1.1

Logic programming
applications:

What are the abstractjons
and implementations?

Yanhong A. Liu
Computer Science Department, Stony Brook University
liu@cs.stonybrook.edu

This chapter presents an overview of applications of logic programming, classifying them
based on the abstractions and implementations of logic languages that support the applica-
tions. The three key abstractions are join, recursion, and constraint. Their essential implemen-
tations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of
applications are database queries, inductive analysis, and combinatorial search, respectively.
We also discuss language extensions and programming paradigms, summarize example ap-
plication problems by application areas, and touch on example systems that support variants
of the abstractions with different implementations.

Introduction

Common reasoning with logic is the root of logic programming, which allows logic rules and
facts to be expressed formally and used precisely for inference, querying, and analysis in gen-
eral. Logic formalisms, or languages, allow complex application problems to be expressed
declaratively with high-level abstractions and allow desired solutions to be found automati-
cally with potentially efficient low-level implementations.

The biggest challenge in logic programming has been the need for efficient implementa-
tions. Much progress has been made, with efficient implementations in some cases beating
manually written low-level code. However, inadequate performance in many cases has led to
the introduction of non-declarative features in logic languages and resulted in the writing of
obscure logic programs.

Despite the challenges, the most exciting aspect of logic programming is its vast areas of
applications. They range from database queries to program analysis, from text processing to

2 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

decision making, from security to knowledge engineering, and more. These vast, complex, and
interrelated areas make it challenging but necessary to provide a deeper understanding of the
various kinds of applications in order to help advance the state of the art of logic programming
and realize its benefits.

This chapter presents an overview of applications of logic programming based on a study
of the abstractions and implementations of logic languages. The rationale is that abstractions
and implementations are the enabling technologies of the applications. The abstractions are
essential for determining what kinds of application problems can be expressed and how
they can be expressed, for ease of understanding, reuse, and maintenance. The underlying
implementations are essential for high-level declarative languages to be sufficiently efficient
for substantial applications.

We discuss the following essential abstractions, where data abstractions are for expressing
the data, and control abstractions are for expressing computations over the data:

1. data abstractions: objects and relationships;

2. control abstractions: (1) join, (2) recursion, and (3) constraint, which capture bounded,
cyclic, and general computations, respectively.

In logic languages, the data abstractions as objects and relationships are essential for all three
control abstractions.

The essential techniques for implementing the three control abstractions listed are (1)
for-loops, (2) fixed points, and (3) backtracking, respectively. The corresponding kinds of
applications are

(1) database-style queries, e.g., for ontology management, business intelligence, and access
control;

(2) inductive analysis, e.g., for text processing, program analysis, network traversal, and
trust management;

(3) combinatorial search, e.g., for decision making, resource allocation, games and puzzles,
and administrative policy analysis.

We categorize application problems using these three control abstractions because they cap-
ture conceptually different kinds of problems, with inherently different implementation tech-
niques, and at the same time correspond to very different classes of applications.

Note that the same application domain may use different abstractions and implementations
for different problems. For example, enterprise software may use all three of traditional
database queries, inductive analysis, and combinatorial search, for business intelligence and
decision making; and security policy analysis and enforcement may use database-style queries

1.2

1.2.1

1.2 Logic language abstractions 3

for access control, inductive analysis for trust management, and combinatorial search for
administrative policy analysis.

We also discuss additional extensions, especially regular-expression paths for higher-level
queries and updates for modeling actions; additional applications; and abstractions used in
main programming paradigms. We also touch on several well-known systems while discussing
the applications.

There is a large body of prior work, including surveys of logic programming in general
and applications in particular, as discussed in Section 1.7. This chapter distinguishes itself
from past work by analyzing classes of applications based on the language abstractions and
implementations used.

The rest of the chapter is organized as follows. Section 1.2 presents essential abstractions
in logic languages. Sections 1.3, 1.4, and 1.5 describe abstractions, implementations, and
applications centered around join, recursion, and constraint. Section 1.6 discusses additional
language extensions, applications, and programming paradigms. Section 1.7 discusses related
literature and future directions.

Logic language abstractions

Logic languages provide very high-level data and control abstractions, using mostly very
simple language constructs. We describe these abstractions and their meanings intuitively.

Data abstractions

All data in logic languages are abstracted, essentially, as objects and relationships.

Objects. Objects are primitive values, such as numbers and strings, or structured values
whose components are objects.

Examples of primitive values are integer number 3 and string * Amy’ . We enclose a string
value in single quotes; if a string starts with a lower-case letter, such as * amy’ , the quotes
can be omitted, as has been conventional in logic languages.

Examples of structured values are succ (3), father (amy), and
cert ("Amy’ ,birth(’2000-02-28’,’Rome’)), denoting the successor integer of
3, the father of amy, and the certificate that ’ Amy’ was born on ’2000-02-28' in
' Rome’, respectively.

The names of structures, such as succ, father, cert, and birth above, are called
function symbols. They correspond to object constructors in object-oriented languages.

Relationships. Relationships are predicates, or properties, that hold among objects. In par-
ticular, p (o;, ..., 01), i.e., predicate p over objects oy, . .., o; being true, is equiva-

4 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

lentto (o;, ...,0;) in p,i.e. tuple (o;, ...,or) belonging to relation p—a table that
holds the set of tuples of objects over which p is true.

Examples of relationships are male(bob), is_parent (bob,amy), and
issue (mario, ’Amy’ ,birth('2000-02-28",’Rome’)), denoting that bob is male,
bob is a parent of amy, and mario issued a certificate that ’Amy’ was born on
r2000-02-28" in ' Rome’, respectively.

Structured values can be easily captured using relationships, but not vice versa. For
example, £ being the structured value father (c) can be captured using relationship
is_father (f, c), but relationship is_parent (p, c) cannot simply be captured as p
being the structured value parent (c) when c has two parents.

Such high-level data abstraction allows real-world objects or their lower-level representations,
from bits and characters to lists to sets, to be captured easily without low-level implementation
details. For example,

e bits and characters are special cases of integers and strings, respectively.

e lists are a special case of linearly nested structured values, and

e sets are a special case of relations consisting of tuples of one component.
Objects and relationships can be implemented using well-known data structures, including

linked list, array, hash table, B-tree, and trie, usually taking O(1) or O(logn) time to access
an object, where n is the size of the data.

1.2.2 Control abstractions
Control in logic languages is abstracted at a high level, as logical inference or logic queries

over asserted relationships among objects:

e asserted relationships can be connected by logical connectives: conjunction (read “and”),
disjunction (read “or”), negation (read “not”), implication (read “then”), backward im-
plication (read “if”’), and equivalence (read “if and only if”);

e variables can be used in place of objects and be quantified over with universal quantifier
(read “all”) and existential quantifier (read “some”); and

e one can either infer all relationships that hold or query about certain relationships, among
all objects or among certain objects.

Rules and facts are the most commonly supported forms in existing logic languages:

Rules. A rule is of the following form, where assertiony is called the conclusion, and other
assertions are called the hypotheses. Each assertion is a predicate over certain objects,

1.2 Logic language abstractions 5

where variables may be used in place of objects. Intuitively, left arrow (<—) indicates
backward implication, comma (,) denotes conjunction, and all variables in a rule are
implicitly universally quantified, i.e., the rule holds for all values of the variables.

assertiong <— assertion;, ..., assertiony.

For example, the second rule below says: x is a grandfather of Y if X is the father of z
and 7z is a parent of Y, and this holds for all values of variables x, v, and z; the other
rules can be read similarly. Following logic language conventions, names starting with
an upper-case letter are variables.

is_parent (X,Y) <— is_father(X,Y).

is_grandfather (X,Y) <- is_father(X,2), is_parent (Z,Y).
is_ancestor (X,Y) <— is_parent(X,Z), is_ancestor(Z,Y).
is_positive(succ(N)) <— is_positive (N).

The second rule is a join query—its two hypotheses have a shared variable, and it
concludes a new predicate.

The third and fourth rules are recursive—the predicate in the conclusion depends on itself
in a hypothesis, or in general possibly indirectly through another predicate.

Note that disjunction of a set of hypotheses can be expressed using a set of rules with the

same conclusion.

Facts. A fact is a rule that has no hypotheses and is denoted simply as assertion0. For
example, is_father (bob, amy) . says that bob is the father of amy, and is_positive (1) .
says that 1 is positive.

The meaning of a set of rules and facts is the least set of facts that contains all the given facts
and all the facts that can be inferred, directly or indirectly, using the rules. This set can be
computed by starting with the given facts and repeatedly applying the rules to conclude new
facts—i.e., matching hypotheses of rules against facts, instantiating variables in rules with
values in matched facts, and adding instantiated conclusions of rules as new facts. However,

e repeated application of rules might not terminate if function symbols are used in the rules,
because facts about infinitely many new objects may be concluded, e.g., the fourth exam-
ple rule above may infer is_positive (succ(1l)),is_positive (succ (succ(l))),
and so on.

e when only certain relationships about certain objects are queried, application of rules
may stop as soon as the query can be answered, e.g., if only is_positive (succ (1))
is queried, application of rules can stop after one use of the given rule and the given fact.

6 Chapterl Logic programmingapplications:What are the abstractionsand implementations?

Rules that do not contain function symbols are called Datalog rules. For example, the first
three example rules given earlier in this section are Datalog rules.

General logic forms have also been increasingly supported, typically by extending the rule
form above:

Negation in the hypotheses. A hypothesis in a rule may be prefixed with not, denoting
negation of the asserted relationship.

For example, the following rule says: for all values of x and v, X is the mother of v if x
is a parent of Y and X is not male.

is_mother (X,Y) <— is_parent (X,Y), not male(X).

Difficulties arise when negation is used with recursion. For example, what can be inferred
from the following rule? Is good (zak) true or false?

good (zak) <— not good(zak).

