thede clause are inserted into the programinthe . . .; x. add(o). Itis tedious and error-prone to write
specified scope, and tmeaintcode in thedo clause isin-  code to intercept all calls tadd and determine whether

sertedbef or e, af t er, ori nst ead of (i.e. replace) the  the target object equals ttehi | dr en field of some in-
code matched bypdate In thei f clause, the condition stance oNode. (2) Efficiently maintaining the result of a

is built from standard logical connectives and functions de join over two changing sets is non-trivial, and involves the
fined for the subject language. For examgleass (expr) maintenance of additional information, etc. In our frame-
returns the class in whickwpr appears, antdype(expr) work, the user writes the rule, and our system does the rest,
returns the type oézpr. In thede clause,scopecan be generating correct and efficient code for it and insertirag th

gl obal orthe name of a class, method, package, or file. code properly in the program to be debugged.

Violation of invariants. Detecting violations of data Violations of temporal properties. Bugs often manifest
structure invariants as soon as they occur, instead oftvgaiti  themselves as violations of temporal properties. Detgctin



in $exec_commands,
in $exec_comands :
cnd == 'Is’ and
cnd "cwd’  and
cl. host == c2. host

foreach (cl
c2
cl.
c2.

report('ls and cwd being executed’,
' at the sane tine.!’)
stop()
de in global:
$exec_commands=set ()

at $x.cwd($dir):
if type($x) == ftplib.FTP:
do before:
$c=command( $x, ' cwd’)
$exec_commands. add( $c)
do after:
$exec_commands. r enove( $c)
at $x.list():
if type($x) == ftplib.FTP:
do before:

$c=comand($x,'|s’)

Figure 3: A rule that makes sure no new FTRB commands are
sent while there are outstandingd commands.

these violations immediately, which may be well before in-

correct output is visible, can make it much easier to pin-
point the source of the error. Our framework allows users
to write queries that express temporal properties using de-
bugging rules that transform the program to maintain infor-
mation about past events. This is similar to aspect-oréente
programming [16]. We illustrate such a query with a case

study involving nftp, an FTP synchronization tool.
Nftp did not copy some directories that it should copy.

Inspection of the logs on the FTP server reveals that after

changing directories, nftp is trying to copy files from the

old directory, not the one it changed into. Since the nftp is

multi threaded, we guess it does not wait until ¢thel com-

mand completes before enumerating the files and starting to
copy them. This bug is not obvious from inspection of the

nftp code, because the commands appear in the correct or-
der in the code; to realize the error, one needs to think about

itis added tdbexec_conmmands immediately beforehand
(do bef ore). Itis removed from the set immediately af-
ter do after)thecwd call returns. The same is done for

I i st and other FTP commands. The dollar sign indicates
that$exec_commands is a meta-variable; it will be in-
stantiated with a fresh program variable, whose value will
be set to a new empty setg). conmrand is a class we de-
fine, with fieldscnd andhost to store the command and
the host nftp is connected to, respectively.

Causes of uncaught exceptions.Many bugs manifest
themselves as uncaught exceptions. For example, in
Python, an expressiofL[ $R] throws anl ndexEr r or

if the index$R is out of bounds for the ordered collection
(e.g., alist}L. To debug such an error, the user would like
to know which assignment led to it. The query in Figure
4 finds the earliest update after which the error became “in-
evitable”, i.e. $L[ $R] would stillthrowl ndexEr r or af-

ter every subsequent updatefo or $R. This is difficult to

do with standard debugging techniques for two reasons: we
do not know the list object involved in tHendexEr r or

until it occurs, and there might be multiple ways to update
the index if the index is inside an object, via aliasing otttha

foreach (c in $C, i in $I
c.value != None and
i.value != None)
if out O Range(c. val ue, i.value):
if (c.value,i.locld) not in $bad:

$bad[ c. val ue, i . | ocl d] =$LOCATI ON

el se:
if (c.value,i.locld) in $bad:
del $bad[c.value,i.locld]
de in global:
$bad={}
$C=set ()
$l =set ()
def wrapper(L,R locldR):
try: return L[R
except IndexError, error:
report ("Becane inevitable at: ",
bad[ L, | ocl dR])
stop()

the use of multiple threads and how they are synchronized.var $L, $R

It is also difficult to verify this hypothesis using standard

at $L[$R:

debugging techniques, as there is no easy way to find outtd f 1ine(12) and file('t.py"):
which commands the tool has not yet received a reply to, asdo i nst ead:

thef t pl i b module that is used by nftp does not create an
object per sent command and does not internally maintain

the set of outstanding commands.

