
Incrementalization: From Clarity to Efficiency

Yanhong A. Liu
Computer Science Department, Stony Brook University, Stony Brook, NY 11794

liu@cs.stonybrook.edu

ABSTRACT
Incrementalization is at the core of a systematic program de-
sign method, especially for the design of algorithms and data
structures. It takes a function and an input change opera-
tion and yields an incremental function that computes each
new output by using the old output and additional values.
It is the analogue of differentiation in continuous domains.

This article gives an overview of a systematic program
design method centered on incrementalization. The method
starts with a clear specification of a computation and de-
rives an efficient implementation by semantics-preserving
program transformations. The method applies to problems
specified in imperative, database, functional, logic, and object-
oriented programming languages with different data, con-
trol, and module abstractions. We illustrate the method
through examples from optimizing compilers, graph algo-
rithms, string processing, and program components. The
last section discusses directions for future studies.

1. INTRODUCTION
At the center of computer science, there are two major

concerns of study: what to compute, and how to compute
efficiently. Problem solving involves going from clear spec-
ifications for ”what” to efficient implementations for ”how”.
Unfortunately, there is a conflict between clarity and effi-
ciency: clear specifications usually correspond to straight-
forward implementations, not at all efficient, while efficient
implementations are usually sophisticated, not at all clear.
What is needed is a systematic method to go from clear
specifications to efficient implementations.

Incrementalization is at the core of a systematic method
for transforming a straightforward program that clearly meets
its specification into an efficient program that still meets its
specification but is usually less clear. This paper gives an
overview of this method. The method has three steps:

1. Iterate—determine a minimum increment to take re-
peatedly, iteratively, to arrive at the desired output.

2. Incrementalize—make expensive operations incremen-
tal in each iteration by using and maintaining useful
additional values.
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3. Implement—design appropriate data structures for ef-
ficiently storing and accessing the values maintained.

The method is driven by Step Incrementalize: because ef-
ficient computations on nontrivial input must proceed re-
peatedly on incremented input, Step Incrementalize aims to
make the computation on each incremented input efficient
by storing and reusing values computed on the previous in-
put. Steps Iterate and Implement are enabling mechanisms:
to maximize reuse by Step Incrementalize, Step Iterate de-
termines a minimum input increment to take repeatedly; to
support efficient access of the stored values by Step Incre-
mentalize, Step Implement designs efficient data structures
to hold the values.

The method applies to a wide range of programming para-
digms with different data, control, and module abstractions:

• Loops with primitives and arrays in imperative pro-
gramming—no high-level abstraction, but it is essen-
tial to incrementalize expensive primitive and array
computations in loops.

• Sets in database programming—high-level data abstrac-
tion, where besides incrementalization, it is also essen-
tial to design efficient data structures to implement
sets.

• Recursion in functional programming—high-level con-
trol abstraction, where besides incrementalization, it
is also essential to transform recursion into iterative
computation.

• Rules in logic programming—high-level data and con-
trol abstraction, where besides incrementalization, both
transformation of recursion and implementation of sets
are essential.

• Objects in object-oriented programming—high-level
module abstraction, where incrementalization is essen-
tial and must be done across modules.

For programs where low-level iterative control structures or
low-level data structures are already used, there is either
trivial work in the respective steps or crucial work to first
determine what they are trying to achieve at a high level
before applying the respective steps. The higher-level the
abstractions used in specifying the problems are, the better
the method works. For example, for problems specified us-
ing rules in Datalog, the method can provide precise time
and space complexity guarantees for the generated imple-
mentations.



Besides being applicable to widely different programming
paradigms, the method is general and systematic for at least
two other reasons:

• It is based on language semantics and cost models:
it consists of step-wise program analysis and transfor-
mations to replace repeated expensive computations
by efficient incremental maintenance while preserving
program semantics.

• It is the discrete counterpart of differential and integral
calculus in continuous domain: incrementalization cor-
responds to differentiation, iteration corresponds to in-
tegration, and iterative incremental maintenance cor-
responds to integration by differentiation.

Steps Iterate and Incrementalize are essentially algorithm
design, and Step Implement is essentially data representa-
tion design.