More general forms. More general forms include disjunction and negation in the conclusion
and, most generally, quantifiers a11 and some in any scope, not only the outermost scope.
For example, the first rule below says: x is male or female if X is a person. The second
rule says: X is not a winning position if, for all v, there is no move from X to Y or else Y
is a winning position.

male (X) or female(X) <— person(X).
not win(X) <— all Y: not move(X,Y) or win(Y).

The meaning of recursive rules with negation is not universally agreed upon. The two
dominant semantics are well-founded semantics (WFS) [Van Gelder 1993, Van Gelder et al.
1991] and stable model semantics (SMS) [Gelfond and Lifschitz 1988]. Both WES and SMS
use the closed-world assumption, i.e., they assume that what cannot be inferred to be true
from the given facts and rules, is false.

o WES gives a single 3-valued model, with the additional truth value undefined besides

true and false.

e SMS gives zero or more 2-valued models, using only true and false.

Other formalisms and semantics include partial stable models, also called stationary mod-
els [Przymusinski 1994]; first-order logic with inductive and fixed-point definitions, called
FO(ID) and FO(FD) [Denecker and Ternovska 2008, Hou et al. 2010]; and recently proposed
founded semantics and constraint semantics [Liu and Stoller 2018]. The first two are both
aimed at unifying WFS and SMS. The last unifies and cleanly relates WFS, SMS, and other

1.23

Table 1.1

1.2 Logic language abstractions 7

major semantics by allowing assumptions about the predicates and rules to be declared ex-
plicitly.

For practical applications, logic languages often also support predefined relationships
among objects, including equality, inequality, and general comparisons. Cardinality and other
aggregates over relationships are often also supported.

Combinations of control abstractions

There are many possible combinations of the language constructs. We focus on the following
three combinations of constructs as essential control abstractions. We identify them by
join, recursion, and constraint. They capture bounded, cyclic, and general computations,
respectively.

(1) Join—with join queries, no recursive rules, and restricted negation and other constructs;
the restriction is that, for each rule, each variable in the conclusion must also appear in a
hypothesis that is a predicate over arguments. Implementing this requires that common
objects for the shared variables be found for the two hypotheses of a join query to be true
at the same time; the number of objects considered are bounded, by the predicates in the
hypotheses, following a bounded number of dependencies.

(2) Recursion—with join queries, recursive rules, and restricted negation and other con-
structs; the restriction is as for join above plus that a predicate in the conclusion of a
rule does not depend on the negation of the predicate itself in a hypothesis. Implement-
ing this requires repeatedly applying the recursive rules following cyclic dependencies,
potentially an unbounded number of times if new objects are in some conclusions.

(3) Constraint—with join queries, recursive rules, and unrestricted negation and other
constructs; unrestricted negation and other constructs can be viewed as constraints to
be satisfied. Implementing this could require, in general, trying different combinations
of variable values, as in general constraint solving.

Table 1.1 summarizes these three essential control abstractions and the corresponding kinds
of computations and applications.

Essential control abstractions of logic languages.

Essential Has J,Oln Has rec.| Has neg. Computations || Application kinds
queries | rules and others
(1| Join yes no restricted bounded database-style queries
(2)| Recursion || yes yes restricted cyclic inductive analysis
(3)| Constraint|| yes yes unrestricted || general combinatorial search

1.3

1.3.1

8 Chapterl Logic programmingapplications:What are the abstractionsand implementations?

Join and database-style queries

Join queries are the most basic and most commonly used queries in relating different objects.
They underlie essentially all nontrivial queries in database applications and many other
applications.

Join queries

A join query is a conjunction of two hypotheses that have shared variables, concluding
possible values of variables that satisfy both hypotheses. A conjunction of two hypotheses that
have no shared variables, i.e., a Cartesian product, or a single hypothesis can be considered
a trivial join query. A join query corresponds to a rule whose predicate in the conclusion is
different from predicates in the hypothesis, so the rule is not recursive. A non-recursive rule
with more than two hypotheses corresponds to multiple join queries, as a nesting or chain of
join queries starting with joining any two hypotheses first.

For example, the first rule below, as seen before, is a join query. So is the second rule;
it defines sibling over X and Y if X and Y have a same parent. The third rule defines a
chain of red, green, and blue links from x to Y through U and v; it can be viewed as two join
queries—join any two hypotheses first, and then join the result with the third hypothesis.

is_grandfather (X,Y) <—- is_father(X,Z), is_parent(Z,Y).
sibling(X,Y) <-— is_parent(Z,X), is_parent(Z,Y).
chain(X,Y) <-— 1link(X,U,red), 1link(U,V,green), link(V,Y,blue).

In general, the asserted predicates can be about relationships among any kinds of objects—
whether people, things, events, or anything else, e.g., students, employees, patients, doctors,
products, courses, hospitals, flights, interviews, and hangouts; and the join queries can be
among any kinds of relationships—whether family, friend, owning, participating, thinking, or
any other relation in the real world or conceptual world.

Join queries expressed using rules correspond to set queries. For example, in a language
that supports set comprehensions with tuple patterns [Liu et al. 2016, Rothamel and Liu 2007]
the is_grandfather query corresponds to

is_grandfather = {(X,Y): (X,Z) in is_father, (Z,Y) in is_parent}

Without recursion, join queries can be easily supported together with the following extensions,
with the restriction that, for each rule, each variable in the conclusion must also appear in a
hypothesis that is a predicate over arguments, so the domain of the variable is bounded by the
predicate; queries using these extensions can be arbitrarily nested:

1.3.2

1.3 Join and database-style queries 9

e unrestricted negation, other connectives, and predefined relationships in additional con-
ditions,

e aggregates, such as count and max, about the relationships, and

e general universal and existential quantifiers in any scope.

These subsume all constructs in the select statement for SQL queries. Essentially, join
queries, with no recursion, relate objects in different relationships within a bounded number
of steps.

Implementation of join queries

A join query can be implemented straightforwardly using nested for-loops and if-statements,
where shared variables in different hypotheses correspond to equality tests between the
corresponding variables. For example, the is_grandfather query earlier in this section can
be implemented as

is_grandfather = {}

for (X,z1) in is_father: -— time factor: # is_father pairs
for (Z2,Y) in is_parent: -— time factor: # is_parent pairs
if 21 == 72:

is_grandfather.add (X, Y)

In a language that supports set comprehensions, such as Python, the above implementation
can be expressed as

is_grandfather = {(X,Y) for (X,Zl) in is_father
for (2z2,Y) in is_parent if 71 == Z2}

For efficient implementations, several key implementation and optimization techniques
are needed, described below; additional optimizations are also needed, e.g., for handling
streaming data or distributed data.

Indexing. This creates an index for fast lookup based on values of the indexed arguments
of a relation; the index is on the shared arguments of the two hypotheses. For example,
for any fact is_father (X, 2), to find the matching is_parent (Z, Y), an index called,
say, children{Z}—mapping the value of z, the first argument of is_parent, to the
set of corresponding values of second argument of is_parent—significantly speeds up
the lookup, improving the time factor for the inner loop to the number of children of z:

is_grandfather = {(X,Y) for (X,Z) in is_father
for Y in children{Z}}

1.3.3

10 Chapter | Logic programmingapplications:What are the abstractionsand implementations?

Join ordering. This optimizes the order of joins when there are multiple joins, e.g., in a rule
with more than two hypotheses. For example, for the rule for chain, starting by joining
the first and third hypotheses is never more efficient than starting by joining either of
these hypotheses with the second hypothesis, because the former yields all pairs of red
and blue links, even if there are no green links in the middle.

Tabling. This stores the result of common sub-joins so they are not repeatedly computed.
Common sub-joins may arise when there are nested or chained join queries. For example,
for the rule for chain earlier in this section, consider joining the first two hypotheses
first: if there are many red and green link pairs from a value of x to a value of v, then
storing the result of this sub-join avoids recomputing it when joining with blue links to
find each target v.

Demand-driven computation. This computes only those parts of relationships that affect a
particular query. For example, a query may only check whether is_father (dan, bob)
holds, or find all values of x for is_father (dan, X),orfindall is_father pairs, as
opposed to finding all relationships that can be inferred.

Basic ideas for implementing the extensions negation, aggregates, etc. are as follows, where
nested queries using these extensions are computed following their order of dependencies:

e negation, etc. in additional conditions: test them after the variables in them become bound
by the joins.

e aggregates: apply the aggregate operation while collecting the query result of its argu-
ment.

e quantifiers: transform them into for-loops, or into aggregates, e.g., an existential quan-
tification is equivalent to a count being positive.

Efficient implementation techniques for join queries and extensions have been studied in
a large literature, e.g., [loannidis 1996]. Some methods also provide precise complexity
guarantees, e.g., [Liu et al. 2016, Willard 2002].

Applications of join queries

Join queries are fundamental in querying complex relationships among objects. They are the
core of database applications [Kifer et al. 2006], from enterprise management to ontology
management, from accounting systems to airline reservation systems, and from electronic
health records management to social media management. Database and logic programming
are so closely related that one of the most important computer science bibliographies is called
DBLP, and it was named after Database and Logic Programming [Ley 2002]. Join queries

1.3 Join and database-style queries 11

also underlie applications that do not fit in traditional database applications, such as complex
access control policy frameworks [ANSI INCITS 2004].

We describe three example applications below, in the domains of ontology management,
enterprise management, and security policy frameworks. They all heavily rely on the use of
join queries and optimizations, especially indexing. We give specific examples of facts, rules,
and indexing for the first application.

Ontology management—Coherent definition framework (CDF). CDF is a system for ontol-
ogy management that has been used in numerous commercial projects [Gomes et al.
2010], for organizing information about, e.g., aircraft parts, medical supplies, commer-
cial processes, and materials. It was originally developed by XSB, Inc. Significant por-
tions have been released in the XSB packages [Swift et al. 2014].

The data in CDF are classes and objects. For example, XSB, Inc. has a part taxonomy,
combining UNSPSC (United Nations Standard Products and Services Code) and Federal
INC (Item Name Code) taxonomies, with a total of over 87,000 classes of parts. The main
relationships are variants of isa, hasAttr, and allAttr. Joins are used extensively to
answer queries about closely related classes, objects, and attributes. Indexing and tabling
are heavily used for efficiency. Appropriate join order and demand-driven computation
are also important.

