
Improved Algorithm Complexities

for Linear Temporal Logic Model Checking

of Pushdown Systems?

Katia Hristova?? and Yanhong A. Liu

Computer Science Department, State University of New York,
Stony Brook, NY 11794

katia@cs.sunysb.edu

Abstract. This paper presents a novel implementation strategy for lin-
ear temporal logic (LTL) model checking of pushdown systems (PDS).
The model checking problem is formulated intuitively in terms of evalu-
ation of Datalog rules. We use a systematic and fully automated method
to generate a specialized algorithm and data structures directly from the
rules. The generated implementation employs an incremental approach
that considers one fact at a time and uses a combination of linked and
indexed data structures for facts. We provide precise time complexity for
the model checking problem; it is computed automatically and directly
from the rules. We obtain a more precise and simplified complexity anal-
ysis, as well as improved algorithm understanding.

1 Introduction

Model checking is a widely used technique for verifying that a property holds for
a system. Systems to be verified can be modeled accurately by pushdown systems
(PDS). Properties can be modeled by linear temporal logic (LTL) formulas. LTL
is a language commonly used to describe properties of systems [12,13,21] and
is sufficiently powerful to express many practical properties. Examples include
many dataflow analysis problems and various correctness and security problems
for programs.

This paper focuses on LTL model checking of PDS, specifically on the global
model checking problem [15]. The model checking problem is formulated in terms
of evaluation of a Datalog program [5]. Datalog is a database query language
based on the logic programming paradigm [11,1]. The Büchi PDS, correspond-
ing to the product of the PDS and the automaton representing the inverse of
the property, is expressed in Datalog facts, and a reach graph — an abstract
representation of the Büchi PDS, is formulated in rules. The method described
in [18] generates specialized algorithms and data structures and complexity for-
mulas for the rules. The generated algorithms and data structures are such that

? This work was supported in part by NSF under grants CCR-0306399 and CCR-
0311512 and ONR under grants N00014-04-1-0722 and N00014-02-1-0363.

?? Corresponding author

given a set of facts, they compute all facts that can be inferred. The generated
implementation employs an incremental approach that considers one fact at a
time and uses a combination of linked and indexed data structures for facts. The
running time is optimal, in the sense that each combination of instantiations of
hypotheses is considered once in O(1) time.

Our main contributions are:

– A novel implementation strategy for the model checking problem that com-
bines an intuitive definition of the model checking problem in rules [5] and a
systematic method for deriving efficient algorithms and data structures from
the rules[18].

– A precise and automatic time complexity analysis of the model checking
problem. The time complexity is calculated directly from the Datalog rules,
based on a thorough understanding of the algorithms and data structures
generated, reflecting the complexities of implementation back into the rules.

We thus develop a model checker with improved time complexity guarantees
and improved algorithm understanding.

The rest of this paper is organized as follows. Section 2 defines LTL model
checking of PDS. Section 3 expresses the model checking problem by use of
Datalog rules. Section 4 describes the generation of a specialized algorithm and
data structures from the rules and analyzes time complexity of the generated
implementation. Section 5 discusses related work and concludes.

2 Linear Temporal Logic Model Checking of Pushdown

Systems

This section defines the problem of model checking PDS against properties ex-
pressed using LTL formulas, as described in [15].

2.1 Pushdown systems

A pushdown system (PDS) [14] is a triple (CP , SP , TP), where CP is a set of
control locations, SP is a set of stack symbols and TP is a set of transitions. A
transition is of the form (c, s) → (c′, w) where c and c′ are control locations, s

is a stack symbol, and w is a sequence of stack symbols; it denotes that if the
PDS is in control location c and symbol s is on top of the stack, the control
location changes to c′, s is popped from the stack, and the symbols in w are
pushed on the stack, one at a time, from left to right. A configuration of a PDS
is a pair (c, w) where c is a control location and w is a sequence of symbols from
the top of the stack. If (c, s) → (c′, w) ∈ TP then for all v ∈ SP

∗, configuration
(c, sv) is said to be an immediate predecessor of (c′, wv). A run of a PDS is a se-
quence of configurations conf0, conf1, ..., confn such that confi is an immediate
predecessor of confi+1, for i = 0, . . . , n − 1.

We only consider PDSs where each transition (c, s) → (c′, w) satisfies |w| ≤ 2.
Any given PDS can be transformed to such a PDS. Any transition (c, s) →

(c′, w), such that |w| > 2, can be rewritten into (c, s) → (c′, whd s′) and (c′, s′) →
(c, wtl), where whd is the first symbol in w, wtl is w without its first symbol,
and s′ is a fresh symbol. This step can be repeated until all transitions have
|w| ≤ 2. This replaces each transition (c, s) → (c′, w), where |w| > 2, with
|w| − 1 transitions and introduces |w| − 1 fresh stack symbols.

