A Language and Framework for Invariant-Driven Transformat ions

Yanhong A. Liu

Michael Gorbovitski

Scott D. Stoller

Computer Science Department, State University of New Yofktany Brook, Stony Brook, NY 11794
{liu,mickg,stoller}@cs.sunysb.edu

Abstract

This paper describes a language and framework that allovdizoo
nated transformations driven by invariants to be specifesdada-
tively, as invariant rules, and applied automatically. Tiaenework
supports incremental maintenance of invariants for progtesign
and optimization, as well as general transformations fetrinmmen-
tation, refactoring, and other purposes. This paper alsoritees
our implementations for transforming Python and C progrants
experiments with successful applications of the systengeirer-
ating efficient implementations from clear and modular fjmec
tions, in instrumenting programs for runtime verificatipmfiling,
and debugging, and in code refactoring.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.Sdftware Engineer-
ing]: Coding Tools and Techniques; D.2.Sdftware Engineer-
ing]: Testing and Debugging; D.3.3fogramming Languagés

Language Constructs and Features; D.P4oframming Lan-

guage§ Processors; F.3.1pgics and Meanings of Prografs
Specifying and Verifying and Reasoning about Programs-ariants

General Terms Design, Languages, Performance

1. Introduction

Transformation systems are important for program manijuia
such as optimization, instrumentation, and refactoringrEhough
not always stated explicitly, these transformations axags driven
by invariants, such as maintaining them for optimizatidreaking
them for verification, and so on. Generally, we use invasidot
refer to properties that hold during program executions.

For example, for optimization, to quickly return the sizeaof
collection of data, at all program points where elementsadded
or removed, we must add code that updates the variable thds ho
the size of the collection; the invariant is that the valu¢hef vari-
able equals the size of the collection. For another exanfipién-
strumentation, to check that memory is managed corredtny
program point where a reference is added to or removed from an
object, we can insert code that checks whether the varifale t
holds the reference count of the object is incremented oredec
mented appropriately, and if not, prints an error messagestops
the program; the invariant is that either the variable exjtre@ num-
ber of references or the error message is printed and thegmnog
is stopped. For yet another example, for refactoring, for @ode

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE'09, October 4-5, 2009, Denver, Colorado, USA.
Copyright(© 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

fragment that is the same as the body of a given method modulo a
substitution for the parameters of the method, we can replae
code fragment with a call to the given method with argumebts o
tained from the substitution; the invariant is that each wathe
method is equivalent to the corresponding replaced codgnieat.

This paper describes a language and framework that allow coo
dinated transformations driven by invariants to be spetiieclar-
atively, as invariant rules, and applied automaticallyisTallows
important program design and development knowledge to pe ca
tured explicitly and reused from application to applicati®he lan-
guage also allows explicit specification of cost considenst The
framework supports incremental maintenance of invaritmtpro-
gram design and optimization, as well as general transfiboma
for instrumentation, refactoring, and other purposes. déara-
tive nature also allows alternative implementations tosmdyusuch
as static vs. dynamic checks, based on efficiency trade-offs

We have developed two implementations, InvTS/py and In-
VvTS/c, for transforming Python and C programs, respedctiviie
systems have been used successfully in many applicatiusiad:
ing generating efficient implementations from clear and mod
lar specifications [Liu et al. 2005], instrumentation foofiing,
runtime invariant checking [Gorbovitski et al. 2008a], atebug-
ging [Gorbovitski et al. 2008b], as well as code refactoiging
the implementation of InvTS/py. We describe experiments\sing
the efficiency and effectiveness of InvTS/py and InvTS/ctfase
applications.

There is a large amount of work on program transformation
languages and systems, including more than a decade of work o
aspect-oriented programming, as discussed in Section gtdEo
nated transformations for maintaining invariants werelemgnted
as early as 20 or 30 years ago and recently for incremertializa
runtime invariant checking, and query-based debugginig Fdper
is the first complete and precise description of such a pavizfi-
guage, its different usages and the key ideas that conrexat, the
main choices in implementations, and extensive experisneith
applications.

2. Invariant-driven transformations

Transformations for optimization and verification, as veallrefac-
toring, instrumentation, and debugging, are all drivenrwariants.
We motivateinvariant rulesas a concrete form for capturing pro-
gram design knowledge as invariant-driven transformation

Maintaining invariants for design and optimization. What pro-
grams do on data can be classified as, or decomposed into, two
kinds of operations: queries and updates, where queriepwtem
results using data, and updates change data. For a simplpkxa
consider the.inkedList class in Java 1.5. It has a query method
size that returns the number of elements in the list, 12 othenguer
methods that return elements, element indices, etc., angdate
methods that add or remove elements.

How to implement the queries and updates can vary dramati-
cally. In a straightforward implementation, each methodqrens

its respective query or update. In thénkedList example size contrasts with traditional use of individual rewrite rulegh pro-
can iterate over the list, and each update method can sinply d grammed strategies for tree walking, program analysis, ratel
its addition or removal. This is clear and modular, but cameha applications.

poor performance when such queries are performed frequentl Invariant rules can be put in a library and reused from applic
A sophisticated implementation can maintain the resultthese tion to application, as opposed to being re-discovered aartlialy
queries—i.e., maintain the invariants that the valuesenatd from embedded in scattered places in each application programie W
certain variables equal the results of these queries—imenéally it may be extremely difficult to manually maintain multipleas-
with respect to updates to the query parameters—i.e.,hlegar tered invariants under many scattered updates correcizggdso
fields on which the queries depend. In thimkedList example, by automatically applying a library of invariant rules isga

the result ofsize may be maintained in a field and simply be re-
turned when queried. This is efficient, but no longer clearmod-
ular, because each of the 15 update methods must also upiate t
field appropriately.

This conflict between clarity and efficiency is much worse for
complex systems with many queries and updates, where querie
may involve objects from different classes, and updates by
spread in many classes. A query can be affected by many gdate
and an update can affect many queries. It poses a seriousraal
to consider all the complex dependencies and trade-offslacide
where and how to maintain what invariants. The resultingeamah
be significantly more difficult to understand.

To resolve this conflict, it is desirable to automaticalbrtsform
straightforward yet inefficient implementations into effiat yet
sophisticated implementations, and further to expressetirns-
formations with explicit invariants and cost considerasioWe ex-
press these transformations declaratively usingriant rules An
invariant rule expresses how to maintain an invariant uadsst of
possible updates, together with the costs of the query,tepdand
maintenance.

For example, the rule in Figure 1 expresses that, to maintain
the invariant that equals the size of setwhen every update that
may affect the size of is assignings a new empty set, adding an
elementz to s, or removing an element from s, the respective
maintenance is assigningthe value 0, incrementing by 1 if
is not ins before the addition, or decrementindy 1 if z isin s
before the removal; the cost of the original query is lineahe size
of s, and the cost of each update and maintenance is asympiotical
the same as the cost of evaluatingdenotedcost(z), assuming
that the set operations used in the rule take constant times, The

General program transformations. While invariant rules are de-
signed to express coordinated transformations that tegedte-
serve invariants, they can also express general prograrmafdra
mations that do not require such strong coordination. Nbe&rss,
it is important to note that general program transformatiaiso
preserve various kinds of invariants, albeit generallyedonplic-
itly. Invariant rules can help make the invariants more ieipland
help express these transformations more easily and deetdya
We discuss examples in instrumentation for profiling, mamiig,
and debugging, and in refactoring.