The method as developed has succeeded in solving large
classes of problems of many different kinds; it does not yet do
the magic of generating efficient implementations from clear
specifications for all computation problems, if such a magic
method will ever exist. For example, the method can derive
dynamic programming algorithms from recursive functions,
produce appropriate indexing for efficient evaluation of re-
lational database queries, and generate efficient algorithms
and implementations from Datalog rules; however, it cannot
yet derive a linear-time algorithm for computing strongly
connected components of graphs. It is, of course, not the
only method for program design. The last section discusses
directions for future studies.

The method is the result of over twenty years of research
by the author and collaborators, developed based on signif-
icant prior work by many others, especially work pioneered
by Paige and collaborators [18, 19]. This article provides
only an overview of the method, illustrating the most impor-
tant ideas through examples. The last section includes bib-
liographical notes for some of the earliest important works
and some of the closest works to the parts discussed in this
article. More detailed discussion of the method, with de-
tailed transformations, additional examples, and extensive
bibliographical notes, appear in a new book [12].

2. LOOPS
We start with loops and consider a simple example, re-

peated multiplication, to illustrate the basic ideas of Step
Incrementalize. The example is to compute a×i repeatedly,
where a holds some constant value, and i is initialized to
1 and is incremented by 1 as long as it is smaller than or
equal to some constant value held in b, as in the following
program:

i := 1 // initialize i to 1
while i<=b: // iterate as long as i<=b

...

...a*i... // compute multiplication

...
i := i+1 // increment i by 1

We use v := e for assigning the value of e to variable v.
The goal is to replace repeated multiplications with addi-
tions. It is an example of one of the oldest, most important
compiler optimizations, called strength reduction, designed
to optimize such multiplications that occur extensively for

computing the addresses of array elements in languages like
FORTRAN. The basic idea also underlies the Difference
Engine—the first computing device, designed to tabulate
polynomial functions in the 19th century, and ENIAC—the
first electronic general-purpose digital computer, designed
to calculate artillery firing tables in World War II.

Incrementalize: maintain invariants. First of all, the
optimization must be based on language semantics and the
cost model. Here it exploits algebraic properties of the prim-
itives, a*(i+1) = a*i+a, and that multiplications are expen-
sive whereas additions are not. The basic idea is to store
the value of a*i and initialize and update it incrementally
as i is updated, but where and how exactly?

The key idea is to maintain the invariant that the stored
result in a fresh variable equals the value of the expensive
computation, here c = a*i, where c is a fresh variable. The
invariant is maintained by updating the stored value incre-
mentally at every update that may affect the value of the
expensive computation, here performing c:=a at i:=1 and
performing c:=c+a at i:=i+1. Then, every occurrence of
the expensive computation is replaced with a retrieval of
its value from the stored result, here replacing a*i with c.
This yields the following optimized program:

i := 1
c := a // new: c = a*i = a*1 = a
while i<=b:
...
...c... // a*i is replaced with c
...
i := i+1
c := c+a // new: c’ = a*i’ = a*(i+1) = a*i+a = c+a

At an update to a variable v, incremental maintenance
may be performed either before or after the update if the
maintenance does not use the value of v, as in the example
above. In general, the maintenance may use the value of v.
If it uses the value of v before the update, then it must be
performed before the update. If it uses the value of v after
the update, then it must be performed after the update.

Maintaining invariants eagerly at all updates allows the
maintained value to be used anywhere outside the updates
and the corresponding maintenance. However, if multiple
updates happen before a maintained result is used, where
some updates may even cancel each other out, it may be
more efficient to do incremental maintenance on demand,
i.e., when the result is needed, as opposed to whenever an
update occurs.

When expensive computations are more complex, incre-
mentalization may need to maintain additional values: inter-
mediate results—values computed in the original expensive
computation besides the final result, and auxiliary values—
values not computed in the original computation but useful
in computing the new result incrementally. This reflects a
well-known trade-off between time and space. Useful inter-
mediate results and a general class of auxiliary values can
be determined by analyzing expensive computations on the
changed input.

Incrementalization can also be applied repeatedly: after
applying incrementalization, which replaces an expensive
computation with incremental maintenance, there may still
be expensive computations in the incremental maintenance;
incrementalization can then be applied again to replace these
expensive computations with incremental maintenance, and
this process may repeat.



Applications and need for higher-level abstraction.
Incrementalizing loops with primitives and arrays has im-
portant classes of applications, including:

• Strength reduction, as in optimizing compilers. It op-
timizes not only array element access, e.g., for ma-
trix manipulations in scientific computing, but also re-
peated expensive numeric operations in general.