The procedure calls and returns in a program correspond to a PDS [16]. First,
we construct a control flow graph (CFG) [2] of the program. Then, we set up
one control location, say called c. Each CFG vertex is a stack symbol. Each CFG
edge (s, s′) corresponds to a transition (i) (c, s) → (c, ε), where ε stands for the
empty string, if (s, s′) is labeled with a return statement; (ii) (c, s) → (c, s′f0),
if (s, s′) is labeled with a call to procedure f , and f0 is f ’s entry point; (iii)
(c, s) → (c, s′), otherwise. A run of the program corresponds to a PDS run.

void m()

 double d = drand48();

 if (d < 0.66):

 s(); plot_right();

 if (d < 0.33): m();

 else:

 else:

 plot_up(); m(); plot_down();

void s()

 if (drand48() < 0.5): return;

 else:

 plot_up(); m(); plot_down();

main()

 srand48(time(NULL)); s();

(a) Example program.

m0

m7

m2

m5

m4

m8

m3

m1

m9

m6

o

e
l

s
e

d=drand48()

if d<0.66
 else

call s

if d<0.33

return

call m

plot_right

plot_up

call m

p
l

o
t

_
d

o
w

n

s0

s2

o

s3

s4

s5

s1

if drand48()<0.5
 else

return
 plot_up

plot-down

call_m

o

return

main1

main2

main0

o

srand(...)

call s

return

(b) Corresponding CFG.

Fig. 1: Example program and corresponding CFG.

Figure 1 shows an example program and its CFG [15]. The program creates
random bar graphs using the commands plot up, plot right, and plot down.
The corresponding PDS is:

CP = {c}
SP = {m0,m1,m2,m3,m4,m5,m6,m7,m8,m9, s0, s1, s2, s3, s4, s5,

main0,main1,main2}
TP = {(c,m3) → (c,m4s0), (c,m6) → (c,m1m0), (c,m8) → (c,m9m0),

(c,m1) → (c, ε), (c, s2) → (c, ε), (c, s4) → (c, s5m0),
(c, s1) → (c, ε), (c,main2) → (c,main1s0), (c,main1) → (c, ε)}

2.2 Linear temporal logic formulas

Linear temporal logic (LTL) formulas [12,13,21] are evaluated over infinite se-
quences of symbols. The standard logic operators are available; if f and g are
formulas, then so are ¬f , f ∧ g, f ∨ g, f → g. The following additional operators
are available: X f : f is true in the next state; F f : f is true in some future
state; G f : f is true globally, i.e. in all future states; g U f : g is true in all future
states until f is true in some future state.

A LTL formula can be translated to a Büchi automaton, a finite state automa-
ton over infinite words. The automaton accepts a word if on reading it a good
state is entered infinitely many times. Formally, a Büchi automaton (BA) is a tu-
ple (CB , LB , TB , C0B , GB) where CB is a set of states, LB is a set of transition la-
bels, TB is a set of transitions, C0B ⊆ CB is a set of starting states, and GB ⊆ CB

is a set of good states. A transition is of the form (c, l, c′), where c, c′ ∈ CB and
l ∈ LB . The label of a transition is a condition that must be met by the current
symbol in the word being read, in order for the transition to be possible. A label

denotes an unconditional transition. An accepting run of a Büchi automaton
is an infinite sequence of transitions (c0, l0, c1), (c1, l1, c2), . . . , (cn−1, ln−1, cn),
where a state ci ∈ GB appears infinitely many times.

To specify a program property using an LTL formula, the program’s CFG
edges are used as atomic propositions. LTL formulas are defined with respect to
infinite runs of the program. The corresponding BA accepts an infinite sequence
of CFG edges, if on reading it, the automaton enters a good state infinitely
many times. For example, the property that plotting up is never immediately
followed by plotting down is expressed by the LTL formula F = G(plot up →
X(¬plot down)). The BA1 corresponding to ¬F is shown in Figure 2. In the
diagram nodes correspond to states and edges correspond to transitions of the
BA; double circles mark good states and a square marks the start state.

2.3 LTL Model checking of PDS

Given a system expressed as a PDS P , and a LTL formula F , the formula F

holds for P if it holds for every run of P . We check whether F holds for P as
follows [15]. First, we construct B — the BA corresponding to ¬F . Second, we
construct BP — a Büchi PDS that is the product of P and B, and make sure BP

has no accepting run. A Büchi PDS (BPDS) is a tuple (C,S, T, C0, G), where C

1 The Büchi automaton was generated with the tool LBT that translates LTL formulas
to Büchi automata (http://www.tcs.hut.fi/Software/maria/tools/lbt/).

c1 c2 c3 c4

c5

_

_

_

_

plot_up plot_down

plot_up

Fig. 2: Büchi automaton corresponding to ¬G(plot up → X(¬plot down)).

is a set of control locations, S is a set of stack symbols, T is a set of transitions,
C0 ⊆ C is the set of starting control locations, G ⊆ C is the set of good control
locations. Transitions are of the form ((C ∗ S) ∗ (C ∗ S∗)). The concepts config-
uration, predecessor, and run of a BPDS are analogous to those of a PDS. An
accepting run of the BPDS is an infinite sequence of configurations in which con-
figurations with control locations in G appear infinitely many times. The product
BPDS BP of P = (CP , SP , TP) and B = (CB , LB , TB , C0B , GB) is the five-tuple
((CP ∗CB), SBP , TBP , C0BP , GBP), where (((cP , cB), s), ((c′P , c′B), w)) ∈ TBP if
(cP , s) → (c′P , w)∈ TP , and there exists f such that (cB , f, c′B)∈ TB , and f is
true at configuration ((cP , cB), s); (cP , cB) ∈C0BP if cB ∈ C0B ; (cP , cB) ∈GBP

if cB ∈ GB .

