
Core Role-Based Access Control:
Efficient Implementations by Transformations ∗

Yanhong A. Liu1 Chen Wang2 Michael Gorbovitski1 Tom Rothamel1

Yongxi Cheng2 Yingchao Zhao2 Jing Zhang2

1Computer Science Department, State University of New York at Stony Brook
{liu,mickg,rothamel}@cs.sunysb.edu

2Computer Science Department, Tsinghua University
{wc00,cyx,yczhao,mitjj00}@mails.tsinghua.edu.cn

Abstract
This paper describes a transformational method applied to the core
component of role-based access control (RBAC), to derive efficient
implementations from a specification based on the ANSI standard
for RBAC. The method is based on the idea of incrementally main-
taining the result of expensive set operations, where a new method
is described and used for systematically deriving incrementaliza-
tion rules. We calculate precise complexities for three variants of
efficient implementations as well as for a straightforward imple-
mentation based on the specification. We describe successful pro-
totypes and experiments for the efficient implementations and for
automatically generating efficient implementations from straight-
forward implementations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, optimization; D.4.6 [Op-
erating Systems]: Security and Protection—access controls; I.2.2
[Artificial Intelligence]: Automatic Programming—Program trans-
formation

General Terms Design, Languages, Performance, Security

Keywords access control, complexity guarantees, incrementaliza-
tion, optimization, transformation

1. Introduction
Role-based access control (RBAC) is a framework for controlling
user access to resources based on roles. It can significantly reduce
the cost of security policy administration and is increasingly widely
used in large organizations. The ANSI standard for RBAC [1] was
approved in 2004 after several rounds of public review [20, 11, 5],

∗ This work was supported in part by ONR under grant N00014-04-1-0722
and NSF under grants CCR-0306399 and CNS-0509230. Contact author:
Y.A.Liu, liu@cs.sunysb.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM ’06 January 9–10, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-196-1/06/0001. . . $5.00.

building on much research during the preceding decade and ear-
lier (e.g., [4, 8, 12]). Despite much research on RBAC, it is non-
trivial to develop efficient implementations, and it is even harder to
develop efficient implementations with precise complexity guaran-
tees.

Program transformations have the promise of generating effi-
cient implementations from high-level specifications. However, ex-
isting transformations either can not achieve asymptotic complexity
improvements, or can not be fully automatically applied to real-
world examples and provide complexity guarantees. Asymptotic
improvements are essential to go from clear specifications to ef-
ficient implementations [14], and fully automatic transformations
that provide complexity guarantees for the generated implementa-
tions are essential for real-world applications.

This paper describes a transformational method applied to the
core component of RBAC, to derive efficient implementations from
a specification based on the ANSI standard for RBAC. Core RBAC
defines core functionalities on permissions, users, sessions, roles,
and a number of relations among these sets, while the rest of RBAC
adds a hierarchical relation over roles, in hierarchical RBAC, and
restricts the number of roles of a user and of a session, in con-
strained RBAC.

The transformational method is based on the old idea of incre-
mentally maintaining the result of expensive set operations [19],
but no previous work addresses the challenge of systematically de-
riving incrementalization rules, which is extremely important for
handling a variety of different kinds of complex set queries such
as those in RBAC. We illustrate our method on core RBAC as a
non-trivial case study, and calculate precise complexities for three
variants of efficient implementations as well as for a straightfor-
ward implementation based on the specification, for comparisons.
The method described is general and can incrementalize expensive
set expressions in any application, including other variants and ex-
tensions of core RBAC.

We have developed prototypes for both straightforward and in-
crementalized implementations, as well as a system for automati-
cally applying incrementalization rules to generate incrementalized
implementations, and performed a large number of experiments to
test for correctness and to confirm the calculated complexities. Our
method of incrementalization supports the separation of “what” in
clear specification and “how” in efficient implementation, which
also allowed us to arrive at a corrected and simplified specification
of RBAC compared with the ANSI standard [13].