• Hardware design, including for the Difference Engine
and ENIAC. This also benefits from additional loop
optimizations enabled by incrementalization, for re-
ducing the result, condition, and body of the loop.

• Image processing, expressed as aggregate computations
over arrays. Incrementalization replaces expensive ag-
gregate computations with incremental updates of the
aggregate values, yielding efficient algorithms.

Unfortunately, many applications naturally require more
complex processing of more complex data than loops and
arrays. Clear specifications of these computations require
high-level data abstraction using sets and high-level control
abstraction using recursion, as discussed in examples in sub-
sequent sections.

3. SETS
We consider computations expressed using sets. We use

the graph reachability problem as an example: given a graph
with a set e of edges, each being a pair of a start vertex and
an end vertex, and a set s of source vertices, the problem
is to find the set r of vertices reachable from vertices in s

following edges in e. This can be done by starting at the
source vertices and adding each new reachable vertex to the
result until no more new vertices can be reached, as in the
following program:

r := s
while exists x in {v: (u,v) in e, u in r, v not in r}:

r := r+{x}

Here, {v: (u,v) in e, u in r, v not in r} computes the set
of vertices v newly reachable following any one edge—v be-
ing the end vertex of an edge from u to v in e where u is
already reached and v is not. The goal is to design an algo-
rithm and data structures to compute r efficiently, avoiding
the expensive set computation in each iteration of the while

loop.

Incrementalize: exploit maps. We maintain an invari-
ant for the result of an expensive computation, as discussed
in the previous section, here w = {v: (u,v) in e, u in r,

v not in r}, where w is a fresh variable.
The basic idea is to use values bound by an update to ef-

ficiently retrieve other values needed in the expensive com-
putation. To maintain w, at update r := r+{x}, the second
clause in the computation of w has u bound to the new value
x in r, so the key is to retrieve the matching v’s that satisfy
(x,v) in e according to the first clause. This set of v’s is
denoted e{x}, called the image set of x under e, i.e., e is
used as a map from each element in the first component,
the domain, to the corresponding set of elements in the sec-
ond component, the range. Afterwards, the third clause is
tested. Finally, the new element is added to w if it is already
not in w. At the same time, update r := r+{x} also lets the

third clause bind v to x, which was in w but no longer satis-
fies the third clause, so x is removed from w. Together, these
yield the maintenance block in the body of the while loop
for maintaining w at r := r+{x}. The same block is used in
initialization as each element of s is added to r starting with
{}.

w := {} // new: w is {} when r is {}
r := {} // r := s is done by for-loop
for x in s:
... // new: new block as in while-loop
r := r+{x}

while exists x in w: // {v: ...} is replaced with w
for v in e{x}: // new: use e as map to retrieve v
if v not in r: // new: test the condition on v
if v not in w: // new: if v is not already in w
w := w+{v} // new: add v to w

if x in w: // new: if x is in w, true here
w := w-{x} // new: delete x from w

r := r+{x}

We will see next how to implement each set operation here
in worst-case O(1) time, and thus the total running time
here is bounded by the number of iterations of the nested
loops—the outer loop by the number of vertices, and the
inner loop by the number of outgoing edges of each vertex.
Therefore, the total running time is bounded by the number
of edges, O(|e|).

Here, we described incremental maintenance of {v: (u,v)

in e, u in r, v not in r} directly. One could also specify
this set computation as {v: (u,v) in e, u in r} - r, and
maintain the left set as an intermediate result before main-
taining the set difference, yielding also an O(|e|) algorithm.
Maintaining invariants following the chain of dependencies
corresponds to the chain rule in calculus. Unnecessary in-
termediate results can be eliminated at the end, though it
is nontrivial for this example.

One could also specify the expensive set computation in
the original program as s + {v: (u,v) in e, u in r} - r and
initialize r to {} instead of s, that is, move s from initial-
ization to the while loop. Incrementalization will generate a
similar O(|e|) algorithm, except that the initialization code
will be drastically simplified.

Implement: design linked data structures. It is well
known that set operations can be implemented using hashing
in O(1) time, but that is average-case time, not worst-case
time, and hashing has a large constant-factor overhead. A
general method can design linked data structures for a large
class of problems to support set operations in worst-case
O(1) time.

