
A Language and Framework for Invariant-Driven Transformat ions

Yanhong A. Liu Michael Gorbovitski Scott D. Stoller
Computer Science Department, State University of New York at Stony Brook, Stony Brook, NY 11794

{liu,mickg,stoller}@cs.sunysb.edu

Abstract
This paper describes a language and framework that allow coordi-
nated transformations driven by invariants to be specified declara-
tively, as invariant rules, and applied automatically. Theframework
supports incremental maintenance of invariants for program design
and optimization, as well as general transformations for instrumen-
tation, refactoring, and other purposes. This paper also describes
our implementations for transforming Python and C programsand
experiments with successful applications of the systems ingener-
ating efficient implementations from clear and modular specifica-
tions, in instrumenting programs for runtime verification,profiling,
and debugging, and in code refactoring.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.3.3 [Programming Languages]:
Language Constructs and Features; D.3.4 [Programming Lan-
guages]: Processors; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—invariants

General Terms Design, Languages, Performance

1. Introduction
Transformation systems are important for program manipulations
such as optimization, instrumentation, and refactoring. Even though
not always stated explicitly, these transformations are always driven
by invariants, such as maintaining them for optimization, checking
them for verification, and so on. Generally, we use invariants to
refer to properties that hold during program executions.

For example, for optimization, to quickly return the size ofa
collection of data, at all program points where elements areadded
or removed, we must add code that updates the variable that holds
the size of the collection; the invariant is that the value ofthe vari-
able equals the size of the collection. For another example,for in-
strumentation, to check that memory is managed correctly, at any
program point where a reference is added to or removed from an
object, we can insert code that checks whether the variable that
holds the reference count of the object is incremented or decre-
mented appropriately, and if not, prints an error message and stops
the program; the invariant is that either the variable equals the num-
ber of references or the error message is printed and the program
is stopped. For yet another example, for refactoring, for any code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

fragment that is the same as the body of a given method modulo a
substitution for the parameters of the method, we can replace the
code fragment with a call to the given method with arguments ob-
tained from the substitution; the invariant is that each call to the
method is equivalent to the corresponding replaced code fragment.

This paper describes a language and framework that allow coor-
dinated transformations driven by invariants to be specified declar-
atively, as invariant rules, and applied automatically. This allows
important program design and development knowledge to be cap-
tured explicitly and reused from application to application. The lan-
guage also allows explicit specification of cost considerations. The
framework supports incremental maintenance of invariantsfor pro-
gram design and optimization, as well as general transformations
for instrumentation, refactoring, and other purposes. Thedeclara-
tive nature also allows alternative implementations to be used, such
as static vs. dynamic checks, based on efficiency trade-offs.

We have developed two implementations, InvTS/py and In-
vTS/c, for transforming Python and C programs, respectively. The
systems have been used successfully in many applications, includ-
ing generating efficient implementations from clear and modu-
lar specifications [Liu et al. 2005], instrumentation for profiling,
runtime invariant checking [Gorbovitski et al. 2008a], anddebug-
ging [Gorbovitski et al. 2008b], as well as code refactoringduring
the implementation of InvTS/py. We describe experiments showing
the efficiency and effectiveness of InvTS/py and InvTS/c forthese
applications.

There is a large amount of work on program transformation
languages and systems, including more than a decade of work on
aspect-oriented programming, as discussed in Section 7. Coordi-
nated transformations for maintaining invariants were implemented
as early as 20 or 30 years ago and recently for incrementalization,
runtime invariant checking, and query-based debugging. This paper
is the first complete and precise description of such a powerful lan-
guage, its different usages and the key ideas that connect them, the
main choices in implementations, and extensive experiments with
applications.

2. Invariant-driven transformations
Transformations for optimization and verification, as wellas refac-
toring, instrumentation, and debugging, are all driven by invariants.
We motivateinvariant rulesas a concrete form for capturing pro-
gram design knowledge as invariant-driven transformations.

Maintaining invariants for design and optimization. What pro-
grams do on data can be classified as, or decomposed into, two
kinds of operations: queries and updates, where queries compute
results using data, and updates change data. For a simple example,
consider theLinkedList class in Java 1.5. It has a query method
size that returns the number of elements in the list, 12 other query
methods that return elements, element indices, etc., and 15update
methods that add or remove elements.

How to implement the queries and updates can vary dramati-
cally. In a straightforward implementation, each method performs

its respective query or update. In theLinkedList example,size
can iterate over the list, and each update method can simply do
its addition or removal. This is clear and modular, but can have
poor performance when such queries are performed frequently.
A sophisticated implementation can maintain the results ofthese
queries—i.e., maintain the invariants that the values retrieved from
certain variables equal the results of these queries—incrementally
with respect to updates to the query parameters—i.e., variables or
fields on which the queries depend. In theLinkedList example,
the result ofsize may be maintained in a field and simply be re-
turned when queried. This is efficient, but no longer clear and mod-
ular, because each of the 15 update methods must also update this
field appropriately.

This conflict between clarity and efficiency is much worse for
complex systems with many queries and updates, where queries
may involve objects from different classes, and updates maybe
spread in many classes. A query can be affected by many updates,
and an update can affect many queries. It poses a serious challenge
to consider all the complex dependencies and trade-offs anddecide
where and how to maintain what invariants. The resulting code can
be significantly more difficult to understand.

To resolve this conflict, it is desirable to automatically transform
straightforward yet inefficient implementations into efficient yet
sophisticated implementations, and further to express these trans-
formations with explicit invariants and cost considerations. We ex-
press these transformations declaratively usinginvariant rules. An
invariant rule expresses how to maintain an invariant undera set of
possible updates, together with the costs of the query, updates, and
maintenance.

For example, the rule in Figure 1 expresses that, to maintain
the invariant thatr equals the size of sets when every update that
may affect the size ofs is assignings a new empty set, adding an
elementx to s, or removing an elementx from s, the respective
maintenance is assigningr the value 0, incrementingr by 1 if x
is not ins before the addition, or decrementingr by 1 if x is in s
before the removal; the cost of the original query is linear in the size
of s, and the cost of each update and maintenance is asymptotically
the same as the cost of evaluatingx, denotedcost(x), assuming
that the set operations used in the rule take constant time. Thus, the

inv r = s.size() O(|s|)

at s = new set() O(1)
do r = 0 O(1)

at s.add(x) O(cost(x))
do before

if not s.contains(x):
r = r+1

O(cost(x))

at s.del(x) O(cost(x))
do before

if s.contains(x):
r = r-1

O(cost(x))

Figure 1. An invariant rule for set size.

linear-timesize query can be replaced by a constant-time retrieval
from r at no extra asymptotic cost in maintenance, regardless of the
frequencies of queries and updates. The precise language constructs
and cost models are described in Section 3.

Expressing coordinated incremental maintenance of invariants
using invariant rules is high-level and declarative, making the trans-
formations easier to understand, use, extend, and verify. The se-
mantics of the rules encapsulates many low-level, procedural de-
tails. For example, all updates to the parameters of a query must
be detected, one way or another, even in the presence of object
aliasing, and maintenance must be performed at all updates.This

contrasts with traditional use of individual rewrite ruleswith pro-
grammed strategies for tree walking, program analysis, andrule
applications.