The rule in Figure 3 stops the program when a hew
command is sent to a host whilecawd command to that

host is still outstanding. The rule maintains (and queries)

$exec_conmmands, a set of outstanding FTP commands.
At all places in the program where tltavd command is
executed by afit pl i b. FTP object @t andi f clauses),

wr apper ($L, $R, locl d(’ $R'))
at $e:
if part($e,’ $x', alias($x, $L)
and update($x)’):
do before:
$obj =Updat e(l ocl d=l ocl d(’ $x’ ), val ue=$x)
$C. di scar d( $obj)
$C. add( $obj )

Figure 4: A rule that helps determine the cause of an uncaught
exception.



object. After determining that the exception occurs at line by compiling the query into an InvTS rule [20], which
12 inthefilet . py, the program needs to be executed again, then transforms the subject program so that it incrementall
after instrumentation with this query, to find the updates.  maintains the query result. The resulting rule looks like a
The rule works by replacingL[ $R] with a function call rule in Figure 1, except that it only consistsatf, i f , de,
that returns the result of the lookup if successful; otheewi anddo clauses, and saysit a given updatéf a condition
it prints the location at which thendexEr r or becamein-  holdsdo maintenance code”. InvTS (the Invariant-driven
evitable. To accomplish this, the rule uses a query to main-Transformation System) is a program transformation sys-
tain a mapbbad from objects which may be aliased$a, tem geared towards source-to-source transformations that
and variables (e.g. fields) that could be aliasefiRdo lo- maintain invariants.
cations after which the error becomes inevitable. The query In step 2, we apply the maintenance code at all places
is over $C (Collection) and$l (Index), sets that contain where the query result might change. This involves de-
the last place where variables and objects #14t$R] de- termining all locations that update the variables the query
pends on were last updated. Computiragl using a query ~ might depend on. InvTS uses control-flow, data-flow, type,
allows us to write whabad is declaratively, instead of man- and alias information to determine which updates do not
ually incrementally computing changes to it whene$é&r affect the query result, eliminating the need to insert main
or$I are updatedout Of Range( a, b) returns whether  tenance code guarded by runtime checks (of aliasing, etc.)
a[ b] will throw an exception $LOCATI ONis a keyword at such updates. Also, it is often possible to statically-eva
that expands to an object that identifies the statement be-uate the f clauses, especially if the condition consists of
ing transformed. Updat e stores two fields:l ocl d and only comparisons of type expressions. This has the effect of
val ue store an object identifying an instance of variable, reducing the number of needed runtime checks, thus reduc-
and an arbitrary value, respectively. Ohlgcl d is used for ing the overhead of maintaining the query result, as shown
comparing instances ofD. Thus,$C. di scar d( $obj ) in Section 5 (especially Figure 5). The next two sections
removes the entry with the sanieocl d as $obj from describe our alias analysis and type analysis. We call the
$C, and$C. add( $obj ) adds to it$obj with the new system we have implemented gbdPy (Query-based debug-
val ue. | ocl d is a function that generates an identifier ging for Python).
that uniquely identifies an instance of an Ivalue. Updates to . .
$Rare handled in the same way as updateiltounder the 3. Alias analysis

substitution$L=$R, $C=$! (This part of the rule is not We use alias analysis to reduce the number of runtime
shown).part ($e, ' $var’, cond) is a special function ~ checks, as an update to a variable that is not aliased to any-
that, for each subexpressions, evaluates whetherond thing in the query cannot affect the query result. Clearly,

is true for that subexpression, and birklsar to it. Note more precise alias analysis allows more runtime checks to
that if there are no updates to eitlfdr or $R, then code to ~ be eliminated.
maintain$C, etc. is not inserted. Two variables in a program aiased to each otheif

This rule can be reused by changihgne(12) and they refer to the same location or objeéias analysisof
file(’t.py’) toindicate the file and line at which the @ Program computes pairs of variables that are aliased to
| ndexEr ror occurred. Similar rules can identify causes €ach other. Computing these pairs precisely is undecidable

of other kinds of exceptions and other invariants. [25], therefore only an over-approximation, calletay-
alias analysisis safely used for our purpose. A may-alias

Implementation. The straightforward way to implement  analysis computes pairs of variables thatybe aliased to
this language is to evaluate every query at every programeach other.
point. This is very inefficient, especially if the size of the A may-alias analysis is flow sensitive if it computes pairs
collections queried over is large. Evaluating each query at each program point. It is interprocedural if it prop-
only at program points that affect its result is more effi- agates these pairs (and changes to them) through proce-
cient, yet still requires repeated reevaluation of the yjuer dures (for example, by analyzing an inter-procedural con-
For all queries specified by the programmer, our implemen- trol flow graph). The analysis is context insensitive if it
tation incrementally maintains their results wheneverta se can not distinguish different calls of the same procedure.
or object the queries depend on changes. The transformaNote that flow sensitivity, context sensitivity, and the lgna
tions used to achieve this are described in [11]. There aresis being inter vs. intraprocedural are orthogonal [17]t-Du
two steps involved in this approach: (1) generating mainte- ing the development of InvTS, we have investigated flow-
nance code, and, (2) applying the maintenance code at thénsensitive [3] and flow-sensitive but context-insensitiv
appropriate places. may-alias analysis algorithms. We found their precision to
In step 1, we generate maintenance code that properlybe insufficient. We settled on the current flow-sensitive; pa
maintains the query results in the face of all possible up- tially context-sensitive algorithm as sufficiently prexis
dates to the data the query depends on. Thisis accomplished An intraprocedural, flow-sensitive, and context-