Program instrumentation transforms a program to do adtditio
logging, checking, etc. It is important for addressing perfance,
security, and general correctness issues, by profilinguéedes
of operations, monitoring accesses to data, etc. The avgriare
that the behavior of the involved program fragments is prese
and the additional logging, checking, etc. are done whetaicer
conditions hold. For example, to profile the frequenciesusrigs
and updates, an invariant rule can match the queries andagda
and increment a corresponding counter when a query or upslate
executed; to check a complex invariant efficiently at ruetiran
invariant rule can incrementally maintain the results gensive
computations in the invariant. These rules can be geneeattd
matically from the invariant rules for incremental mairdgane.

Instrumentation to help debugging, e.g., to log certair&iof
events, can easily be inserted with invariant rules, sinaitawith
aspect-oriented programming, for which debugging is a stase
application. For example, to track where the value of a tdeia
was last changed to a bad value, an invariant rule can maltch al
assignments to that variable and appropriately record ribgram
point when the variable is last assigned the bad value.

inv r=s.size() O(Js]) Program refactoring generally refers to transformatitias im-
prove code quality, e.g., readability, extensibility, opdnlarity.
at s = new set() o(1) Typical examples are renaming variables and turning blaxfks
dor =0 O(1) code into subroutines. It is not hard to observe the invésidfor
at s.add(z) O(cost(z)) example, fpr rer!aming \(ariables, the invariant is that thieier of
do l:;efore the.old varlaple ina o!eswed context always eq.uals.thatmhr.tw
.) variable. For introducing subroutines, the invariant &t the orig-
if not s.contains(z): O(cost(z)) inal block of code is equivalent to the introduced subraaitall.
ro=ril Preservation of semantics is a nontrivial issue in refaegor-or
at s.del(z) O(cost(x)) exampl_e, when one wants to rename variabl® interest in
do before a certain scope, occurrences fin other scopes should not be
if s.contains(z): O(cost(x)) changed.
r=r-1

3. Invariant rule language

An invariant rule declaratively specifies that an invariaotds if
linear-timesize query can be replaced by a constant-time retrieval all updates to the values that the invariant depends on atairce
fromr at no extra asymptotic cost in maintenance, regardlesgofth Kinds of updates, and the corresponding maintenance waqréris
and cost models are described in Section 3. the.query and updates, and additional declarations needeatef

Expressing coordinated incremental maintenance of iantsi maintenance.
using invariant rules is high-level and declarative, mghime trans-
formations easier to understand, use, extend, and vetifg. SE-

Figure 1. An invariant rule for set size.

3.1 Core form of invariant rules

mantics of the rules encapsulates many low-level, proegdie- The core form of an invariant rule is:
tails. For example, all updates to the parameters of a queist m inv r = query
be detected, one way or another, even in the presence oftobjec (at update (1)

aliasing, and maintenance must be performed at all updates. do maint)+

wherequery, update, andmaint are patterns for matching queries,
updates, and maintenance operations, respectively. Fhéntli-
cates that there may be one or more instances of the clause.

The semantics of an invariant rule is: if a query in a program
matches thequery pattern, and every update to the parameters
of the query in the program matches at least one ofuthéute
patterns, then a fresh variable instantiatings declared in the
program, occurrences of the query are replaced with usdsaof t
variable, and at every update to the parameters of the qtheary,
maintenance corresponding to the matchinglate patterns is
inserted. Note that if a rule does not handle some updatdseto t
parameters of a query in a program, then the rule does noy &ppl
the query and its updates. We say that a pukserveshe invariant
r = query, if (1) r = query holds after initialization of- and (2)
for each pair ofupdate and maint, if r = query holds, then it
still holds immediately after execution afpdate and maint, for
all instances ofguery, update, and maint. (We do not consider
concurrency here.) It is easy to see that preserving aniamtas a
property that can be checked individually for each rule.

In the core form above, the maintenance work corresponding
to an update can be done either before or after the update; thi
is correct if the maintenance code does not use the valudseof t
variables assigned to by the update. To accommodate mainten
code that uses the values of those variables, the do-claagbane
the form:

do maint?
(before maint,)? 2
(after mainta)?
wheremaint can be done either before or after the updateinit;
must be done before, andaint, must be done after. A “?” after a
clause indicates that the clause may be omitted. We allow-a do

clause to be omitted if no maintenance needs to be done at an

update.

To facilitate cost consideration, an invariant rule maycifye
the costs of the query, updates, and maintenance, by ingjuali
cost-clause of the following form after each of them:

cost cost

@)

In this paper, we use asymptotic running time as the cost maade
we assume that standard hashing is used for set and mapiopgrat
Other cost models that consider running time with constatofs,
space usage, etc. could also be used. For ease of readingitve o
the keywordcostand align the costs to the right.

For example, the invariant rule in Figure 1 has the core form.

Meta variables and meta functions.Variables in the rules in italic
font aremeta variables

A meta variable in a query or update pattern may match any pro-
gram syntax element, except for restrictions imposed bgpleeific
contexts of the variable in the pattern. For example, in the for
set size in Figure 1s andz are meta variables in the query and up-
date patternss = new set() restrictss to match an Ivalue, and
s.add (x) restrictse to match an expression. Standard substitution
is used to replace meta variables in patterns with matchegtam
text. Other parts of patterns that are displayed in teletypematch
program text exactly.

The scope of a meta variable in the query pattern is the entire
rule. The scope of a meta variable that appears in an updaésrpa
but not in the query pattern is the update clause and thespmmnel-
ing maintenance clause. When matching occurrences of a ilfame
the program, the scoping rules of the program being tramsfdr
are followed.

Meta variables not in the query and update patterns, inogudi
r, denote distinct names not used for other purposes in tiggaomo

it is introduced in the smallest of these scopes. In padicif the
query and all updates and maintenance are in the same m#thand,
r is instantiated with a new local variable of that methodeof¥ise,

r is instantiated with a new field of the class that containgjtrexy.

Finally, functions may be used in rules to help specify appli

cation conditions and form new program text, as discussetlein
following subsections. They are calleteta functionsand are dis-
played in normal font.

Aliasing. A meta variable can match different expressions that are
aliases for the same object. For examplesiifands2 are aliases

at an updates2.add(x2), then this update affects the invariant
r1 = sl.size(), justlikes1.add (x1) does.

3.2 Conditions on query and updates

Conditions that must be satisfied by a query or an update ®atch
by the inv-clause or an at-clause of a rule can be specifiechby a
if-clause of the following form immediately after the inlaase or
at-clause, respectively:

if condition+

(4)

where condition is a Boolean expression in the invariant rule
language.

For example, a rule may maintain the size of a set only if ele-
ments of the set are of a certain type. This condition in®iwely
the matched query, and may be specified in an if-clause immedi
ately after the inv-clause. For another example, a rule mayn-m
tain the size of a set only if all updates to the set appeareén th
same class as the query. This condition involves also matape
dates, and may be specified in an if-clause immediately aéteh
at-clause.

Conditions may use meta variables in the query and update
patterns. For convenience, the special meta varigitey refers
to the matched query, and the special meta variapdlete under
an at-clause refers to the matched update.