The method represents a set as a linked list, and repre-
sents a map as a linked list of linked lists, but combines
everything based on associative access—membership test (x
in s and x not in s) and image operation (e{x}); such an
access requires the ability to locate an element (x) in a set
(the set s or the domain of e). If associative access can be
done in constant time, so can all other operations.

The basic observation is that an access of x in S in a pro-
gram is not isolated—the element x must be retrieved from
some set W before the access, as in

... // retrieve x from W

... // access x in S

The idea is to use a set B, called a base, to store values
for both W and S, so that a retrieval of a value from W also



locates this value in S. Base B is a set of records (this set is
only conceptual), with a K field storing the key (i.e., element
value).

• Set S is represented using an S field of B: records of B
whose keys are in S form a linked list, with links stored
in the S field; other records store a null value in the
S field. If S is only tested for membership, the S field
can be just a bit.

• Set W is represented as a linked list of pointers to records
of B whose keys are in W.

This representation is called based representation. It allows
an arbitrary number of sets like W, called weakly based, but
only a constant number of sets like S, called strongly based.
Essentially, base B provides a kind of indexing to elements
of S starting from elements of W.

For the graph reachability example, the base is a collec-
tion of records, one for each vertex in the graph. Set s is
represented as a linked list of pointers to the records for ver-
tices in the set, and so is each image set e{x}. Domain of
e, set r, and set w are represented using three fields in the
records, storing a pointer to the image set linked list, a bit,
and a link for the next element, respectively.

Applications and need for control abstraction. Op-
timizing set computations has a vast number of important
applications, including:

• Graph algorithms, for processing any kind of connec-
tions among objects. Graph reachability and similar
problems are particularly important, e.g., in program
analysis, model checking, and simply computing the
prerequisites of courses.

• Query optimization, especially in relational database,
where relations are just sets of tuples. Systematic
incrementalization has led to advances over the best
prior results.

• Access control, with complex policy analysis and en-
forcement. Incrementalization allowed the ANSI stan-
dard for Role-Based Access Control (RBAC) to be
specified more clearly and efficient implementations to
be generated automatically.

Despite these, some more sophisticated applications re-
quire the use of recursion to be expressed more clearly, as
discussed next.

4. RECURSION
We consider computations expressed using recursive func-

tions. We use the longest common subsequence problem as
an example: given two sequences x[1]..x[i] and y[1]..y[j],
the problem is to compute the length of a longest common
subsequence (LCS) of the two sequences, where a subse-
quence of a given sequence is just the given sequence pos-
sibly with some elements left out. This can be computed
using the following recursive function—if either sequence is
empty, i.e., i = 0 or j = 0, then the result is 0; if both are
not empty and x[i] = y[j], then every LCS must end with
this common element, and the result is 1 plus the length of
an LCS of x[1]..x[i-1] and y[1]..y[j-1]; otherwise, both
sequences are not empty and x[i] 6= y[j], so an LCS either
does not end with y[j] or does not end with x[i], and the
result is the maximum of these two possibilities:

def lcs(i,j) where i>=0, j>=0:
if i=0 or j=0 then 0
else if x[i]=y[j] then 1 + lcs(i-1,j-1)
else max(lcs(i,j-1), lcs(i-1,j))

Straightforward computation of the recursive function takes
exponential time, because of overlapping recursive calls for
subcomputations. The goal is to design an efficient algo-
rithm, known as a dynamic programming algorithm, that
appropriately computes and stores the results of subcompu-
tations and reuses them for enclosing computations.

Iterate: determine minimum increments. What is
an appropriate order of subcomputations for recursively de-
fined functions? In general, how should computations pro-
ceed on repeatedly incremented input? This is theoretically
hard, and there is no general solution—appropriate input
increments correspond to well-founded orderings in domain
theory and steps for induction in proof theory. However, we
have found a simple but powerful method based on the un-
derlying principle of incrementalization; albeit a heuristic,
it has succeeded on all problems we have encountered.

The idea is to let the increment be a minimum change
opposite the arguments of recursive calls. The rationale is
that (1) taking the opposite of arguments of recursive calls
gives an increment, the direction that results on subproblems
are used in computing results on bigger problems, and (2)
minimizing change allows maximizing reuse in incremental
computation, the essence of the overall method.

1. Determine arguments of all recursive calls. For func-
tion lcs, they are (i-1,j-1), (i,j-1), and (i-1,j).

2. Take any one that changes minimally from the param-
eters of the function. For lcs, this is either one of the
last two; say we take the last one, (i-1,j).