insensitive may-alias analysis has been described in [14],to m, and add an edge from; to the next statement at the
and an optimally efficient algorithm for it is given by call site. Theself object is handled in the same way, by
Goyal [12]. However, this analysis is intraprocedural and introducing the statement!f = o before the function.

does not handle classes. To analyze an object-orientebiner features. We can also handle languages that allow
language such as Python or Java, the analysis needs t0 bgested function declarations such as Python, where a func-
extended_to handle interprocedural z_;malysis and cla_ssestion f nested inside another functigncan read the vari-
We describe how we handle these differences and give agpjes ofg that are in scope at the declarationfofWe take
time complexity analysis compared with the algorithm in gach sych function declaration to the global scope, add the
[12]. We did not perform fully context-sensitive analysis ariaples in the local scope as parameters tand also add
because it is much more expensive, and our analysis iSthose variables as arguments to the call§.dBimilar mod-
sufficiently precise for our purposes. ifications combined with handling of classes allow handling

Interprocedural analysis. Extending the intraprocedural of nested classes as in Java. _
analysis to an interprocedural one requires handling the fo ~ For languages that allow polymorphism, at a call to a
lowing features: function calls and function parameters. W Polymorphic method, we add edges from the call to all pos-
rename variables such that same named variables are namedP!e methods. We reduce the set of possible methods by
differently if their scopes are different. Then we build the tYPe analysis. _ _
control-flow graph except for the function calls and param- By similar extensions, the methods Qescnbed ab_ove
eters, and modify the control-flow graph as follows: can be used to per_form may-alias analysis on any object-
For each parameterof a function and its argumentat ~ °fiénted programming language.
a call top, we create a control flow graph noddor a new Optimizations. For a language that does not allow arbi-
statemenp = a, add an edge from the function call node to trary type-casting such as Python, we utilize the type syste
n, and add an edge fromto the entry point of the function.  described in this paper, and disallow the addition of pdirs o
For each function call appearing on the right hand side of variables which are of incompatible type to the analysis.
an assignment, we replace the call with a fresh variable Other optimizations based on static analysis are also pos-
for each return statemenet ur n r, we create a node fora  Sible. In particular, if the value of the condition of &@n
new statement = r, add an edge from the return statement statement can be determined statically (this is often possi
to the new statement, and consider the new statement as able if the condition only involvegonst  types) then we
exit point of the function. We then add edges from all exit €liminate the dead branch.
points of the function to the statement that follows the.call Summary and time complexity. By handling the above
Classes. To add classes to the analysis, we handle con- discussed features and then using Goyal's algorithm, we ob-
structors, member function calls, and field accesses. Wet@in a flow sensitive, interprocedural may-alias analysts f
flatten classes in the sense that we remove class definitiong" Object-oriented language. ) . .
and turn member functions into regular functions and en- Goyal [12] gives a_nO(N x V ) alg_onthm for the in-
sure that they take the object that they are invoked on astraprocedural analysis, wheré is the size of the program,

a parametert(hi s in Java,sel f in Python). We rename and‘g/ i?Nt_hr? r?umber (_)f varigbles, SO it _is b(r)lundhed b_y
all variables and functions to reflect their enclosing aass ON )'_ Ith the extensions a OVe, assuming that the arity
For each fieldf of an objecto, we treato. f as a possible of functions and the number of fields per class are bounded

. > .
name for a variable and handle it as described below. by constants, we obtain &(\V x V=) algorithm for the ex-

For each reference to an object in the program we proceed€nded analysis whet€ is the size of the program andis
as follows. If we encounter an object construction,= the number of original variables. Note that this is optimal,

c(pl, p2,..),in order to maintain a persistent reference a5 Goyal's al290rithm is, because the output size is bounded
to a created object, we replace the statement with two statePY O(N x V7)

ments:ref .o = c(pl,p2,..); o = ref_o, where Extensions. The analysis discussed so far is context in-

r ef _o always refers to the object created at this program sensitive. A form of context sensitivity can be added to
point. For each constructor and member function, we build make the analysis more precise but keep the analysis result

the control-flow graph as described. to be one set of alias pairs per program point: after vari-