Conditions may also use meta functions that provide syistact
and semantic information from program analysis; this pajoes
not restrict the kinds of analysis that can be used. In pdaicmeta
functionalias(x, y), which returns whethet andy may alias each
other, is used in detecting all updates that may affect ayqesult.

It may also be used explicitly in conditions. It can be conegut
using the analysis in [Gorbovitski et al. 2009].

Conditions may impose strong static requirements. For exam
ple, Figure 2 shows another invariant rule for set size, eimeeta
functionisin(z, s) returns whether: is a member of set if this
can be determined statically, and unknown otherwise. Thésap-

inv r =s.size() O(ls|)

at s = new set() o(1)
dor =0 0(1)

at s.add(zx) O(cost(x))
if isin(z,s) = false

do r = r+1 o(1)

at s.del(x) O(cost(x))
if isin(z,s) = true

do r = r-1 0(1)

Figure 2. Another invariant rule for set size.

plies if the membership conditions are statically known étdhat

being transformed in the scopes of these names. Such a name caall updates to the query, so the maintenance does not needtto t

be introduced in any scope that contains all uses of the name i
maintenance, but for program clarity and modularity, byadéf

membership at runtime, and the maintenance can be done eithe
before or after the update.

3.3 Declarations

An invariant rule may specify declarations needed for nesiance.
Declarations used by maintenance under multiple at-ctaose
single at-clause may be specified by a de-clause of the finifpw
form after the inv-clause or the corresponding at-clausspec-
tively:

de ((in scope :)? declaration+)+ (5)

where scope is a scope expression, defined below, in the invari-
ant rule language that evaluates to a scope in the prograng bei
transformed, and eacleclaration is a declaration in the language
of the program being transformed and may contain meta Jagab
and meta functions.

For example, a rule for maintaining set size may declate
be a field in the class that contains the set size query in dadse
after the inv-clause. For another example, a rule for maintg the
minimum of a set under element addition and deletion mayadecl
a heap data structure in a de-clause after the inv-clausemary
use a de-clause after an at-clause to declare local vesiaisied
only within the maintenance code under that at-clause.

A scope expression has the foritd name)+, or global,
where kind is method, class, package, or file, and name

evaluates to the name of a method, class, package, or file. For

transforming programs in a given language, only the kintiswvald

in that language may be used. An omitted kind uses as theltefau
value the scope of the query or update pattern in the inv--or at
clause preceding the de-clause. For example, rules fasfoaming
Java or Python programs may use the scope expression

class myset method add

to indicate that local variables should be declared in n#dd of
classmyset of the default package. Specification of the scope for
a list of declarations is optional. Recall from Section $atf by
default, the smallest suitable scope is used.

If the variable, field, method, class, or package name in a de-

clause is a meta variable not used in the query and updatmatt

it denotes a distinct name not used for other purposes initea g
program. Variables declared with global scope may be read an
written from everywhere in the program; the implementatien
pends on the language of the program being transformed.tNatte
multiple maintenance clauses, and even multiple rules,nefay to

the same declarations simply by using program text withoetam
variables.

stored in a part of a data structure instead of a variableéntiagiant
may equate an expression that retrieves the query restittiagt
query.

Finally, in the do-clause after an at-clause, the keywartead
can be used to indicate that an update matched by the updtgmpa
should be replaced with the maintenance. This is useful wihen
update needs to be transformed. For example, the rule ind-igu
has a problemz can match any expression, not only a variable,
and that expression will be evaluated both in the origindl tca
add or del and in the maintenance; this is incorrectzihas side-
effects. We can fix this problem, and reduce the maintenaose c
to O(1), by either adding a condition restrictingto match only
variables, or replacing the do-clause undéd with the following
and changing the do-clause unded similarly:

do instead
v =T
if not s.contains(vw):
r = r+l
s.add(v)

In summary, the general form of an invariant rule is:

inv result = computation
(if condition+)?
(de ((in scope :)? declaration+)+)?
(do maint? (before maint)? (after maint)?)?
(at update
(if condition+)?
(de ((in scope :)? declaration+)+)?
(do maint? (before maint)? (after maint)?
(instead maint)?)?)+

(6)

wherecomputation, result, update, declaration, andmaint are
program text in the language of the program being transfdrme
except that they may contain meta variables and meta furstio
and condition and scope are a Boolean expression and a scope
expression, respectively, in the invariant rule langudgest may
be specified foromputation, result, and eaclupdate andmaint.

In this paper, we indicate meta variables with italic fontlicate
meta functions with normal font, and indicate program tekhw
teletype font. In our implementation, we indicate meta alles
with a preceding $”, indicate meta functions with a preceding
“$$”, and indicate program text, possibly containing metaalalgs
and meta functions, with a pair of curly braces followingrgaage

In examples, we assume the language being transformed usesndicator, for exampley{$s.size ()} for program text in Python

declarations of the formame : type. For example, to declaneof
type int to be global, one may specify
de inglobal : r: int
and to declare of type int in the class that contains the set size
query, one may specify
de in class class(query) : r: int

where meta functiorelass(p) returns the enclosing class of the
program syntax elemept

3.4 General form of invariant rules

In general, work can also be done at the query to help with in-
cremental maintenance. Such work can be specified as a dgecla
below the inv-clause. For example, to incrementally mantae
average of a set of numbers, one may incrementally maintain t
sum and the count, and do a division right before the quesiead
of doing the division immediately after the maintenanceurhsand
count.

We also allow the inv-clause to specify an equality between
any two program syntax elements, not just a variable and eyque
expression. This is convenient, for example, if a query Itésu

containing meta variablés.

4. Additional invariant rule examples

We give additional examples that show different usagesvafriant
rules and discuss developing and verifying invariant rules

Incrementally maintaining join queries. The rule in Figure 3
maintains the result of the query

{r: r in ROLES | (s,r) in SR, ((op,0),r) in PR}

under initialization and element addition and deletion $ets
ROLES, SR, and PR. Given these sets and the values spfop,
and o, the query includes a role from ROLES in the result set
if the session-role paifs,r) is in SR, and the permission-role pair
((op,0),r), where an operation-object pair is called a permis-
sion, is inPR. The query is used for théheckAccess(s,op,0)
operation in RBAC [ANSI INCITS 2004]. Its incremental masnat
nance was presented in pieces previously [Liu et al. 2006]out
an expressive invariant rule languag®eckAccess is the most
frequently used and most time critical operation in RBAC.