2. Language
We use a standard imperative language that supports sets, tuples,
and maps for the specification and implementation of core RBAC,
though an object-oriented language could be used where core
RBAC could be just one class, which is why we use the names
“field” and “method” below. We use the name “program” for both
specifications and implementations. Figure 1 defines the language,
where X∗, X+, and X? denote that X occurs 0 or more, 1 or more,
and 0 or 1 times, respectively.

prog ::= (fieldname : type)∗

(methodname (varname ∗): (pre-cond:expr ;)?stmt)∗

type ::= set(type) | tuple(type +) | map(type,type) | ...

stmt ::= for (varname in expr)+| expr : stmt | ...

expr ::= {expr : (varname in expr)+| expr } | ...

fieldname , methodname , varname : identifiers

Figure 1. Language.

A program defines a set of fields and a set of methods, possibly
with pre-conditions. Types may be specified not only for fields but
also for variables, method parameters, and return values, although
we omit those types from the grammar. We generally omit types
when they can be inferred from the program. Note the types for
sets, tuples, and maps, the statement for iterating over sets, and
the expression for set comprehension; we make substantial use
of these, because sets and tuples are well suited for high-level
specifications, and maps are essential for efficient implementations.

For the loop for v1 in e1, ..., vk in ek | e : s, each vari-
able vi enumerates elements of the set value of expression ei, and
for each combination of values of v1 through vk, if the value of
Boolean expression e is true, then execute s. We read the entire
statement as “for each v1 in e1,..., and vk in ek such that e, do s”.
We omit | e when e is true.

For the set comprehension {e0: v1 in e1, ..., vk in ek | e},
each variable vi enumerates elements of the set value of expression
ei, and for each combination of values of v1 through vk, if the value
of Boolean expression e is true, then the value of expression e0 is
an element of the resulting set. We read the expression as “the set
of e0 where v1 is from e1,..., and vk is from ek such that e”. We
omit | e when e is true.

We use the following kinds of expressions for other operations
on sets, tuples, and maps.

{x1, ..., xk} a set with elements x1, ..., xk

[x1, ..., xk] a tuple with elements x1, ..., xk

{[x1,y1], ...,[xk,yk]}

a binary relation, i.e., a set of 2-tuples, i.e., pairs
S +T , S -T union and difference, respectively, of sets S and T

S subset T whether S is a subset of or equal to T

x in S, x notin S

whether or not, respectively, x is an element of S

M{x} image set of key x under map M

We abbreviate and as a comma. We use indentation to indicate
scoping. We use // to begin a comment that lasts till the end of the
line.

Our language differs from the Z specification language used in
the ANSI standard for RBAC in that it is executable—the semantics
of a specification corresponds to a straightforward implementation
of the specification,

Cost model. The cost model depends on the implementation of
sets and maps. We assume that each set is implemented using a hash

table, so it takes constant time on average to retrieve an element
from a set, test membership of an element in a set, and add and
delete an element to and from a set. We assume that each map is
implemented as a hash table for the set of keys and a hash table
for the image set of each key, so it takes constant time to add and
delete a key, locate an image set of a key, retrieve an element from
an image set, test membership of an element in an image set, and
add and remove an element to and from an image set.

Each operation that involves enumerating elements of sets has a
cost factor that is linear in the size of each set enumerated, and is
considered expensive; specifically, the construct

x1 in S1, ..., xk in Sk|

has a cost factor of |S1| ∗ ... ∗ |Sk|. This gives a simple way of
calculating the time complexities.

3. Specification
Core RBAC contains the following sets and relations and the oper-
ations on them summarized in Figure 2, explained below.

OBJS: set(Object) // an operation-object pair

OPS: set(Operation) // is called a permission.

USERS: set(User)

ROLES: set(Role)

PR: set(tuple(tuple(Operation,Object),Role))

UR: set(tuple(User,Role))

// PR subset (OPS * OBJS) * ROLES

// UR subset USERS * ROLES

SESSIONS: set(Session)

SU: set(tuple(Session,User))

SR: set(tuple(Session,Role))

// SU subset SESSIONS * USERS

// SR subset SESSIONS * ROLES

A system has sets of objects, operations, users, roles, and sessions;
their elements are of types Object, Operation, User, Role, and
Session, respectively. A operation-object pair, called a permis-
sion, denotes an allowed operation on an object. A permission-role
pair in PR denotes a permission assigned to a role. A user-role pair
in UR denotes a user assigned to a role. A session-user pair in SU de-
notes a session and the unique user of the session. A session-role
pair in SR denotes a session and a role active in the session.

administrative add/delete user/role, assign/deassign user,
commands grant/revoke permission

supporting create/delete session, add/drop active role,
system functions check access

review assigned users/roles
functions

advanced review role/user permissions, session roles/perms,
functions role/user ops on obj

Figure 2. Functionalities of core RBAC by categories.