Next we construct a reach graph — a finite graph that abstracts BP . The
nodes of the graph are configurations of BP . An edge ((c, s), (c′, s′)) in the reach
graph corresponds to a run that takes BP from configuration (c, s) to configura-
tion (c′, s′). If a good control location in BP is visited in the run corresponding
to an edge, the edge is said to be good. A path in the reach graph is a sequence
of edges. Cycles in the reach graph correspond to infinite runs of BP . Paths
containing cycles with good edges in them correspond to accepting runs of BP

and are said to be good. If the reach graph corresponding to BP has no good
paths, BP has no accepting runs and F holds for P . Otherwise, the good paths
in the reach graph are counterexamples showing that F does not hold for P .

3 Specifying the Reach Graph in Rules and Detecting

Good Paths

This section expresses the reach graph using Datalog rules and employs an al-
gorithm for detecting good paths in the reach graph as presented in [5].

A Datalog program is a finite set of relational rules of the form

p1(x11, ..., x1a1
) ∧ ... ∧ ph(xh1, ..., xhah

) → q(x1, ..., xa)

where h is a natural number, each pi (respectively q) is a relation of ai (re-
spectively a) arguments, each xij and xk is either a constant or a variable, and
variables in xk’s must be a subset of the variables in xij ’s. If h = 0, then there
are no pi’s or xij ’s, and xk’s must be constants, in which case q(x1, ..., xa) is
called a fact. The meaning of a set of rules and a set of facts is the smallest set

of facts that contains all the given facts and all the facts that can be inferred,
directly or indirectly, using the rules.

Expressing the Büchi PDS. The BPDS is expressed by the relations loc,
trans0, trans1, and trans2. The loc relation represents the control locations
of the BPDS; its arguments are a control location and a boolean argument
indicating whether the control location is good. One instance of the relation
exists for each control location. The three relations trans0, trans1, and trans2

express transitions. The facts trans0(c1,s1,c2), trans1(c1,s1,c2,s2), and
trans2(c1,s1,c2,s2,s3), where ci’s are control locations and si’s are stack
symbols, denote transitions of the form of the form ((c, s), (c, w)) such that,
w ∈ S∗

BP and |w| = 0, |w| = 1, and |w| = 2, respectively. or is a relation with
three boolean arguments; in the fact or(x1,x2,r), the argument r is the value
of the logical or of the arguments x1 and x2.

Expressing the edges of the reach graph. The reach graph is expressed
by relations erase and edge. The fact erase(c1,s1,g,c2) denotes a run of BP

from configuration (c1, s1) to configuration (c2, ε). The third element in the tuple
is a boolean value that indicates whether the corresponding run goes through
a good control location. The edge relation represents the reach graph edges.
edge(c1,s1,g,c2,s2) denotes an edge between nodes (c1, s1) and (c2, s2);
g is a boolean argument indicating whether the edge is good. For a BPDS
(CBP , SBP , TBP , C0BP , GBP), erase and edge are the relation satisfying:

i. (c1, s, g, c2) ∈erase if (c1, s) → (c2, ε) ∈ TBP , and g = true if c1 ∈ GBP and
false otherwise

ii. (c1, s1, g1∨ g2, c3) ∈erase if (c1, s1) → (c2, s2) ∈ TBP , and (c2, s2, g2, c3) ∈
erase, and g1 = true if c1 ∈ GBP and false otherwise

iii. (c1, s1, g1∨g2∨g3, c4) ∈erase if (c1, s1) → (c3, s2s3) ∈ TBP , (c2, s2, g2, c3)
∈erase, and (c3, s3, g3, c4) ∈erase, and g1 = true if c1 ∈ GBP and false

otherwise

and

i. (c1, s1, g, c2, s2) ∈edge if (c1, s1) → (c2, s2) ∈ TBP , and g = true if c1 ∈
GBP and false otherwise

ii. (c1, s1, g, c2, s2) ∈edge if (c1, s1) → (c2, s2s3) ∈ TBP , g = true if c1 ∈ GBP

and false otherwise
iii. (c1, s1, g1∨g2, c3, s3) ∈edge if (c1, s1) → (c2, s2s3) ∈ TBP , (c2, s2, g2, c3) ∈

erase, and g = true if c1 ∈ GBP and false otherwise

In model checking of programs, the relation erase summarizes the effects of
procedures. The three parts of the above definition correspond to the program
execution exiting, proceeding within, or entering a procedure.

The definitions of the erase and edge relations can be readily written as
rules. These rules are shown in Figure 3.
Detecting good paths. Checking that the BPDS accepts the empty language
amounts to checking that the resulting reach graph has no good paths. To find

trans0(c1,s1,c2)∧loc(c1,g)→erase(c1,s1,g,c2)

trans1(c1,s1,c2,s2)∧erase(c2,s2,g2,c3)∧loc(c1,g1)∧or(g1,g2,g)

→erase(c1,s1,g,c3)

trans2(c1,s1,c2,s2,s3)∧erase(c2,s2,g2,c3)∧erase(c3,s3,g3,c4)∧

loc(c1,g1)∧or(g1,g2,g4)∧or(g4,g3,g)→erase(c1,s1,g,c4)

trans1(c1,s1,c2,s2)∧loc(c1,g)→edge(c1,s1,g,c2,s2)

trans2(c1,s1,c2,s2,s3)∧loc(c1,g)→edge(c1,s1,g,c2,s2)

trans2(c1,s1,c2,s2,s3)∧erase(c2,s2,g2,c3)∧loc(c1,g1)∧or(g1,g2,g)

→edge(c1,s1,g,c3,s3)

Fig. 3: Rules corresponding to the erase relation used to construct the reach
graph, and the edge relation of the reach graph.

good paths in the reach graph we use the algorithm presented in [5, Figure 4]
but ignore consideration of resource labels by the algorithm. The algorithm uses
depth first search and is linear in the number of edges in the reach graph.