The incremental maintenance uses a mMapSP2R that maps
any given values 0§, op, ando to the desired set of roles. The

inv-clause says to retrieve the query result from the mapgusi inv r = s.size() O([s])

MapSP2R[(s,0p,0]), and it takesO(1) time. Two additional de in package invtslog:
maps are maintainediRMapR2sS is the inverse map ofR, and inccount (query,update) :
PRMapR2P is the inverse map dfR. ... //increment count ofuery-update pair

In the cost-clausesSR21 denotes the maximum number of do invtslog.inccount (loc(query), null)
elements in the first component & for any element in the second

component ofR, and similarly forPR21. Applying this rule allows at s = new set() o(1)
the query to be done in minimum time, at the expense of more d© - --//asbefore o)
expensive updates. invtslog.inccount (loc(query), loc(update))
at s.add(zx) O(cost(x))
inv MapSP2R[(s,op,0)] = 0(1) do ...//as before O(cost(x))
{r: r in ROLES | (s,r) in SR, ((op,0),r) in PR} invtslog.inccount (loc(query), loc(update))
O(|ROLES|)
at s.del(x) O(cost(x))
at ROLES = new set() O(1) do ...//as before O(cost(x))
do MapSP2R = new map() o(1) invtslog.inccount (loc(query), loc(update))
at SR = new set() o(1) Figure 4. An invariant rule for profiling set size and updates.
do MapSP2R = new map() o(1)
SRMapR2S = new map()

Runtime invariant checking and debugging. We describe how
at PR = new set() o(1 to check invariants of the formyr = myquery at given program
do MapSP2R = new map() o(1) points, wheremyr is a program variable, anglyquery is an in-

PRMapR2P = new map() stance of aguery that can be incrementally maintained by an in-
at ROLES.add(r) o(1) variant rule. We simply inser:t=myqu_ery at the given program
do for s in SRMapR2S[r]: O(SR21+PR21) points, wherex is a fresh dummy variable, and apply a variant of

the rule for incrementally maintaining= query. The variant can
be generated automatically: it takes all the clauses faemen-
tally maintainingr = query and adds under the inv-clause an
if-clause that equates the query pattern with the qusiyuery

for (op,0) in PRMapR2P[r]:
if not MapSP2R[(s,op,0)].contains(r):
MapSP2R[(s,op,0)].add(r)

at SR.add((s,r)) o(1) and a do-clause that checks whethgt equalsr at the query,
do if ROLES.contains(r): O(PR21) and does error handling if the check fails. For example, &ckh
for (op,o0) in PRMapR2P[r]: myr = mys.size(), we can generate the rule in Figure 5, which
if not MapSP2R[(s,op,0)].contains(r): simply inserts the if-, de-, and do-clauses under the iausz,
MapSP2R[(s,op,0)].add(r) starting with the invariant rule for set size in Figure 1 og+i
SRMapR2S [r] .add(s) ure 2. Applying such a rule transforms the program to increme
tally maintain the result afiyquery in an instantiatea and check
at PR.add(((op,0),r)) o(1) thatmyr equals the instantiate This avoids computingyquery
do if ROLES.contains(r): O(SR21) from scratch every time the program checks the invariarits &
for s in SRMapR2S[r]: significant saving if the query in the invariant is expensied the
if not MapSP2R[(s,op,0)].contains(r): program points to be checked are in a loop, as when checkiq lo
MapSP2R[(s,0p,0)].add(r) invariants.

PRMapR2P [r] .add((op,0))
inv r = s.size()

...//deletion is the same as addition, except if s=nmys
//withoutnot in conditions and wittedd replaced bydel de error(): print ’size computed incorrectly’
do if myr != r: error()

Figure 3. An invariant rule for a join query. . //the rest is the same as in the rules for set size

- .) Figure 5. An invariant rule for runtime verification of set size.
Profiling for frequency analysis. We describe how to automat-

ically extend any invariant rule to generate instrumeatatior If assertions are supported in programs, then one can simply

profjling the frequer]cies of queries apd updates, WhiChShJ'“?'& insert the assertioflyr =myquery at the given program points and
tify incremental maintenance of the invariant. The extendias keep only the if-clause, not the de- and do-clauses, uneeinth
three steps: (1) under the inv-clause, declare a methodount, clause. ' ’

in a packageinvtslog, that takes two parameters—the location The method for runtime invariant checking can be extended
of the query andll when a query is matched, and the loca- , tailitate debugging, by extending the do-clauses inrthes
tions of the corresponding query and the update when an @pdat 1, jnsert hookkeeping code that helps determine the sowfes
is matched—and counts the number of executions of each query;. ariant violations or other bugs.
and of each update for each query, (2) under the inv-clawnse, i
sert into the do-clause (creating the do-clause first if #sdoot Refactoring. As a small example of refactoring, the invariant rule
exist) a call invtslog.inccount (loc(query), null), where in Figure 6 renames a variable frasid to new if the declaration of
meta function logg) returns the unique location of the program old is at a specified location, where meta functiel(z) returns
syntax elemenfp, and (3) under each at-clause, insert into the the program syntax element that declare$he renaming respects
do-clause (creating the do-clause first if it does not exstall scoping rules automatically. Conceptually, the rule meschll
invtslog.inccount (loc(query), loc(update)). updates usingipdate and does nothing at all of them, since no
For example, the invariant rule in Figure 1 is transformdd in update affects the invariant. An efficient implementatiagmggy
the rule in Figure 4. omits matching of updates.

inv new = old
if loc(decl(old)) = ...//some specific location
at update

Figure 6. An invariant rule for variable renaming.

Developing and verifying invariant rules. Some rules are easy to
write, such as local rewrite rules for various commonly useds-
formations, but rules for maintaining invariants involgimore
complicated queries are nontrivial to develop. Even thaugri-
ant rules make it easier to express invariant-driven transdtions,
without systematic methods for deriving invariant ruleatthre
guaranteed to correctly maintain invariants, unverifiechuadly
written rules might not preserve invariants.

There are methods to automatically derive large classes-of i
variant rules [Liu et al. 2006, Rothamel and Liu 2008], irthg
rules for join queries, which are well known to be difficulhca
queries over objects, which are even harder because oihglias-
tween object references. Still, some invariant rules wélldevel-
oped manually, for example, to capture new data structures.

It is important to verify the correctness of invariant ryles-
pecially ones developed manually. We believe that thretufea
make invariant rules much easier to verify than invariantgrio-
grams, even though the exact methods for verification are fipe
study. First, an invariant rule specifies an invariant withupdates
of certain kinds that may affect the invariant and the cqroes-
ing maintenance together. Second, an invariant rule maljcakp
specify applicability conditions. Third, an invariant euk usually
much smaller than the programs to which it is applied.

We have developed and used invariant rules for a variety-of ap
plications. Figure 7 in Section 6 gives examples for whichharee
used invariant rules for optimization, runtime verificati@ebug-
ging, refactoring, etc. The rules for optimization by inoentally
maintaining queries over objects and sets were developedi-ma
ally, following a systematic method [Liu et al. 2006, Rotrerand
Liu 2008]; such rules are difficult to develop without theteysatic
method. The method is still being extended but has partin bee
tomated for runtime invariant checking [Gorbovitski et 2008a]
and query-based debugging [Gorbovitski et al. 2008b]. Othles
were easy to develop manually.

5. Implementation methods

We describe how to apply an individual invariant rule andueas
applicability conditions before giving the overall algbr.

Application of an invariant rule. An invariant rule applies if (1)

a computation in the program matches thery pattern (and more
generally, thecomputation pattern), and the conditions after the
inv-clause hold, (2) every update to the parameters of thegygqu
matches at least ongdate pattern, and the conditions after that at-
clause hold, and (3) for optimization, the following coshdiion
holds for each matched updatg where cost, and freq,, cost,
andfreq,,, andmcost,, are the cost and frequency for t%e matched
query g, the cost and frequency for update and the cost of the
maintenance associated with updateespectively:

mcost, < cost, Or

Zu Wheremeosty, > cost,, TTHCOStu X Jreq, < costq X freq,

If frequency information is not available from analysis oofiling,
the second disjunct can safely be ignored.

Transformations for applying the rule are as follows, wralte
meta variables in thguery and update patterns are instantiated
according to the matches above.