To handle fields, at a call to a member function on an able renaming, make a copy of the function for each call
objecto, if o is an object of class, then for each fieldf to the function, but do not rename local variables to be dis-
of ¢, we create a node for a new statemerself f = o. f, tinct again; do everything else as before; and finally union

add an edge from the function call node to nedand add results from copies for each function. An optimization for
an edge from to the entry point of the function. We also space is to not make the copy until the call is analyzed and
create another node for a new statement f = self f, add not to keep the copy after it is analyzed. The code size be-
an edge from each exit point of the called member function comesO(N?) but the number of variables stays the same,



so the time complexity i©)(N? x V?), which is bounded ~ multiple types.

by O(N*). This is the algorithm we implemented.
Another possible way of adding of context sensitivity is

by inlining non-recursive functions. This makes the analy-
sis more precise by limiting propagation of may-aliases$ tha
are not possible in the calling contexts. If each function is
of sizeO(s), there areD(c) calls to each function, and the
depth of calls for non-recursive functions@¥d), then the
analysis now take®((N + (s x ¢)?)?). If one assumes that
the depth of calls and the number of calls to functions are

Type inference. We implement an algorithm based on it-
erative type inference in order to infer the multimeypt

for every node in the control flow graph (CFG). The algo-
rithm starts by converting the CFG to three address code
(3AC) and assigning types to every literal constant in the
program. Then, the least fixed-point of the typing rules
is computed. For a node:, in,,, a multimap contain-
ing the types of expressions that are in scopenatis

bounded by constants, then this analysi® {$v?). (?omputed: m = U_"Ep’“e”l(m) ZnscoPem(OUt".)' where
) inscope,, (out,,) contains the types of expressionsoii.,,
4. Type analysis that are in scope ab, andpred(m) is the set of predeces-

Our system uses static type analysis to reduce the numbesors ofm in the CFG. The sizes af,,, andout,, are lim-
of runtime checks. If a variable is being updated, and vari- ited to the number of expressions in scoperatcalled.S.
ables (or fields) of the same type are not used in the queryout,, is computed by evaluating the typing rules under the
then the update cannot affect the result of the query, and thesubstitution{in — in,,, out — out,,}. The output of the
corresponding runtime check can be eliminated. algorithm isO(N) multimaps, with at mosO(S) entries
The goal of our type analysis for Python is not to stati- per map, whereV is the size of the CFG. An incremental
cally ensure type safety, but to obtain type informatiort tha \orkset algorithm that incrementally maintaing for each

can be used in various analyses, such as may-alias analynode is used to compute the least-fixed poimdilV x S)
sis. Thus, the type system for Python we propose collectstime.

as much information in its types as possible. For example
if a variablev can only evaluate t@ or 2, we infer thatv

has the typenion(inteonst (1), inteonst(2)).
First, we present a type system for Python, and a type in-

'Extended type system. We extend the basic type sys-
tem to distinguish different integers, different classdi§,
ferent functions, etc. For all the basic types presented

ference algorithm for it. Then, we give an extension for the 200Ve €xcephone, we introduce some subtypes. We de-

type system and show the necessary changes to the infefin€ typeT’ to be a subtype of”, denoted ag” < 7, if
ence algorithm for this extension. values(T) C values(T"), values(T) defined as the set of
Python values that have tyge

For int, we create the following subtyp&&t . s:(z),

intrange(from,to) and int,onneq, With the obvi-

Basic type system. A Python expression’s value, eval-
uated at runtime, can be put into one of the following

groups:int, float, boolean, string, lisft, tuple, set, dict ous meaning;z, from, and to denote integer con-
(@map)class, function, instance (aninstance ofaclass), giants we introduce similar subtypes féool and
methodyound, module (similar to a package in Java), or float.  For string, we differentiate between strings

none. We make each of these groups a type. ,
A Python expression can evaluate to values of different of known content ‘{t”ngc""“,(x)) and _known length
- o . (stringfizediength(n)).  FoOr lists, we introduce sub-
types each time it is evaluated. To accommodate this, we . .
types that represent lists of known content, lists of known

Q;L%?UCSitshznuntlonet)(;?ﬁglﬁﬁéaygel}r;igﬁ:[tyléek_l)_h\é\/?efsin_ length, and lists of unknown length but known homo-
P y P ype. yp geneous type. The same is done fample, set, and

ference rules define a multimap at each program pomtfromdid. module has two subtypes. The first is when the

expressions to their possible types. Most of the rules mirro .
C . module name and all the module variables are known
Python semantics in a straightforward way. For example, a

rule for handling addition of twents is (moduleconst(name, (v = t,va 2 ty,...)), name is
the given name of the modulep( : t1,ve : to,...)
z=x+y, int€inlz],int < inly] is the set ofvariable:type pairs that represent the bind-

ings exported by the module); the second, where just
the module name is knowmidodule g own name (name)).

