
Logical Clocks Are Not Fair: What Is Fair?
A Case Study of High-level Language and Optimization

Yanhong A. Liu
Computer Science Department, Stony Brook University

Stony Brook, New York, USA
liu@cs.stonybrook.edu

ABSTRACT
This paper describes the use of a high-level, precise, and executable
language, DistAlgo, for expressing, understanding, running, opti-
mizing, and improving distributed algorithms, through the study
of Lamport’s algorithm for distributed mutual exclusion. We show
how a simplified algorithm, reached by several rounds of better
understanding and improvement of the original algorithm, leads
to further simplification and improved understanding of fairness.
This allows us to use any ordering for fairness, including improved
fairness for granting requests in the order in which they are made,
over using logical clock values. This leads to the discovery that
logical clocks are not fair in general.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; Dis-
tributed programming languages;

KEYWORDS
high-level language, logical clock, mutual exclusion, fairness
ACM Reference Format:
Yanhong A. Liu. 2018. Logical Clocks Are Not Fair: What Is Fair? A Case
Study of High-level Language and Optimization . In ApPLIED ’18: Advanced
tools, programming languages, and PLatforms for Implementing and Evaluat-
ing algorithms for Distributed systems, July 27, 2018, Egham, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3231104.3231109

1 INTRODUCTION
Distributed algorithms carry out the logic of distributed systems.
From distributed control such as distributed consensus to distrib-
uted data such as distributed hash tables, the underlying algorithms
dictate the correctness and efficiency of distributed systems.

For better understanding, evaluation, and improvement of dis-
tributed algorithms, their precise implementation and execution (or
specification and simulation) are not only important, but essential,
in dealing with the myriad of complex interactions that can arise
in real-world distributed systems.

Many languages and tools have been proposed, for actual im-
plementations, e.g., Argus [17], Emerald [4], and Erlang [16], as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ApPLIED ’18, July 27, 2018, Egham, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5775-3/18/07. . . $15.00
https://doi.org/10.1145/3231104.3231109

well as for formal specifications, e.g., TLA [15] and IOA [11, 26]. A
recent language, DistAlgo [23], combines the advantages of exist-
ing languages: high-level as in pseudocode languages, precise as in
specification languages, and directly executable as in programming
languages.

This paper describes the use of DistAlgo for expressing, un-
derstanding, running, optimizing, and improving distributed algo-
rithms, through the study of Lamport’s algorithm for distributed
mutual exclusion. We show how a simplified algorithm, reached
by several rounds of better understanding and improvement of the
original algorithm, leads to further simplification and improved
understanding of fairness. This allows us to use any ordering for
fairness, including improved fairness for granting requests in the
order in which they are made, over using logical clock values. This
leads to the discovery that logical clocks are not fair in general.

DistAlgo has been used to implement a wide variety of well-
known distributed algorithms and protocols in our research, as well
as the core of many distributed systems and services in dozens of
different course projects by hundreds of students; some of these
are summarized previously [23]. However, this does not mean that
algorithm designers see the value of using DistAlgo in algorithm
design. The main contribution of this paper is showing, through a
case study, that

1) distributed algorithms can be expressed precisely, at the same
high level as English descriptions or pseudocode, in an exe-
cutable language and be run directly,

2) clear and precise algorithm specifications and language opti-
mizations can lead to improved algorithms, and

3) the improvement led to the discovery that ordering using logi-
cal clock values is not fair when fairness requires that requests
be granted in the order in which they are made.

Logical clocks are proposed in Lamport’s seminal paper [13],
which also describes the use of logical clocks with an algorithm for
distributed mutual exclusion. Logical clocks are used for ordering of
events in distributed systems, to overcome the lack of synchronized
real-time clocks or physical clocks. Distributed mutual exclusion is
for multiple processes to access a shared resource mutually exclu-
sively. Lamport’s algorithm was designed to guarantee that access
to the resource is granted in the order in which requests are made,
and the order was determined using logical clock values.

Both logical clocks and distributed mutual exclusion have since
been studied extensively, especially with use of logical timestamps
for ordering of events and guaranteeing fairness, as discussed in
Section 7. To the best of our knowledge, no prior work presented
improved fairness for the required request ordering, or showed that
using logical timestamps is not fair for the required ordering.

https://doi.org/10.1145/3231104.3231109
https://doi.org/10.1145/3231104.3231109

ApPLIED ’18, July 27, 2018, Egham, United Kingdom Yanhong A. Liu

In particular, we show that use of DistAlgo allows us to easily
remove unnecessary use of logical times, and then remove logical
clocks altogether, and use instead any desired ordering directly and
exactly. As a side result of this, we show that logical clocks are not
fair in general. These results are built on top of earlier optimization
and improvement of Lamport’s algorithm that led us to remove
unnecessary enqueue and dequeue of each process itself and to
replace use of queues needing complex dynamic data structures
with use of sets needing only simple counts and bits [24].