4 Efficient Algorithm for Computing the Reach Graph

This section describes the generation of a specialized algorithm and datastruc-
tures for computing the reach graph from the rules shown in the previous section,
as well as analyzing precisely the time complexity for computing the reach graph
and expressing the complexity in terms of characterizations of the facts—the pa-
rameters characterizing the BPDS.

4.1 Generation of efficient algorithms and data structures

Transforming the set of rules into an efficient implementation uses the method in
[18]. We first transform each rule with more than two hypotheses into multiple
rules with two hypotheses each and then carry out three key steps. Step 1 trans-
forms the least fixed point (LFP) specification of the rule set to a while-loop.
Step 2 transforms expensive set operations in the loop into incremental opera-
tions. Step 3 designs appropriate data structures for each set, so that operations
on it can be implemented efficiently. These three steps correspond to dominated
convergence [10], finite differencing [20], and real-time simulation [19], respec-
tively, as studied by Paige et al.

Auxiliary relations. For each rule with more than two hypotheses, we trans-
form it to multiple rules with two hypotheses each. The transformation intro-
duces auxiliary relations with necessary arguments to combine two hypotheses at
a time. We repeatedly apply the following transformations to each rule with more
than two hypotheses until only rules with at most two hypotheses are left. We
replace any two hypotheses of the rule, say Pi(Xi1, ..., Xiai

) and Pj(Xj1, ..., Xjaj
)

by a new hypothesis, Q(X1, ..., Xa), where Q is a fresh relation, and Xk’s are

variables in the arguments of Pi or Pj that occur also in the arguments of other
hypotheses or the conclusion of this rule. We add a new rule:

Pi(Xi1, ..., Xiai
) ∧ Pj(Xj1, ..., Xjaj

) → Q(X1, ..., Xa).

1. loc(c1,g)∧trans0(c1,s1,c2)→erase(c1,s1,g,c2)

2. loc(c1,g1)∧trans1(c1,s1,c2,s2)→gtrans1(c1,g1,s1,c2,s2)

3. gtrans1(c1,g1,s1,c2,s2)∧erase(c2,s2,g2,c3)→gtrans1e(c1,s1,c3,g1,g2)

4. gtrans1e(c1,s1,c3,g1,g2)∧or(g1,g2,g)→erase(c1,s1,g,c3)

5. loc(c1,g1)∧trans2(c1,s1,c2,s2,s3)→gtrans2(c1,g1,s1,c2,s2,s3)

6. gtrans2(c1,g1,s1,c2,s2,s3)∧erase(c2,s2,g2,c3)

→gtrans2e(c1,s1,s2,c3,g1,g2)

7. gtrans2e(c1,s1,s2,c3,g1,g2)∧erase(c3,s2,g3,c4)

→gtrans2ee(c1,s1,c4,g1,g2,g3)

8. gtrans2ee(c1,s1,c4,g1,g2,g3)∧or(g1,g2,g4)

→gtrans2ee or(c1,s1,c4,g3,g4)

9. gtrans2ee or(c1,s1,c4,g3,g4)∧or(g4,g3,g)→ erase(c1,s1,g,c4)

10. gtrans1(c1,g,s1,c2,s2)→ edge(c1,s1,g,c2,s2)

11. gtrans2(c1,g,s1,c2,s2,s3)→ edge(c1,s1,g,c2,s2)

12. gtrans2e(c1,s1,s2,c2,g1,g2)∧or(g1,g2,g)→edge(c1,s1,g,c2,s2)

Fig. 4: The reach graph expressed in rules with at most two hypotheses.

The resulting rule set for constructing the reach graph is shown in Figure
4. Several auxiliary relations have been introduced. The relations gtrans1 and
gtrans2 represent transitions like trans1 and trans2 respectively, but an ex-
tra argument indicates whether the transitions start at a good control location.
The relations gtrans1e and gtrans2e, represent runs of the BPDS starting
with a transition trans1 and trans2 respectively, followed by a run repre-
sented as a fact of the erase relation. The facts gtrans1e(c1,s1,c2,g1,g2)

and gtrans2e(c1,s1,s2,c2,g1,g2) represent runs from configuration (c1, s1)
to configurations (c2, ε) and (c2, s2) respectively, where g1 and g2 indicate, re-
spectively, whether the first control location in the run is good and whether
the rest of the run visits a good control location. The relation gtrans2ee rep-
resents runs consisting of one transition and two runs expressed as facts of the
erase relation. The fact gtrans2ee(c1,s1,c2,g1,g2,g3) stands for a run from
configuration (c1, s1) to configuration (c2, ε); the arguments g1, g2, and g3 are
booleans indicating respectively, whether the first control location in the run
is good, and whether the remaining two parts of the run visit a good control
location. The relations gtrans1ee or and gtrans2ee or represents runs like
gtrans1ee and gtrans2ee, except with two boolean arguments combined using
logical or.