Invariant rules can be put in a library and reused from applica-
tion to application, as opposed to being re-discovered and manually
embedded in scattered places in each application program. While
it may be extremely difficult to manually maintain multiple scat-
tered invariants under many scattered updates correctly, doing so
by automatically applying a library of invariant rules is easy.

General program transformations. While invariant rules are de-
signed to express coordinated transformations that together pre-
serve invariants, they can also express general program transfor-
mations that do not require such strong coordination. Nevertheless,
it is important to note that general program transformations also
preserve various kinds of invariants, albeit generally done implic-
itly. Invariant rules can help make the invariants more explicit, and
help express these transformations more easily and declaratively.
We discuss examples in instrumentation for profiling, monitoring,
and debugging, and in refactoring.

Program instrumentation transforms a program to do additional
logging, checking, etc. It is important for addressing performance,
security, and general correctness issues, by profiling frequencies
of operations, monitoring accesses to data, etc. The invariants are
that the behavior of the involved program fragments is preserved
and the additional logging, checking, etc. are done when certain
conditions hold. For example, to profile the frequencies of queries
and updates, an invariant rule can match the queries and updates
and increment a corresponding counter when a query or updateis
executed; to check a complex invariant efficiently at runtime, an
invariant rule can incrementally maintain the results of expensive
computations in the invariant. These rules can be generatedauto-
matically from the invariant rules for incremental maintenance.

Instrumentation to help debugging, e.g., to log certain kinds of
events, can easily be inserted with invariant rules, similar as with
aspect-oriented programming, for which debugging is a show-case
application. For example, to track where the value of a variable
was last changed to a bad value, an invariant rule can match all
assignments to that variable and appropriately record the program
point when the variable is last assigned the bad value.

Program refactoring generally refers to transformations that im-
prove code quality, e.g., readability, extensibility, or modularity.
Typical examples are renaming variables and turning blocksof
code into subroutines. It is not hard to observe the invariants. For
example, for renaming variables, the invariant is that the value of
the old variable in a desired context always equals that of the new
variable. For introducing subroutines, the invariant is that the orig-
inal block of code is equivalent to the introduced subroutine call.
Preservation of semantics is a nontrivial issue in refactoring. For
example, when one wants to rename variablei to interest in
a certain scope, occurrences ofi in other scopes should not be
changed.

3. Invariant rule language
An invariant rule declaratively specifies that an invariantholds if
all updates to the values that the invariant depends on are certain
kinds of updates, and the corresponding maintenance work isper-
formed at each update. It can also specify additional conditions on
the query and updates, and additional declarations needed for the
maintenance.

3.1 Core form of invariant rules

The core form of an invariant rule is:
inv r = query
(at update
do maint)+

(1)

wherequery , update , andmaint are patterns for matching queries,
updates, and maintenance operations, respectively. The “+” indi-
cates that there may be one or more instances of the clause.

The semantics of an invariant rule is: if a query in a program
matches thequery pattern, and every update to the parameters
of the query in the program matches at least one of theupdate
patterns, then a fresh variable instantiatingr is declared in the
program, occurrences of the query are replaced with uses of that
variable, and at every update to the parameters of the query,the
maintenance corresponding to the matchingupdate patterns is
inserted. Note that if a rule does not handle some updates to the
parameters of a query in a program, then the rule does not apply to
the query and its updates. We say that a rulepreservesthe invariant
r = query , if (1) r = query holds after initialization ofr and (2)
for each pair ofupdate andmaint , if r = query holds, then it
still holds immediately after execution ofupdate andmaint , for
all instances ofquery , update , andmaint . (We do not consider
concurrency here.) It is easy to see that preserving an invariant is a
property that can be checked individually for each rule.

In the core form above, the maintenance work corresponding
to an update can be done either before or after the update; this
is correct if the maintenance code does not use the values of the
variables assigned to by the update. To accommodate maintenance
code that uses the values of those variables, the do-clause may have
the form:

do maint?
(before maint1)?
(after maint2)?

(2)

wheremaint can be done either before or after the update,maint1
must be done before, andmaint2 must be done after. A “?” after a
clause indicates that the clause may be omitted. We allow a do-
clause to be omitted if no maintenance needs to be done at an
update.

To facilitate cost consideration, an invariant rule may specify
the costs of the query, updates, and maintenance, by including a
cost-clause of the following form after each of them:

cost cost (3)

In this paper, we use asymptotic running time as the cost model, and
we assume that standard hashing is used for set and map operations.
Other cost models that consider running time with constant factors,
space usage, etc. could also be used. For ease of reading, we omit
the keywordcostand align the costs to the right.

For example, the invariant rule in Figure 1 has the core form.

Meta variables and meta functions.Variables in the rules in italic
font aremeta variables.

A meta variable in a query or update pattern may match any pro-
gram syntax element, except for restrictions imposed by thespecific
contexts of the variable in the pattern. For example, in the rule for
set size in Figure 1,s andx are meta variables in the query and up-
date patterns;s = new set() restrictss to match an lvalue, and
s.add(x) restrictsx to match an expression. Standard substitution
is used to replace meta variables in patterns with matched program
text. Other parts of patterns that are displayed in teletypefont match
program text exactly.

The scope of a meta variable in the query pattern is the entire
rule. The scope of a meta variable that appears in an update pattern
but not in the query pattern is the update clause and the correspond-
ing maintenance clause. When matching occurrences of a namein
the program, the scoping rules of the program being transformed
are followed.

Meta variables not in the query and update patterns, including
r, denote distinct names not used for other purposes in the program
being transformed in the scopes of these names. Such a name can
be introduced in any scope that contains all uses of the name in
maintenance, but for program clarity and modularity, by default,

it is introduced in the smallest of these scopes. In particular, if the
query and all updates and maintenance are in the same method,then
r is instantiated with a new local variable of that method; otherwise,
r is instantiated with a new field of the class that contains thequery.

Finally, functions may be used in rules to help specify appli-
cation conditions and form new program text, as discussed inthe
following subsections. They are calledmeta functionsand are dis-
played in normal font.

Aliasing. A meta variable can match different expressions that are
aliases for the same object. For example, ifs1 ands2 are aliases
at an updates2.add(x2), then this update affects the invariant
r1 = s1.size(), just likes1.add(x1) does.

3.2 Conditions on query and updates

Conditions that must be satisfied by a query or an update matched
by the inv-clause or an at-clause of a rule can be specified by an
if-clause of the following form immediately after the inv-clause or
at-clause, respectively:

if condition+ (4)

where condition is a Boolean expression in the invariant rule
language.

For example, a rule may maintain the size of a set only if ele-
ments of the set are of a certain type. This condition involves only
the matched query, and may be specified in an if-clause immedi-
ately after the inv-clause. For another example, a rule may main-
tain the size of a set only if all updates to the set appear in the
same class as the query. This condition involves also matched up-
dates, and may be specified in an if-clause immediately aftereach
at-clause.

Conditions may use meta variables in the query and update
patterns. For convenience, the special meta variablequery refers
to the matched query, and the special meta variableupdate under
an at-clause refers to the matched update.