Administrative commands. The following operations each adds
an element to a set or a relation.

AddUser(user):
pre-cond: user notin USERS;

USERS = USERS + {user}

AddRole(role):
pre-cond: role notin ROLES;

ROLES = ROLES + {role}

AssignUser(user,role):
pre-cond: user in USERS, role in ROLES,

[user,role] notin UR;
UR = UR + {[user, role]}

GrantPermission(operation, object, role):
pre-cond: operation in OPS, object in OBJS,

role in ROLES,
[[operation,object],role] notin PR;

PR = PR + {[[operation,object],role]}

Deleting an element is symmetric to adding an element, but pos-
sibly with two kinds of additional updates. First, if an element is
deleted from a set, then from all relations defined using the set,
all tuples that contain the deleted element must be deleted. Second,
DeleteUser, DeleteRole, and DeassignUser also delete the as-
sociated sessions, to satisfy the constraint that a session can have a
role active only if the user of the session is assigned that role.

DeleteUser(user):
pre-cond: user in USERS;

UR = UR - {[user,r]: r in ROLES} //maintain UR
for s in SESSIONS | //maintain SESSIONS

[s,user] in SU:
DeleteSession(user,s)//DeleteSession defined below

USERS = USERS - {user}

DeleteRole(role):
pre-cond: role in ROLES;

PR = PR - {[[op,o],role]: op in OPS, o in OBJS}

//maintain PR
UR = UR - {[u,role]: u in USERS} //maintain UR
for s in SESSIONS, u in USERS |

[s,u] in SU, [s,role] in SR: //maintain SESSIONS
DeleteSession(u,s)

ROLES = ROLES - {role}

DeassignUser(user, role):
pre-cond: user in USERS,role in ROLES,

[user,role] in UR;
for s in SESSIONS |

[s,user] in SU,[s,role] in SR://maintain SESSIONS
DeleteSession(user,s)

UR = UR - {[user,role]}

RevokePermission(operation, object, role):
pre-cond: operation in OPS, object in OBJS,

role in ROLES,
[[operation,object],role] in PR;

PR = PR - {[[operation,object],role]}

Supporting system functions. CreateSession creates a ses-
sion for a user with an initial set of active roles; it first checks
that the user is assigned those roles, and then adds the appropri-
ate elements to SU, SR, and SESSIONS. DeleteSession deletes
all elements of SU, SR, and SESSIONS that are associated with the
session.

CreateSession(user, session, ars):
pre-cond: user in USERS, session notin SESSIONS,

ars subset AssignedRoles(user);

// AssignedRoles is defined below

SU = SU + {[session,user]}
SR = SR + {[session,r]: r in ars}
SESSIONS = SESSIONS + {session}

DeleteSession(user, session):
pre-cond: user in USERS, session in SESSIONS,

[session,user] in SU;

SU = SU - {[session,user]}
SR = SR - {[session,r]: r in ROLES} // maintain SR
SESSIONS = SESSIONS - {session}

Adding and deleting active roles adds to and deletes from SR ,
respectively; adding an active role also first checks that the user
of the session is assigned that role.

AddActiveRole(user, session, role):
pre-cond: user in USERS, session in SESSIONS,

role in ROLES, [session,user] in SU,
[session,role] notin SR,
role in AssignedRoles(user);

SR = SR + {[session,role]}

DropActiveRole(user, session, role):
pre-cond: user in USERS, session in SESSIONS,

role in ROLES, [session,user] in SU,
[session,role] in SR;

SR = SR - {[session,role]}

CheckAccess checks whether an operation on an object is allowed
in a session, i.e., whether there is a role that is active in the session
and is assigned the operation-object pair as a permission.