Fixed-point specification and while-loop. We represent a relation the
form Q(a1, a2, ... , an) using tuples of the form [Q,a1,a2,...,an]. We
use S with X and S less X to mean S ∪ {X} and S − {X}, respectively. We

use the notation {X : Y1 in S1, . . . , Yn in Sn|Z} for set comprehension. Each
Yi enumerates elements of Si; for each combination of Y1, . . . , Yn if the value of
boolean expression Z is true, then the value of expression X forms an element
of the resulting set. If Z is omitted, it is implicitly the constant true.

LFP(S0, F) denotes the minimum element S, with respect to the subset or-
dering ⊆, that satisfies the condition S0 ⊆ S and F (S) = S. We use standard
control constructs while, for, if, and case, and we use indentation to indicate
scope. We abbreviate X := XopY as Xop:= Y .

We use set bpds for the set of facts representing the BPDS.

rbpds = {[loc,c1,g] : loc(c1,g) in bpds} ∪
{[trans0,c1,s1,c2] : trans0(c1,s1,c2) in bpds} ∪
{[trans1,c1,s1,c2,s2] : trans1(c1,s1,c2,s2) in bpds} ∪
{[trans2,c1,s1,c2,s2,s3] : trans0(c1,s1,c2,s2,s3) in bpds },

Given any set of facts R, and a rule with rule number n and with relation e

in the conclusion, let ne(R), referred to as result set, be the set of all facts that
can be inferred by rule n given the facts in R. For example,

2gtrans1 = {[gtrans c1 s1 g c2 s2] : [loc c1 g] in R and

[trans1 c1 g s1 c2 s2] in R},
10edge = {[edge c1 s1 g c2 s2] : [gtrans1 c1 g s1 c2 s2] in R}.

The meaning of the give facts and the rules used to compute the reach graph
is:

LFP({},F), where F(R) = rbpds ∪ 1erase(R) ∪ 2gtrans1(R) ∪
3gtrans1e(R) ∪ 4erase(R) ∪ 5gtrans2(R) ∪ 6gtrans2e(R) ∪
7gtrans2ee(R) ∪ 8gtrans2ee or(R) ∪ 9erase(R) ∪
10edge(R) ∪ 11edge(R) ∪ 12edge(R).

This least-fixed point specification of computing the reach graph is trans-
formed into the following while-loop:

R := {}; while exists x in F(R) - R

R with := x;
(1)

The idea behind this transformation is to perform small update operations in
each iteration of the while-loop.

Incremental computation. Next we transform expensive set operations in
the loop into incremental operations. The idea is to replace each expensive ex-
pression exp in the loop with a variable, say E, and maintain the invariant
E = exp, by inserting appropriate initializations and updates to E where vari-
ables in exp are initialized and updated, respectively.

The expensive expressions in constructing the reach graph are all result sets,
such as 2grtrans1(R), and F(R)-R. We use fresh variables to hold each of their
respective values and maintain the following invariants:

Ibpds = rbpds, I1erase = 1erase(R),
I2gtrans1 = 2gtrans1(R), I3gtrans1e = 3gtrans1e(R),
I4erase = 4erase(R), I5gtrans2 = 5gtrans2(R),
I6gtrans2e = 6gtrans2e(R), I7gtrans2ee = 7gtrans2ee(R),
I8gtrans2ee or = 8gtrans2ee or(R), I9erase = 9erase(R),
I10edge = 10edge(R), I11edge = 11edge(R), I12edge = 12edge(R),
W = F(R) - R.

W serves as the workset. As an example of incremental maintenance of the
value of an expensive expression, consider maintaining the invariant I2gtrans1.
I2gtrans1 is the value of the set formed by joining elements from the set
of facts of the loc and trans1 relations. I2gtrans1 can be initialized to {}
with the initialization R = {}. To update Igtrans1 incrementally with update
R with:= x, if x is of the form [loc,c1,g] we consider all matching tuples of
the form [trans1,c1,s1,c2,s2] and add the tuple [gtrans1,c1,g,s1,c2,s2]
to I2gtrans1. To form the tuples to add, we need to efficiently find the appro-
priate values of variables that occur in [trans1,c1,s1,c1,s2] tuples, but not
in [loc,c1,g], i.e. the values of s1,c2, and s2, so we maintain an auxiliary
map that maps [c1] to [s1,c2,s2] in the variable I2gtrans1 trans1 shown
below. Symmetrically, if x is a tuple of [trans1,c1,s1,c2,s2], we need to con-
sider every matching tuple of [loc,c1,g] and add the corresponding tuple of
[gtrans1,c1,g,s1,c2,s2] to I2gtrans1 loc. The first set of elements in aux-
iliar maps is referred to as the anchor and the second set of elements as the
nonanchor.

I2gtrans1 trans1 = {[[c1], [s1,c2,s2]] :

[trans1,c1,s1,c2,s2] in R},
I2gtrans1 loc = {[[c1], [g]] : [loc,c1,g] in R}.

Thus, we are able to directly find only matching tuples and consider only com-
binations of facts that make both hypotheses true simultaneously, as well as
consider each combination only once. Similarly, such auxiliary maps are main-
tained for all invariants that we maintain.