x, y, and z are expressions in the prograin, is the mul- functions whose bodies are known are represented by the
timap from expressions in scope to their types right before subtype funceonst (treturn, (tp1, tp2, - - . ), [name]), with

the current program poinbut is the multimap from expres-  ¢,..;.» DeINg the return type,,; being the type of the first
sions in scope to their types right after the current program parameter, andame being the optional (hence i) name
point. Other rules are similarly straightforward. Encaglin  of the function. A similar encoding tgunceons: 1S used
Python semantics into rules resulted in 67 rules. We do notfor bound methodsrtethodyounad). FOr brevity, we omit
need rules for union types, because they are represented inthe precise types of the parameters, such as a boolean for
plicitly by using a multimap to allow an expression to have bool..,s:, and a floating-point number fgiloat .oy, ¢ -

out =inU {z — int}



Extended type inference. Most of the new typing rules
are straightforward. For example,

z=x+Yy, inteonst(p) € infz], iNtrange(f,t) € infy]
out = inU{z — intrange(f +p,t+p)}

them. As an optimization, every time we run generalization
on a node replacing some of its types with a supert¥pe
we also delete all of its types that are subtype&'ofThis

removes redundant entries fram. andout..
To make type inference more precise, we modify it to

store distincbuts for each edge coming out of a node. To

The extended type system contains 312 rules. Many rulessee how this can help, consider the following code:

are needed to capture the semantics of builtin functions,
such asr ange, a function that takes one integer and
returns a list containing integers 0zi6- 1, in order. One of
the rules for ange is:

z =range(r), inteonsi(p) € in|z]
out = in U {z — listeonst ((inteonst (1) | 1 € 0..p— 1))}

Note that the list comprehensidimt .o, (i) | i € 0..p—1)
gets evaluated t&ist..,s¢ during type inference. Similar

rules exist for handling list and set operations.
The following rule handles a two-parameter function call.

It iterates over all possible types of parameters fthec
infal, - --) , matching it to existingunc.o,s: signatures for
f, and adding all possible types of the return value:dt

z = f(a,b), out ={},

. . funceonst(tr, (A, B)) € in[f
VA €inla], B € in[b] : out_oz(tUEnU{)z)Ht[}]

We extend the type inference algorithm for the basic type

if x == 1:

el se:

Thei f statement forms a CFG nodg; with two outgo-
ing edges. lfin,,,, contains the entry — int.ons:(1), the
basic inference algorithm must include this entryirt,, ,,
while the extended inference algorithm can omit it from the
out multimap onn;;’s outgoing edge to the false branch.
A similar approach can be used to split the of f or and
whi | e loops.i f, f or, andwhi | e nodes havé) (1) out-
going edges, so the number of multimaps produced is still
O(N). Other optimizations include the sharing of type sig-
natures between multipie andout maps when the signa-

tures are the same (a variation of copy-on-write).
Extending our analysis of the running time to the ex-

tended type inference algorithm, we note that an expression
may not have more thattypes, and that an expression can
not be generalized more thgrtimes, whergy is the height

of (i.e., length of the longest chain in) the subtype refatio
with all int,.qnge 10 int,qange relationships of length greater
thanc truncated to length. Thus, the total number of dis-

system to infer extended types. Changes are needed for twainct types that an expression may assun@(igx c). Thus,

reasons. (1) The basic algorithm does not terminate becaus
there are now an infinite number of typesil(.ons:(1),
inteonst(2), €tc.). (2) The algorithm can be made more pre-
cise by computing amut multimap per outgoing edge of

each node.
We call the process of adding another type to an expres-

sion due to a type judgemetype extension The type
complexity of aunion type is the sum of the type com-
plexities of its members. The complexity of a type with
type parameters (such &st) is one more than the sum of
the complexities of its type arguments. The complexity of
other types is 1, except fant,q,q., Whose complexity is
one more than the number of times that the range of val-

¢he size of eaclaut multimap is stillO(.S), and the worst-
case running time is stilD(N x S). S typically does not
grow much with program size. This is experimentally ver-
ified in Section 5, where the running time shows linear be-
haviour inNV.

5. Experiments on overhead

Overhead of debugging has two components: the slow-
down incurred due to running the program in gbdPy, and the
time it takes for gbdPy to instrument the program to be de-
bugged. To show that our technique does not introduce ex-
cessive overhead, we perform two sets of experiments. The
first set of experiments measures the slowdown due to the

ues has been extended. To ensure termination, we introProgram running in gbdPy; the second measures the time to

duce a cutoffz, and whenever the type of an expression
hascomplexity > ¢, we applygeneralization ruleghat
either replace two or more @fs types with a single super-
type of the replaced types (e.@atconst (), inteonst(y) =
intrange(min(x,y), max(z,y))) or replace one of’'s ex-
tended types with an unparameterized basic type (e.g.,
intrange(min(x,y), max(z,y)) = int). The following
sequences of types represent (in a simplified way) other
generalization rules in our systemit onst = Ntrange =
intnon_neg = int! liStconst = liSthomOgeneous = l’LSt,
andlisteonst = listunknown = list. When more than one
generalization rule applies, we use a heuristic to prizeiti

instrument the program and also contains experiments that
verify the running times of analyses derived in sections 3

and 4.
All experiments were performed on Windows Vista, run-

ning on a Core 2 Duo (Q6600@3.0GHz) machine with 8GB
of memory, of which 6GB were free. For all examples,
Python 2.5.1 was used.
5.1. Slowdown due to running program in gbdPy