The rest of this paper is organized as follows. Section 2 describes
Lamport’s logical clocks and distributed mutual exclusion algo-
rithm. Section 3 summarizes DistAlgo and its use in specification
and simplification of Lamport’s distributed mutual exclusion algo-
rithm. Section 4 describes elimination of unnecessary use of logical
times. Section 5 presents different notions of fairness using differ-
ent orderings. Section 6 shows why logical clocks are not fair in
general. Section 7 discusses related work and concludes.

2 LOGICAL CLOCKS AND DISTRIBUTED
MUTUAL EXCLUSION

Lamport [13] proposes logical clocks and describes an algorithm
for distributed mutual exclusion.

Lamport’s logical clocks
A system consists of a set of processes. Each process consists of

a sequence of events. Sending or receiving a message is an event.
The observable ordering of events in a system is captured by the

“happened before” relation,→, the smallest relation satisfying:

1) if a and b are events in the same process, and a comes before b,
then a → b,

2) if a is the sending of a message by one process and b is the
receipt of the message by another process, then a → b, and

3) if a → b and b → c , then a → c .

Logical clocks implement the “happened before” relation by
defining a clock Ci for each process Pi such that, for any events a
in Pi and b in Pj , if a → b, then Ci ’s value of a is smaller than Cj ’s
value of b. Two implementation rules are used:

1. Each process Pi increments Ci ’s value between any two suc-
cessive events.

2. When sending a messagem by process Pi ,m contains a times-
tamp that is Ci ’s value of the sending event. Upon receivingm
by process Pj , Cj ’s value is set to be greater than or equal to
its current value and greater than the timestamp inm.

A total order of events is obtained by ordering pairs of logical
timestamp of an event and process id where the event happens, in
lexical order. That is, process ids are used to break ties in logical
clock values.

Lamport’s distributed mutual exclusion
The problem is that n processes access a shared resource, and

need to access it mutually exclusively, in what is called a critical
section, i.e., there can be at most one process in a critical section at
a time. There is a fairness requirement, stated in [13] as:

Different requests for the resource must be granted
in the order in which they are made. (⋆)

Lamport’s algorithm assumes that communication channels are
reliable and first-in-first-out (FIFO).

Figure 1 contains Lamport’s original description of the algo-
rithm, except with the notation < instead of⇒ in rule 5 (for com-
paring pairs of logical time and process id using lexical ordering:
(t,p) < (t2,p2) iff t < t2 or t= t2 and p < p2) and with the word
“acknowledgment” added in rule 5 (for simplicity when omitting a
commonly omitted [9, 26] small optimization mentioned in a foot-
note). This description is the most authoritative, is at a high level,
and uses the most precise English we found.

The algorithm is then defined by the following five rules. For
convenience, the actions defined by each rule are assumed to
form a single event.
1. To request the resource, process Pi sends the message

Tm :Pi requests resource to every other process, and puts that
message on its request queue, whereTm is the timestamp of the
message.
2. When process Pj receives the message Tm :Pi requests re-

source, it places it on its request queue and sends a (timestamped)
acknowledgment message to Pi .
3. To release the resource, process Pi removes any Tm :Pi

requests resource message from its request queue and sends
a (timestamped) Pi releases resource message to every other
process.

4. When process Pj receives a Pi releases resource message, it
removes any Tm :Pi requests resource message from its request
queue.

5. Process Pi is granted the resource when the following two
conditions are satisfied: (i) There is a Tm :Pi requests resource
message in its request queue which is ordered before any other
request in its queue by the relation <. (To define the relation <
for messages, we identify a message with the event of sending
it.) (ii) Pi has received an acknowledgment message from every
other process timestamped later than Tm .
Note that conditions (i) and (ii) of rule 5 are tested locally by Pi .

Figure 1: Original description in English.

The algorithm is safe in that at most one process can be in a
critical section at a time. It is live in that some process will be in a
critical section if there are requests. It is fair in that requests are
granted in the order of <, on pairs of logical time and process id,
of the requests. Its message complexity is 3(n − 1) in that 3(n − 1)
messages are required to serve each request.

3 LANGUAGE AND OPTIMIZATION
Liu et al. [23, 24] proposes DistAlgo, a language for high-level,
precise, executable specifications of distributed algorithms, and
studies its use for specification, implementation, optimization, and
simplification, with Lamport’s distributed mutual exclusion as an
example.