An example fact is as follows, indicating that specification ' A-A-1035’ in ontology
specs has attribute ' MATERIAL’ whose value is ALUMINUM ALLOY UNS A91035'
inmaterial_ taxonomy. Terms cid(Identifier, Namespace) represent primitive
classes in CDF.

hasAttr_MATERIAL (cid(’A-A-1035’, specs),
cid (" ALUMINUM ALLOY UNS A91035",
material_taxonomy)) .

An example rule is as follows, meaning that a part PartNode has attribute

' PART-PROCESS-MATERIAL’ whose value is process-material pair (Process,Material)
in

’ODE Ontology’ if PartNode has attribute ' PROCESS’ whose value is Process,
and Process has attribute / PROCESS-MATERIAL’ whose value is Material.

hasAttr_ PART-PROCESS-MATERIAL (PartNode,
cid(’process-material’ (Process,Material),
"ODE Ontology’)) <-—
hasAttr_PROCESS (PartNode, Process),
hasAttr_PROCESS-MATERIAL (Process, Material).

12 Chapter | Logic programmingapplications:What are the abstractionsand implementations?

An example of indexing is for hasAttr_ATTR, for any ATTR, shown below, in XSB
notation, meaning: use as index all symbols of the first argument if it is bound, or else do
so for the second argument.

[*x (1), *(2)]

XSB, Inc. has five major ontologies represented in CDF, for parts, materials, etc., with
a total of over one million facts and five meta rules. The rules are represented using a
Description Logic form—an ontology representation language. The example rule above
is an instance of such a rule when interpreted. The indexing used supports different
appropriate indices for different join queries.

CDF is used in XSB, Inc.’s ontology-directed classifier (ODC) and extractor (ODE) [Swift
and Warren 2012]. ODC uses a modified Bayes classifier to classify item descriptions.

For example, it is used quarterly by the U.S. Department of Defense to classify over 80

million part descriptions. ODE extracts attribute-value pairs from classified descriptions

to build structured knowledge about items. ODC uses aggregates extensively, and ODE

uses string pattern rules.

Enterprise management—Business intelligence (BI). BI is a central component of enterprise
software. It tracks the performance of an enterprise over time by storing and analyzing
historical information recorded through online transaction processing (OLTP), and is
then used to help plan future actions of the enterprise. LogicBlox simplifies the hairball
of enterprise software technologies by using a Datalog-based language [Aref et al. 2015,
Green et al. 2012].

All data are captured as logic relations. This includes not only data as in conventional
databases, e.g., sale items, price, and so on for a retail application, but also data not in
conventional databases, e.g., sale forms, display texts, and submit buttons in a user inter-
face. Joins are used for easily querying interrelated data, as well as for generating user
interfaces. Many extensions such as aggregates are also used. For efficiency, exploiting
the rich literature of automatic optimizations, especially join processing strategies and
incremental maintenance, is of paramount importance.

Using the same Datalog-based language, LogicBlox supports not only BI but also OLTP
and prescriptive and predictive analytics. “Today, the LogicBlox platform has matured
to the point that it is being used daily in dozens of mission-critical applications in some
of the largest enterprises in the world, whose aggregate revenues exceed $300B” [Aref
et al. 2015].

Security policy frameworks—Core role-based access control (RBAC). RBAC is a frame-
work for controlling user access to resources based on roles. It became an ANSI stan-
dard [ANSI INCITS 2004] building on much research during the preceding decade and

1.4

1.441

1.4 Recursion and inductive analysis 13

earlier, e.g., [Ferraiolo and Kuhn 1992, Ferraiolo et al. 2001, Gavrila and Barkley 1998,
Landwehr et al. 1984].

Core RBAC defines users, roles, objects, operations, permissions, sessions and a number
of relations among these sets; the rest of RBAC adds a hierarchical relation over roles,
in hierarchical RBAC, and restricts the number of roles of a user and of a session, in
constrained RBAC. Join queries are used for all main system functions, especially the
CheckAccess function, review functions, and advanced review functions on the sets
and relations. They are easily expressed using logic rules [Barker and Ferndndez 2006,
Barker et al. 2004].

Efficient implementations rely on all main optimizations discussed, especially auxiliary
maps for indexing and tabling [Liu et al. 2006]. Although the queries are like relational
database queries, existing database implementations would be too slow for functions
like CheckAccess. Unexpectedly, uniform use of relations and join queries also led
to a simplified specification, with unnecessary mappings removed, undesired omissions
fixed, and constrained RBAC drastically simplified [Liu and Stoller 2007].

Recursion and inductive analysis

Recursive rules are most basic and essential in relating objects that are an unknown number of
relationships apart. They are especially important for problems that may require performing
the inference or queries a non-predetermined number of steps, depending on the data.

Recursive rules and queries

Given a set of rules, a predicate p depends on a predicate ¢ if p is in the conclusion of a rule,
and either ¢ is in a hypothesis of the rule or some predicate r is in a hypothesis of the rule and
r depends on ¢. A given set of rules is recursive if a predicate p in the conclusion of a rule
depends on p itself.

For example, the second rule below, as seen in Section 1.2.2, is recursive; the first rule is
not recursive; the set of these two rules is recursive, where the first rule is the base case, and
the second rule is the recursive case.

is_ancestor(X,Y) <— is_parent (X,Y).
is_ancestor (X,Y) <— is_parent(X,Z), is_ancestor(Z,Y).

In general, recursively asserted relationships can be between objects of any kind, e.g., relatives
and friends that are an unknown number of connections apart in social networks, direct and
indirect prerequisites of courses in universities, routing paths in computer networks, nesting
of parts in products, supply chains in supply and demand networks, transitive role hierarchy
relation in RBAC, and repeated delegations in trust management systems.

14 Chapter | Logic programmingapplications:What are the abstractionsand implementations?

Recursive queries with restricted negation correspond to least fixed-point computations.
For example, in a language that supports least fixed points, the is_ancestor query corre-
sponds to the minimum is_ancestor set below, where, for any sets s and T, S subset T
holds iff every element of s is an element of T:

min is_ancestor: is_parent subset is_ancestor,
{(X,Y): (X,2) in is_parent,
(Z,Y) in is_ancestor} subset is_ancestor

With cyclic predicate dependencies, recursion allows the following restricted extensions to be
supported while still providing a unique semantics; there is also the restriction that, for each
rule, each variable in the conclusion must also appear in a hypothesis that is a predicate over
arguments, as in extensions to join queries:

o stratified negation, where negation and recursion are separable, i.e., there is no predicate
that depends on the negation of itself, and

e other connectives and predefined relationships in additional conditions, aggregates, and
general quantifiers, as in extensions for join queries, when they do not affect the stratifi-
cation.

Essentially, recursive rules capture an unbounded number of joins, and allow inference and
queries by repeatedly applying the rules.

1.4.2 Implementation of recursive rules and queries

Inference and queries using recursive rules can be implemented using while-loops; for-loops
with predetermined number of iterations do not suffice, because the number of iterations
depends on the rules and facts. Each iteration applies the rules in one step, so to speak, until
no more relevant facts can be concluded. For example, the i s_ancestor query earlier in this
section can be implemented as

is_ancestor = is_parent
while exists (X,Y): (X,Z) in is_parent, (Z,Y) in is_ancestor,
(X,Y) not in is_ancestor:
is_ancestor.add ((X,Y))

Each iteration computes the existential quantification in the condition of the while-loop, and
picks any witness (X, Y) to add to the result set. It can be extremely inefficient to recompute
the condition in each iteration after a new pair is added.

For efficient implementations, all techniques for joins are needed but are also more critical
and more complex. In particular, to ensure termination,

1.4.3

1.4 Recursion and inductive analysis 15

e tabling is critical if relationships form cycles, and

e demand-driven computation is critical if new objects are created in the cycles.

For the is_ancestor query, each iteration computes the following set, which is a join, plus
the last test to ensure that only a new fact is added:

{(X,Y): (X,Z) in is_parent, (Z,Y) in is_ancestor,
(X,Y) not in is_ancestor}

Two general principles underlying the optimizations for efficient implementations are:

1. incremental computation for expensive relational join operations, with respect to facts
that are added in each iteration.

2. data structure design for the relations, for efficient retrievals and tests of relevant facts.

For the restricted extensions, iterative computation follows the order of dependencies deter-
mined by stratification; additional aggregates, etc. that do not affect the stratification can be
handled as described in Section 1.3.2 for computing the join in each iteration.

Efficient implementation techniques for recursive queries and extensions have been studied
extensively, e.g., [Abiteboul et al. 1995]. Some methods also provide precise complexity
guarantees, e.g., [Ganzinger and McAllester 2001, Liu and Stoller 2009, McAllester 1999,
Tekle and Liu 2011].

Applications of recursive rules and queries

Recursive rules and queries can capture any complex reachability problem in recursive
structures, graphs, and hyper-graphs. Examples are social network analysis based on all
kinds of social graphs; program analysis over many kinds of flow and dependence graphs
about program control and data values; model checking over labeled transition systems and
state machines; routing in electronic data networks, telephone networks, or transportation
networks; and security policy analysis and enforcement over trust or delegation relationships.

We describe three example applications below, in the domains of text and natural language
processing, program analysis, and distributed security policy frameworks. They all critically
depend on the use of recursive rules and efficient implementation techniques, especially
tabling and indexing.

Text processing—Super-tokenizer. Super-tokenizer is an infrastructure tool for text process-
ing that has been used by XSB, Inc.’s ontology-directed classifier (ODC) and extractor
(ODE) for complex commercial applications [Swift and Warren 2012]. It was also devel-
oped originally at XSB, Inc.