We demonstrate that gbdPy does not introduce excessive
slowdown due to the program running in it, by using gb-

dPy to find different bugs in programs from multiple do-
mains: violations of data structure invariants in XML DOM



transformations, violation of specifications inan FTPmlje  ning time of the instrumented program is not very depen-
and uncaught exceptions in an XML DOM transformation dent on the query, but more so on the number of objects
benchmark program due to injected bugs. For each pro-(and classes) for which we maintain extents. Finally, these
gram, we report the performance of the program outside ofexperiments show that maintaining the query results non-
gbdPy; the program’s performance in qbdPy when it usesincrementally is infeasible, as the experiments time out
incremental checking and maintenance; the program’s per-whenever query results are computed non-incrementally.
formance when static analyses are individually disabled;

and the program’s performance when it does not use incre- 10— ‘
mental checking and maintenance. o/ | MM No debugging

[ Efficient debugging
XML DOM transformations.  For a program that uses an = e :::g:;: o
XML DOM tree to be correct, there are a number of proper- ;| =3 Allanalysis off
ties that must not be violated for the tree to avoid bugs. Usu-
ally, such bugs will manifest themselves in a further stage
in the program after a property has been violated. We take
the Ixml Python XML library, and, for its benchmark pro-
grams detect violations of the following properties of the
XML DOM tree: (1) if an element is a child of another ele-
ment, then its parent field must reference the element whose
child it is; (2) no two elements may have the same element YT N . T
as their child, nor may an element have itself as a child. As Valid parent o shared child Exception Detection
the Ixml benchmark code does not itself contain these bugs,
we have injected the appropriate bug for each experiment. Figure 5: Running times of applications in gbdPy, normalized to

Parent field must be valid. In an XML tree, all non- the running time of the applications outside of gbdPy.

root nodes must have a valid parent field, i.e., elemédras A Python FTP client. We found a bug in a program that

a childc iff c. parent ise. The rule in Figure 2 stops  gownloads directories from multiple machines [15]. This
the program when an element that violates that property ispq involve directories being omitted from synchronizatio
found. Figure 5 shows that the overhead of running the The pug is due to the FTP client issuing commands before
incrementally instrumented program in gbdPy is 67%. It receiving the reply for those commands. The query in Fig-

also shows that type and alias analysis decrease overheag,e 3 finds the location at which a command af is exe-
from 109%-176% to 67%. In contrast, non-incremental in- cyted when @wd is pending.

strumentation is quadratic in the number of elements alive We ran the program with 10 threads, with 30 directories
in the program as it iterates over two extents of elements.totaling 20GB over a 1GBit connection, ensuring that the
The benchmark times out after 20 minutes with the non- program would be CPU bound. Figure 5 shows that the

Running time ratio to "No debugging"

incremental instrumentation, since it da@$#element?) overhead introduced by the query is 73%. It also shows
additional work per update, and the benchmarked documenthat type and alias analysis both provide a significant im-
has 10 million XML elements. provement, reducing overhead from 173% to 73%. The

No shared child and not own child. In an XML doc- non-incremental version is considerably slower, as there

ument, an element may be either a root, or a child of at are many threads running, afiéxecut i ng_conmands
most one element. Also, an element cannot be a child ofcontains many elements. This accounts for it timing out af-
itself. We omit the actual rule, as it is very similar to the ter 20 minutes. Precise time taken by all versions of the
previous rule. Figure 5 shows that the overhead of run- Program can be seen in Table 1. _
ning the program in gbdPy, with all analyses enabled, is 1he FTP client example shows that querying a complex
85%. It also shows that type and alias analysis both provideProgram over a view that ha§ to be created (i.e., in ways
a significant reduction of overhead, just like the previous N°t assumed by the program’s creator) is easily done with
example. The non-incremental version times out after 20 OUr framework by specifying complex program transforma-
minutes because it iterates over three extents of elementslionS: Such as maintaining the set of outstanding commands.
doing O(#element®) extra operations per update, and the Automated determination of causes of exceptions.In
benchmarked document has 10 million XML elements.  the final case study in Section 2, Figure 4, we presented
These experiments show three things: query-based dea query that, given an IndexError caused by an expression
bugging that incrementally maintains its results can be ef- of type A[ B] , and the line and file it occurred on, will
ficient even for complex queries that involve multiple joins tell the programmer where all variables in the expression
and membership tests. We also see that when joins usedvere modified when it became inevitable that the exception
by the query have a high selectivity, as these do, the run-would occur. We injected a bug that would cause an Index-