CheckAccess(session, operation, object):
pre-cond: session in SESSIONS,

operation in OPS, object in OBJS;

return {r in ROLES | [session,r] in SR,
[[operation,object],r] in PR}

!= {}

Review functions and advanced review functions. These func-
tions are queries on the sets and relations. Most of them (
AssignedUsers, AssignedRoles, RolePermissions,
SessionRoles, RoleOperationsOnObject) are over one rela-
tion, i.e., given a value for the left or right component of a relation,
find all associated values for the other component in the relation.
For example, the first two are review functions defined by:

AssignedUsers(role):
pre-cond: role in ROLES;

return {u: u in USERS | [u,role] in UR}

AssignedRoles(user):
pre-cond: user in USERS;

return {r: r in ROLES | [user,r] in UR}

The other ones (UserPermissions, SessionPermissions,
UserOperationsOnObject) are over two relations, called a
join in database, i.e., given a value for one component of a
relation, equate the other component of the relation with one
component of a second relation, and find all associated val-
ues for the other component of the second relation. Two of
them (RoleOperationsOnObject, UserOperationsOnObject)
involve lookup over nested tuples but are otherwise similar to the
other functions. All advanced review functions are defined below:

RolePermissions(role):
pre-cond: role in ROLES;

return {[op,o]: op in OPS, o in OBJS

| [[op,o],role] in PR}

UserPermissions(user):
pre-cond: user in USERS;

return {[op,o]: r in ROLES, op in OPS, o in OBJS

| [user,r] in UR, [[op,o],r] in PR}

SessionRoles(session):
pre-cond: session in SESSIONS;

return {r: r in ROLES | [session,r] in SR}

SessionPermissions(session):
pre-cond: session in SESSIONS;

return {[op,o]: r in ROLES, op in OPS, o in OBJS

| [session,r] in SR, [[op,o],r] in PR}

RoleOperationsOnObject(role, object):
pre-cond: role in ROLES, object in OBJS;

return {op: op in OPS | [[op,object],role] in PR}

UserOperationsOnObject(user, object):
pre-cond: user in USERS, object in OBJS;

return {op: r in ROLES, op in OPS

| [user,r] in UR, [[op,object],r] in PR}

4. Transformational method
Straightforward implementations of many operations in core RBAC
are inefficient because they involve iterating through sets from
scratch. Efficient implementations require that the results of such
expensive computations be stored, be retrieved quickly when
needed, and be maintained incrementally when the sets that these
results depend on are updated. This section describes the transfor-
mational method for incrementalizing individual expensive com-
putations. The overall efficiency depends on which expensive com-
putations to incrementalize based on the costs and frequencies of
the operations, and will be discussed in the next section.

Determining expensive computations. We consider all opera-
tions that are not constant time expensive. These include set com-
prehensions, loops over sets, a subset test, a set union, and set dif-
ferences in the core RBAC specification. A set difference, as in
DeleteUser, DeleteRole, and DeleteSession,

T = T− {e : x1 in S1, ..., xk in Sk}

is transformed to an equivalent loop over sets

for x1 in S1, ..., xk in Sk | e in T : T = T− {e}

since only elements of T need to be considered for deletion. The
subset test and set union, in CreateSession, are transformed
similarly, to loops over ars. A loop over sets

for x1 in S1, ..., xk in Sk | e : s

is transformed to a set comprehension

{[x1, ..., xk] : x1 in S1, ..., xk in Sk | e}

plus a simple loop over the result of the comprehension. For exam-
ple, in the definition of DeleteUser,

UR = UR - {[user,r]: r in ROLES} //maintain UR

is transformed to

for r in ROLES | [user,r] in UR:
UR = UR - {[user,r]}

and then to

for r in {r: r in ROLES | [user,r] in UR}:
UR = UR - {[user,r]}

The remaining loops are over the results of set comprehensions in
DeleteUser DeleteRole, DeassignUser, and DeleteSession
(for maintaining UR , PR , SR , and SESSIONS) and over ars in
CreateSession (for subset test and addition to SR); each of them
has a cost proportional to size of the desired outcome and thus
can not be eliminated. Therefore, set comprehensions are the only
remaining expensive computations that could be optimized away.

Figure 3 lists all 16 occurrences of them, where the first column
is the containing method, and last column classifies them into 9
different kinds of queries—1x for four kinds of queries over one
relation, and 2x for five kinds of queries over two relations.

The time complexities of these queries can be calculated
straightforwardly based on the cost model, which then give the
time complexities of the methods, as summarized in the second
column of Figure 5.