16 Chapter | Logic programmingapplications:What are the abstractionsand implementations?

Super-tokenizer supports the declaration of complex rewriting rules for token lists. For
example, over 65,000 of these rules implement abbreviations and token corrections in
ODC and complex pattern-matching rules in ODE for classification and extraction based
on combined UNSPSC and Federal INC taxonomies at XSB, Inc. Recursion is used
extensively in the super-tokenizer, for text parsing and processing. The implementation
uses tabled grammars and trie-based indexing in fundamental ways.

Super-tokenizer is just one particular application that relies on recursive rules for text
processing and, more generally, language processing. Indeed, the original application of
Prolog, the first and main logic programming language, was natural language processing
(NLP) [Pereira and Shieber 2002], and a more recent application in NLP helped the
IBM Watson question answering system win the Jeopardy Man vs. Machine Challenge
by defeating two former grand champions in 2011 [Lally and Fodor 2011, Lally et al.
2012].

Program analysis—Pointer analysis. Pointer analysis statically determines the set of objects
that a pointer variable or expression in a program can refer to. It is a fundamental pro-
gram analysis with wide applications and has been studied extensively, e.g., [Hind 2001,
Sridharan et al. 2013]. The studies especially include significantly simplified specifi-
cations using Datalog in more recent years, e.g., [Smaragdakis and Balatsouras 2015],
and powerful systems such as bddbddb [Whaley et al. 2005] and Doop [Bravenboer and
Smaragdakis 2009], the latter built using LogicBlox [Aref et al. 2015, Green et al. 2012].

Different kinds of program constructs and analysis results relevant to pointers are re-
lations. Datalog rules capture the analysis directly as recursively defined relations. For
example, the well-known Andersen’s pointer analysis for C programs defines a points-to
relation based on four kinds of assignment statements [Andersen 1994], leading directly
to four Datalog rules [Saha and Ramakrishnan 2005]. Efficient implementation critically
depends on tabling, indexing, and demand-driven computation [Saha and Ramakrishnan
2005, Tekle and Liu 2011]. Such techniques were in fact followed by hand to arrive at
the first ultra fast analysis [Heintze and Tardieu 2001a,b].

Indeed, efficient implementations can be generated from Datalog rules giving much bet-
ter, more precise complexity guarantees [Liu and Stoller 2009, Tekle and Liu 2011, 2016]
than the worst-case complexities, e.g., the well-known cubic time for Andersen’s analy-
sis. Such efficient implementation with complexity guarantees can be obtained for pro-
gram analysis in general [McAllester 1999]. Commercial tools for general program anal-
ysis based on Datalog have also been built, e.g., by Semmle based on CodeQuest [Ha-
jiyev et al. 2006].

Security policy frameworks—Trust management (TM). TM is a unified approach to speci-
fying and enforcing security policies in distributed systems [Blaze et al. 1996, Grandi-

1.5

1.5.1

1.5 Constraint and combinatorial search 17

son and Sloman 2000, Ruohomaa and Kutvonen 2005]. It has become increasingly im-
portant as systems become increasingly interconnected, and logic-based languages have
been used increasingly for expressing TM policies [Bonatti 2010], e.g., SD3 [Jim 2001],
RT [Li et al. 2002], Binder [DeTreville 2002], Cassandra [Becker and Sewell 2004], and
many extensions, e.g., [Becker et al. 2012, Sultana et al. 2013].

Certification, delegation, authorization, etc. among users, roles, permissions, etc. are
relations. Policy rules correspond directly to logic rules. The relations can be transitively
defined, yielding recursive rules. For example, one of the earliest TM frameworks,
SPKI/SDSI [Ellison et al. 1999], for which various sophisticated methods have been
studied, corresponds directly to a few recursive rules [Hristova et al. 2007], and efficient
implementations with necessary indexing and tabling were generated automatically.

TM studies have used many variants of Datalog with restricted constraints [Li and
Mitchell 2003], not unrestricted negation. A unified framework with efficient imple-
mentations is still lacking. For example, based on the requirements of the U.K. National
Health Service, a formal electronic health records (EHR) policy was written, as 375 rules
in Cassandra [Becker 2005a], heavily recursive. As the largest case study in the TM liter-
ature, its implementation was inefficient and incomplete—techniques like indexing were
deemed needed but missing [Becker 2005b].

Constraint and combinatorial search

Constraints are the most general form of logic specifications, which easily captures the most
challenging problem-solving activities such as planning and resource allocation.

Constraint satisfaction

A constraint is, in general, a relationship among objects but especially refers to cases when it
can be satisfied with different choices of objects and the right choice is not obvious.

For example, the rule below says that X is a winning position if there is a move from X to
v and Y is not a winning position. It states a relationship among objects, but its meaning is
not obvious, because the concluding predicates are recursively defined using a negation of the
predicate itself.

win (X) <— move(X,Y), not win(Y).

In general, constraints can capture any real-world or conceptual-world problems, e.g., rules for
moves in any game—whether recreational, educational, or otherwise; actions with conditions
and effects for any planning activities; participants and resource constraints in scheduling—
whether for university courses or manufacturer goods production or hospital surgeries; real-

18 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

world constraints in engineering design; as well as knowledge and rules for puzzles and brain
teasers.

Given constraints may have implications that are not completely explicit. For example,
the win rule implies not just the first constraint below, but also the second, by negating
the conclusion and hypotheses in the given rule, following the closed-world assumption; the
second constraint makes the constraint about not win explicit:

win(X) 1if some Y: move (X,Y) and not win (Y)
not win(X) if all Y: not move(X,Y) or win(Y)

Indeed, with general constraints, objects can be related in all ways using all constructs together
with join and recursion: unrestricted negation, other connectives, predefined relationships,
aggregates, and general quantifiers in any scope.

However, due to negation in dependency cycles, the meaning of the rules and constraints
is not universally agreed on anymore.

o Well-founded semantics (WES) gives a single, 3-valued model, where relationships that
are true or false are intended to be supported from given facts, i.e., well-founded, and the
remaining ones are undefined.

e Stable model semantics (SMS) gives zero or more 2-valued models, where each model
stays the same, i.e., is stable, when it is used to instantiate all the rules; in other words,
applying the rules to each model yields the same model.

For example, for the win example,

o if there is only one move, move (a, b), not forming a cycle, then
WES and SMS both give that win (b) is false and win (a) is true;
o if there is only one move, move (a, a), forming a self cycle, then
WES gives that win (a) is undefined, and
SMS gives that there is no model;

o if there are only two moves, move (a, b) and move (b, a), forming a two-move cycle,
then

WES gives that win (a) and win (b) are both undefined, and

SMS gives two models: one with win (a) true and win (b) false, and one with the
opposite results.

Despite the differences, WFS and SMS can be computed using some shared techniques.

1.5.2

1.5 Constraint and combinatorial search 19

Implementation of constraint satisfaction

Constraint solving could in general use straightforward generate-and-test—generate each
possible combination of objects for solutions and test whether they satisfy the constraints—
but backtracking is generally used, as it is much more efficient.

Backtracking. Backtracking incrementally builds variable assignments for the solutions,
and abandons each partial assignment as soon as it determines that the partial assignment
cannot be completed to a satisfying solution, going back to try a different value for the
last variable assigned; this avoids trying all possible ways of completing those partial
assignments or naively enumerating all complete assignments.

For example, the win (X) query can basically try a move at each next choice of moves and
backtrack to try a different move as soon as the current move fails. Expressed using recursive
functions, this corresponds basically to the following:

def win(X): return (some Y: move (X,Y) and not_win(Y))
def not_win(X): return (all Y: not move(X,Y) or win(Y))

This backtracking answers the query correctly when the moves do not form a cycle. However,
it might not terminate when the moves form a cycle, and the implementation depends on
the semantics used. Both WFS and SMS can be computed by using and extending the basic
backtracking:

e WES computation could track cycles, where executing a call requires recursively making
the same call, and infer undefined for those queries that have no execution paths to infer
the query result to be true or false.

e SMS computation could generate possible partial or complete variable assignments,
called grounding, and check them, possibly with the help of an external solver like
Boolean satisfiability (SAT) solvers or satisfiability modulo theories (SMT) solvers.

For efficient implementations, techniques for join and recursion are critical as before,
especially tabling to avoid repeated states in the search space. Additionally, good heuristics
for pruning the search space can make drastic performance difference in computing SMS,
e.g., as implemented in answer set programming (ASP) solvers.

Backjumping. One particular optimization of backtracking in SMS computation is back-
jumping. Backtracking always goes back one level in the search tree when all values for
a variable have been tested. Backjumping may go back more levels, by realizing that a
prefix of the partial assignment can lead to all values for the current variable to fail. This
helps prune the search space.

20 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

For extensions that include additional constraints, such as integer constraints, as well as aggre-
gates and quantifiers, an efficient solver such as one that supports mixed integer programming
(MIP) can be used.

Efficient implementation techniques for constraint solving have been studied extensively,
e.g., for ASP solvers [Gebser et al. 2012, Leone et al. 2006].

1.5.3 Applications of constraint satisfaction

The generality and power of constraints allow them to be used for all applications described
previously, but constraints are particularly important for applications beyond those and that re-
quire combinatorial search. Common kinds of search problems include planning and schedul-
ing, resource allocation, games and puzzles, and well-known NP-complete problems such as
graph coloring, k-clique, set cover, Hamiltonian cycle, and SAT.

We describe three example applications, in the domains of decision making, resource
allocation, and games and puzzles. They all require substantial use of general constraints and
efficient constraint solvers exploiting backtracking, backjumping, and other optimizations.

Enterprise decision making—Prescriptive analysis. Prescriptive analysis suggests decision
options that lead to optimized future actions. It is an advanced component of enterprise
software. For example, for planning purposes, LogicBlox supports prescriptive analysis
using the same Datalog-based language as for BI and OLTP [Aref et al. 2015, Green
et al. 2012].

The data are objects and relations, same as used for BI, but may include, in particular,
costs and other objective measures. Constraints capture restrictions among the objects
and relations. When all data values are provided, constraints can simply be checked.
When some data values are not provided, different choices for those values can be
explored, and values that lead to certain maximum or minimum objective measures may
be prescribed for deciding future actions. Efficient implementations can utilize the best
constraint solvers based on the kinds of constraints used.