Logical Clocks Are Not Fair: What Is Fair? ApPLIED ’18, July 27, 2018, Egham, United Kingdom

DistAlgo, a language for distributed algorithms
For expressing distributed algorithms at a high level, DistAlgo

supports four main concepts by building on an object-oriented
programming language, Python: (1) distributed processes that can
send messages, (2) control flow for handling received messages, (3)
high-level queries for synchronization conditions, and (4) configu-
ration for setting up and running. DistAlgo is specified precisely
by a formal operational semantics [23].

(1) Distributed processes that can send messages. A type P
of processes is defined by

process P: stmt

The body stmt may contain, among usual definitions,
• a setup definition for setting up the values used the process,
• a run definition for running the main flow of the process, and
• receive definitions for handling received messages.

A process can refer to itself as self. Expression self.attr (or attr
when there is no ambiguity) refers to the value of attr in the process.
• ps := n new P creates n new processes of type P, and assigns
the new processes to ps.

• ps.setup(args) sets up processes ps using values of args.
• ps.start() starts run of ps.

new can have an additional clause, at node, specifying remote nodes
where the created processes will run; the default is the local node.

A process can easily send a message m to processes ps:
send m to ps

(2) Control flow for handling received messages. Received
messages can be handled both asynchronously, using receive defi-
nitions, and synchronously, using await statements.
• A receive definition is of the following form:

receive m from p: stmt

It handles, at yield points, un-handled messages that match
m from p. A yield point is of the form - - l, where l is a label.
There is an implicit yield point before each await statement, for
handling messages while waiting. The from clause is optional.

• An await statement is of the following form:

await cond1: stmt1 or ... or condk: stmtk timeout t: stmt

It waits for one of cond1, ..., condk to be true or a timeout after
period t, and then nondeterministically selects one of stmt1, ...,
stmtk , stmt whose conditions are true to execute. Each branch
is optional. So is the statement in await with a single branch.

(3)High-level queries for synchronization conditions.High-
level queries can be used over message histories, and patterns can
be used to match messages.
• Histories of messages sent and received by a process are kept
in sent and received, respectively. sent is updated at each send

statement, by adding each message sent. received is updated
at the next yield point if there are un-handled messages, by
adding un-handled messages before executing all matching
receive definitions.
Expression sent m to p is equivalent to m to p in sent. It
returns true iff a message that matches m to p is in sent. The
to clause is optional. Expression received m from p is similar.

• A pattern can be used to match a message, in sent and received,
and by a receive definition. A constant value, such as "release",
or a previously bound variable, indicated with prefix =, in the
pattern must match the corresponding components of the mes-
sage. An underscore _ matches anything. Previously unbound
variables in the pattern are bound to the corresponding com-
ponents in the matched message.
For example, received("release",t3,=p2)matches every triple
in received whose first component is "release" and third com-
ponent is the value of p2, and binds t3 to the second component.

A query can be an existential or universal quantification, a compre-
hension, or an aggregation over sets or sequences.

• An existential quantification and a universal quantification are
of the following two forms, respectively:

some v1 in s1, ..., vk in sk has cond
each v1 in s1, ..., vk in sk has cond

They return true iff for some or each, respectively, combination
of values of variables that satisfies all vi in si clauses, cond
holds.

• A comprehension is of the following form:

{e: v1 in s1, ..., vk in sk, cond}

It returns the set of values of e for all combinations of values
of variables that satisfy all vi in si clauses and condition cond.

• An aggregation is of the form agg s, where agg is an aggregation
operator such as count or max. It returns the value of applying
agg to the set value of s.

• In all query forms above, each vi can be a pattern.

Other operations on sets can also be used, e.g., s1 + s2 returns the
union of sets s1 and s2 .

(4) Configuration for setting up and running.Configuration
for requirements such as use of logical clocks and use of reliable and
FIFO channels can be specified in a main definition. For example,
configure clock = Lamport specifies that Lamport’s logical clocks
are used; it configures sending and receiving of a message to update
the clock value, and defines a function logical_time() that returns
the clock value.

Specification, execution, optimization, and simplification
Distributed algorithms can be expressed in DistAlgo precisely

and at a high level, and be executed directly. The executable spec-
ifications are actual implementations that can be drastically opti-
mized using a systematic method based on incrementalization [18,
20, 21, 29]. Precise high-level specification and systematic incre-
mentalization have allowed us to discover simplifications and even
higher-level specifications of distributed algorithms [22, 23].

For Lamport’s algorithm for distributed mutual exclusion in
Figure 1, repeated improvements to high-level specification and
systematic incrementalization led to the following results:

Original. The original algorithm can be expressed in DistAlgo
at the same high level as Lamport’s English description in
Figure 1, except that operations of both Pi and Pj are expressed
as operations of a process P .

ApPLIED ’18, July 27, 2018, Egham, United Kingdom Yanhong A. Liu

Send-to-self. It is easy to see that, in rules 1 and 3 in Figure 1, Pi
need not enqueue or dequeue its own request, but just send
request and release messages to all processes including itself.
The enqueue and dequeue are taken care of by rules 2 and 4
when it receives a message from itself.