Instrumentation + running time

Running time
All Analysis | No analysis

No debugging| All analysis | No type analysis| No alias analysis| No analysis

Ixml - Valid Parent 21s 35s 49s 44s 58s 70s 78s
Ixml - No shared child & no self child| 21s 39s 53s 43s 61s 77s 83s
nftp - Wait until commands complete| 326s 563s 790s 690s 891s 594s 912s
Ixml - Exception cause detection 21s 39s 85s 103s 190s 92s 215s

Table 1: Time taken for experiments under differing optimizations.

Errorinto Ixml, and ran it after applying this debuggingeul  expectation tha$ is typically a constant. For alias analysis,
to it. The result, as can be seen in Figure 5 and Table 1, isthis is much better than the worst-ca3eN*).

that the slowdown incurred by such a query is 85%, which

is surprisingly low given the low selectivity of the join con 6. Related work
dition. The drastic increase of the overhead when type and Query-based debugging has recently received a great deal
alias analyses are turned off (from 85% to 805%), as seenof attention [18, 24, 22, 30], mostly in the form of query
from Figure 5, explains the high performance of the query. languages that query over a given program state. These lan-
5.2. Running time of the qbdPy guages allow one to specify an assertion for a bug, and then
stop execution when the assertion holds. These systems
primarily differ in the range of specification, and the time
complexity. Our work was inspired by the work of Lence-
vicius et al. [18], and our language is an extension of the
query-based debugging language of [18]. The method in

turned on, with all static analysis turned off, and with type 18] all red hensi tent ith
and alias analysis turned on individually. Table 1 presents[ ] a OWS Non-nested CoMPrenensions over extents, wi
the condition being a join or a side-effect free functionrove

the results. None of the programs take longer than 1 minute™ ™. | iable of th hens: q tes th
to instrument with all analyses turned on, and none took less? SINGI€ variable ol the comprenension, and recomputes the

than 15 seconds with all analyses turned off. This indicatesentire guery whenever sets that the query depends on are up-

qbdPy is fast enough to be used as part of the edit-compile-dated' Our method avoids recomputing the query when the

debug cycle, and that all available analyses should be per_sets it depends on are updated, while increasing the expres-

formed due to the great increase in runtime performance. sive power of the allowed queries by including predicates
over multiple variables and joins of membership tests. We

also add features that allow arbitrary program transforma-
DAlias analysis tions, e.g., to maintain history.
- Type analysis Potanin et al. [24] allows querying snapshots of object
graphs, and also performs these queries non-incrementally
PQL [22] allows queries over past states of the program, but
not over extents. It uses BDDs to efficiently compute the

To verify that the running time of gbdPy instrumentation
is not prohibitive, for each of the programs in the previ-
ous section we perform the following experiments: measure
time taken by gbdPy instrumentation with all static analysi

1201

100

80

£ ol query results. PTQL/PARTIQLE [10] allows queries over
§ sequences of past actions (such as variable assignment) of
= a0l the program, but not over sets/extents in the program. It
uses join ordering to efficiently evaluate these queries at
20 run-time, but does so non-incrementally. JQL [30] extends
Java to support both comprehensions and extents, with ex-
Cchunk, bdb,  pickied, tarfie, Fortran2003, pressive power similar to our system, for introducing com-
193 20504239 aram, Number of AST Nodes w prehensions as a first-class construct into Java, rather tha
debugging. Recent work on JQL [31] adds incremental
Figure 6: Running times of type and alias analysis. maintenance of JQL queries for updates to the data they de-

pend on. We support a larger set of conditions on queries:
we can incrementally maintain query results for queries tha
contain a conditionof theform i n b. f. Theat andde
clauses allow us to do program transformations that main-
tain data structures that would be unavailable to a query lan
guage, such as a set of outstanding FTP commands.

Complexity of type and alias analysis. To verify the run-
ning time complexity of type and alias analysis, we measure
the time of running type and alias analysis on a represen-
tative set of Python programs, with program sizes varying
from 493 to 15955 CFG nodes. From Figure 6, we can see
that the running time is quadratic for alias analysis and lin
ear for type analysis. For type analysis, this is better thanAspect-oriented programming. An important feature
the theoretical worst-cage(N x S), and isinlinewiththe  of an aspect-oriented programming language is its lan-



guage for defining pointcuts. The pointcut language of [3]
AspectJ[16] is somewhat limited; other proposals [2, 2&] ar
more expressive. In particular, these proposals allowcadvi

to execute based on the history of program execution.
The goals of our system are similar to the goals of lan- |

guages for specifying pointcuts. The similarities are be- [6
tweenat / do clauses and pointcuts/advices. The differ-
ences come from the inability of AOP to derive how to [7]
maintain query results; reasonable performance requiring
the currently lacking consideration of the same problems as (8l
our system (type and alias analysis of dynamic languages).