LogicBlox’s integrated solution to decision making based on BI and OLTP has led to
significant success. For example, for a Fortune 50 retailer with over $70 billion in revenue
and with products available through over 2,000 stores and digital channels, the solution
processes 3 terabytes of data on daily, weekly, and monthly cycles, deciding exactly what
products to sell in what stores in what time frames; this reduces a multi-year cycle of a
challenging task for a large team of merchants and planners to an automatic process and
significantly increases profit margins [LogicBlox 2015a].

Resource allocation—Workforce management (WFM) in Port of Gioia Tauro. WFM handles
activities needed to maintain a productive workforce. The WFM system for automobile

1.6

1.6 Further extensions, applications, and discussion 21

logistics in the Port of Gioia Tauro, the largest transshipment terminal in the Mediter-
ranean, allocates available personnel of the seaport such that cargo ships mooring in the
port are properly handled [Leone and Ricca 2015, Ricca et al. 2012]. It was developed
using the DLV system [Leone et al. 2006].

The data include employees of different skills, cargo ships of different sizes and loads,
teams and roles to be allocated, and many other objects to be constrained, e.g., workload
of employees, heaviness of roles, and contract rules. Constraints include matching of
available and required skills, roles, hours, etc., fair distribution of workload, turnover
of heavy or dangerous roles, and so on. The constraints are expressed using rules with
disjunction in the conclusion, general negation, and aggregates. The DLV system uses
backtracking and a suite of efficient implementation techniques.

This WFM system was developed by Exeura s.r.1. and has been adopted by the company
ICO BLG operating automobile logistics in the Port of Gioia Tauro [Leone and Ricca
2015], handling every day several ships of different sizes that moor in the port [Ricca
et al. 2012].

Games and puzzles—N-queens. We use a small example in a large class of problems. The n-
queens puzzle is the problem of placing n queens on a chessboard of n-by-n squares
so that no two queens threaten each other, i.e., no two queens share the same row,
column, or diagonal. The problem is old, well-studied, and can be computationally quite
expensive [Bell and Stevens 2009].

The allowed placements of queens can be specified as logic rules with constraints.
Naively enumerating all possible combination of positions and checking the constraints
is prohibitively expensive. More efficient solutions use backtracking, and furthermore
backjumping, to avoid impossible placement of each next queen as soon as possible.
Stronger forms of constraints may also be specified to help prune the search space
further [Gebser et al. 2012]. For example, backtracking can solve for one or two scores
of queens in an hour, but backjumping and additional constraints help an ASP system
like Clingo solve for 5000 queens in 3758.320 seconds of CPU time [Schaub 2014].

Many other games and puzzles can be specified and solved in a similar fashion. Examples
are all kinds of crossword puzzles, Sudoku, Knight’s tour, nonograms, magic squares,
dominos, coin puzzles, graph coloring, palindromes, among many others, e.g., [Demoen
et al. 2005, Edmunds 2015, Hett 2015, Kjellerstrand 2015, Malita 2015].

Further extensions, applications, and discussion

We discuss additional language extensions and applications, summarize applications based on
the key abstractions used, touching on example logic programming systems, and finally put
the abstractions into the perspective of programming paradigms.

1.6.1

22 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

Extensions

Many additional extensions to logic languages have been studied. Most of them can be viewed
as abstractions that capture common patterns in classes of applications, to allow applications
to be expressed more easily. Important extensions include:

e regular-expression paths, a higher-level abstraction for commonly-used linear recursion;
e updates, for real-world applications that must handle changes;

e time, for expressing changes over time, as an alternative to supporting updates directly;
e probability, to capture uncertainty in many challenging applications; and

e higher-order logic, to support applications that require meta-level reasoning.

We discuss two of the most important extensions below:

Regular-expression paths. A regular-expression path relates two objects using regular ex-
pressions and extensions. It allows repeated joins of a binary relation to be expressed
more easily and clearly than using recursion; such joins capture reachability and are
commonly used. For example, is_ancestor (X, Y), defined in Section 1.4 using two
rules including a recursive rule, can now be defined simply as below; it indicates that
there are one or more is_parent relationships in a path from X to v:

is_ancestor(X,Y) <— is_parent+(X,Y).

This is also higher-level than using recursion, because the recursive rule has to pick
one of three possible forms below: with is_parent on the left, as seen before; with
is_parent on the right; and with both conjuncts using is_ancestor.

is_ancestor (X,Y) <— is_parent(X,Z), is_ancestor(Z,Y).
is_ancestor (X,Y) <— is_ancestor(X,Z), is_parent (Z,Y).
is_ancestor (X,Y) <— is_ancestor(X,Z), is_ancestor(z,Y).

Depending on the data, the performance of these forms can be asymptotically different
in most implementations.

Regular-expression paths have many important applications including all those in Sec-
tion 1.4, especially graph queries, with also parametric extensions for more general rela-
tions, not just binary relations [de Moor et al. 2003, Liu and Stoller 2006, Liu et al. 2004,
Tekle et al. 2010].

Updates. An update, or action, can be expressed as a predicate that captures the update,
e.g., by relating the values before and after the update and the change in value. The
effect of the update could be taken immediately after the predicate is evaluated, similar
to updates in common imperative languages, but this leads to lower-level control flows

1.6.2

1.6 Further extensions, applications, and discussion 23

that are harder to reason about. Instead, it is better for the update to take effect as part
of a transaction of multiple updates that together satisfy high-level logic constraints. For
example, with this approach, the following rule means that adopted_by_from holds if
the updates add_child and del_child and the check adoption_check happen as a
transaction.

adopted_by_from(C,X,Y) <—- add_parent(X,C), del_parent(Y,C),
adoption_check (C,X,Y).

It ensures at a high-level that certain bad things won’t happen, e.g., no child would end
with one fewer parent or one more parent than expected. Transaction logic is an extension
of logic rules for reasoning about and executing transactional state changes [Bonner and
Kifer 1994]. LPS, a Logic-based approach to Production Systems, captures state changes
by associating timestamps with facts and events, and this is shown to correspond to
updating facts directly [Kowalski and Sadri 2015].

Logic languages with updates have important applications in enterprise software [Aref
et al. 2015, Green et al. 2012]. Transaction logic can also help in planning [Basseda et al.
2014].

Additional implementation support can help enhance applications and enable additional
applications. A particular helpful feature is to record justification or provenance information
during program execution [Damasio et al. 2013, Roychoudhury et al. 2000], providing expla-
nations for how a result was obtained. The recorded information can be queried to improve
understanding and help debugging.

Additional applications

Many additional applications have been developed using logic programming, especially in-
cluding challenging applications that need recursion and those that furthermore need con-
straint.

Table 1.2 lists example application areas with example application problems organized
based on the main abstractions used. Note that application problems can often be reduced
to each other, and many other problems can be reduced to the problems in the table. For
example, model checking a property of a system [Clarke et al. 1994, 1999] can be reduced
to planning, where the goal state is a state violating the property specified, so a plan found
by a planner corresponds to an error trace found by a model checker [Cimatti et al. 2014,
Edelkamp et al. 2014]. Administrative policy analysis also has correspondences to planning,
by finding a sequence of actions to achieve the effect of a security breach [Stoller et al. 2011].

Table 1.2 is only a small sample of the application areas, with example application
problems or kinds of application problems in those areas. Many more applications have been

Table 1.2

24 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

Example application areas with example application problems organized based on the main
abstractions used. Applications discussed in some detail in this chapter are marked with an

asterisk.
Area H Using join Using recursion Using constraint
Data business intelligence,* | route queries, .
data cleaning,
manage- many database many database .
. . . . data repair
ment join queries recursive queries
Knowledge . .
ontology . reasoning with
manage- ontology analysis
management* knowledge
ment
. . prescriptive analysis,*
Decision supply-chain management, . .
. planning, scheduling,
support market analysis .
resource allocation™
text processing,* context-sensitive
Linguistics context-free parsing, analysis,
semantic analysis deep semantics analysis
) pointer analysis,* type inference,
Program type checking, . .
. type analysis, many constraint-based
analysis many local analyses
many dependency analyses | analyses
trust management,* administrative policy
. role-based . . .
Security hierarchical role-based analysis,
access control* .
access control cryptanalysis
. n-queens,*
Games and Hanoi tower,
. Sudoku,
puzzles many recursion problems .
many constraint puzzles
question analysis,
Teaching course management course analysis problem diagnosis,
test generation

developed, in many more areas, using systems that support variants of the abstractions with
different implementations. Some examples are:

e XSB has also been used to develop applications for immunization survey [Burton et al.
2012], standardizing data, spend analysis, etc. [XSB 2015], and it is discussed in many
publications’.

' A Google Scholar search with +XSB +”1ogic programming” returns about 2500 results, February 27,
2018.

1.6 Further extensions, applications, and discussion 25

e LogicBlox has also been used to create solutions for predicting consumer demand,
optimizing supply chain, etc. [LogicBlox 2015b] and more [Green et al. 2012].

o ASP systems have been used in bioinformatics, hardware design, music composition,
robot control, tourism, and many other application areas [Group 2005, Schaub 2011],
including part of a decision support system for the Space Shuttle flight controller [Bal-
duccini and Gelfond 2005, Nogueira et al. 2001].

e Logic systems have been developed for additional applications, e.g., PRISM [Sato and
Kameya 1997] and ProbLog [De Raedt et al. 2007] for probabilistic models; XMC [Ra-
makrishnan et al. 2000] and ProB [Leuschel and Butler 2008] for verification; and ND-
log [Loo et al. 2009], Meld [Ashley-Rollman et al. 2009], Overlog [Alvaro et al. 2010],
and Bloom [Berkeley Orders of Magnitude] for network and distributed algorithms.

Languages and systems with more powerful features such as constraints for general applica-
tions are often also used in less challenging application areas such as those that need only join
queries. For example, DLV has also been used in ontology management [Ricca et al. 2009].