All variables holding the values of expensive computations listed above and
auxiliary maps are initialized together with the assignment R := {} and updated
incrementally together with the assignment R with:= x in each iteration. When
R is {}, Ibpds = rbpds, all auxiliary maps are initialized to {}, and W = Ibpds.
When a fact is added to R in the loop body, the variables are updated. We show
the update for the addition of a fact of relation trans1 only for I2gtrans1

invariant and I2gtrans1 loc auxiliary map , since other facts and updates to
the variables and auxiliary maps are processed in the same way. The notation
E{Ys}, where E = {[Ys,Xs]} is an auxiliary map, is used to access all matching

tuples of E and return all matching values of Xs.

case of x of [loc,c1,g]:

I2gtrans1 +:= {[gtrans1,c1,g,s1,c2,s2]:
[s1,c2,s2] in I2gtrans1 trans1{c1}};

W +:= {[gtrans1,c1,g,s1,c2,s2]: [s1,c2,s2] in I2gtrans1 trans1{c1}
|[gtrans1,c1,g,s1,c2,s2] notin R};

I2gtrans1 loc with:= {[[c1], [g]] : [loc,c1,g] in R};
(2)

Using the above initializations and updates, and replacing all invariant mainte-
nance expressions with W, we obtain the following complete code:

initialization; R:={};
while exits x in W:

update; W less:= x; R with:= x;

(3)

We next eliminate dead code and clean up the code to contain only uniform
operations and set elements for data structure design. We then decompose R

and W into several sets, each corresponding to a single relation that occurs in the
rules. R is decomposed to Rtrans0, Rtrans1, Rtrans2, Rloc, Rerase, Rgtrans1,
Rgtrans1e, Rgtrans2, Rgtrans2e, Rgtrans2ee, Rgtrans2ee or, and Redge. W
is decomposed in the same way. We eliminate relation names from the first
component of tuples and transform the while-clause and case-clause appropri-
ately. Then, we do the following three sets of transformations. We transform
operations on sets into loops that use operations on set elements. Each ad-
dition of a set is transformed to a for-loop that adds the elements one at a
time. For example, I2gtrans1 +:= {[gtrans1,c1,g,s1,c2,s2]: [s1,c2,s2]

in I2gtras1 trans1{c1}} is transformed into:

for [s1,c2,s2] in I2gtras1 trans1{c1}:
I2gtrans1 +:= [c1,g,s1,c2,s2];

We replace tuples and tuple operations with maps and map operations. We
make all element addition and deletion easy by testing membership first.

Data structures. After the above transformations each firing of a rule takes
a constant number of set operations. Since each of these set operations takes
worst case constant time in the generated code, achieved as described below,
each firing of a rule takes worst case constant time. Next we describe how to
guarantee that each set operation takes worst-case constant time. The operations
are of the following kinds: set initialization S := {}, computing image set M(X),
element retrieval for X in S and while exists X in S, membership test X

in S, X notin S, and element addition S with X and deletion S less X. We
use associative access to refer to membership test and computing image set.

A uniform method is used to represent all sets and maps, using arrays for
sets that have associative access, linked lists for sets that are traversed by loops
and both arrays and linked lists when both operations are needed.

The result sets, such as Rtrans0, are represented by nested array structures.
Each of the result sets of, say, a components is represented using an a-level nested

array structure. The first level is an array indexed by values in the domain of
the first component of the result set; the k-th element of the array is null if there
is no tuple of the result set whose first component has value k, and otherwise is
true if a=1, and otherwise is recursively an (a-1)-level nested array structure for
remaining components of tuples of result sets whose first component has value
k.

The worksets, such as Wtrans0, are represented by arrays and linked lists.
Each workset is represented the same as the corresponding resultset with two
additions. First, for each array we add a linked list linking indices of non-null ele-
ments of the array. Second, to each linked list we add a tail pointer. One or more
records are used to put each array, linked list, and tail pointer together. Each
workset is represented simply as a nested queue structure (without the underly-
ing arrays), one level for each workset, linking the elements (which correspond
to indices of the arrays) directly.

Auxiliary maps, such as I2gtrans1 trans1 and I2gtrans1 loc, are imple-
mented as follows. Each auxiliary map, say E for a relation that appears in a
rule’s conclusion uses a nested array structure as resultsets and worksets do and
additionally linked lists for each component of the non-anchor as worksets do. E
uses a nested array structure only for the anchor, where elements of the arrays
of the last component of the anchor are each a nested linked-list structure for
the non-anchor.

4.2 Complexity analysis of the model checking problem

We analyze the time complexity of the model checking problem by carefully
bounding the number of facts actually used by the rules. For each rule we de-
termine precisely the number of facts processed by it, avoiding approximations
that use the sizes of individual argument domains.

Calculating time complexity. We first define the size parameters used to
characterize relations and analyze complexity. For a realtion r we refer to the
number of facts of r that are given or can be inferred as r’s size. The pa-
rameters #trans0, #trans1 and #trans2 denote the number of transitions of
the form ((c1, s1), (c2, ε)), ((c1, s1), (c2, s2)), and ((c1, s1), (c2, s2s3)), respec-
tively; #trans denotes the total number of transitions. The parameters #gtrans1
and #gtrans2 denote the number of facts of relations gtrans1 and gtrans2,
where #gtrans1=#trans1 and #gtrans2=#trans2. Parameters #gtrans1e and
#gtrans2e denote the relation sizes — #trans1 ∗ #target loc trans0, and
#trans2 ∗ #target loc trans0, respectively, and #gtrans2ee denotes the cor-
responding relation size equal to #trans2 ∗ #target loc trans02. The param-
eter #erase denotes the number of facts in the erase relation; #erase.4/123
denotes the number of different values the forth argument of erase can take
for each combination of values of the first three arguments. In the worst case,
this is the number of control locations c2 such that a transition of the form
((c1, s1), (c2, ε)) exists in the automaton. We use #target loc trans0 to de-
note this number.