1. Add declarations associated with tiieery and eachupdate,
with eachdeclaration in its respectivescope if specified, or in

the smallest suitable scope that contains all uses of tHareec
name otherwise. Aleclarationhas no effect if the declaration
it specifies already appears in the program.

2. Insert maintenance operations at thery and eachupdate,
with each maint before, after, or in place of theuery or
update as specified, or after thepdate if the position is not
specified.

3. Replace each occurrence of theery with result.

A rule applies only if it matches a query and all updates in the
program that may affect the query; transformations for thécimed
query and updates are applied together or not at all. It can be
proved by induction that application of an invariant-pregg rule
preserves the invariant in the program.

Static analyses and dynamic checksApplication of an invariant
rule requires nontrivial program analyses, includingsabaalysis
and type analysis that help identify updates to query patensie
and for optimization, analysis of frequencies and coste®fjuery,
updates, and maintenance. We refine the analyses descrified i
et al. 2005]. Specifically, we use the alias analysis and ayyadysis
in [Gorbovitski et al. 2009], and we use both heuristic coemjty
analysis and profiling to help determine costs and freqasndihe
alias analysis is based on a flow-sensitive analysis [Chadi 093]
improved to an optimal running time algorithm [Goyal 200&fjd
then extended to analyze object-oriented and dynamicriesapre-
cisely with trace sensitivity, a powerful form of contexnsgivity.

The declarative nature of invariant rules allows their agapl
bility conditions to be checked statically whenever padssiénd
dynamically otherwise. In particular, due to aliasing agdamic
features, it may be difficult to statically determine pretjswvhich
updates affect the parameters of a query. Our static asadgsi-
servatively identifies and matches all possible updatelsegtiery
parameters and, for updates that are possible but not @efinit
transformation guards the inserted maintenance code witim-a
time check of the statically uncertain conditions. For egbanif
the query iss1.size(), ands2 may be aliased te1 at a call
s2.add(...), then maintenance code guarded with s2==s1 is
inserted at that update.

Reversely, when conditions in the maintenance code in a rule
can be evaluated statically, they can be eliminated fronmerted
maintenance code. For example, for using the invariantinufég-
ure 1, when the conditions about set membership can be ahecke
statically, we eliminate them from the inserted mainteeacade.
In the best case, all the membership tests can be elimingetd;
ing the same effect as using the invariant rule in Figure 2 dpti-
mization method allows our framework to obtain the most iffit
implementation possible with any given static analyses.

Thus, implementations of invariant rules can make tradie-of
between efficiency of the analysis and transformation afid ef
ciency of the transformed program.

Overall transformation algorithm and complexity. The over-
all algorithm repeatedly applies rules to queries in thegipro-
gram until no rule applies. The given program is first anadlyfoe
queries, updates, and other information, and then re-aedlgfter
each rule application. Our system caches analysis resulésitice
the cost of repeated analysis.

For efficiency, a rule is considered before a rule if applying
r1 can maker, applicable, i.e., the maintenance patternrin
contains parts that match the query and update patterns and
not vice versa. Other than this heuristic, our implemeatsipplies
rules in the order they are encountered.

Incremental re-analysis after applying each rule is imgetad
by logging each piece of analysis results in a custom-writte
database as the analysis proceeds, and reusing valid isnadys
sults after the program is changed. Valid analysis resuotsheose

obtained before the first changed node in the program ane thos Use] Application [Program [Lang
at program nodes not reachable from the changed nodes. The O | Core RBAC core RBAC spec py
database supports efficient lookups and insertions. Eaghtion Constrained RBAC constrained RBAC spey
has a timestamp. A log-structured merge tree is used to suppo Graph Reachability test program py
efficient lookups using keys and time ranges. This data tstreiés Join Query test program py
implemented on two storage tiers: memory and disk. Evictibn Wireless Protocol test program py
entries from memory to disk uses an LRU algorithm. Additibna Set Size Demo test program py
the last analysis results for a procedure or method at edlahocke V | SMB Valid Ticket pysmb Py
are cached. Every time a procedure or method is to be anadyzed SMB Repeated Auth | pysmb py
call node, the current analysis results for all paramefacduding BitTorrent Peer No Dup BitTorrent Peer Py
global variables) of the call are compared with the last ysisl BitTorrent Peer No Modi BitTorrent Peer py
results for these parameters, and if they are all the sarae,ttie BitTorrent No Mismatch BitTorrent Mainline Py
last ar:jalysis results for the procedure or method at theodk are INVTS No Shared Child InvTS py
reused. ;

ﬁltogetlher, ag mo?O(M 2] rgle applicaticc)jns %ccur, wher%f} 5) g‘éﬁ\z\ﬁg gz:]rlclait :Q%-ll—fxenchmarks Sz
is the total number of matched queries and subqueries inrtiie p .
gram being transformed. Each application requires pattextth- ggm E)?C(Seh:(r)idcgﬂlsi :im: Egzgnmz:: Py
ing, analysis or re-analysis, and transformation of thgmm. The FTP Cli tp ft Py
most expensive step in our implementation is the alias araly . 1en - nitp Py
Caching and reuse of analysis results is critical and yiefulfo a ! E”e?eégﬁizsci)ﬂi'ng Ezzt E;gggm Sz
100-fold speedup in rule applications. Memory Coverage ViM 7.0 .

L. . R | InvTS Refactorin file Rule.py in InvTS

6. Applications and experiments Variable Renamir?g VIM 7.0 by Ey
We have developed InvTS/py and InvTS/c, two implementatimfn T [InvTS/py Test Suite test program suite py
InvTL, the invariant rule language described above, forlyapg InvTS/c Test Suite test program suite c

invariant-driven transformations for Python and GCC Cpees
tively. Both systems are built on a common base, called InvTS
We chose Python and GCC C for several reasons. Python is par-

O: optimization. V: runtime verification. D: debugging.

I: instrumentation. R: refactoring. T: other transforroati

ticularly well suited for expressing complex queries ovbjecots
and sets, which are commonly used in higher-level, cleanaodt
ular specifications. GCC C is primarily used for efficient lmp
mentations of system software, nearly the opposite of Pytand

Figure 7. Example applications.

for which there is significant need for program monitoringbdg- ANSI standard for role-based access control (RBAC) [ANS! IN
ging, etc. We believe that an implementation for Java woedgliire CITS 2004]. Core RBAC defines core functionalities on permis
about the same effO!’t as for Python and mUCh less than fO.I’ GCCC SionS, users, Sessionsy r0|eS, and relations among th:ese$eff|_

InVTS base consists of about 30000 lines of Python, with @bou ¢jent implementation was studied previously [Liu et al. @0Con-
2500 lines for the rule application engine and 27500 linedle strained RBAC extends Core RBAC with static and dynamic sep-
parser generator and other libraries. InvTS/py consis¬her aration of duty constraints. Core RBAC contains only flatrips
about 16500 lines of Python, with about 3000 lines for théByt Constrained RBAC adds nested queries. Graph Reachaliity,
frontend and 13000 lines for Python program analysis. It@TS Query, and Wireless Protocol are small but nontrivial exasp
consists of about 4000 lines of Python and 9000 lines of CnEve for generating efficient implementations from clear speatfons;
though InvTS/c has fewer lines of code than InvTS/py, it gnéi- these examples are from [Liu et al. 2005]. Set Size Demo ises t
cantly harder to implement, because C is lower-level. Inpy&lso example rule in Figure 1. The largest and most complex amplic
includes an analysis visualizer of about 6000 lines. tion, Constrained RBAC, is new.