1.6.3 Additional discussion on abstractions

We give an overview of the main abstractions in the larger picture of programming paradigms,
to help put the kinds of applications supported into broader perspective.

The three main abstractions—join, recursion, and constraint—correspond generally to
more declarative programming paradigms. Each is best known in its corresponding main
programming community:

e Join in database programming. Database systems have join at the core but support
restricted recursion and constraints in practice.

e Recursion in functional programming. Functional languages have recursion at the core
but do not support high-level join or constraints.

e Constraint in logic programming. Logic engines support both join and recursion at the
core, and have increasingly supported constraints at the core as well.

The additional extensions help further raise the level of abstraction and broaden the program-
ming paradigms supported:

e Regular-expression paths raise the level of abstraction over lower-level linear recursion.

e Updates, or actions, are the core of imperative programming; they help capture real-
world operations even when not used in low-level algorithmic steps.

1.7

26 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

e Time, probability, higher-order logic, and many other features correspond to additional
arguments, attributes, or abstractions about objects and relationships.

One main paradigm not yet discussed is object-oriented programming. Orthogonal to data and
control abstractions, objects in common object-oriented languages provide a kind of module
abstraction, encapsulating both data structures and control structures in objects and classes.
Similar abstractions have indeed been added to logic languages as well. For example, F-logic
extends traditional logic programming with objects [Kifer et al. 1995] and is supported in
Flora-2 [Kifer et al. 2014]; it was also the basis of a highly scalable commercial system,
Ontobroker [Semafora 2012], and a recent industry suite, Ergo [Grosof et al. 2015]. For
another example, ASP has been extended with object constructs in OntoDLV [Ricca et al.
2009].

Finally, building practical applications requires powerful libraries and interfaces for many
standard functionalities. Many logic programming systems provide various such libraries.
For example, SWI-Prolog has libraries for constraint logic programming, multithreading,
interface to databases, GUI, a web server, etc, as well as development tools and extensive
documentation.

Related literature and future work

There are many overview books and articles about logic programming in general and appli-
cations of logic programming in particular. This chapter differs from prior works by studying
the key abstractions and their implementations as the driving force underlying vastly different
application problems and application areas.

Kowalski [Kowalski 2014] provides an extensive overview of the development of logic
programming. It describes the historical root of logic programming, starting from resolu-
tion theorem-proving; the procedural interpretation and semantics of rules with no negated
hypotheses, called Horn clause programs; negation as failure, including completion seman-
tics, stratification, well-founded semantics, stable model semantics, and ASP; as well as logic
programming involving abduction, constraints, and argumentation. It focuses on three im-
portant issues: logic programming as theorem proving vs. model generation, with declarative
vs. procedural semantics, and using top-down vs. bottom-up computation. Qur description
of abstractions and implementations aims to separate declarative semantics from procedural
implementations.

Other overviews and surveys about logic programming in general include some that cover
a collection of topics together and some that survey different topics separately. Example
collections discuss the first 25 years of logic programming from 1974 [Apt et al. 1999] and the
first 25 years of the Italian Association of Logic Programming from 1985 [Dovier and Pontelli
2010]. Example topics surveyed separately include logic programming semantics [Fitting

1.7 Related literature and future work 27

2002], complexity and expressive power [Dantsin et al. 2001], constraints [Jaffar and Maher
1994], ASP and DLV [Grasso et al. 2013], deductive databases [Abiteboul et al. 1995, Ceri
et al. 1990, Minker et al. 2014, Ramakrishnan and Ullman 1995], and many more. Our
description of abstractions and implementations is only a highly distilled overview of the
core topics.

Overviews and surveys about logic programming applications in particular are spread
across many forums. Example survey articles include an early article on Prolog applica-
tions [Roth 1993], DLV applications [Grasso et al. 2009, 2011, Leone and Ricca 2015], ap-
plications in Italy [Dal Palu and Torroni 2010], emerging applications [Huang et al. 2011],
and a dedicated workshop AppLP—Applications of Logic Programming [Warren and Liu
2017]. For example, the early article [Roth 1993] describes six striking practical applica-
tions of Prolog that replaced and drastically improved over systems written previously using
Fortran, C++, and Lisp. Example collections of applications on the Web include one at TU
Wien [Group 2005], one by Schaub [Schaub 2011], and some of the problems in various
competitions, e.g., as described by Gebser et al. [Gebser et al. 2017]. We try to view the ap-
plications by the abstractions and implementations used, so as to not be distracted by specific
details of very different applications.

There are also many articles on specific applications or specific classes of applications.
Examples of the former include team building [Ricca et al. 2012], program pointer analy-
sis [Smaragdakis and Balatsouras 2015], and others discussed in this chapter. Examples of
the latter include applications in software engineering [Ciancarini and Sterling 1995], DLV
applications in knowledge management [Grasso et al. 2009], and IDP applications in data
mining and machine learning [Bruynooghe et al. 2014]. We used a number of such specific
applications as examples and described some of them in slightly more detail to illustrate the
common technical core in addition to the applications per se.

Directions for future work. There are several main areas for future study: (1) more high-
level abstractions that are completely declarative, (2) more efficient implementations with
complexity guarantees, and (3) more unified and standardized languages and frameworks with
rich libraries. These will help many more applications to be created in increasingly complex
problem domains.

Acknowledgment

I would like to thank David S. Warren for his encouragement over the years at Stony
Brook, and his patient and stimulating explanations about logic programming in general
and XSB implementation in particular. I am grateful to Molham Aref, Francesco Ricca, and
David Warren for helpful suggestions and additional information about applications using
LogicBlox, DLV, and XSB, respectively. I thank Molham Aref and others at LogicBlox,

28 Chapter 1 Logic programmingapplications:What are the abstractionsand implementations?

Jon Brandvein, Christopher Kane, Michael Kifer, Bob Kowalski, Bo Lin, Francesco Ricca,
Scott Stoller, Tuncay Tekle, David Warren, Neng-Fa Zhou, and anonymous reviewers for
helpful comments on drafts of this chapter. This work was supported in part by NSF under
grants CCF-0964196, CCF-1248184, CCF-1414078, and 11S-1447549; and ONR under grant
N00014-15-1-2208.

Bibliography

S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases: The Logical Level. Addison-
Wesley.

P. Alvaro, T. Condie, N. Conway, J. Hellerstein, and R. Sears. 2010. I do declare: Consensus in a logic
language. ACM SIGOPS Operating Systems Review, 43(4): 25-30.

L. O. Andersen. 1994. Program Analysis and Specialization for the C Programming Language. PhD
thesis, DIKU, University of Copenhagen. http://www.diku.dk/forskning/topps/bibliography/1994.
html.

ANSI INCITS, Feb. 2004. Role-Based Access Control. ANSI INCITS 359-2004, American National
Standards Institute, International Committee for Information Technology Standards.

K. R. Apt, D. S. Warren, and M. Truszczynski, eds. 1999. The Logic Programming Paradigm: A 25-Year
Perspective. Springer.

M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veldhuizen, and G. Wash-
burn. 2015. Design and implementation of the LogicBlox system. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp. 1371-1382.

M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D. Campbell. 2009. A language for large
ensembles of independently executing nodes. In Proceedings of the 25th International Conference
on Logic Programming, pp. 265-280. Springer.

M. Balduccini and M. Gelfond. 2005. Model-based reasoning for complex flight systems. In
Proceedings of the 5th AIAA Conference on Aviation, Technology, Integration, and Operations.

S. Barker and M. Ferndndez. 2006. Term rewriting for access control. In Data and applications security
XX, pp- 179-193. Springer.

S. Barker, M. Leuschel, and M. Varea. 2004. Efficient and flexible access control via logic program
specialisation. In Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pp. 190-199.

R. Basseda, M. Kifer, and A. J. Bonner. 2014. Planning with transaction logic. In Proceedings of the
8th International Conference on Web Reasoning and Rule Systems, pp. 29—44. Springer.

M. Y. Becker. 2005a. A formal security policy for an NHS electronic health record service. Technical
Report UCAM-CL-TR-628, Computer Laboratory, University of Cambridge. http://www.cl.cam.ac.
uk/TechReports/UCAM-CL-TR-628.html.

M. Y. Becker. 2005b. Cassandra: Flexible trust management and its application to electronic health
records. PhD dissertation, Technical Report UCAM-CL-TR-648, Computer Laboratory, University
of Cambridge. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-648.html.

M. Y. Becker and P. Sewell. 2004. Cassandra: Flexible trust management, applied to electronic health
records. In Proceedings of the 17th IEEE Computer Security Foundations Workshop, pp. 139-154.
IEEE CS Press. http://www.cl.cam.ac.uk/users/mywyb2/http://www.cl.cam.ac.uk/users/pes20/.

29

30 BIBLIOGRAPHY

M. Y. Becker, A. Russo, and N. Sultana. 2012. Foundations of logic-based trust management. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy, pp. 161-175. IEEE CS Press.

J. Bell and B. Stevens. 2009. A survey of known results and research areas for n-queens. Discrete
Mathematics, 309(1): 1-31.

Berkeley Orders of Magnitude, 2013. Bloom Programming Language. http://www.bloom-lang.net.
Lastest release April 23, 2013. Accessed January 14, 2017.

M. Blaze, J. Feigenbaum, and J. Lacy. 1996. Decentralized trust management. In Proceedings of the
1996 IEEE Symposium on Security and Privacy, pp. 164-173.

P. A. Bonatti. 2010. Datalog for security, privacy and trust. In Proceedings of the Ist International
Conference on Datalog Reloaded, pp. 21-36. Springer.

A. J. Bonner and M. Kifer. 1994. An overview of transaction logic. Theoretical Computer Science,
133(2): 205-265.

M. Bravenboer and Y. Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to
analyses. In Proceedings of the 24rd ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, pp. 243-262.

M. Bruynooghe, H. Blockeel, B. Bogaerts, B. De Cat, S. De Pooter, J. Jansen, A. Labarre, J. Ramon,
M. Denecker, and S. Verwer. 2014. Predicate logic as a modeling language: Modeling and
solving some machine learning and data mining problems with IDP3. Theory and Practice of Logic
Programming, pp. 1-35.