The time complexity for the set of rules is the total number of combinations
of hypotheses considered in evaluating the rules. For each rule r, r.#firedTimes
stands for the number the number of firings for the rule is a count of: (i) for rules
with one hypothesis: the number of facts which make the hypothesis true; (ii)
for rules with two hypotheses: the number of combinations of facts which make
the two hypotheses simultaneously true. The total time complexity is time for
reading the input, i.e. O(#trans + #loc), plus the time for applying each rule,
shown in the second column in the table of Figure 5.

rule no time complexity time complexity bound

1 min(#trans0*1,#loc*#trans0.23/1) #trans0

2 min(#loc*#trans1.234/1,#trans1*1) #trans1

3 min(#gtrans1*#erase.4/123, #trans1*#target loc trans0

#erase*#gtrans1.12/34)

4 min(#gtrans1e*1, 1*#gtrans1e) #trans1*#target loc trans0

5 min(#loc*#trans2.2345/1,#trans2*1) #trans2

6 min(#gtrans2*#erase.4/123, #trans2*#target loc trans0

#erase*#gtrans2.12/345)

7 min(#gtrans2e*#erase.4/123, #trans2*#target loc trans02

#erase*#gtrans2e.12/345)

8 min(#gtrans2ee*1,1*#gtrans2ee) #trans2*#target loc trans02

9 min(#gtrans2ee or*1,1*#gtrans2ee or) #trans2*#target loc trans02

10 min(#gtrans2ee or*1,1*#gtrans2ee or) #trans2*#target loc trans02

11 #gtrans1 #trans1

12 #gtrans2 #trans2

13 min(#gtrans2e*1,1*#gtrans2e) #trans2*#target loc trans0

relation time complexity

erase O(#trans0 + #trans1*#target loc trans0 +

#trans2*#target loc trans02)

edge O(#trans1 + #trans2*#target loc trans0)

Fig. 5: Time complexity of computing the reach graph.

Time complexity of model checking PDS. Time complexity for processing
each of the rules and computing the erase and edge relations is shown in the
second table of Figure 5. After the reach graph has been computed, good cycles
in the reach graph can be detected in time linear in the size of the reach graph,
i.e. O(#edge). Thus, the asymptotic complexity of the model checking problem
is dominated by the time complexity of computing the erase relation.

For a BPDS, product of P = {CP , SP , TP } where |CP | = 1, and B =
{CB , LB , TB , C0B , GB}, #target loc trans0≤|CB |, and #trans2≤|TP | ∗ |TB |.
For such a PDS, O(|TP | ∗ |TB | ∗ |CB |2) is the worst case time complexity of
computing the erase relation and O(|TP | ∗ |TB | ∗ |CB |) is the worst case time

complexity for computing the edge relation. Since only |TP | is dependent on the
size of P, time complexity is linear in the size of the P and cubic in the size of B.

4.3 Performance

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 ti

m
e

in
 s

ec
on

ds

number of transitions

Increasing #trans and increasing #traget_loc_trans0
Increasing #trans but constant #traget_loc_trans0

Fig. 6: Results for computing the reach graph for the BPDS.

We tested the performance of our reach graph construction algorithm on
two sets of BPDS consisting of BPDS with increasing #trans. BPDS in one
set also had increasing #target loc trans0, while BPDS in the second set had
constant #target loc trans0. The time complexity for computing reach graphs
for BPDS in the first set is as shown in Figure 5. However, for automata in the
second set time complexity should be linear — O(#trans). If the PDS corre-
sponds to a program, #target loc trans0 is proportional to the total number
of return points of procedures in the program. Thus, our test data corresponds
to checking if a property holds on programs with an increasing number of state-
ments and procedure calls, and programs with an number of statements, but
constant number of procedures.

Results of the experiment are shown in Figure 6 and confirm our analysis.
We used generated python code in which each operation on set elements is
guaranteed to be constant time on average using default hashing in python.
Running times are measured in seconds on a 500MHz Sun Blade 100 with 256
Megabytes of RAM, running SunOS 5.8. Running times are the average over ten
runs.

5 Discussion

The problem of LTL model checking of PDS has been extensively researched, es-
pecially model checking PDS induced by CFGs of programs. The model checking

problem for context-free and pushdown processes is explored in [8]. The design
and implementation of Bebop: a symbolic model checker for boolean programs,
is presented in [4]. Burkart and Steffen [9] present a model checking algorithm
for modal mu-calculus formulas. For a PDS with one control state, a modal-mu
calculus formula of alternation depth k can be checked in time O(nk), where n

is the size of the PDS. The works [17,16,15,7] describe efficient algorithms for
model checking PDSs. Alur et al. [3] and Benedikt et al. [6] show that state
machines can be used to model control flow of sequential programs. Both works
describe algorithms for model checking PDS that have time complexity cubic in
size of the BA and linear in size of the PDS; these works combine forward and
backward reachability and obtain complexity estimations by exploiting this mix-
ture. Esparza et al. [15] estimate time complexity of solving the model checking
problem to be O(n*m3) for model checking PDS with one state only, where n is
the size of the PDS and m is the size of the property BA [15]. While this is also
linear in the size of the PDS, our time complexity analysis is more precise and
automatic.