InvTS/py uses and extends PyPy, a Python implementation in e also generated rules and did runtime invariant checking
Python, primarily for type analysis and for part of visuatin. and frequency analysis for Core RBAC and other examples; the

InvTS/py uses a precise may-alias analysis and does inoteme resylts are not reported separately because they are sinitese
re-analysis, as described above. reported.

InvTS/c uses a plugin architecture for GCC 4.2 [Callanari.et a
2007] that provides access to all information available ©G5
during its GIMPLE optimization phase. Powerful type analys
and an optimal-time interprocedural flow-sensitive magsahnal-
ysis [Gorbovitski et al. 2009] are implemented, and are niacle-
mental during the transformations to improve efficiencye Hias
analysis results for C are still very imprecise, so some @esre-
quire many runtime aliasing checks to determine whetheaigsd
are to query parameters.

Runtime verification. pysmb is an SMB client in Python. SMB
Valid Ticket checks that all packets sent are authentica®ddB
Repeated Auth checks that authentication does not occue mor
often than necessary. BitTorrent is a peer-to-peer filgibigton
protocol. BitTorrent Peer is the core functionality of Bitfent
Mainline, containing only the code for running an instande o
a BitTorrent peer, without various interfaces, internadlization,
DHT (the distributed hash table feature), and tracker. @i@nt
Peer No Dup works on BitTorrent Peer and checks that the same
data is not received from multiple sources. BitTorrent Pser
Mod checks that packets are not modified in transit. BitTradrido
Mismatch works on BitTorrent Mainline and checks that attkets
sent are received and all packets received are sent. InviShhied
Child checks that no two parents refer to the same child in&m A

in InvTS. InvTS No Own Child checks that no node is a child of
itself. The smaller applications are from [Gorbovitski et2908a].
The largest application, on BitTorrent Mainline, is new.

6.1 Applications

We used InvTL and InvTS for a wide range of applications. Fig-
ure 7 summarizes 24 examples grouped by whether the purpose i
optimization, runtime verification, debugging, other mshenta-
tion, refactoring, or other transformations.

Optimization. Our main applications for optimization are gen-
erating efficient implementations from clear specificaidor the

Example Application || #inv | #at | size | max [min [#query | #update| before [after || time
Core RBAC 14 78 613 97 9 24 248 201 798 23
Constrained RBAC 21| 114 | 1137 124 9 33 752 381 2183 34
Graph Reachability 1 2 14 14 14 1 1 60 83 14
Join Query 1 2 23 23 23 1 3 69 113 13
Wireless Protocol 1 3 19 19 19 1 3 66 148 14
Set Size Demo 1 3 15 15 15 1 3 5 10 12
SMB Valid Ticket 1 5 134 134 134 1 13 1100 1251 33
SMB Repeated Auth 1 8 250 250 | 250 1 7 1100 1203 38
BitTorrent Peer No Dup 1 4 132 132 132 1 31 9871 11835 98
BitTorrent Peer No Mod 1 10 332 332 332 1 90 9871 | 13468 109
BitTorrent No Mismatch 1 8 174 174 174 2 19 29450 | 29707 391
InvTS No Shared Child 1 2 46 46 46 1 413 12510 | 21651 312
InvTS No Own Child 1 2 53 53 53 1 412 12510 | 22513 387
DOM Valid Parent 1 4 96 96 96 1 37 1193 1344 43
DOM No Shared Child 1 5 141 141 141 1 43 1193 1472 38
DOM Exception Cause 1 8 271 271 271 1 81 1193 2135 53
FTP Client 1 12 303 303 | 303 1 27 891 1184 31
File Access Profiling 1 3 43 43 43 2 5 163 209 18
Reference Counting 1 3 28 28 28 105 850 1379 2349 32
InvTS Refactoring 6 0 132 39 3 19 0 3931 6118 21
InvTS/py Test Suite 12 13 160 17 3 27 117 630 1674 49
Memory Coverage 2 2 59 30 29 4590 1900 | 305969 | 319617 || 1168
Variable Renaming 4 0 12 3 3 13 0 | 305969 | 305969 || 1071
InvTS/c Test Suite 12 7 81 13 3 12 19 190 351 183

#inv: number of rules used, i.e., number of inv-clauses
#at: total number of update patterns, i.e., number of atsea
size: size of rules, in lines of code

max: maximum size of a rule (lines of code)

min: minimum size of a rule (lines of code)

#query: number of queries matched in program

#update: number of updates handled in program

before: program size before transformation (lines of code)
after: program size after transformation (lines of code)

time: running time of InvTS on transforming the program (sets)

Figure 8. Results of applications of invariant rules.

Debugging. Ixml is a Python XML library; for its benchmark pro-
grams, Dom Valid Parent checks that each element in the XML
DOM tree has a parent whose child field refers back to the elgme
and Dom No Shared Child checks that no two XML elements have

a common child element. Dom Exception Cause detects sources

of an index-out-of-bound exception. FTP Client finds theattm
where anls command is executed whencad command is pend-
ing; this detected a real bug in an FTP client program, nftieese
examples are from [Gorbovitski et al. 2008b].

Other instrumentation. File Access Profiling looks for a specific
file access pattern. It demonstrates that one can easilg®xpc-
cess patterns of interest in InvTL, much like in an aspeigirded
programming system. Reference Counting emulates a refren
counting garbage collector, by incrementally maintaimefgrence
counts. It uses static analysis in InvTS to avoid keepingrref
ence counts for values of primitive types, and thus avoicev
performance degradation usually associated with expééirence
counting. Memory Coverage instruments ViM, a text editorin:
tercept all calls tamalloc in order to monitor memory access pat-
terns. It is challenging becausalloc may be called indirectly
through function pointers aliasedhalloc.

Refactoring. InvTS Refactoring was a real experience in the im-
plementation of InvTS. The goal was to rewrite InvTS, faictgr
out the Python language module from InvTS core to form InpyS/
The rules mainly did variable and class renaming, and metixed
traction, and turned a tedious manual task into an easy @m@ble
Renaming is for C and involves small rules that rename ordgllo
only global, only static, or only global static variablehe€Be rules
are easy to write because InvTL takes scope of variablesaicrto

count. Implementing such renaming using, say, Perl scrigslid
be significantly harder and very error-prone.

Other transformations. InvTS/py and InvTS/c Test Suites consist
of miscellaneous transformations where transformed prograre
checked automatically against known results for testing@ses.
The transformations insert code that prints certain s$riwtpen
certain code patterns are matched. These strings are thetedo
for simple tests.