Inc-with-queue. Expensive conditions (i) and (ii) in rule 5 in
Figure 1 can be optimized by incrementally maintaining their
truth values as messages are sent and received, including using
a dynamic queue data structure for (i) for comparison with
earliest of other requests.

Ignore-self. Discovered in the result of Inc-with-queue, in rules
1 and 3 in Figure 1, Pi need not enqueue or dequeue its own
request or send request and release messages to itself, but just
send to others. Condition (i) in rule 5 compares only with other
requests anyway.

Inc-without-queue. Expensive condition (i) in rule 5 in Figure 1
can be better optimized, when incrementally maintaining its
truth value, by using just a count of requests earlier than the
process’s own request and using a bit for each process if mes-
sages can be duplicated.

Simplified.Discoveredwith both Inc-with-queue and Inc-without-
queue, condition (i) in rule 5 in Figure 1 can just compare with
any request for which a corresponding release has not been
received, omitting all updates of queue in rules 1-4, yielding a
higher-level specification than Original.

The precise programs for Original, Inc-with-queue, Inc-without-
queue, and Simplified are given in [23]. The program for Simplified
is shown in Figure 2, including configuring and running 50 pro-
cesses.

4 REMOVING UNNECESSARY USE OF
LOGICAL TIMES

Use of logical clock times requires calls to logical_time(). Excessive
use of logical times may make an algorithm more complex than
necessary. We show how incrementalization allows us to remove
unnecessary uses.

Consider the program Simplified in Figure 2. Systematic incre-
mentalization can derive from it the same optimized programs
Inc-with-queue and Inc-without-queue as from Original. However,
systematic incrementalization can allow one to easily see that in-
crementalization would be simpler and yield simpler optimized
programs if logical times are not used for acknowledgment and
release messages.

In particular, in Figure 2, a release message corresponding to a
request message is recognized by having a larger timestamp (t3
such that t3 > t2, on line 8), instead of having simply the same
timestamp (t2). So is an acknowledgment message (by having t2

such that t2 > t, on line 9, instead of simply t). The latter expresses
condition (ii) in rule 5 in Figure 1. The former imitates the latter
for condition (i) in Simplified.

Therefore, the program Simplified can be further simplified: a
release message sent on line 12 can use the same time, t, as the
request message; and an acknowledgment on line 14 can use the
same time as the request received on line 13, instead of not using

1 process P:
2 def setup(s): # take set of other procs
3 self.s := s

4 def mutex(task):
5 -- request
6 self.t := logical_time() # 1
7 send ("request", t, self) to s # 1
8 await each received("request", t2, p2) has # 5(i)

(not some received("release",t3,=p2) has t3>t2
implies (t,self) < (t2,p2))

9 and each p2 in s has # 5(ii)
some received("ack", t2, =p2) has t2 > t

10 task()
11 -- release
12 send ("release", logical_time(), self) to s # 3

13 receive ("request", _, p2): # 2
14 send ("ack", logical_time(), self) to p2 # 2

15 def run(): # main flow of proc
16 def task(): output(self) # define task for mutex
17 mutex(task) # use mutex to do task

18 def main(): # main of application
19 configure clock = Lamport # use Lamport clock
20 configure channel = {reliable, fifo}

use reliable FIFO channels
21 ps := 50 new P # create 50 P procs
22 for p in ps: p.setup(ps-{p}) # pass other procs to each
23 for p in ps: p.start() # start run of each proc

Figure 2: Simplified algorithm (lines 4-14) in a complete pro-
gram in DistAlgo. The comments on lines 6-9 and 12-14 in-
dicate the rule numbers and conditions in Figure 1.

that time, as described in rule 2 of Figure 1. Precisely, Figure 2 can
be simplified as follows.
1. Replace logical_time() on line 12 with t, and

replace some received("release", t3, =p2) has t3 > t2 on
line 8 with received("release", t2, p2).

2. Replace _ on line 13 with a fresh variable, say t2,
replace logical_time() on line 14 with t2, and
replace some received("ack", t2, =p2) has t2 > t on
line 9 with received("ack", t, p2).

This yields the further simplified algorithm in Figure 3. This re-
placed two existential quantifications with two constant-time tests.
Therefore, the conditions are not only simpler, but more efficient
even if executed without optimization.

5 REQUEST ID, REQUEST ORDER, AND
FAIRNESS

Simplified use of logical times makes the essence of the ordering
clear. Understanding the essence of ordering allows easy use of
different orderings and better orderings. More importantly, it allows
better characterization of fairness.