Conditions may also use meta functions that provide syntactic
and semantic information from program analysis; this paperdoes
not restrict the kinds of analysis that can be used. In particular, meta
functionalias(x, y), which returns whetherx andy may alias each
other, is used in detecting all updates that may affect a query result.
It may also be used explicitly in conditions. It can be computed
using the analysis in [Gorbovitski et al. 2009].

Conditions may impose strong static requirements. For exam-
ple, Figure 2 shows another invariant rule for set size, where meta
function isin(x, s) returns whetherx is a member of sets if this
can be determined statically, and unknown otherwise. This rule ap-

inv r = s.size() O(|s|)

at s = new set() O(1)
do r = 0 O(1)

at s.add(x) O(cost(x))
if isin(x, s) = false
do r = r+1 O(1)

at s.del(x) O(cost(x))
if isin(x, s) = true
do r = r-1 O(1)

Figure 2. Another invariant rule for set size.

plies if the membership conditions are statically known to hold at
all updates to the query, so the maintenance does not need to test
membership at runtime, and the maintenance can be done either
before or after the update.

3.3 Declarations

An invariant rule may specify declarations needed for maintenance.
Declarations used by maintenance under multiple at-clauses or a
single at-clause may be specified by a de-clause of the following
form after the inv-clause or the corresponding at-clause, respec-
tively:

de ((in scope :)? declaration+)+ (5)

wherescope is a scope expression, defined below, in the invari-
ant rule language that evaluates to a scope in the program being
transformed, and eachdeclaration is a declaration in the language
of the program being transformed and may contain meta variables
and meta functions.

For example, a rule for maintaining set size may declarer to
be a field in the class that contains the set size query in a de-clause
after the inv-clause. For another example, a rule for maintaining the
minimum of a set under element addition and deletion may declare
a heap data structure in a de-clause after the inv-clause, and may
use a de-clause after an at-clause to declare local variables used
only within the maintenance code under that at-clause.

A scope expression has the form (kind name)+, or global,
where kind is method, class, package, or file, and name
evaluates to the name of a method, class, package, or file. For
transforming programs in a given language, only the kinds allowed
in that language may be used. An omitted kind uses as the default
value the scope of the query or update pattern in the inv- or at-
clause preceding the de-clause. For example, rules for transforming
Java or Python programs may use the scope expression

class myset method add

to indicate that local variables should be declared in method add of
classmyset of the default package. Specification of the scope for
a list of declarations is optional. Recall from Section 3.1 that, by
default, the smallest suitable scope is used.

If the variable, field, method, class, or package name in a de-
clause is a meta variable not used in the query and update patterns,
it denotes a distinct name not used for other purposes in the given
program. Variables declared with global scope may be read and
written from everywhere in the program; the implementationde-
pends on the language of the program being transformed. Notethat
multiple maintenance clauses, and even multiple rules, mayrefer to
the same declarations simply by using program text without meta
variables.

In examples, we assume the language being transformed uses
declarations of the formname : type . For example, to declarer of
typeint to be global, one may specify

de in global : r: int

and to declarer of typeint in the class that contains the set size
query, one may specify

de in class class(query) : r: int

where meta functionclass(p) returns the enclosing class of the
program syntax elementp.

3.4 General form of invariant rules

In general, work can also be done at the query to help with in-
cremental maintenance. Such work can be specified as a do-clause
below the inv-clause. For example, to incrementally maintain the
average of a set of numbers, one may incrementally maintain the
sum and the count, and do a division right before the query, instead
of doing the division immediately after the maintenance of sum and
count.

We also allow the inv-clause to specify an equality between
any two program syntax elements, not just a variable and a query
expression. This is convenient, for example, if a query result is

stored in a part of a data structure instead of a variable: theinvariant
may equate an expression that retrieves the query result with the
query.

Finally, in the do-clause after an at-clause, the keywordinstead
can be used to indicate that an update matched by the update pattern
should be replaced with the maintenance. This is useful whenthe
update needs to be transformed. For example, the rule in Figure 1
has a problem:x can match any expression, not only a variable,
and that expression will be evaluated both in the original call to
add or del and in the maintenance; this is incorrect ifx has side-
effects. We can fix this problem, and reduce the maintenance cost
to O(1), by either adding a condition restrictingx to match only
variables, or replacing the do-clause underadd with the following
and changing the do-clause underdel similarly:

do instead
v = x
if not s.contains(v):

r = r+1
s.add(v)

In summary, the general form of an invariant rule is:

inv result = computation
(if condition+)?
(de ((in scope :)? declaration+)+)?
(do maint? (before maint)? (after maint)?)?
(at update
(if condition+)?
(de ((in scope :)? declaration+)+)?
(do maint? (before maint)? (after maint)?

(instead maint)?)?)+

(6)

wherecomputation , result , update , declaration , andmaint are
program text in the language of the program being transformed,
except that they may contain meta variables and meta functions;
and condition and scope are a Boolean expression and a scope
expression, respectively, in the invariant rule language.Cost may
be specified forcomputation , result , and eachupdate andmaint .
In this paper, we indicate meta variables with italic font, indicate
meta functions with normal font, and indicate program text with
teletype font. In our implementation, we indicate meta variables
with a preceding “$”, indicate meta functions with a preceding
“$$”, and indicate program text, possibly containing meta variables
and meta functions, with a pair of curly braces following a language
indicator, for examplepy{$s.size()} for program text in Python
containing meta variable$s.

4. Additional invariant rule examples
We give additional examples that show different usages of invariant
rules and discuss developing and verifying invariant rules.

Incrementally maintaining join queries. The rule in Figure 3
maintains the result of the query

{r: r in ROLES | (s,r) in SR, ((op,o),r) in PR}

under initialization and element addition and deletion forsets
ROLES, SR, and PR. Given these sets and the values ofs, op,
and o, the query includes a roler from ROLES in the result set
if the session-role pair(s,r) is in SR, and the permission-role pair
((op,o),r), where an operation-object pair is called a permis-
sion, is inPR. The query is used for theCheckAccess(s,op,o)
operation in RBAC [ANSI INCITS 2004]. Its incremental mainte-
nance was presented in pieces previously [Liu et al. 2006] without
an expressive invariant rule language.CheckAccess is the most
frequently used and most time critical operation in RBAC.

The incremental maintenance uses a mapMapSP2R that maps
any given values ofs, op, ando to the desired set of roles. The

inv-clause says to retrieve the query result from the map using
MapSP2R[(s,op,o]), and it takesO(1) time. Two additional
maps are maintained:SRMapR2S is the inverse map ofSR, and
PRMapR2P is the inverse map ofPR.