The algorithm derived in this work is essentially the same as the one in [15].
What distinguishes our work is that we use a novel implementation strategy for
the model checking problem that combines an intuitive definition of the model
checking problem in rules [5] and a systematic method for deriving efficient
algorithms and data structures from the rules [18], and arrives at an improved
complexity analysis. The time complexity is calculated directly from the Datalog
rules, based on a thorough understanding of the algorithms and data structures
generated, reflecting the complexities of implementation back into the rules.

An implementation of the model checking problem in logical rules is presented
in [5]. The rules are evaluated using the XSB system [23]. Thus, the efficiency
of the computation is highly dependent on the order of hypotheses in the given
rules. Our implementation is drastically different, as it finds the best order of
hypotheses in the rules automatically. We do not employ an evaluation strategy
for Datalog, but generate a specialized algorithm and implementation directly
from the rules.

In this paper, we presented an efficient algorithm for LTL model checking
of PDS. We showed the effectiveness of our approach by using a precise time
complexity analysis, along with experiments. These results show that our model
checking algorithm can help accommodate larger PDS and properties. Our work
is potentially a contribution not only to the model checking problem, since the
idea behind the erase relation and the reach graph is more universal than model
checking PDS. Variants of the erase relation are used in data flow analysis
techniques, as described in [22] and related work. Applications of model checking
in dataflow analysis are presented in [25,24]. It is a topic of future research to
apply our method to dataflow analysis problems.

Acknowledgment. Thanks to Tom Rothamel for helping debug perfor-
mance problems in the implementation.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

3. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines.
In CAV ’01: Proceedings of the 13th International Conference on Computer Aided
Verification, pages 207–220, London, UK, 2001. Springer-Verlag.

4. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In SPIN, pages 113–130, 2000.

5. S. Basu, K. N. Kumar, L. R. Pokorny, and C. R. Ramakrishnan. Resource-
constrained model checking of recursive programs. In TACAS ’02: Proceedings
of the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 236–250, London, UK, 2002. Springer-Verlag.

6. M. Benedikt, P. Godefroid, and T. W. Reps. Model checking of unrestricted hi-
erarchical state machines. In ICALP ’01: Proceedings of the 28th International
Colloquium on Automata, Languages and Programming,, pages 652–666, London,
UK, 2001. Springer-Verlag.

7. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In International Conference on Concur-
rency Theory, pages 135–150, 1997.

8. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures.
North Holland, 2000.

9. O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite
sequential processes. In ICALP ’97: Proceedings of the 24th International Collo-
quium on Automata, Languages and Programming, pages 419–429, London, UK,
1997. Springer-Verlag.

10. J. Cai and R. Paige. Program derivation by fixed point computation. Science of
Computer Programming, 11(3):197–261, 1989.

11. S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer-
Verlag New York, Inc., New York, NY, USA, 1990.

12. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71,
London, UK, 1982. Springer-Verlag.

13. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite
state concurrent system using temporal logic specifications: a practical approach.
In POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 117–126, New York, NY, USA, 1983.
ACM Press.

14. J. Edmund M. Clark, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

15. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In CAV ’00: Proceedings of the 12th Interna-
tional Conference on Computer Aided Verification, pages 232–247, London, UK,
2000. Springer-Verlag.

16. J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs.
In CAV ’01: Proceedings of the 13th International Conference on Computer Aided
Verification, pages 324–336, London, UK, 2001. Springer-Verlag.

17. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In Proc. 2nd Int. Workshop on Verification of Infinite
State Systems (INFINITY’97), volume 9 of Electronic Notes in Theoretic Comp.
Sci. Elsevier, 1997.

18. Y. A. Liu and S. D. Stoller. From datalog rules to efficient programs with time
and space guarantees. In Proceedings of the 5th ACM SIGPLAN international
conference on Principles and practice of declaritive programming, pages 172–183.
ACM Press, 2003.

19. R. Paige. Real-time simulation of a set machine on a ram, 1989.
20. R. Paige and S. Koenig. Finite differencing of computable expressions. ACM

Trans. Program. Lang. Syst., 4(3):402–454, 1982.
21. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems

in cesar. In Proceedings of the 5th Colloquium on International Symposium on
Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

22. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Conference Record of POPL ’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 49–61, San
Francisco, California, 1995.

23. K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database
engine. In R. T. Snodgrass and M. Winslett, editors, Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data SIGMOD’94, pages
442–453, 1994.

24. B. Steffen. Generating data flow analysis algorithms from modal specifications.
In TACS’91: Selected papers of the conference on Theoretical aspects of computer
software, pages 115–139, Amsterdam, The Netherlands, 1993. Elsevier Science Pub-
lishers B. V.

25. B. Steffen, A. Classen, M. Klein, J. Knoop, and T. Margaria. The fixpoint-analysis
machine. In CONCUR ’95: Proceedings of the 6th International Conference on
Concurrency Theory, pages 72–87, London, UK, 1995. Springer-Verlag.

	Improved Algorithm Complexities for Linear Temporal Logic Model Checking of Pushdown Systems
	Katia Hristova and Yanhong A. Liu