Consider the further simplified algorithm in Figure 3. The request
time self.t := logical_time() on line 6 is the only use of logical
time. It is then easy to see that the request time is used for two
different purposes:
1) comparison as part of < for ordering the requests, on line 8 in

Figure 3, for condition (i) in rule 5 in Figure 1, and

Logical Clocks Are Not Fair: What Is Fair? ApPLIED ’18, July 27, 2018, Egham, United Kingdom

1 process P:
2 def setup(s): # take set of other procs
3 self.s := s

4 def mutex(task):
5 -- request
6 self.t := logical_time() # 1
7 send ("request", t, self) to s # 1
8 await each received("request", t2, p2) has # 5(i)

(not received("release", t2, p2)

implies (t,self) < (t2,p2))
9 and each p2 in s has # 5(ii)

received("ack", t, p2)

10 task()
11 -- release
12 send ("release", t , self) to s # 3

13 receive ("request", t2 , p2): # 2

14 send ("ack", t2 , self) to p2 # 2

Figure 3: Further simplified algorithm in DistAlgo. The
boxes indicate the changed parts from Figure 2. Definitions
of run and main are as in Figure 2.

2) identifying a request on line 7, and its corresponding release
and acknowledgment messages on lines 12 and 14, used in lines
8-9 for conditions (i) and (ii) in rule 5.

Any other measure that can fulfill these two purposes can be used
to replace the request time to give a different order in which the
requests are granted.

Request id for request order
For identifying a request, a request id can use any value that is

different from previous request id values of the same process. It
does not even have to be larger for later requests.

For ordering the requests using a request id, the id just needs to
support an order-comparison operation. The order that requests
are granted depends on whether they are sequential or concurrent,
as discussed below.

Let R1 and R2 be requests made by two different processes P1
and P2, respectively.
Sequential requests. We say that R1 and R2 are sequential with

R1 before R2 if R1 is granted before R2 is received by P1.
We assert thatR1 is granted beforeR2 is granted. This is because
(1) as given, R1 is granted before P1 has received R2, (2) by
condition (ii) in rule 5,R2 can only be granted after all processes,
including P1, have received R2 and acknowledged it, and (3) by
transitivity using (1) and (2), R1 is granted before R2 is granted.

Concurrent requests. We say that R1 and R2 are concurrent if
they are not sequential.
We assert that concurrent requests are granted in the order of
smaller request id (paired with process id) first. This is because
(1) as given, R1 and R2 are concurrent, i.e., R1 is not granted
before P1 has received R2, and symmetrically, R2 is not granted
before P2 has received R1, (2) by rule 2, upon P1 receiving R2,
R2 is among pending requests at P1, and symmetrically, upon
P2 receiving R1, R1 is among pending requests at P2, (3) by (1)
and (2), both R1 and R2 will be among pending requests at both

P1 and at P2 before either is granted, and (4) by condition (i)
in rule 5, when R1 and R2 are both among pending requests,
only the one with the smaller request id (paired with process
id) can be granted first.

That is, two sequential requests with R1 before R2 will be granted
in the order of R1 before R2, regardless of the request id ordering.
The request id (paired with process id) comparison is only used to
order concurrent requests.

Ordering by per-process count
A simplest request id that also gives a simplest ordering is a local

request count in each process, by (1) setting up self.t to be 0 in
setup, i.e., adding the following after line 3 in setup:

self.t := 0

and (2) incrementing t before sending it in a request, i.e., replacing
line 6 with the following:

t := t + 1

This orderingmeans that, among concurrent requests from different
processes, a request from a process for which a smaller number of
requests have been granted will be granted earlier, regardless of
any order in which the requests are made.

Ordering after locally observable requests
A simplest request id that also gives a simplest ordering that

attempts to follow the order in which requests are made among
concurrent requests is to let a new request of a process be after
all requests that the process has received, by (1) setting up the
following, as above, after line 3 in setup:

self.t := 0

and (2) incrementing t to be after itself and the id values of all
received requests, i.e., replacing line 6 with the following:

t := max ({t} + {t: received("requests",t,_)}) + 1

This ordering uses only id values of directly received requests. A
request by a process P1 might not have been directly received by
P2 before a request by P2 is made, but the request by P1 may have
been received by a third process P3 which then sends a non-request
message that is received by P2 before the request by P2 is made.
That is, the request by P1 is made before the request by P2 and
should be granted first. Ordering after locally received requests
does not obey such transitive ordering that needs to be observed
globally.

Ordering after globally observable requests
In general, there may be a chain of events in between a request

by P1 and a request by P2 to observe globally that the request by
P1 is made before the request by P2. Precisely, the fairness require-
ment (⋆) requires that

if request R1 “happened before” request R2, i.e., R1 → R2,
then R1 be granted before R2, and as for logical clocks,
process ids be used to break ties.