A. Burton, R. Kowalski, M. Gacic-Dobo, R. Karimov, and D. Brown. Oct. 2012. A formal representation
of the WHO and UNICEF estimates of national immunization coverage: A computational logic
approach. PLOS ONE.

S. Ceri, G. Gottlob, and L. Tanca. 1990. Logic Programming and Databases. Springer.

P. Ciancarini and L. Sterling. 1995. Report on the Workshop: Applications of Logic Programming in
Software Engineering. The Knowledge Engineering Review, 10(01): 97-100.

A. Cimatti, S. Edelkamp, M. Fox, and E. Plaku, Nov. 23-28, 2014. Dagstuhl Seminar 14482: Au-
tomated Planning and Model Checking. http://www.dagstuhl.de/no_cache/en/program/calendar/
semhp/?semnr=14482. Accessed June 6, 2015.

E. M. Clarke, O. Grumberg, and D. E. Long. 1994. Model checking and abstraction. ACM Transactions
on Programming Languages and Systems, 16(5): 1512-1542.

E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. 1999. Model Checking. MIT Press.
A. Dal Palu and P. Torroni. 2010. 25 years of applications of logic programming in Italy. In A 25-Year
Perspective on Logic Programming, pp. 300-328. Springer.

C. V. Damdsio, A. Analyti, and G. Antoniou. 2013. Justifications for logic programming. In Proceedings
of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning, pp. 530—
542. Springer.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. 2001. Complexity and expressive power of logic
programming. ACM Computing Surveys, 33(3): 374—425.

0. de Moor, D. Lacey, and E. V. Wyk. 2003. Universal regular path queries. Higher-Order and Symbolic
Computation, 16(1-2): 15-35.

BIBLIOGRAPHY 31

L. De Raedt, A. Kimmig, and H. Toivonen. 2007. ProbLog: A probabilistic Prolog and its application
in link discovery. In Proceedings of the 20th International Joint Conference on Artifical Intelligence,
pp. 2468-2473. Morgan Kaufman.

B. Demoen, P-L. Nguyen, T. Schrijvers, and R. Troncon, 2005. The first 10 Prolog programming
contests. http://dtai.cs.kuleuven.be/ppcbook/. Accessed May 20, 2015.

M. Denecker and E. Ternovska. 2008. A logic of nonmonotone inductive definitions. ACM Transactions
on Computational Logic, 9(2): 14.

J. DeTreville. 2002. Binder, a logic-based security language. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, pp. 105-113. IEEE CS Press. ISBN 0-7695-1543-6.

A. Dovier and E. Pontelli, eds. 2010. A 25-year Perspective on Logic Programming: Achievements of
the Italian Association for Logic Programming, GULP. Springer.

S. Edelkamp, D. Magazzeni, and E. Plaku, Portsmouth, NH, June 23, 2014. Workshop on Model
Checking and Automated Planning (MOCHAP’ 14). http://icaps14.icaps-conference.org/workshops_
tutorials/mochap.html. Accessed June 6, 2015.

D. Edmunds, 2015. Learning constraint logic programming—finite domains with logic puzzles. http:
/fbrownbuffalo.sourceforge.net/. Accessed May 20, 2015.

C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thomas, and T. Ylonen, Sept. 1999. RFC 2693:
SPKI Certificate Theory. http://www.ietf.org/rfc/rfc2693.txt. Accessed June 4, 2015.

D. Ferraiolo and R. Kuhn. 1992. Role-based access control. In Proceedings of the 15th NIST-NSA
National Computer Security Conference, pp. 554-563. Blatimore, Maryland.

D. E Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. 2001. Proposed NIST
standard for role-based access control. ACM Transactions on Information and Systems Security, 4(3):
224-274. http://doi.acm.org/10.1145/501978.501980.

M. Fitting. 2002. Fixpoint semantics for logic programming: A survey. Theoretical Computer Science,
278(1): 25-51.

H. Ganzinger and D. A. McAllester. 2001. A new meta-complexity theorem for bottom-up logic
programs. In Proceedings of the Ist International Joint Conference on Automated Reasoning, pp.
514-528. Springer.

A. Gavrila and J. Barkley. 1998. Formal specification for RBAC user/role and role relationship
management. In Proceedings of the 3rd ACM Workshop on Role Based Access Control, pp. 81-90.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. 2012. Answer Set Solving in Practice. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool.

M. Gebser, M. Maratea, and F. Ricca. 2017. The sixth answer set programming competition. J. Artif.
Intell. Res., 60: 41-95.

M. Gelfond and V. Lifschitz. 1988. The stable model semantics for logic programming. In Proceedings
of the 5th International Conference and Symposium on Logic Programming, pp. 1070-1080. MIT
Press.

A. S. Gomes, J. J. Alferes, and T. Swift. 2010. Implementing query answering for hybrid MKNF
knowledge bases. In Proceedings of the 12th International Conference on Practical Aspects of
Declarative Languages, pp. 25-39. Springer.

32 BIBLIOGRAPHY

T. Grandison and M. Sloman. 2000. A survey of trust in Internet applications. IEEE Communications
Surveys and Tutorials, 3(4): 2—-16.

G. Grasso, S. liritano, N. Leone, and F. Ricca. 2009. Some DLV applications for knowledge
management. In E. Erdem, F. Lin, and T. Schaub, eds., Proceedings of the 10th International
Conference on Logic Programming and Nonmonotonic Reasoning, pp. 591-597. Springer.

G. Grasso, N. Leone, M. Manna, and F. Ricca. 2011. ASP at work: Spin-off and applications of the DLV
system. In Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning—Essays
Dedicated to Michael Gelfond on the Occasion of His 65th Birthday, pp. 432-451. Springer.

G. Grasso, N. Leone, and F. Ricca. 2013. Answer set programming: Language, applications and
development tools. In Proceedings of the 7th International Conference on Web Reasoning and Rule
Systems, pp. 19-34. Springer.

T. J. Green, M. Aref, and G. Karvounarakis. 2012. LogicBlox, platform and language: A tutorial. In
Proceedings of the 2nd International Conference on Datalog in Academia and Industry, Datalog 2.0,
pp. 1-8. Springer.

B. Grosof, J. Bloomfield, P. Fodor, M. Kifer, I. Grosof, M. Calejo, and T. Swift. 2015. Automated
decision support for financial regulatory/policy compliance, using textual rulelog. In Proceedings of
the RuleML 2015 Challenge, the Special Track on Rule-based Recommender Systems for the Web of
Data, the Special Industry Track and the RuleML 2015 Doctoral Consortium. http://ceur-ws.org/Vol-
1417/.

T. W. K.-B. S. Group, Aug. 2005. WP5 report: Model applications and proofs-of-concept. http:
/Iwww.kr.tuwien.ac.at/research/projects/ WASP/report.pdf. Accessed May 20, 2015.

E. Hajiyev, M. Verbaere, and O. D. Moor. 2006. CodeQuest: Scalable source code queries with
Datalog. In Proceedings of the 20th European Conference on Object-Oriented Programming, pp.
2-27. Springer.

N. Heintze and O. Tardieu. 2001la. Demand-driven pointer analysis. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and Implementation, pp. 24-34.
ISBN 1-58113-414-2. http://www.eecs.umich.edu/acal/swerve/docs/55-1.pdf.

N. Heintze and O. Tardieu. 2001b. Ultra-fast aliasing analysis using CLA: A million lines of C code
in a second. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation, pp. 254-263. http://www.cs.ucla.edu/~palsberg/course/cs232/papers/
HeintzeTardieu-pldiO1.pdf.

W. Hett, 2015. Prolog Site—Prolog Problems. http://sites.google.com/site/prologsite/prolog-problems/.
Accessed May 28, 2015.

M. Hind. 2001. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools and Engineering, pp. 54—-61.
DOI: http://doi.acm.org/10.1145/379605.379665.

P. Hou, B. De Cat, and M. Denecker. 2010. FO(FD): Extending classical logic with rule-based fixpoint
definitions. Theory and Practice of Logic Programming, 10(4-6): 581-596.

K. Hristova, K. T. Tekle, and Y. A. Liu. 2007. Efficient trust management policy analysis from rules.
In Proceedings of the 9th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, pp. 211-220.

BIBLIOGRAPHY 33

S. S. Huang, T. J. Green, and B. T. Loo. 2011. Datalog and emerging applications: An interactive
tutorial. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of
data, pp. 1213-1216.

Y. E. Ioannidis. Mar. 1996. Query optimization. ACM Computing Surveys, 28(1): 121-123.

J. Jaffar and M. J. Maher. 1994. Constraint logic programming: A survey. Journal of Logic
Programming, 19: 503-581.

T. Jim. 2001. SD3: A trust management system with certified evaluation. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, pp. 106-115. IEEE CS Press.

M. Kifer, G. Lausen, and J. Wu. 1995. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42(4): 741-843.

M. Kifer, A. Bernstein, and P. M. Lewis. 2006. Database Systems: An Application Oriented Approach,
Complete Version, 2nd. Addison-Wesley.

M. Kifer, G. Yang, H. Wan, and C. Zhao. July 2014. Flora-2: User’s Manual Version 1.0. Stony Brook
University. http:/flora.sourceforge.net/. Accessed June 6, 2015.

H. Kjellerstrand, 2015. My Picat page. http://www.hakank.org/picat/. Accessed May 29, 2015.

R. Kowalski. 2014. Logic programming. In D. M. Gabbay, J. H. Siekmann, and J. Woods, eds.,
Computational Logic, volume 9 of Handbook of the History of Logic, pp. 523-569. Elsevier.

R. Kowalski and F. Sadri. 2015. Reactive computing as model generation. New Generation Computing,
33(1): 33-67.

A. Lally and P. Fodor. Mar. 31 2011. Natural language processing with Prolog in the IBM Watson sys-
tem. Association for Logic Programming (ALP) Issue, Featured Articles. \url{http://www.cs.nmsu.
edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watsonsystem/}. Accessed
April 23, 2015.