3. Take the opposite of the change, yielding a minimum
increment operation, denoted next. For lcs, this yields
next(i,j) = (i+1,j).

Then one can compute the original function by starting at
the base case and repeatedly computing on an incremented
input, as discussed next.

Incrementalize: derive incremental functions. How
to store and use appropriate values for incremental com-
putation? The basic idea is to use the stored result of a
function f for computing f on the incremented input by
next, similarly as discussed in the previous two sections,
yielding an incremental function f’(x,r) that takes an addi-
tional argument r and satisfies: if r = f(x), then f’(x,r) =

f(next(x)). For lcs, the goal is to obtain an incremen-
tal function lcs’(i,j,r) to compute lcs(i+1,j) using r =

lcs(i,j). Expanding lcs(i+1,j) by definition and simplify-
ing i+1-1 to i yield:

lcs(i+1,j) = if i+1=0 or j=0 then 0
else if x[i+1]=y[j] then lcs(i,j-1)+1
else max(lcs(i+1,j-1), lcs(i,j))

Consider the three function calls in computing lcs(i+1,j):
lcs(i,j-1) also appears in lcs(i,j); lcs(i,j) has value r;
and lcs(i+1,j-1) equals a recursive call lcs’(i,j-1,lcs(i,j-
1)) by definition of lcs’, where the third argument is the
same as the first of the three function calls. Therefore,
lcs(i,j) is transformed to lcsExt to cache also the value



of lcs(i,j-1) recursively in an additional component of the
result, and the corresponding incremental function lcsExt’

uses that value as considered above and maintains it, leaving
only a single recursive call to lcsExt’ itself.

We omit the details of the remaining transformations, but
from the discussions above, we can already see that the op-
timized lcs calls lcsExt’ repeatedly O(i) times on incre-
mented input, and lcsExt’ calls itself recursively O(j) times,
each call taking O(1) time. Thus the total time complexity
is O(i× j). Caching the value of lcs(i,j-1) in lcsExt(i,j)

recursively requires O(j) auxiliary space, not O(i× j) space
as used by memoization or a two-dimensional array.

Applications and need for data abstraction. Many
computation problems are best expressed using recursive
functions and benefit from incrementalization of expensive
functions. Three kinds of example problems are:

• Sequence processing, or string processing. Sources of
these problems range from text document comparison
to biological sequence analysis.

• Combinatorial optimization. Solving these problems
requires considering overlapping subproblems and de-
pends crucially on dynamic programming for efficiency.

• Math and puzzles. Although these are well-studied,
systematic incrementalization has led to interesting in-
sights and discoveries, even for problems as simple as
the factorial function.

Despite these, recursive functions are not suitable for de-
scribing computations on arbitrary collections of data, whereas
set expressions are, as discussed in the previous section.

5. RULES
We look at computations expressed using logic rules. We

consider the transitive closure problem as an example: given
a graph with a set of edges, the problem is to compute the
transitive closure of the graph—the set of all pairs of vertices
u and v such that there is a path from u to v following a
sequence of edges. Let edge(u,v) denote that there is an
edge from vertex u to vertex v, and let path(u,v) denote
that there is a path from vertex u to vertex v following a
sequence of edges. The problem can then be expressed as
computing the set of all path facts using two logic rules: if
there is an edge from vertex u to vertex v, then there is a
path from u to v; if there is an edge from u to w, and there
is a path from w to v, then there is a path from u to v.

edge(u,v) -> path(u,v)
edge(u,w), path(w,v) -> path(u,v)

The goal is to design an efficient algorithm. Given that high-
level abstractions are used for both control and data, we
need to determine how the computation should proceed it-
eratively and incrementally, and how to represent and access
all the facts. Because such logic rules are very high-level, we
can compile the given rules into an efficient implementation
with time and space complexity guarantees.

Iterate: transform to fixed points. The meaning of a
set of rules and a set of facts is the least set of facts that con-
tains all the given facts and all the facts that can be inferred
using the rules. To compute this meaning, the set of rules
is first transformed into a fixed-point computation. Using

our method for determining minimum increments, we choose
the addition of a single new fact as the increment in each
iteration of the fixed-point computation. This generates the
following while loop:

R := {} // initialize the result set
while exists x in e0 + e1(R) + e2(R) - R:
R := R + {x} // add one fact to the result set

where e0 is the set of given edge facts, and e1 and e2 are
sets of new path facts inferred using the two respective rules
based on the facts in R:

e0 = {[edge,u,v]: edge(u,v) in givenFacts}
e1(R) = {[path,u,v]: [edge,u,v] in R}
e2(R) = {[path,u,v]: [edge,u,w] in R, [path,w,v] in R}

Here, facts are represented as tuples containing the relation
name and arguments.