Alias and type analysis. Alias analysis has been stud-
ied extensively [14], in different flavors. Context and flow
insensitive methods include Andersen’s [3], Deutsch's [7] |,
and Steensgaard’s [28]. Context sensitive methods include
Whaley [29] and Emamil [9]. Two flow sensitive methods
are Choi et al’'s [4] and Lundberg and Lowe’s [21], with [11]
running times ofD(N7) andO(N*), respectively.
Intraprocedural  flow-sensitive  methods  include [12]
Hind’s [14], which takesO(N?®) time, and Goyal's [12]
method that takes tim@(N?). We take Goyal’s algorithm,
make it interprocedural and slightly context-sensitivega 14
apply it to Python, where the running time of our method is
O(N*). The method we use for the handling of classes is 9]

[9]

[13

L. O. Andersen.Program Analysis and Specialization for the C Programming
LanguagePhD thesis, DIKU, University of Copenhagen, May 1994.

J.-D. Choi, M. Burke, and P. Carini. Efficient flow-semsit interprocedural
computation of pointer-induced aliases and side effeatBQPL '93: Proc. of
the 20th ACM SIGPLAN-SIGACT Symp. on Principles of Progrengioan-
guagespages 232-245, New York, NY, USA, 1993. ACM.

H. Curry. Combinatory LogicNorth-Holland, 1972.

L. Damas and R. Milner. Principal type-schemes for fimal programsProc.
of the 9th ACM SIGPLAN-SIGACT Symp. on Principles of Prognarg Lan-
guagespages 207-212,1982.

A. Deutsch. Interprocedural may-alias analysis fomnpeis: beyond k-limiting.
Proc. of the ACM SIGPLAN 1994 Conf. on Programming Languaggdh and
Implementationpages 230-241, 1994.

J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphjpe inference for ob-
jects.Proc. of the tenth annual Conf. on Object-oriented Prograng$ystems,
Languages, and Applicationgages 169-184, 1995.

M. Emami, R. Ghiya, and L. Hendren. Context-sensititeiprocedural points-
to analysis in the presence of function pointePsoc. of the ACM SIGPLAN
1994 Conf. on Programming Language Design and Implemeamafiages
242-256,1994.

S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relatibgaeries over program
traces. INOOPSLA '05: Proc. of the 20th Annual ACM SIGPLAN Conf. on
Object Oriented Programming, Systems, Languages, anddspiphs pages
385-402,New York, NY, USA, 2005. ACM.

M. Gorbovitski, T. Rothamel, Y. A. Liu, and S. D. StolleEfficient runtime
invariant checking: A framework and case studyPhoc. of the 6th Sixth Intl.
Workshop on Dynamic AnalysiSeattle, Washington, July 2008.

D. Goyal. Transformational derivation of an improvéida analysis algorithm.
Higher-Order and Symbolic Computatipk8(1-2):15-49, 2005.

J. Graver. Type-Checking and Type-Inference for Object-OrientecgRrm-
ming LanguagesPhD thesis, University of lllinois, 1989.

M. Hind. Pointer analysis: haven't we solved this prexblyet? INPASTE '01:
Proc. of the 2001 ACM SIGPLAN-SIGSOFT Workshop on PrograalyAis
for Software Tools and Engineeringages 54—61, NY, USA, 2001. ACM.

R. Kazhankodathed. http://tinyurl.com/5b9qfe.

16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.rRahnd W. Griswold.

similar to [21]. Our extended method of handling function
calls is similar to summaries with weak updates by Wilson
et al.[29], with the distinction that instead of computing
summaries and then using them in the analysis, at each
call site, we analyze the function, and, after each analysis j1s]

incrementally maintain the function summary.
Type analysis originated from the work by Curry and

Feys on simply typed lambda calculus [5]. Progress [20]
by Hindley, Milner, and Damas produced a type infer-
ence algorithm that supports polymorphic references [6].
This algorithm is the standard type inference algorithm
for ML [6]. This was extended later by works of Ple-
vak [23], Rémy [26], and Graver [13] to object-oriented 55
languages, such as ML with OO extensions and a subset
of Smalltalk. These works were based on representing the,s
program as a set of constraints, and solving these contstrain
via unification and similar methods. The Cartesian product
method [1], and its successor, iterative type analysisu&3,
abstract interpretation for type analysis, where the @ogr
is executed, and the type signature of each encountered exz6]
pression is generalized until it no longer violates themngpi

rules. We use this approach and extend it to handle multiplel27]
possible types of an expression and constant propagation ifg
complex data structures such as lists and maps.
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