A. Lally, J. M. Prager, M. C. McCord, B. K. Boguraev, S. Patwardhan, J. Fan, P. Fodor, and J. Chu-
Carroll. 2012. Question analysis: How Watson reads a clue. IBM Journal of Research and
Development, 56(3/4): 2:1-2:13.

C. E. Landwehr, C. L. Heitmeyer, and J. McLean. 1984. A security model for military message
systems. ACM Transactions on Computer Systems, 2(3): 198-222. ISSN 0734-2071. DOI:
http://doi.acm.org/10.1145/989.991.

N. Leone and F. Ricca. 2015. Answer Set Programming: A tour from the basics to advanced development
tools and industrial applications. In Proceedings of the 11th International Summer School on
Reasoning Web, pp. 308-326. Springer.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. July 2006. The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational Logic,
7(3): 499-562.

M. Leuschel and M. Butler. 2008. ProB: An automated analysis toolset for the B method. International
Journal on Software Tools for Technology Transfer, 10(2): 185-203.

M. Ley. 2002. The DBLP computer science bibliography: Evolution, research issues, perspectives. In
Proceedings of the 9th International Symposium on String Processing and Information Retrieval, pp.
1-10. Springer.

34 BIBLIOGRAPHY

N. Li and J. C. Mitchell. 2003. Datalog with constraints: A foundation for trust management languages.
In Proceedings of the 5th International Symposium on Practical Aspects of Declarative Languages,
pp. 58-73. Springer. ISBN 3-540-00389-4.

N. Li, J. C. Mitchell, and W. H. Winsborough. 2002. Design of a role-based trust-management
framework. In IEEE Symposium on Security and Privacy, pp. 114—130.

Y. A. Liu and S. D. Stoller. 2006. Querying complex graphs. In Proceedings of the S8th International
Symposium on Practical Aspects of Declarative Languages, pp. 199-214. Springer.

Y. A. Liu and S. D. Stoller. 2007. Role-based access control: A corrected and simplified specification.
In Department of Defense Sponsored Information Security Research: New Methods for Protecting
Against Cyber Threats, pp. 425-439. Wiley.

Y. A. Liu and S. D. Stoller. 2009. From Datalog rules to efficient programs with time and space
guarantees. ACM Transactions on Programming Languages and Systems, 31(6): 1-38.

Y. A. Liu and S. D. Stoller. Jan. 2018. Founded semantics and constraint semantics of logic rules.
In International Symposium on Logical Foundations of Computer Science, volume 10703 of Lecture
Notes in Computer Science, pp. 221-241. Springer.

Y. A. Liu, T. Rothamel, F. Yu, S. Stoller, and N. Hu. 2004. Parametric regular path queries.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, pp. 219-230.

Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao, and J. Zhang. 2006. Core

role-based access control: Efficient implementations by transformations. In Proceedings of the ACM
SIGPLAN 2006 Workshop on Partial Evaluation and Program Manipulation, pp. 112-120.

Y. A. Liu, J. Brandvein, S. D. Stoller, and B. Lin. 2016. Demand-driven incremental object queries.
In Proceedings of the 18th International Symposium on Principles and Practice of Declarative
Programming, pp. 228-241. ACM Press.

LogicBlox, 2015a. Assortment planning and management. http://www.logicblox.com/solution-four.
html. Accessed May 18, 2015.

LogicBlox, 2015b. Solutions. http://www.logicblox.com/solutions.html. Accessed May 18, 2015.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. 2009. Declarative networking. Communications of the ACM, 52: 87-95.

M. Malita, 2015. Logic puzzles in Prolog. http://www.anselm.edu/internet/compsci/faculty_staff/
mmalita/HOMEPAGE/logic/index.html. Accessed May 28, 2015.

D. A. McAllester. 1999. On the complexity analysis of static analyses. In Proceedings of the 6th
International Static Analysis Symposium, pp. 312-329. Springer.

J. Minker, D. Seipel, and C. Zaniolo. 2014. Logic and databases: History of deductive databases. In
D. Gabbay, J. Siekmann, and J. Woods, eds., Handbook of Computational Logic, chapter 17, pp.
571-628. North-Holland.

M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. 2001. An A-Prolog decision support
system for the Space Shuttle. In Practical Aspects of Declarative Languages, pp. 169—183. Springer.

F. C. Pereira and S. M. Shieber. 2002. Prolog and Natural-Language Analysis. Microtome Publishing.
\url{http://mtome.com/Publications/PNLA/pnla.html}. Revision of October 5, 2005.

BIBLIOGRAPHY 35

T. C. Przymusinski. 1994. Well-founded and stationary models of logic programs. Annals of
Mathematics and Artificial Intelligence, 12(3): 141-187.

C. Ramakrishnan, I. Ramakrishnan, S. A. Smolka, Y. Dong, X. Du, A. Roychoudhury, and V. Venkatakr-
ishnan. 2000. XMC: A logic-programming-based verification toolset. In Proceedings of the 12th
International Conference on Computer Aided Verification, pp. 576-580. Springer.

R. Ramakrishnan and J. D. Ullman. 1995. A survey of deductive database systems. Journal of Logic
Programming, 23(2): 125-149.

F. Ricca, L. Gallucci, R. Schindlauer, T. Dell’Armi, G. Grasso, and N. Leone. 2009. OntoDLV: An
ASP-based system for enterprise ontologies. Journal of logic and computation, 19(4): 643-670.

F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. liritano, and N. Leone. 2012. Team-building with
answer set programming in the Gioia-Tauro Seaport. Theory and Practice of Logic Programming,
12(3): 361-381.

A. Roth. 1993. The practical application of Prolog. Al Expert, 8: 24-24. In Dr. Dobb’s, http://www.
drdobbs.com/parallel/the-practical-application-of-prolog/184405220, Dec.10, 2002. Accessed June
6, 2015.

T. Rothamel and Y. A. Liu. 2007. Efficient implementation of tuple pattern based retrieval. In
Proceedings of the ACM SIGPLAN 2007 Workshop on Partial Evaluation and Program Manipulation,
pp- 81-90.

A. Roychoudhury, C. Ramakrishnan, and I. Ramakrishnan. 2000. Justifying proofs using memo tables.
In Proceedings of the 2nd ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, pp. 178-189.

S. Ruohomaa and L. Kutvonen. 2005. Trust management survey. In Proceedings of the Third
international conference on Trust Management, pp. 77-92. Springer.

D. Saha and C. R. Ramakrishnan. 2005. Incremental and demand-driven points-to analysis using logic
programming. In Proceedings of the 7th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pp. 117-128.

T. Sato and Y. Kameya. 1997. PRISM: A language for symbolic-statistical modeling. In Proceedings of
the 15th International Joint Conference on Artifical Intelligence-Volume 2, pp. 1330-1335. Morgan
Kaufman.

T. Schaub, Mar. 2011. Collection on Answer Set Programming (ASP) and more. http://www.cs.
uni-potsdam.de/~torsten/asp/. Accessed May 18, 2015.

T. Schaub, Dec. 23, 2014. Answer set solving in practice. http://www.cs.uni-potsdam.de/~torsten/
Potassco/Slides/asp.pdf. Accessed May 20, 2015.

Semafora, 2012. Semantic infrastructure: OntoBroker. http://www.semafora-systems.com/en/products/
ontobroker/. Accessed May 18, 2015.

Y. Smaragdakis and G. Balatsouras. 2015. Pointer analysis. Foundations and Trends in Programming
Languages, 2(1): 1-69. http://yanniss.github.io/points-to-tutorial 15.pdf.

M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav. 2013. Alias analysis for object-oriented
programs. In Aliasing in Object-Oriented Programming: Types, Analysis and Verification, pp. 196—
232. Springer.

36 BIBLIOGRAPHY

S. D. Stoller, P. Yang, M. I. Gofman, and C. Ramakrishnan. 2011. Symbolic reachability analysis for
parameterized administrative role-based access control. Computers & Security, 30(2): 148—164.

N. Sultana, M. Y. Becker, and M. Kohlweiss. 2013. Selective disclosure in Datalog-based trust
management. In Proceedings of the 9th International Workshop on Security and Trust Management,
pp. 160-175. Springer.

T. Swift and D. S. Warren. 2012. XSB: Extending Prolog with tabled logic programming. Theory and
Practice of Logic Programming, 12(1-2): 157-187.

T. Swift, D. S. Warren, et al. June 2014. The XSB System Version 3.5.x. http://xsb.sourceforge.net.
Accessed June 6, 2015.

K. T. Tekle and Y. A. Liu. 2011. More efficient Datalog queries: Subsumptive tabling beats magic sets.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp.
661-672.

K. T. Tekle and Y. A. Liu. 2016. Precise complexity guarantees for pointer analysis via Datalog with
extensions. Theory and Practice of Logic Programming, 16(5-6): 916-932.

K. T. Tekle, M. Gorbovitski, and Y. A. Liu. 2010. Graph queries through Datalog optimizations.
In Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, pp. 25-34.

A. Van Gelder. 1993. The alternating fixpoint of logic programs with negation. Journal of Computer
and System Sciences, 47(1): 185-221.

A. Van Gelder, K. Ross, and J. S. Schlipf. 1991. The well-founded semantics for general logic programs.
Journal of the ACM, 38(3): 620-650.

D. S. Warren and Y. A. Liu. Apr. 2017. AppLP: A dialogue on applications of logic programming.
Computing Research Repository, arXiv:1704.02375 [cs.PL].

J. Whaley, D. Avots, M. Carbin, and M. S. Lam. 2005. Using Datalog with binary decision diagrams
for program analysis. In Programming Languages and Systems, pp. 97—118. Springer.

D. E. Willard. 2002. An algorithm for handling many relational calculus queries efficiently. Journal of
Computer and System Sciences, 65: 295-331.

XSB, 2015. Case Studies. http://www.xsb.com/case-studies. Accessed May 18, 2015.