Incrementalize: exploit auxiliary maps. We incre-
mentally maintain the result of expensive computation e0 +

e1(R) + e2(R) - R in a fresh variable W, when an edge or path

fact is added to R. Use of rule 1 as in e1(R) is easy: when an
edge fact is added to R, a corresponding path fact is added
to W if not already present. Use of rule 2 as in e2(R) requires
the use of maps for efficient retrieval: when an edge(u,w)

is added to R, the matching v’s are found by using path as
a map, and when a path(w,v) is added to R, the matching
u’s are found by using as a map an auxiliary relation edgewu

that is the inverse of edge:

edgewu = {[w,u]: [edge,u,w] in R}

Initialization of W and addition of a set to W will be done by
a for loop, and addition of an element to W will be guarded
by a test that the element is not in W already. Finally, tuple
operations will be done one component at a time, e.g., test
[x,y] in S will be done as x in domain(S) and y in S{x}.

The total number of iterations of the while loop, includ-
ing iterations of the for loops to find the matching variable
values using maps, is bounded by the number of combina-
tions of facts that make all hypotheses of a rule true at the
same time, summed over all rules. This is also the worst-
case time complexity, because each iteration takes worst-
case O(1) time using the data structure design discussed
next. For the transitive closure example, let Vertex be num-
ber of vertices and Indegree be the indegree of the given
graph. Then time complexity is the sum of O(|edge|) for the
first rule and O(min(|edge| × Vertex, |path| × Indegree)) for
the second rule. That is, the time complexity is bounded
by the number of edges times the number of vertices, and is
also bounded by the output size if Indegree is a constant.

Implement: design linked and indexed data struc-
tures. Similarly as discussed for the design of linked data
structures for sets, based representation is used to repre-
sent facts—sets of tuples, except that linked list alone is not
sufficient, because in general a non-constant number of sets
may need to be strongly based. For example, test y in S{x}

requires S{x} to be strongly based, but the number of such
sets is the size of the domain of S, which is not a constant.

The idea is to use an array for each such component of
the tuple, and use linked lists for other sets. This yields
combined linked and indexed data structures, with nested
array structures for sets of tuples with associative access to
every component. The space complexity is the output size
plus the space for auxiliary maps.



For the transitive closure example, elements of the base
are stored in an array indexed by the vertices 1 to Vertex,
for efficient access of the first component of edgewu and of
path facts in R and W. Each element u of the base array is a
record of six fields: two arrays for the second component of
path facts in R and W, two linked lists for traversing elements
in those two arrays, a linked list for the second component
of edgewu, and a linked list for the second component of edge
facts. The first component of edge facts is a linked list.
The output space is O(|edge|2), and the auxiliary space is
O(|edge|).

Applications and need for module abstraction. The
method described applies to all Datalog rules with no more
than two hypotheses. Datalog rules are a general class of
rules where each argument of a relation is an atomic value,
not a structured value. Rules with more than two hypothe-
ses can be decomposed into rules with two hypotheses first.
Many difficult query problems can be specified easily using
Datalog.

• Complex database queries, especially queries involving
both sets and recursion. These include graph queries
and semantics web queries that are hard or impossible
to express in traditional relational databases.

• Program analysis, as well as verification and model
checking. Datalog is excellent for expressing program
flow and dependency analysis, including complex
pointer analysis, for which the method described has
led to improved algorithms and complexity analysis.

• Trust management, for access control in decentralized
systems. These policies are very complex and are made
significantly simpler by using Datalog with constraints;
so are certain network programming tasks.

All set expressions, recursive functions, and logic rules
are best only for expressing isolated computations. To build
software systems with many components, module abstrac-
tion is needed and is discussed next.

6. OBJECTS
We finally consider the use of objects to provide mod-

ule abstraction in building software components. We use a
simple linked-list component as an example. A linked-list
component provides the functionalities of a linked-list im-
plementation, such as adding an element at the beginning
of the list and returning the number of elements in the list.