In the cost-clauses,SR21 denotes the maximum number of
elements in the first component ofSR for any element in the second
component ofSR, and similarly forPR21. Applying this rule allows
the query to be done in minimum time, at the expense of more
expensive updates.

inv MapSP2R[(s,op,o)] =
{r: r in ROLES | (s,r) in SR, ((op,o),r) in PR}

O(1)

O(|ROLES|)

at ROLES = new set() O(1)
do MapSP2R = new map() O(1)

at SR = new set() O(1)
do MapSP2R = new map()

SRMapR2S = new map()
O(1)

at PR = new set() O(1)
do MapSP2R = new map()

PRMapR2P = new map()
O(1)

at ROLES.add(r) O(1)
do for s in SRMapR2S[r]:

for (op,o) in PRMapR2P[r]:
if not MapSP2R[(s,op,o)].contains(r):

MapSP2R[(s,op,o)].add(r)

O(SR21*PR21)

at SR.add((s,r)) O(1)
do if ROLES.contains(r):

for (op,o) in PRMapR2P[r]:
if not MapSP2R[(s,op,o)].contains(r):

MapSP2R[(s,op,o)].add(r)
SRMapR2S[r].add(s)

O(PR21)

at PR.add(((op,o),r)) O(1)
do if ROLES.contains(r):

for s in SRMapR2S[r]:
if not MapSP2R[(s,op,o)].contains(r):

MapSP2R[(s,op,o)].add(r)
PRMapR2P[r].add((op,o))

O(SR21)

...//deletion is the same as addition, except
//withoutnot in conditions and withadd replaced bydel

Figure 3. An invariant rule for a join query.

Profiling for frequency analysis. We describe how to automat-
ically extend any invariant rule to generate instrumentation for
profiling the frequencies of queries and updates, which helps jus-
tify incremental maintenance of the invariant. The extension has
three steps: (1) under the inv-clause, declare a methodinccount,
in a packageinvtslog, that takes two parameters—the location
of the query andnull when a query is matched, and the loca-
tions of the corresponding query and the update when an update
is matched—and counts the number of executions of each query
and of each update for each query, (2) under the inv-clause, in-
sert into the do-clause (creating the do-clause first if it does not
exist) a call invtslog.inccount(loc(query), null), where
meta function loc(p) returns the unique location of the program
syntax elementp, and (3) under each at-clause, insert into the
do-clause (creating the do-clause first if it does not exist)a call
invtslog.inccount(loc(query), loc(update)).

For example, the invariant rule in Figure 1 is transformed into
the rule in Figure 4.

inv r = s.size() O(|s|)
de in package invtslog:

inccount(query,update):
... //increment count ofquery-update pair

do invtslog.inccount(loc(query), null)

at s = new set() O(1)
do ...//as before

invtslog.inccount(loc(query), loc(update))
O(1)

at s.add(x) O(cost(x))
do ...//as before

invtslog.inccount(loc(query), loc(update))
O(cost(x))

at s.del(x) O(cost(x))
do ...//as before

invtslog.inccount(loc(query), loc(update))
O(cost(x))

Figure 4. An invariant rule for profiling set size and updates.

Runtime invariant checking and debugging. We describe how
to check invariants of the formmyr = myquery at given program
points, wheremyr is a program variable, andmyquery is an in-
stance of aquery that can be incrementally maintained by an in-
variant rule. We simply insertx = myquery at the given program
points, wherex is a fresh dummy variable, and apply a variant of
the rule for incrementally maintainingr = query . The variant can
be generated automatically: it takes all the clauses for incremen-
tally maintainingr = query and adds under the inv-clause an
if-clause that equates the query pattern with the querymyquery
and a do-clause that checks whethermyr equalsr at thequery ,
and does error handling if the check fails. For example, to check
myr = mys.size(), we can generate the rule in Figure 5, which
simply inserts the if-, de-, and do-clauses under the inv-clause,
starting with the invariant rule for set size in Figure 1 or Fig-
ure 2. Applying such a rule transforms the program to incremen-
tally maintain the result ofmyquery in an instantiatedr and check
thatmyr equals the instantiatedr. This avoids computingmyquery
from scratch every time the program checks the invariant. Itis a
significant saving if the query in the invariant is expensive, and the
program points to be checked are in a loop, as when checking loop
invariants.

inv r = s.size()
if s = mys
de error(): print ’size computed incorrectly’
do if myr != r: error()
... //the rest is the same as in the rules for set size

Figure 5. An invariant rule for runtime verification of set size.

If assertions are supported in programs, then one can simply
insert the assertionmyr = myquery at the given program points and
keep only the if-clause, not the de- and do-clauses, under the inv-
clause.

The method for runtime invariant checking can be extended
to facilitate debugging, by extending the do-clauses in therules
to insert bookkeeping code that helps determine the sourcesof
invariant violations or other bugs.

Refactoring. As a small example of refactoring, the invariant rule
in Figure 6 renames a variable fromold to new if the declaration of
old is at a specified location, where meta functiondecl(x) returns
the program syntax element that declaresx. The renaming respects
scoping rules automatically. Conceptually, the rule matches all
updates usingupdate and does nothing at all of them, since no
update affects the invariant. An efficient implementation simply
omits matching of updates.

inv new = old
if loc(decl(old)) = ...//some specific location
at update

Figure 6. An invariant rule for variable renaming.

Developing and verifying invariant rules. Some rules are easy to
write, such as local rewrite rules for various commonly usedtrans-
formations, but rules for maintaining invariants involving more
complicated queries are nontrivial to develop. Even thoughinvari-
ant rules make it easier to express invariant-driven transformations,
without systematic methods for deriving invariant rules that are
guaranteed to correctly maintain invariants, unverified manually
written rules might not preserve invariants.

There are methods to automatically derive large classes of in-
variant rules [Liu et al. 2006, Rothamel and Liu 2008], including
rules for join queries, which are well known to be difficult, and
queries over objects, which are even harder because of aliasing be-
tween object references. Still, some invariant rules will be devel-
oped manually, for example, to capture new data structures.

It is important to verify the correctness of invariant rules, es-
pecially ones developed manually. We believe that three features
make invariant rules much easier to verify than invariants in pro-
grams, even though the exact methods for verification are open for
study. First, an invariant rule specifies an invariant with all updates
of certain kinds that may affect the invariant and the correspond-
ing maintenance together. Second, an invariant rule may explicitly
specify applicability conditions. Third, an invariant rule is usually
much smaller than the programs to which it is applied.

We have developed and used invariant rules for a variety of ap-
plications. Figure 7 in Section 6 gives examples for which wehave
used invariant rules for optimization, runtime verification, debug-
ging, refactoring, etc. The rules for optimization by incrementally
maintaining queries over objects and sets were developed manu-
ally, following a systematic method [Liu et al. 2006, Rothamel and
Liu 2008]; such rules are difficult to develop without the systematic
method. The method is still being extended but has partly been au-
tomated for runtime invariant checking [Gorbovitski et al.2008a]
and query-based debugging [Gorbovitski et al. 2008b]. Other rules
were easy to develop manually.

5. Implementation methods
We describe how to apply an individual invariant rule and ensure
applicability conditions before giving the overall algorithm.

Application of an invariant rule. An invariant rule applies if (1)
a computation in the program matches thequery pattern (and more
generally, thecomputation pattern), and the conditions after the
inv-clause hold, (2) every update to the parameters of the query
matches at least oneupdate pattern, and the conditions after that at-
clause hold, and (3) for optimization, the following cost condition
holds for each matched updateu, wherecostq and freqq , costu

andfrequ, andmcostu are the cost and frequency for the matched
queryq, the cost and frequency for updateu, and the cost of the
maintenance associated with updateu, respectively:

mcostu ≤ costu or∑
u wheremcostu>costu

mcostu × frequ < costq × freqq

If frequency information is not available from analysis or profiling,
the second disjunct can safely be ignored.