Note that this global ordering using→ requires the use of all mes-
sages, even if it is to order only requests. To observe this ordering,
non-request messages need to pass on the id values of request mes-
sages transitively, by sending any directly observed request id value

ApPLIED ’18, July 27, 2018, Egham, United Kingdom Yanhong A. Liu

and the id values transitively received in all messages. To optimize,
only the maximum of these id values need to be sent.

While this maximum id value gives the desired ordering, it con-
flicts with the simplification in Section 4 that acknowledgment and
release messages use the id value of the corresponding request.
There are two simple solutions to this:
1. Add a fourth component in messages (only needed for acknowl-

edgment and release messages), so the two different values
(maximum id value for request order comparison, and id value
of corresponding request for identification) are in two different
components.

2. Use only the maximum id value in messages, and recognize cor-
responding acknowledgment and release messages as having a
larger id value, as in Figure 2.

We show the program for the second solution, for easy compari-
son with Figure 2; it is straightforward to construct the program
for the first solution in a similar way. Precisely, in Figure 2, add the
following in setup as before:

self.t := 0

replace line 6 with the following that increments t to be after itself
and id values in all received messages, not just received requests:

t := max ({t} + {t: received(_,t,_)}) + 1

and replace logical_time() on lines 12 and 14 with the following
that passes on the maximum id value:

max ({t} + {t: received(_,t,_)})

The expression for aggregation with max can be optimized by
incrementally maintaining its value as messages are received [18,
23]. Precisely, in Figure 2, add the following in setup as before:

self.t := 0

replace line 6 with the following:
t := t + 1

replace logical_time() on lines 12 and 14 with t, and add the fol-
lowing receive definition:

received (_,t2,_):
t := max(t,t2)

It is easy to see that t is a specialized logical time that incre-
ments only when sending a request. This ordering ensures that
any request that is globally observable to be before another request
is granted before the other request. Thus, ordering after globally
observable requests paired with process ids satisfies the fairness
requirement (⋆).

What is fair?
Any ordering on requests gives a kind of fairness in the sense of

that ordering. We summarize the different kinds of fairness for the
three orderings discussed: per-process counts, locally observable
requests, and globally observable requests.
• All three orderings are fair in that sequential requests are
granted in their sequential order, and concurrent requests are
granted in the order of smaller request id first.

• The last two orderings are fair in that all requests are granted
in the order of smaller request id first, and that a request made
after receiving another request is not granted before the other
request. The first ordering does not satisfy this.

• The last ordering is fair in that a request made after a chain of
events starting with another request is not granted before the
other request, which satisfies the fairness requirement (⋆). The
first two orderings do not satisfy this.

In general, one may even have request ids be generated and com-
pared by a separate protocol, supporting more complex fairness
schemes, for example, priority by payment, or simply an oracle.

6 LOGICAL CLOCKS ARE NOT FAIR
Clearly, ordering after globally observable requests differs from
ordering using logical clock values. Looking into the difference
easily leads to the discovery that ordering by logical clock values is
not fair in general.

The idea is that logical clocks can increment values at events
where the clock value should not be incremented for a desired
ordering requirement. Using such values for ordering may violate
the desired ordering requirement, such as ordering by requests only.
Note that these events must still be used to determine the request
ordering by taking the maximum of id values and passing it on, but
just that they should not increment the id value.

Consider a small example, with three processes P1, P2, and P3,
all starting at logical time 0, and P1 has a smaller id than P2.
1. Suppose P3 requests first, is granted, and then sends a release

to P1 and P2. Before receiving the release from P3, and hav-
ing each only received a request from P3 and sent back an
acknowledgment, P1 and P2 have the same logical time.

2. Suppose after P3 is granted, P1 and P2 both request, and there
is no chain of events between the two requests to tell their
order. Because P1 has a smaller id than P2, P1’s request should
be granted first. This is the order that satisfies the fairness
requirement (⋆).

3. Suppose, however, that the release from P3 is received by P1
before P1’s request and is received by P2 after P2’s request. Then
P1’s request will have a larger timestamp than P2’s request
according to logical clocks, meaning that P2’s request will be
granted first. This conflicts with the order that satisfies the
fairness requirement (⋆).

That is, the requests by P1 and P2 happened concurrently, but the
logical timestamp of the release message to P1 that does not respect
the order of requests makes P1 be treated unfairly.

In general, there can be many different kinds of events and
messages. Fairness should be specified and implemented based on
the desired requirements exactly. Blind use of logical clocks can be
a source of not only inefficiency, but also unfairness.