Although components separate how operations are imple-
mented inside from what these operations are to the users
outside, there is a conflict between clarity and efficiency in
implementing the operations. To resolve this conflict, in-
crementalization is needed to transform straightforward but
inefficient computations into sophisticated but efficient im-
plementations for these components.

Queries and updates: clarity versus efficiency. What
functionalities a component provides can be classified as, or
decomposed into, two kinds of operations: queries and up-
dates. Queries compute results using data without changing
data, and are sometimes called views or observations. Up-
dates change data. For example, the LinkedList class in
Java has a query method size that returns the number of
elements in the list, almost two dozen update methods that

add or remove elements, and over a dozen other query meth-
ods that return elements, their indices, membership test re-
sults, and so on. These numbers have in fact been increasing
since LinkedList was first introduced in Java.

How to implement the queries and updates can vary sig-
nificantly.

• A straightforward implementation lets each operation
do only its respective query or update and is clear and
modular. For example, the size method can iterate
over elements in the list to count them, and each up-
date method can do just the specified addition or re-
moval of elements. However, this can have poor per-
formance, because queries may be repeated, and many
are expensive. For example, size takes time linear in
the number of elements in the list, and if it occurs in
a loop, the overall running time blows up.

• A sophisticated implementation can have good perfor-
mance, by storing the results of expensive queries ap-
propriately and maintaining them incrementally when
the data are updated. For example, the LinkedList

class may maintain the result of size in a field. How-
ever, this is not modular, less clear, and error-prone,
because each update that may affect a query result
must update that result appropriately. In the LinkedList

class, each of the almost two dozen update methods
must also update the field for size appropriately.

Clearly, there is a conflict between clarity and efficiency,
even for the simple LinkedList example. The situation be-
comes much worse for complex systems that have many
queries and updates, where queries may cross multiple classes,
and updates may be spread in many places. A query can be
affected by many updates, and an update can affect many
queries. It poses a serious challenge to consider complex
dependencies and trade-offs and decide where and how to
maintain what results, and the resulting code can become
significantly more difficult to understand. This conflict be-
tween clarity and modularity, and thus software productiv-
ity and cost, on one side, and program efficiency and sys-
tem performance on the other side, manifests itself widely
in complex systems and components.

Incrementalize: develop and apply incrementaliza-
tion rules. Incrementalization first analyzes expensive
queries and updates to values that queries depend on, taking
aliasing into account as appropriate. Then it must determine
where to store the query results, and where and how to up-
date them. Module abstraction makes this more difficult.
In general, there may be many expensive queries and many
kinds of updates that are interdependent and spread across
different components. How to incrementally maintain all the
invariants involved under all updates in a coordinated way,
using a systematic and even automatic method?

The idea is to maintain invariants one at a time, follow-
ing the chain rule as discussed in Section 3, except that the
maintenance of an invariant at a set of updates may be much
more sophisticated, so a declarative language is desired for
specifying the transformations. One may use incremental-
ization rules to specify coordinated maintenance of a query
result at a set of updates to the values that the query de-
pends on, maintaining the invariant that the value of a fresh
variable equals the result of the query.



For example, the following incrementalization rule expresses
that, to maintain the invariant r = s.size() when all up-
dates that may affect the size of s are s := new set(), s.add(x),
and s.del(x), the respective maintenance is setting r to 0,
incrementing r by 1 if x is not in s before the addition, and
decrementing r by 1 if x is in s before the removal; the cost
of the original query is linear in the size of s, and the cost
of each update and maintenance is constant.

inv r = s.size() O(|s|)

at s := new set() O(1)
do r := 0 O(1)

at s.add(x) O(1)
do before

if not s.contains(x):
r := r + 1

O(1)

at s.del(x) O(1)
do before

if s.contains(x):
r := r - 1

O(1)

In general, one may also use if clauses under the inv and
at clauses to specify conditions on the query and updates,
including the classes, methods, etc. in which the queries and
updates may occur, and de clauses to define new classes,
methods, etc. Indeed, for the costs listed in the rule above
to be correct, the last two updates need a condition that x

is a variable, not an arbitrary expression.
A library of incrementalization rules can be built and

reused from application to application, as opposed to being
rediscovered and manually embedded in scattered places in
each application program. Rules should be developed sys-
tematically, following general methods for maintaining in-
variants, whenever possible; indeed, a large class of rules
can be derived automatically. Other rules that we do not
yet know how to systematically derive can be added man-
ually when they are discovered. The correctness of rules
needs to be verified rigorously.