Transformations for applying the rule are as follows, whereall
meta variables in thequery andupdate patterns are instantiated
according to the matches above.

1. Add declarations associated with thequery and eachupdate ,
with eachdeclaration in its respectivescope if specified, or in

the smallest suitable scope that contains all uses of the declared
name otherwise. Adeclarationhas no effect if the declaration
it specifies already appears in the program.

2. Insert maintenance operations at thequery and eachupdate ,
with eachmaint before, after, or in place of thequery or
update as specified, or after theupdate if the position is not
specified.

3. Replace each occurrence of thequery with result .

A rule applies only if it matches a query and all updates in the
program that may affect the query; transformations for the matched
query and updates are applied together or not at all. It can be
proved by induction that application of an invariant-preserving rule
preserves the invariant in the program.

Static analyses and dynamic checks.Application of an invariant
rule requires nontrivial program analyses, including alias analysis
and type analysis that help identify updates to query parameters,
and for optimization, analysis of frequencies and costs of the query,
updates, and maintenance. We refine the analyses described in [Liu
et al. 2005]. Specifically, we use the alias analysis and typeanalysis
in [Gorbovitski et al. 2009], and we use both heuristic complexity
analysis and profiling to help determine costs and frequencies. The
alias analysis is based on a flow-sensitive analysis [Choi etal. 1993]
improved to an optimal running time algorithm [Goyal 2005],and
then extended to analyze object-oriented and dynamic features pre-
cisely with trace sensitivity, a powerful form of context sensitivity.

The declarative nature of invariant rules allows their applica-
bility conditions to be checked statically whenever possible and
dynamically otherwise. In particular, due to aliasing and dynamic
features, it may be difficult to statically determine precisely which
updates affect the parameters of a query. Our static analysis con-
servatively identifies and matches all possible updates to the query
parameters and, for updates that are possible but not definite, our
transformation guards the inserted maintenance code with arun-
time check of the statically uncertain conditions. For example, if
the query iss1.size(), and s2 may be aliased tos1 at a call
s2.add(...), then maintenance code guarded withif s2==s1 is
inserted at that update.

Reversely, when conditions in the maintenance code in a rule
can be evaluated statically, they can be eliminated from theinserted
maintenance code. For example, for using the invariant rulein Fig-
ure 1, when the conditions about set membership can be checked
statically, we eliminate them from the inserted maintenance code.
In the best case, all the membership tests can be eliminated,yield-
ing the same effect as using the invariant rule in Figure 2. This opti-
mization method allows our framework to obtain the most efficient
implementation possible with any given static analyses.

Thus, implementations of invariant rules can make trade-offs
between efficiency of the analysis and transformation and effi-
ciency of the transformed program.

Overall transformation algorithm and complexity. The over-
all algorithm repeatedly applies rules to queries in the given pro-
gram until no rule applies. The given program is first analyzed for
queries, updates, and other information, and then re-analyzed after
each rule application. Our system caches analysis results to reduce
the cost of repeated analysis.

For efficiency, a ruler1 is considered before a ruler2 if applying
r1 can maker2 applicable, i.e., the maintenance pattern inr1

contains parts that match the query and update patterns inr2, and
not vice versa. Other than this heuristic, our implementation applies
rules in the order they are encountered.

Incremental re-analysis after applying each rule is implemented
by logging each piece of analysis results in a custom-written
database as the analysis proceeds, and reusing valid analysis re-
sults after the program is changed. Valid analysis results are those

obtained before the first changed node in the program and those
at program nodes not reachable from the changed nodes. The
database supports efficient lookups and insertions. Each insertion
has a timestamp. A log-structured merge tree is used to support
efficient lookups using keys and time ranges. This data structure is
implemented on two storage tiers: memory and disk. Evictionof
entries from memory to disk uses an LRU algorithm. Additionally,
the last analysis results for a procedure or method at each call node
are cached. Every time a procedure or method is to be analyzedat a
call node, the current analysis results for all parameters (including
global variables) of the call are compared with the last analysis
results for these parameters, and if they are all the same, then the
last analysis results for the procedure or method at the callnode are
reused.

Altogether, at mostO(M) rule applications occur, whereM
is the total number of matched queries and subqueries in the pro-
gram being transformed. Each application requires patternmatch-
ing, analysis or re-analysis, and transformation of the program. The
most expensive step in our implementation is the alias analysis.
Caching and reuse of analysis results is critical and yieldsup to a
100-fold speedup in rule applications.

6. Applications and experiments
We have developed InvTS/py and InvTS/c, two implementations of
InvTL, the invariant rule language described above, for applying
invariant-driven transformations for Python and GCC C, respec-
tively. Both systems are built on a common base, called InvTS.

We chose Python and GCC C for several reasons. Python is par-
ticularly well suited for expressing complex queries over objects
and sets, which are commonly used in higher-level, clear andmod-
ular specifications. GCC C is primarily used for efficient imple-
mentations of system software, nearly the opposite of Python, and
for which there is significant need for program monitoring, debug-
ging, etc. We believe that an implementation for Java would require
about the same effort as for Python and much less than for GCC C.

InvTS base consists of about 30000 lines of Python, with about
2500 lines for the rule application engine and 27500 lines for the
parser generator and other libraries. InvTS/py consists ofanother
about 16500 lines of Python, with about 3000 lines for the Python
frontend and 13000 lines for Python program analysis. InvTS/c
consists of about 4000 lines of Python and 9000 lines of C. Even
though InvTS/c has fewer lines of code than InvTS/py, it is signifi-
cantly harder to implement, because C is lower-level. InvTS/py also
includes an analysis visualizer of about 6000 lines.

InvTS/py uses and extends PyPy, a Python implementation in
Python, primarily for type analysis and for part of visualization.
InvTS/py uses a precise may-alias analysis and does incremental
re-analysis, as described above.

InvTS/c uses a plugin architecture for GCC 4.2 [Callanan et al.
2007] that provides access to all information available to GCC
during its GIMPLE optimization phase. Powerful type analysis
and an optimal-time interprocedural flow-sensitive may-alias anal-
ysis [Gorbovitski et al. 2009] are implemented, and are madeincre-
mental during the transformations to improve efficiency. The alias
analysis results for C are still very imprecise, so some examples re-
quire many runtime aliasing checks to determine whether updates
are to query parameters.

6.1 Applications

We used InvTL and InvTS for a wide range of applications. Fig-
ure 7 summarizes 24 examples grouped by whether the purpose is
optimization, runtime verification, debugging, other instrumenta-
tion, refactoring, or other transformations.