Size notation. We use the following letters for sizes of the respec-
tive sets:

set: OBJS OPS OPS*OBJS USERS ROLES SESSIONS
size: O A P U R S

where A for operation is adopted from the initial letter of “access”
or “action”, and P equals A*O and is the initial letter of “permis-
sion”. We use x/y, where x and y are the letters for the above sets
but in lower case, to denote the number of x’s per y. For example,
s/u denotes the number of sessions per user, which can be used ei-
ther for the worst case or the average case analysis. Specially, s/ur
denotes the number of sessions per user per active role, and a/or
denotes the number of operations allowed per object per role.

Identifying parameter updates. The parameters of a query are
the free variables in the query. The result of the query depends
on the values of these variables. For example, parameters of the
CheckAccess query are ROLES, SR, PR, session, operation, and
object.

An update to a parameter is any operation that sets the value
of the parameter. For example, for the CheckAccess query, the
parameters ROLES, SR, and PR are set by addition and deletion of an
element, while session, operation, and object are set by calls
to CheckAccess.

We identify primitive updates to the parameters, i.e., prim-
itive operations that directly set the values of the parameters,
not through method calls. For example, the primitive updates in
DeleteUser are the assignments to UR and USERS, not the call to
DeleteSession that assigns to SU, SR, and SESSIONS. Figure 4
lists all primitive updates to the sets and relations defined in core
RBAC, where the first column is the containing method, and the
parentheses enclose the number of elements added or deleted if the
number is not 1. These sets and relations are all the parameters,
besides method arguments, of all the expensive queries.

AddUser add to USERS

DeleteUser delete from USERS, UR (r/u)

AddRole add to ROLES

DeleteRole delete from ROLES, UR (u/r), PR (p/r)

AssignUser add to UR

DeassignUser delete from UR

GrantPermission add to PR

RevokePermission delete from PR

CreateSession add to SU, SR (ars), SESSIONS

DeleteSession delete from SU, SR (r/s), SESSIONS

AddActiveRole add to SR

DropActiveRole delete from SR

Figure 4. Primitive updates in core RBAC.

Deriving incrementalization rules. For each kind of expensive
query, we need to know how to handle each kind of update to a pa-
rameter of the query; this is captured by an incrementalization rule,
which systematically addresses three main issues in incrementaliz-
ing expensive set queries.

containing method expensive query kind

DeleteUser {r: r in ROLES | [user,r] in UR} 1a

{s: s in SESSIONS | [s,user] in SU} 1b

DeleteRole {[op,o]: op in OPS, o in OBJS | [[op,o],role] in PR} 1c

{u: u in USERS | [u,role] in UR} 1b

{[s,u]: s in SESSIONS, u in USERS | [s,u] in SU, [s,role] in SR} 2e

DeassignUser {s: s in SESSIONS | [s,user] in SU, [s,role] in SR} 2d

DeleteSession {r: r in ROLES | [session,r] in SR} 1a

CheckAccess {r: r in ROLES | [session,r] in SR, [[operation,object],r] in PR} 2c

AssignedUsers {u: u in USERS | [u,role] in UR} 1b

AssignedRoles {r: r in ROLES | [user,r] in UR} 1a

RolePermissions {[op,o]: op in OPS, o in OBJS | [[op,o],role] in PR} 1c

UserPermissions {[op,o]: r in ROLES, op in OPS, o in OBJS | [user,r] in UR, [[op,o],r] in PR} 2a

SessionRoles {r: r in ROLES | [session,r] in SR} 1a

SessionPermissions {[op,o]: r in ROLES,op in OPS,o in OBJS | [session,r] in SR,[[op,o],r] in PR} 2a

RoleOperationsOnObject {op: op in OPS | [[op,object],role] in PR} 1d

UserOperationsOnObject {op: r in ROLES, op in OPS | [user,r] in UR, [[op,object],r] in PR} 2b

Figure 3. Expensive queries in core RBAC.

First, to handle parameters that can be set to any value, a map
is maintained that maps the values of those parameters to the
results of the query. For example, for the CheckAccess query, we
maintain a map, called MapSP2R, that maps any given session and
permission, i.e., operation-object pair, to the desired set of roles.
Then, the CheckAccess query can be replaced with a fast retrieval,

MapSP2R{[session,operation,object]}

which locates the result set in constant time. The method
CheckAccess can then test the emptiness of the result set in con-
stant time, and thus is overall constant time and optimal.