6.2 Experiments

We ran InvTS/py and InvTS/c on a large sample of rules and pro-
grams. Extensive blackbox testing was performed to confim ¢
rectness of the transformed programs. For optimizatiodicap
tions, we obtained drastic performance improvements fexaen-
sive operations in the new, larger example of Constrained®B
similar as for all the previous examples [Liu et al. 2005, €00
For runtime verification, debugging, and other instrumtoiteap-
plications, we observed low runtime overhead (14-92%) fosm
examples [Gorbovitski et al. 2008a,b], except for a factb2®
for Memory Coverage for ViM, because the imprecision of @lia
analysis caused extensive insertion of runtime checkgliabled
otherwise possible optimizations. For all refactoring tesding ap-
plications, the transformed programs were exactly aseldsir

We discuss measurements that help show the effectivendss an
efficiency of InvTL and InvTS and the results of the two new,
largest applications so far. The first set of measuremernin the
size of invariant rules and size increase in the transforygton
and C programs, as well as the running time of InvTS. The other
measurements are on the results of using InvTS for optiiizaff
Constrained RBAC and for improvements of BitTorrent whesréh

is a slight increase in communication errors. The transébions
were run under Windows Vista 64-bit Edition on a quad-coreeCo
2 Duo Q6600 3.2 GHz with 8 GB of memory, of which around

summaries (containing hashes of the payloads) of the pattey
send and receive. These summaries are collected on the.serve
query is used to compute the set of violations, i.e., the fspack-

6.3GB was free when running our programs, and were run under ets received that have a different hash of the payload trandh

Python 2.5.1.
Figure 8 reports information about the rules and the transfd
programs, as well as running times of the transformatioms. F

responding packet sent. The invariant we check is that #tisss
empty, and all violations are reported. Naive checking @ th-
variant has a formidable cost because it uses a join quenyadive

most examples, the size of the rules is much smaller than the the summaries sent and received. We use an invariant rufets s
increase in size in the transformed program. Core RBAC and a ify how to incrementally maintain the query result as eacin-su

few others are exceptions because each rule matched edfativ

mary is received, reporting violations incrementally tdbe incre-

few queries and updates, only code in de- and do-clauses, notmental maintenance in the invariant rule is complex and te-au

inv-, if-, and at-clauses, are inserted in the transformexdjmmm,
and some generated rules contain at-clauses that do nat ioccu
the program. Note, however, that invariant rules can beedus
fact, all of the rules for Core RBAC are reused for Constrdine
RBAC. More importantly, each rule specifies in one place how t
maintain an invariant under all possible updates, ratteer traving
the maintenance code scattered throughout the program.

For optimization applications, we obtained drastic perfance
improvements for all the examples. Measurements for skvEttze
examples were reported in [Liu et al. 2005], and more detalk
scription and measurements for Core RBAC were reportediin [L
et al. 2006]. Similar speedups are obtained for ConstraRi28C
operations. Figure 9 compares the performance of a fulleimen-
talized implementation of Constrained RBAC with an impleme
tation partially incrementalized on only expensive queireCore
RBAC, the latter as done previously [Liu et al. 2006]. The mga-
ments were taken under the same set up as for running théarans
mations. The graph shows the running timeoéateSession
andAddActiveRole, two important operations that involve check-
ing of constraints. Clearly, the curves do not increase tdly in-
crementalized implementations but increase linearly tighnum-
ber of sessions for partially incrementalized implemeéates; fully
incrementalizedCreateSession even decreases in running time
because its complexity has the number of roles per sessian as
factor.

/A Partially Incrementalized CreateSession
A—a Fully Incrementalized CreateSession
O—CO Partially Incrementalized AddActiveRole
o—e Fully Incrementalized AddActiveRole

70 80 90

50 60
Number of Sessions

010 20 30 40 100

Figure 9. Running times, in seconds, of RBAC operations as hum-
ber of sessions increases, with 100 roles, 100,000 regpetiti

For runtime invariant checking, we instrumented a BitTotre
implementation and checked it for potential errors. Onehefin-
variants we checked, for BitTorrent Peer No Mod, is that &efc
sent from one peer is received by another peer without a ehizing
the payload. We first experimented with centralized chexi@or-
bovitski et al. 2008a], by creating a server to which peerdse

matically generated. Our new experiments, for BitTorreatNils-
match, use distributed checking, by having each peer seashadi
each packet it sent or received to every peer in the peerdmofibe
set of peers known to a given peer, usually much smaller than t
peer swarm, the set of all peers involved in sending a filels iEh
much more scalable and more fault-tolerant. Again, we neetir
ant rules to make the checking efficient. Furthermore, we ase
ditional invariant rules to instrument BitTorrent to diedit senders
and receivers that cause violations. This has some dranestidts.
For example, we experimented with transferring a 1GB filenfia
server to 29 peers, over 10MBit links.

1. Ideally, if the server is not saturated, it should takeuatid 00
seconds (TCP overhead is about 10%), with a total bandwidth
consumption of about 29GB. However, without BitTorreny-us
ally the server is saturated; in our experiment, it can tdké®
times as long.

2. Using BitTorrent with no error, it takes 2393 seconds véth
total bandwidth of 31.9GB; that is, just over 2 times as long,
and a small percentage increase in total bandwidth.

3. Using BitTorrent with 10% error rate on 3 of the 29 peers, it
takes 4856 seconds with a total bandwidth of 91.6GB; that is,
4+ times as long, and a factor of 3+ in total bandwidth.

4. Using BitTorrent with the same error rate as in case 3, but
using our discrediting scheme, it takes 2975 seconds wittah t
bandwidth of 34.2GB; that is, 2-3 times as long, and another
small percentage increase in total bandwidth.

BitTorrent did so badly in case 3 because its error handling i
done at the chunk level, much coarser-grain than the paeket |
at which we check invariants and trigger discrediting. Bit€nt
usually works well because the error rate is usually exthbgme
small, but in the case of slightly more errors (in our exarapl®%
error in 10% of the peers, so 1% error total), from maliciotiack

or otherwise, its performance becomes significantly worse.

7. Related work and conclusion

There is a vast amount of research on program transformation
languages and systems, as described in a number of surveys,
e.g., [Partsch and Steinbriiggen 1983, Visser 2005], atectad

on the web [ProgramTransformationOrg]. Eminent systems in
clude, e.g., APTS [Paige 1994], KIDS [Smith 1990], CIP [Baue

et al. 1989], and Stratego [Bravenboer et al. 2008].

Compared to previous frameworks and systems, the most im-
portant and unique characteristics of invariant rules lagedieclar-
ative specification of coordinated transformations exghjiciriven
by invariants and the generality of the language. With theepx
tion of APTS [Paige 1994], previous frameworks and systems
use rewrite rules together with rewriting procedures oatetr
gies [Visser 2005], where invariants, updates, and cossiden
ations are programmed more implicitly. These systems de giv
programmers more control over the transformation proaesish
is similar to the advantage of procedural languages cordpare
declarative languages. Our InvTS implementation overcoaff-

ciency problems that are typical for declarative langudnessing
efficient analyses and caching and reusing analysis results
APTS [Paige 1994] supports specification of transformation
explicitly around invariants, for finite differencing [Rg and
Koenig 1982], but it applies only to a simple language withese
pressions and statements in straight-line code. InvTL islmiore
general and powerful in specifying transformations of-fiddged
programming languages, including object-oriented laggsa
InvTS has been applied to many applications of differeneésiz
while APTS was applied only to a few small SETL programs.