Optimization. Our main applications for optimization are gen-
erating efficient implementations from clear specifications for the

Use Application Program Lang
O Core RBAC core RBAC spec py

Constrained RBAC constrained RBAC specpy
Graph Reachability test program py
Join Query test program py
Wireless Protocol test program py
Set Size Demo test program py

V SMB Valid Ticket pysmb py
SMB Repeated Auth pysmb py
BitTorrent Peer No Dup BitTorrent Peer py
BitTorrent Peer No ModBitTorrent Peer py
BitTorrent No MismatchBitTorrent Mainline py
InvTS No Shared Child InvTS py
InvTS Own Child InvTS py

D DOM Valid Parent lxml benchmarks py
DOM No Shared Child lxml benchmarks py
DOM Exception Cause lxml benchmarks py
FTP Client nftp py

I File Access Profiling test program py
Reference Counting test program py
Memory Coverage ViM 7.0 c

R InvTS Refactoring file Rule.py in InvTS py
Variable Renaming ViM 7.0 c

T InvTS/py Test Suite test program suite py
InvTS/c Test Suite test program suite c

O: optimization. V: runtime verification. D: debugging.
I: instrumentation. R: refactoring. T: other transformation.

Figure 7. Example applications.

ANSI standard for role-based access control (RBAC) [ANSI IN-
CITS 2004]. Core RBAC defines core functionalities on permis-
sions, users, sessions, roles, and relations among these sets; its effi-
cient implementation was studied previously [Liu et al. 2006]. Con-
strained RBAC extends Core RBAC with static and dynamic sep-
aration of duty constraints. Core RBAC contains only flat queries;
Constrained RBAC adds nested queries. Graph Reachability,Join
Query, and Wireless Protocol are small but nontrivial examples
for generating efficient implementations from clear specifications;
these examples are from [Liu et al. 2005]. Set Size Demo uses the
example rule in Figure 1. The largest and most complex applica-
tion, Constrained RBAC, is new.

We also generated rules and did runtime invariant checking
and frequency analysis for Core RBAC and other examples; the
results are not reported separately because they are similar to those
reported.

Runtime verification. pysmb is an SMB client in Python. SMB
Valid Ticket checks that all packets sent are authenticated. SMB
Repeated Auth checks that authentication does not occur more
often than necessary. BitTorrent is a peer-to-peer file distribution
protocol. BitTorrent Peer is the core functionality of BitTorrent
Mainline, containing only the code for running an instance of
a BitTorrent peer, without various interfaces, internationalization,
DHT (the distributed hash table feature), and tracker. BitTorrent
Peer No Dup works on BitTorrent Peer and checks that the same
data is not received from multiple sources. BitTorrent PeerNo
Mod checks that packets are not modified in transit. BitTorrent No
Mismatch works on BitTorrent Mainline and checks that all packets
sent are received and all packets received are sent. InvTS NoShared
Child checks that no two parents refer to the same child in an AST
in InvTS. InvTS No Own Child checks that no node is a child of
itself. The smaller applications are from [Gorbovitski et al. 2008a].
The largest application, on BitTorrent Mainline, is new.

Example Application #inv #at size max min #query #update before after time
Core RBAC 14 78 613 97 9 24 248 201 798 23
Constrained RBAC 21 114 1137 124 9 33 752 381 2183 34
Graph Reachability 1 2 14 14 14 1 1 60 83 14
Join Query 1 2 23 23 23 1 3 69 113 13
Wireless Protocol 1 3 19 19 19 1 3 66 148 14
Set Size Demo 1 3 15 15 15 1 3 5 10 12
SMB Valid Ticket 1 5 134 134 134 1 13 1100 1251 33
SMB Repeated Auth 1 8 250 250 250 1 7 1100 1203 38
BitTorrent Peer No Dup 1 4 132 132 132 1 31 9871 11835 98
BitTorrent Peer No Mod 1 10 332 332 332 1 90 9871 13468 109
BitTorrent No Mismatch 1 8 174 174 174 2 19 29450 29707 391
InvTS No Shared Child 1 2 46 46 46 1 413 12510 21651 312
InvTS No Own Child 1 2 53 53 53 1 412 12510 22513 387
DOM Valid Parent 1 4 96 96 96 1 37 1193 1344 43
DOM No Shared Child 1 5 141 141 141 1 43 1193 1472 38
DOM Exception Cause 1 8 271 271 271 1 81 1193 2135 53
FTP Client 1 12 303 303 303 1 27 891 1184 31
File Access Profiling 1 3 43 43 43 2 5 163 209 18
Reference Counting 1 3 28 28 28 105 850 1379 2349 32
InvTS Refactoring 6 0 132 39 3 19 0 3931 6118 21
InvTS/py Test Suite 12 13 160 17 3 27 117 630 1674 49
Memory Coverage 2 2 59 30 29 4590 1900 305969 319617 1168
Variable Renaming 4 0 12 3 3 13 0 305969 305969 1071
InvTS/c Test Suite 12 7 81 13 3 12 19 190 351 183

#inv: number of rules used, i.e., number of inv-clauses
#at: total number of update patterns, i.e., number of at-clauses
size: size of rules, in lines of code
max: maximum size of a rule (lines of code)
min: minimum size of a rule (lines of code)

#query: number of queries matched in program
#update: number of updates handled in program
before: program size before transformation (lines of code)
after: program size after transformation (lines of code)
time: running time of InvTS on transforming the program (seconds)

Figure 8. Results of applications of invariant rules.

Debugging. lxml is a Python XML library; for its benchmark pro-
grams, Dom Valid Parent checks that each element in the XML
DOM tree has a parent whose child field refers back to the element,
and Dom No Shared Child checks that no two XML elements have
a common child element. Dom Exception Cause detects sources
of an index-out-of-bound exception. FTP Client finds the location
where anls command is executed when acwd command is pend-
ing; this detected a real bug in an FTP client program, nftp. These
examples are from [Gorbovitski et al. 2008b].

Other instrumentation. File Access Profiling looks for a specific
file access pattern. It demonstrates that one can easily express ac-
cess patterns of interest in InvTL, much like in an aspect-oriented
programming system. Reference Counting emulates a reference-
counting garbage collector, by incrementally maintainingreference
counts. It uses static analysis in InvTS to avoid keeping refer-
ence counts for values of primitive types, and thus avoid severe
performance degradation usually associated with explicitreference
counting. Memory Coverage instruments ViM, a text editor, to in-
tercept all calls tomalloc in order to monitor memory access pat-
terns. It is challenging becausemalloc may be called indirectly
through function pointers aliased tomalloc.

Refactoring. InvTS Refactoring was a real experience in the im-
plementation of InvTS. The goal was to rewrite InvTS, factoring
out the Python language module from InvTS core to form InvTS/py.
The rules mainly did variable and class renaming, and methodex-
traction, and turned a tedious manual task into an easy one. Variable
Renaming is for C and involves small rules that rename only local,
only global, only static, or only global static variables. These rules
are easy to write because InvTL takes scope of variables intoac-

count. Implementing such renaming using, say, Perl scripts, would
be significantly harder and very error-prone.

Other transformations. InvTS/py and InvTS/c Test Suites consist
of miscellaneous transformations where transformed programs are
checked automatically against known results for testing purposes.
The transformations insert code that prints certain strings when
certain code patterns are matched. These strings are then counted
for simple tests.