7 RELATEDWORK AND CONCLUSION
Beyond pseudocode notations or English, a wide spectrum of lan-
guages and tools have been developed and used for implementation
and specification of distributed algorithms: from programming lan-
guages with networking libraries, messaging interfaces, remote
calls, asynchronous support, built-in processes, etc., to formal spec-
ification languages based on state machines, process algebras, logic
rules, and more. A few examples are given in Section 1. More ex-
tensive related works are discussed in [23]. DistAlgo is unique in
that it allows algorithms to be expressed at the same high level as

Logical Clocks Are Not Fair: What Is Fair? ApPLIED ’18, July 27, 2018, Egham, United Kingdom

pseudocode and English, yet is precise and directly executable, and
thus allows much easier understanding of the algorithms.

Logical clocks and distributed mutual exclusion have been stud-
ied and discussed extensively, in books, e.g., [8–10, 12, 26, 32, 33],
and formal specifications, e.g., [26, p. 646-649; 14; 28]. Since Lam-
port’s algorithm, many other algorithms for distributed mutual ex-
clusion have been developed, e.g., [10, 31, 34–36, 38], to remove the
requirement of FIFO channels, reduce the number of messages, etc.
Logical clocks have been used particularly to provide fairness, i.e.,
serving requests in the order in which they are made, e.g., [25, 34].
However, only the order of logical timestamps is used. Since Lam-
port’s clock, more sophisticated logical clocks have been developed,
e.g., [1, 2, 7, 27]. A scheme is also proposed to avoid unfairness in
using pairs of logical timestamps and process ids, by dynamically
changing the process ids, which they call node numbers [30]. To our
knowledge, no prior work showed that using logical timestamps
can be unfair.

Just like logical clocks are easy [3], seeing their being unfair is
also easy, especially after simplification facilitated by precise high-
level specifications. Such specifications have also helped us discover
useless replies, unnecessary delays, and a main liveness violation
that was previously unknown [19] in a more practical variant of
Paxos for distributed consensus [37]. Methods for writing such high-
level specifications are centered around expressing synchronization
conditions as high-level queries over message histories [22]. Us-
ing message histories also yields simpler specifications and easier
proofs [5] than otherwise [6].

In conclusion, DistAlgo is a language for expressing distributed
algorithms precisely at a high level and running them directly. It
has helped greatly in improving the understanding of distributed
algorithms, including many algorithms for the core of distributed
systems, taught in distributed systems courses and implemented
in many course projects [23]. Future work includes further studies
of important algorithms, by expressing them precisely at a high
level, and continued improvements to the DistAlgo compiler and
optimizations, as needed for maintenance of any modern language
implementation, driven by constant changes in the underlying
software and hardware technologies.

ACKNOWLEDGMENTS
This work was supported in part by NSF under grants CCF-1414078
and IIS-1447549 and ONR under grant N000141512208.

REFERENCES
[1] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. 2008. Interval tree clocks.

In Proceedings of the 12th International Conference on Principles of Distributed
Systems. Springer, 259–274.

[2] Carlos Baquero and Nuno Preguiça. 2016. Why logical clocks are easy. Queue 14,
1 (2016), 60.

[3] Carlos Baquero and Nuno Preguiça. 2016. Why logical clocks are easy. Commun.
ACM 59, 4 (2016), 43–47.

[4] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. 2007. The
Development of the Emerald Programming Language. In Proceedings of the 3rd
ACM SIGPLAN Conference on History of Programming Languages. 11–1–11–51.

[5] Saksham Chand and Yanhong A. Liu. 2018. Simpler Specifications and Easier
Proofs of Distributed Algorithms Using History Variables. In Proceedings of the
10th NASA Formal Methods Symposium. Springer, 70–86.

[6] Saksham Chand, Yanhong A. Liu, and Scott D. Stoller. 2016. Formal Verification
of Multi-Paxos for Distributed Consensus. In Proceedings of the 21st International
Symposium on Formal Methods. Springer, 119–136.

[7] Colin J. Fidge. 1988. Timestamps in Message-Passing Systems That Preserve the
Partial Ordering. In Proceedings of the 11th Australian Computer Science Conference.
56–66.

[8] Wan Fokkink. 2013. Distributed Algorithms: An Intuitive Approach. MIT Press.
[9] Vijay K. Garg. 2002. Elements of Distributed Computing. Wiley.
[10] Sukhendu Kanrar, Nabendu Chaki, and Samiran Chattopadhyay. 2018. Concur-

rency Control in Distributed System Using Mutual Exclusion. Springer.
[11] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. 2010. The

Theory of Timed I/O Automata (2nd ed.). Morgan & Claypool.
[12] A.D. Kshemkalyani and M. Singhal. 2008. Distributed Computing: Principles,

Algorithms, and Systems. Cambridge University Press.
[13] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558–565.
[14] Leslie Lamport. 2000. Distributed Algorithms in TLA+. PODC 2000 Tutorial

https://www.podc.org/podc2000/lamport.html.
[15] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley.
[16] Jim Larson. 2009. Erlang for Concurrent Programming. Commun. ACM 52, 3

(2009), 48–56.
[17] Barbara Liskov. 1988. Distributed Programming in Argus. Commun. ACM 31, 3

(Mar. 1988), 300–312.
[18] Yanhong A. Liu, Jon Brandvein, Scott D. Stoller, and Bo Lin. 2016. Demand-Driven

Incremental Object Queries. In Proceedings of the 18th International Symposium
on Principles and Practice of Declarative Programming. ACM Press, 228–241.