Many program query languages and tools have been developed,

e.g., ASTLOG [Crew 1997], Partigle [Goldsmith et al. 200&hd
PQL [Martin et al. 2005]. Some of these languages, such as PQL
allow matches, analyses, and replacements throughoutagegm,
much like in program transformation systems. However, glsys-
tems do not provide automatic detection of updates to iantsi

Aspect-oriented programming (AOP) [Kiczales et al. 1997,
2001] also allows code for cross-cutting concerns, suchebsgt
ging, to be specified separately and inserted automatiasedlset of
matched program points. Connections between AOP and amitari
are studied specially [Smith 2008, 2007]. Compared withstexi
ing AOP languages, InvTL has an explicit definition of ineent-
preserving rules, to facilitate formal verification; it@Ns explicit
specification of costs, to assist effective optimizatiamgl & pro-
vides powerful static analysis, especially for automdlijcdetect-
ing updates, to coordinate transformations at queries addtas
and minimize runtime overhead.

A limited version of InvTL has been used for incrementaliza-

tion [Liu et al. 2005], and variants of it have been used far-ru
time invariant checking [Gorbovitski et al. 2008a] and qubased
debugging [Gorbovitski et al. 2008b]. Besides their défar ap-
plications, contributions of those works to the generaineavork
are analysis of updates to query parameters [Liu et al. 2GQ5B]
tomatic generation of incremental maintenance code foassabf
queries [Gorbovitski et al. 2008a], and efficient analy§asrpovit-
ski et al. 2008b]. The current paper gives the first complietepme-
cise definition of the rule language, with more powerful slesifor
invariants, conditions, declarations, and maintenanaa thefore.
It also studies, for the first time, connections to invaaatnong
a wider range of applications, and it explains the overajlen
mentation that puts all the analyses and transformatiogether.
Furthermore, it evaluates the effectiveness and efficiehtye im-
plementations with applications and experiments on a s&t pfo-
grams, including the new largest example for optimizatiod the
new largest example for runtime invariant checking.

We believe that invariant rules capture the design knovdedg
underlying a more general framework for program develogmen
Consider the three core components of an invariant ruldnttzei-
ant, updates, and maintenance. Invariant maintenancedgrgm
design and optimization corresponds to being given theriamt
and updates and wanting the maintenance. Invariant discéee
program understanding and reverse engineering correspor-
ing given the updates and maintenance and wanting the amtari
Invariant checking for validation and verification correefs to
being given all three of the invariant, updates, and maartea and
wanting to check.

Future work includes methods and tools for verification of in
variant rules, possible enrichment of the invariant ruleglzage,
and additional usages of invariant rules.

References

ANSI INCITS. Role-Based Access Control. ANSI INCITS 359020
American National Standards Institute, Internatlonal @Gutree for In-
formation Technology Standards, Feb. 2

Friedrich Ludwig Bauer, Bernhard Moller, Helmut Partsahd Peter PJ)
per. Formal program construction by transformatlons—OMrpalde
Intuition-guided programming.[EEE Transactions on Software Engi-
neering 15(2):165-180, Feb. 1989.

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, Betto Visser.
Stratego/xt 0.17. a language and toolset for program twamsition.
Science of Computer Programmiri¢R(1-2):52—70, 2008.

Sean Callanan, Daniel J. Dean, and Erez Zadok. Extending @®@C
modular GIMPLE optimizations. IfProceedings of the 2007 GCC
Developers’ Summitluly 2007.

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficientvflsensitive
|nterprocedural computation of pointer-induced aliases side effects.
In Conference Record of the 20th Annual ACM SIGPLAN-SIGACT Sym
posium on Principles of Programming Languageages 232—245, 1993.

Roger F. Crew. ASTLOG: A language for examining abstractaytrees.
In Proceedings of the Conference on Domain-Specific Langupgges
229-242, Oct. 1997.

Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken. Relzal
gueries over program traces. Rroceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systean-
guages, and Applicationpages 385-402, 2005.

Michael Gorbovitski, Tom Rothamel, Yanhong A. Liu, and $étStoller.
Efficient runtime invariant checking: A framework and casedg. In
Proceedings of the 6th Sixth International Workshop on DyigaAnal-
ysis pages 43-49, July 2008a.

Michael Gorbovitski, K. Tuncay Tekle, Tom Rothamel, Scott $oller,
and Yanhong A. Liu. Analysis and transformations for effitiguery-
based debugging. IRroceedings of the 8th IEEE International Working
Conference on Source Code Analysis and Manipulapages 174-183,
Sept. 2008b.

Michael Gorbovitski, Tuncay Tekle, and Yanhong A. Liu. Assieg alias
analysis for object-oriented and dynamic languages. TieahReport
DAR 09-44, Computer Science Department, SUNY Stony Bro6k92

Deepak Goyal. Transformational derivation of an improviasaanalysis
algorithm. Higher-Order and Symbolic Computatiot8(1-2):15-49,
June 2005.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersteeffdey Palm,
and William G. Griswold. An overview of aspectj. Proceedings of
the 15th European Conference on Object-Oriented Progrargipages
327-353, June 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chrisdda€ristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-ogdrprogram-
ming. In Proceedings of the 11th Europeen Conference on Object-
Oriented Programmingpages 220-242, 1997.

Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, TonofRamel, and
Yanni E. Liu. Incrementalization across object abstractim Proceed-
ings of the 20th ACM Conference on Object-Oriented Progrargm
Systems, Languages, and Applicatigoeges 473-486, Oct. 2005.

Yanhong A. Liu, Chen Wang, Michael Gorbovitski, Tom Roth&nvengxi
Cheng, Ymgchao Zhao, and Jing Zhang. Core Tole-basedsacoesol:
Efficient |mplementat|ons by transformations. Mmoceedings of the
ACM SIGPLAN 2006 Workshop on Partial Evaluation and Seranti
Based Program Manipulatigrpages 112-120, Jan. 2006.

Michael Martin, Benjamin Livshits, and Monica S. Lam. Findiappli-
cation errors and security flaws using PQL: a program querguage.
In Proceedings of the 20th ACM Conference on Object-Oriented P
%(r)%mmlng, Systems, Languages, and Applicafipages 365-383, Oct.
5.

Robert Paige. Viewing a program transformation system akwmm Pro-
ceedings of Joint 6th International Conference on Programgnian-
guages: Implementations, Logics and Programs and 4th hatéwnal
Conference on Algebraic and Logic Programminag94.

Robert Paige and Shaye Koenig. Finite differencing of caaiple expres-
sions. ACM Transactions on Programming Languages and Systdms
(3):402—-454, July 1982.

Helmut Partsch and Ralf Steinbriiggen. Program transfimmaystems.
ACM Computing Survey45(3):199-236, Sept. 1983.

ProgramTransformationOrg. The Program Transformationki.Wi
http://www.program-transformation.org.

Tom Rothamel and Yanhong A. Liu. Generating incrementallémgn-
tations of object-set queries. Rroceedings of the 7th International
Conference on Generative Programming and Component Eeiging
pages 55-66, Oct. 2008.

Douglas R. Smith. KIDS: A semiautomatic program developnsgstem.
IEEE Transactions on Software Engineerii® E29):1024—1043, 1990.

Douglas R. Smith. Requirement enforcement by transfoonautomata.
In Proceedings of the 6th Workshop on Foundations of Aspeer&d
Languagespages 5-14, 2007.

Douglas R. Smith. Aspects as invariants. In O. Danvy, H. btair F Hen-
glein, and A. Pettorossi, editordutomatic Program Development: A
Tribute to Robert Paiggpages 270-286. Springer, 2008.

Eelco Visser. A survey of strategies in rule-based programsformation
systems.Journal of Symbolic ComputatipA0(1):831-873, 2005.