6.2 Experiments

We ran InvTS/py and InvTS/c on a large sample of rules and pro-
grams. Extensive blackbox testing was performed to confirm cor-
rectness of the transformed programs. For optimization applica-
tions, we obtained drastic performance improvements for all expen-
sive operations in the new, larger example of Constrained RBAC,
similar as for all the previous examples [Liu et al. 2005, 2006].
For runtime verification, debugging, and other instrumentation ap-
plications, we observed low runtime overhead (14-92%) for most
examples [Gorbovitski et al. 2008a,b], except for a factor of 23
for Memory Coverage for ViM, because the imprecision of alias
analysis caused extensive insertion of runtime checks thatdisabled
otherwise possible optimizations. For all refactoring andtesting ap-
plications, the transformed programs were exactly as desired.

We discuss measurements that help show the effectiveness and
efficiency of InvTL and InvTS and the results of the two new,
largest applications so far. The first set of measurements ison the
size of invariant rules and size increase in the transformedPython
and C programs, as well as the running time of InvTS. The other
measurements are on the results of using InvTS for optimization of
Constrained RBAC and for improvements of BitTorrent when there

is a slight increase in communication errors. The transformations
were run under Windows Vista 64-bit Edition on a quad-core Core
2 Duo Q6600 3.2 GHz with 8 GB of memory, of which around
6.3GB was free when running our programs, and were run under
Python 2.5.1.

Figure 8 reports information about the rules and the transformed
programs, as well as running times of the transformations. For
most examples, the size of the rules is much smaller than the
increase in size in the transformed program. Core RBAC and a
few others are exceptions because each rule matched relatively
few queries and updates, only code in de- and do-clauses, not
inv-, if-, and at-clauses, are inserted in the transformed program,
and some generated rules contain at-clauses that do not occur in
the program. Note, however, that invariant rules can be reused; in
fact, all of the rules for Core RBAC are reused for Constrained
RBAC. More importantly, each rule specifies in one place how to
maintain an invariant under all possible updates, rather than having
the maintenance code scattered throughout the program.

For optimization applications, we obtained drastic performance
improvements for all the examples. Measurements for several of the
examples were reported in [Liu et al. 2005], and more detailed de-
scription and measurements for Core RBAC were reported in [Liu
et al. 2006]. Similar speedups are obtained for ConstrainedRBAC
operations. Figure 9 compares the performance of a fully incremen-
talized implementation of Constrained RBAC with an implemen-
tation partially incrementalized on only expensive queries in Core
RBAC, the latter as done previously [Liu et al. 2006]. The measure-
ments were taken under the same set up as for running the transfor-
mations. The graph shows the running times ofCreateSession
andAddActiveRole, two important operations that involve check-
ing of constraints. Clearly, the curves do not increase for fully in-
crementalized implementations but increase linearly withthe num-
ber of sessions for partially incrementalized implementations; fully
incrementalizedCreateSession even decreases in running time
because its complexity has the number of roles per session asa
factor.

10 20 30 40 50 60 70 80 90 100
Number of Sessions

0

2

4

6

8

10

12

14

16

T
im

e
 (

S
)

Partially Incrementalized CreateSession
Fully Incrementalized CreateSession
Partially Incrementalized AddActiveRole
Fully Incrementalized AddActiveRole

Figure 9. Running times, in seconds, of RBAC operations as num-
ber of sessions increases, with 100 roles, 100,000 repetitions.

For runtime invariant checking, we instrumented a BitTorrent
implementation and checked it for potential errors. One of the in-
variants we checked, for BitTorrent Peer No Mod, is that a packet
sent from one peer is received by another peer without a change in
the payload. We first experimented with centralized checking [Gor-
bovitski et al. 2008a], by creating a server to which peers send

summaries (containing hashes of the payloads) of the packets they
send and receive. These summaries are collected on the server. A
query is used to compute the set of violations, i.e., the set of pack-
ets received that have a different hash of the payload than the cor-
responding packet sent. The invariant we check is that this set is
empty, and all violations are reported. Naive checking of this in-
variant has a formidable cost because it uses a join query over all
the summaries sent and received. We use an invariant rule to spec-
ify how to incrementally maintain the query result as each sum-
mary is received, reporting violations incrementally too.The incre-
mental maintenance in the invariant rule is complex and is auto-
matically generated. Our new experiments, for BitTorrent No Mis-
match, use distributed checking, by having each peer send a hash of
each packet it sent or received to every peer in the peer horizon (the
set of peers known to a given peer, usually much smaller than the
peer swarm, the set of all peers involved in sending a file). This is
much more scalable and more fault-tolerant. Again, we need invari-
ant rules to make the checking efficient. Furthermore, we used ad-
ditional invariant rules to instrument BitTorrent to discredit senders
and receivers that cause violations. This has some dramaticresults.
For example, we experimented with transferring a 1GB file from a
server to 29 peers, over 10MBit links.

1. Ideally, if the server is not saturated, it should take about 1100
seconds (TCP overhead is about 10%), with a total bandwidth
consumption of about 29GB. However, without BitTorrent, usu-
ally the server is saturated; in our experiment, it can take 50-60
times as long.

2. Using BitTorrent with no error, it takes 2393 seconds witha
total bandwidth of 31.9GB; that is, just over 2 times as long,
and a small percentage increase in total bandwidth.

3. Using BitTorrent with 10% error rate on 3 of the 29 peers, it
takes 4856 seconds with a total bandwidth of 91.6GB; that is,
4+ times as long, and a factor of 3+ in total bandwidth.

4. Using BitTorrent with the same error rate as in case 3, but
using our discrediting scheme, it takes 2975 seconds with a total
bandwidth of 34.2GB; that is, 2-3 times as long, and another
small percentage increase in total bandwidth.

BitTorrent did so badly in case 3 because its error handling is
done at the chunk level, much coarser-grain than the packet level
at which we check invariants and trigger discrediting. BitTorrent
usually works well because the error rate is usually extremely
small, but in the case of slightly more errors (in our examples, 10%
error in 10% of the peers, so 1% error total), from malicious attack
or otherwise, its performance becomes significantly worse.

7. Related work and conclusion
There is a vast amount of research on program transformation
languages and systems, as described in a number of surveys,
e.g., [Partsch and Steinbrüggen 1983, Visser 2005], and collected
on the web [ProgramTransformationOrg]. Eminent systems in-
clude, e.g., APTS [Paige 1994], KIDS [Smith 1990], CIP [Bauer
et al. 1989], and Stratego [Bravenboer et al. 2008].

Compared to previous frameworks and systems, the most im-
portant and unique characteristics of invariant rules are the declar-
ative specification of coordinated transformations explicitly driven
by invariants and the generality of the language. With the excep-
tion of APTS [Paige 1994], previous frameworks and systems
use rewrite rules together with rewriting procedures or strate-
gies [Visser 2005], where invariants, updates, and cost consider-
ations are programmed more implicitly. These systems do give
programmers more control over the transformation process,which
is similar to the advantage of procedural languages compared to
declarative languages. Our InvTS implementation overcomes effi-

ciency problems that are typical for declarative languagesby using
efficient analyses and caching and reusing analysis results.

APTS [Paige 1994] supports specification of transformations
explicitly around invariants, for finite differencing [Paige and
Koenig 1982], but it applies only to a simple language with set ex-
pressions and statements in straight-line code. InvTL is much more
general and powerful in specifying transformations of full-fledged
programming languages, including object-oriented languages.
InvTS has been applied to many applications of different sizes,
while APTS was applied only to a few small SETL programs.