[19] Yanhong A. Liu, Saksham Chand, and Scott D. Stoller. 2017. Moderately Com-
plex Paxos Made Simple: High-Level Specification of Distributed Algorithm.
Computing Research Repository arXiv:1704.00082 [cs.DC] (2017).

[20] Yanhong A. Liu, Michael Gorbovitski, and Scott D. Stoller. 2009. A Language
and Framework for Invariant-Driven Transformations. In Proceedings of the 8th
International Conference on Generative Programming and Component Engineering.
ACM Press, 55–64.

[21] Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel, and Yanni E.
Liu. 2005. Incrementalization Across Object Abstraction. In Proceedings of the
20th ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications. 473–486.

[22] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. 2012. High-Level Executable Spec-
ifications of Distributed Algorithms. In Proceedings of the 14th International
Symposium on Stabilization, Safety, and Security of Distributed Systems. Springer,
95–110.

[23] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. 2017. From Clarity to Efficiency
for Distributed Algorithms. ACM Transactions on Programming Languages and
Systems 39, 3 (May 2017), 12:1–12:41.

[24] Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. 2012. From
Clarity to Efficiency for Distributed Algorithms. In Proceedings of the 27th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and
Applications. 395–410.

[25] Sandeep Lodha and Ajay Kshemkalyani. 2000. A fair distributed mutual exclusion
algorithm. IEEE Transactions on Parallel and Distributed Systems 11, 6 (2000),
537–549.

[26] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufman.
[27] FriedemannMattern. 1989. Virtual Time and Global States of Distributed Systems.

In Proceedings of the InternationalWorkshop on Parallel and Distributed Algorithms.
North-Holland, 120–131.

[28] Stephan Merz. 2010. Lamport’s algorithm. Email with Annie Liu.
[29] Robert Paige and Shaye Koenig. 1982. Finite Differencing of Computable Ex-

pressions. ACM Transactions on Programming Languages and Systems 4, 3 (1982),
402–454.

[30] Said K. Rahimi and William R. Franta. 1982. Fair Timestamp Allocation in
Distributed Systems. In Proceedings of the 1982 National Computer Conference.
589–594.

[31] Kerry Raymond. 1989. A tree-based algorithm for distributed mutual exclusion.
ACM Transactions on Computer Systems 7, 1 (Jan. 1989), 61–77.

[32] Michel Raynal. 1986. Algorithms for Mutual Exclusion. MIT Press.
[33] Michel Raynal. 1988. Distributed Algorithms and Protocols. Wiley.
[34] Glenn Ricart and Ashok K. Agrawala. 1981. An Optimal Algorithm for Mutual

Exclusion in Computer Networks. Commun. ACM 24, 1 (1981), 9–17.
[35] PC Saxena and Jagmohan Rai. 2003. A survey of permission-based distributed

mutual exclusion algorithms. Computer standards & interfaces 25, 2 (2003), 159–
181.

[36] Ichiro Suzuki and Tadao Kasami. 1985. A DistributedMutual Exclusion Algorithm.
ACM Transactions on Computer Systems 3, 4 (1985), 344–349.

[37] Robbert van Renesse and Deniz Altinbuken. 2015. Paxos Made Moderately
Complex. Comput. Surveys 47, 3 (Feb. 2015), 42:1–42:36.

[38] Martin G. Velazquez. 1993. A Survey of Distributed Mutual Exclusion
Algorithms. Technical Report CS-93-116. Department of Computer Sci-
ence, Colorado State University. http://www.cs.colostate.edu/pubserv/pubs/
Velazquez-TechReports-Reports-1993-tr-116.pdf

https://www.podc.org/podc2000/lamport.html
http://www.cs.colostate.edu/pubserv/pubs/Velazquez-TechReports-Reports-1993-tr-116.pdf
http://www.cs.colostate.edu/pubserv/pubs/Velazquez-TechReports-Reports-1993-tr-116.pdf

	Abstract
	1 Introduction
	2 Logical clocks and distributed mutual exclusion
	3 Language and optimization
	4 Removing unnecessary use of logical times
	5 Request id, request order, and fairness
	6 Logical clocks are not fair
	7 Related work and conclusion
	Acknowledgments
	References