Applications and need for additional abstraction.
Among widespread applications of incrementalization across
components, we mention two general classes:

• Information systems, such as management information
systems (MIS) and electronic health records (EHR).
Objects can model components at different granulari-
ties, and object queries can help express functionalities
at a very high level.

• Simulations and games, such as network simulations
and large role-playing games. In these applications,
many objects constantly interact with each other in
a dynamic environment, querying and updating many
attributes of the objects.

Incrementalization rules can be interpreted in general as
invariant rules, used for not only optimization, but also
reverse engineering and verification: whereas optimization
yields incremental maintenance given the invariant and up-
dates, reverse engineering discovers the invariant given the
updates and maintenance, and verification checks consis-
tency when all three of the invariant, updates, and main-
tenance are given.

Finally, for querying complex objects and relationships,
one can use not only set expressions, recursive functions, and

logic rules as discussed in previous sections, but also pow-
erful path expressions, as additional abstraction, to query
graphs that capture the objects and relationships.

7. CONCLUSION
We discuss a few important remaining issues and provide

bibliographical notes.

Building up and breaking through abstractions. In-
crementalization allows the transformation of a straightfor-
ward computation to proceed on repeatedly incremented in-
put, use and maintain previously computed values in each
iteration, and store and access these values efficiently, arriv-
ing at an efficient implementation. This in turn supports the
computation to be specified clearly at a high level without
sophisticated implementation details. Whereas developing
clear high-level specifications require building up data, con-
trol, and module abstractions, transformation into efficient
implementations requires breaking through the abstractions—
to determine iterative structures from recursive definitions,
design efficient data structures from set operations, make ex-
pensive computations incremental, and do so across compo-
nents. Methods for both building up and breaking through
abstractions need further studies together.

Implementations and experiments. Although only
sketched in this overview, the transformational method for
incrementalization is based on analyzing each program con-
struct, for structures of control and operations on data, to
determine increments for iterative computation, additional
values for incremental computation, etc. On the one hand,
the method can be used manually for algorithm design. On
the other hand, with the heuristic for finding increments and
conservative approximations for analyzing dependencies and
equalities, the transformations can be fully automated, as
prototype implementations have shown. Experiments on a
wide variety of applications have resulted in new or improved
algorithms and implementations, improved complexity anal-
ysis and understanding of existing algorithms, as well as im-
proved problem specifications. However, much more work is
needed to improve the implementations.

Limitations and future work. There are many limita-
tions of the method and many research problems that need
further study. First, better characterizations of the method
are needed to help put it into perspective. At the same
time, extensions of the method are needed in many areas:
space-driven optimization, concurrent and distributed pro-
gramming, languages supporting all high-level abstractions,
and more. Study is also needed on relationships with design
and optimization in continuous domains for the design of
engineering systems, as studied in applied mathematics and
in sciences like physics. Finally, substantial effort is needed
to validate the method and future developments through
experiments with large-scale applications.

Bibliographical notes. The ideas of incrementalization
underlie a large body of research [20, 12]. The following are
some of the earliest important works and some of the closest
works to the parts discussed in this article. Interested read-
ers may find detailed and additional discussions in [12]. The
most basic idea can be traced back to the difference method
of Henry Briggs in the 16th century, used by the Difference
Engine of Charles Babbage in the 19th century [7].



• Maintaining and strengthening loop invariants by Di-
jkstra [5], Gries [9], and others, including techniques
for strength reduction [8, 3, 4].

• Finite differencing of set expressions by Earley [6],
Paige et al [18, 19], and others, and incremental view
maintenance in database [2, 10]. The graph reachabil-
ity example in Section 3 is simplified from [12] based
on ideas from Liu et al [15].

• Transforming recursive functions by Burstall and Dar-
lington [1] and others, and various techniques for mem-
oization [17]. The longest common subsequence exam-
ple in Section 4 is discussed in detail in [12].

• Tabling for logic programs by Tamaki and Sato [22]
and others, and methods for efficient evaluation with
complexity analysis [24, 16, 23]. The transitive closure
example in Section 5 is discussed in detail in [13, 12].

• Incrementalization of computations on objects [11, 21].
The linked-list class example in Section 6 is from [14,
12].
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