Many program query languages and tools have been developed,
e.g., ASTLOG [Crew 1997], Partiqle [Goldsmith et al. 2005],and
PQL [Martin et al. 2005]. Some of these languages, such as PQL,
allow matches, analyses, and replacements throughout the program,
much like in program transformation systems. However, these sys-
tems do not provide automatic detection of updates to invariants.

Aspect-oriented programming (AOP) [Kiczales et al. 1997,
2001] also allows code for cross-cutting concerns, such as debug-
ging, to be specified separately and inserted automaticallyat a set of
matched program points. Connections between AOP and invariants
are studied specially [Smith 2008, 2007]. Compared with exist-
ing AOP languages, InvTL has an explicit definition of invariant-
preserving rules, to facilitate formal verification; it allows explicit
specification of costs, to assist effective optimization; and it pro-
vides powerful static analysis, especially for automatically detect-
ing updates, to coordinate transformations at queries and updates
and minimize runtime overhead.

A limited version of InvTL has been used for incrementaliza-
tion [Liu et al. 2005], and variants of it have been used for run-
time invariant checking [Gorbovitski et al. 2008a] and query-based
debugging [Gorbovitski et al. 2008b]. Besides their different ap-
plications, contributions of those works to the general framework
are analysis of updates to query parameters [Liu et al. 2005], au-
tomatic generation of incremental maintenance code for a class of
queries [Gorbovitski et al. 2008a], and efficient analyses [Gorbovit-
ski et al. 2008b]. The current paper gives the first complete and pre-
cise definition of the rule language, with more powerful clauses for
invariants, conditions, declarations, and maintenance than before.
It also studies, for the first time, connections to invariants among
a wider range of applications, and it explains the overall imple-
mentation that puts all the analyses and transformations together.
Furthermore, it evaluates the effectiveness and efficiencyof the im-
plementations with applications and experiments on a set of24 pro-
grams, including the new largest example for optimization and the
new largest example for runtime invariant checking.

We believe that invariant rules capture the design knowledge
underlying a more general framework for program development.
Consider the three core components of an invariant rule: theinvari-
ant, updates, and maintenance. Invariant maintenance for program
design and optimization corresponds to being given the invariant
and updates and wanting the maintenance. Invariant discovery for
program understanding and reverse engineering corresponds to be-
ing given the updates and maintenance and wanting the invariant.
Invariant checking for validation and verification corresponds to
being given all three of the invariant, updates, and maintenance and
wanting to check.

Future work includes methods and tools for verification of in-
variant rules, possible enrichment of the invariant rule language,
and additional usages of invariant rules.

References
ANSI INCITS. Role-Based Access Control. ANSI INCITS 359-2004,

American National Standards Institute, International Committee for In-
formation Technology Standards, Feb. 2004.

Friedrich Ludwig Bauer, Bernhard Möller, Helmut Partsch,and Peter Pep-
per. Formal program construction by transformations—Computer-aided,
intuition-guided programming.IEEE Transactions on Software Engi-
neering, 15(2):165–180, Feb. 1989.

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, andEelco Visser.
Stratego/xt 0.17. a language and toolset for program transformation.
Science of Computer Programming, 72(1-2):52–70, 2008.

Sean Callanan, Daniel J. Dean, and Erez Zadok. Extending GCCwith
modular GIMPLE optimizations. InProceedings of the 2007 GCC
Developers’ Summit, July 2007.

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side effects.
In Conference Record of the 20th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 232–245, 1993.

Roger F. Crew. ASTLOG: A language for examining abstract syntax trees.
In Proceedings of the Conference on Domain-Specific Languages, pages
229–242, Oct. 1997.

Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken. Relational
queries over program traces. InProceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 385–402, 2005.

Michael Gorbovitski, Tom Rothamel, Yanhong A. Liu, and Scott D. Stoller.
Efficient runtime invariant checking: A framework and case study. In
Proceedings of the 6th Sixth International Workshop on Dynamic Anal-
ysis, pages 43–49, July 2008a.

Michael Gorbovitski, K. Tuncay Tekle, Tom Rothamel, Scott D. Stoller,
and Yanhong A. Liu. Analysis and transformations for efficient query-
based debugging. InProceedings of the 8th IEEE International Working
Conference on Source Code Analysis and Manipulation, pages 174–183,
Sept. 2008b.

Michael Gorbovitski, Tuncay Tekle, and Yanhong A. Liu. Assessing alias
analysis for object-oriented and dynamic languages. Technical Report
DAR 09-44, Computer Science Department, SUNY Stony Brook, 2009.

Deepak Goyal. Transformational derivation of an improved alias analysis
algorithm. Higher-Order and Symbolic Computation, 18(1-2):15–49,
June 2005.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. InProceedings of
the 15th European Conference on Object-Oriented Programming, pages
327–353, June 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented program-
ming. In Proceedings of the 11th Europeen Conference on Object-
Oriented Programming, pages 220–242, 1997.

Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel, and
Yanni E. Liu. Incrementalization across object abstraction. In Proceed-
ings of the 20th ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 473–486, Oct. 2005.

Yanhong A. Liu, Chen Wang, Michael Gorbovitski, Tom Rothamel, Yongxi
Cheng, Yingchao Zhao, and Jing Zhang. Core role-based access control:
Efficient implementations by transformations. InProceedings of the
ACM SIGPLAN 2006 Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, pages 112–120, Jan. 2006.

Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding appli-
cation errors and security flaws using PQL: a program query language.
In Proceedings of the 20th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 365–383, Oct.
2005.

Robert Paige. Viewing a program transformation system at work. In Pro-
ceedings of Joint 6th International Conference on Programming Lan-
guages: Implementations, Logics and Programs and 4th International
Conference on Algebraic and Logic Programming, 1994.

Robert Paige and Shaye Koenig. Finite differencing of computable expres-
sions. ACM Transactions on Programming Languages and Systems, 4
(3):402–454, July 1982.

Helmut Partsch and Ralf Steinbrüggen. Program transformation systems.
ACM Computing Surveys, 15(3):199–236, Sept. 1983.

ProgramTransformationOrg. The Program Transformation Wiki.
http://www.program-transformation.org.

Tom Rothamel and Yanhong A. Liu. Generating incremental implemen-
tations of object-set queries. InProceedings of the 7th International
Conference on Generative Programming and Component Engineering,
pages 55–66, Oct. 2008.

Douglas R. Smith. KIDS: A semiautomatic program development system.
IEEE Transactions on Software Engineering, 16(9):1024–1043, 1990.

Douglas R. Smith. Requirement enforcement by transformation automata.
In Proceedings of the 6th Workshop on Foundations of Aspect-Oriented
Languages, pages 5–14, 2007.

Douglas R. Smith. Aspects as invariants. In O. Danvy, H. Mairson, F Hen-
glein, and A. Pettorossi, editors,Automatic Program Development: A
Tribute to Robert Paige, pages 270–286. Springer, 2008.

Eelco Visser. A survey of strategies in rule-based program transformation
systems.Journal of Symbolic Computation, 40(1):831–873, 2005.