Second, to handle other parameter updates, we must derive code
for incrementally maintaining the result of the query at each kind
of update. For example, for the CheckAccess query, MapSP2R
must be incrementally maintained when ROLES is updated in
AddRole and DeleteRole; SR is updated in CreateSession,
DeleteSession, AddActiveRole, and DeleteActiveRole; and
PR is updated in GrantPermission, RevokePermission, and
DeleteRole. The derivation starts with generic code for maintain-
ing the result set, obtained from the set comprehension by iterating
over both the sets enumerated and the sets tested for membership.
For example, the generic code for the CheckAccess query is

for r in ROLES: for [s,r] in SR: for [[op,o],r] in PR:

... //add r to, or delete r from, MapSP2R{[s,op,o]}

A variable that becomes bound in an outer loop is used as a filter for
the values enumerated in an inter loop. For the example above, the
variable r becomes bound in the outer-most loop, so for each value
of r, among tuples enumerated in the two inner loops, only those
whose second component equals the value of r are considered. The
specific code derived for maintaining the result set at each kind of
update is described below.

Third, for efficient incremental computation on sets of tuples,
auxiliary maps that map values of certain components of the tuples
to values of other components of the tuples are needed to quickly
retrieve the values of latter components given values of the for-
mer components. These maps essentially serve as indices. For the
CheckAccess query, the generic form above shows the need to find
all s’s and all [op,o]’s that match each r in SR and PR , respec-
tively. So, we maintain two auxiliary maps: SRMapR2S maps each
role in the range of SR to its corresponding set of sessions in SR, and

PRMapR2P maps each role in the range of PR to its corresponding
set of permissions in PR. That is, SRMapR2S and PRMapR2P are the
inverse maps of SR and PR, respectively.

Now, to obtain the specific maintenance code at each addition
and deletion, we start with the generic code, and do four things:
(1) eliminate the loop over the set that is being added or deleted
an element, because only the element being added or deleted needs
to be considered for this loop in the incremental maintenance, (2)
replace each loop whose loop variables are all bound with a test on
the loop variables, because bound variables are filters of the values,
(3) use auxiliary maps in loops that have both bound and unbound
loop variables to iterate over only the values of the unbound vari-
ables, and (4) update an auxiliary map when its corresponding set
of tuples is updated. We show the resulting maintenance code for
the CheckAccess query at each kind of update to ROLES, SR, and
PR. We first show the cases for element additions, as a set of at
update do maintenance time formula clauses:

at ROLES = ROLES + {r}
do for s in SRMapR2S{r}: for [op,o] in PRMapR2P{r}:

... //add r to MapSP2R{[s,op,o]}

time O(s/r*p/r)

at SR = SR + {[s,r]}
do if r in ROLES: for [op,o] in PRMapR2P{r}:

... //add r to MapSP2R{[s,op,o]}

SRMapR2S{r} = SRMapR2S + {s}

time O(p/r)

at PR = PR + {[[op,o],r]}

do if r in ROLES: for s in SRMapR2S{r}:

... //add r to MapSP2R{[s,op,o]}

PRMapR2P{r} = PRMapR2P{r} + {[op,o]}

time O(s/r)

where the code for adding r to MapSP2R{[s,op,o]} is

if r notin MapSP2R{[s,op,o]}:

MapSP2R{[s,op,o]} = MapSP2R{[s,op,o]} + {r}

Deletion is symmetric and has the same cost, i.e., is exactly the
same except with if...notin replaced with if...in and with +
replaced with -. Finally, initialization of the maps is simple: the
map for the query result is set to empty when any of the sets being

iterated over is set to empty, and an auxiliary map is set to empty
when the corresponding set of tuples is set to empty; the cost is
always O(1).

Two kinds of simplifications can be made to the maintenance
code above for additions in core RBAC, although they do not im-
prove the actual asymptotic running times. First, the maintenance
code in the first clause can be eliminated, and its time complexity
is more accurately O(1), because the range of SR is a subset of
ROLES in RBAC, and thus SRMapR2S maps a new role to the empty
image set. Second, in the maintenance code in the second clause,
the condition if r in ROLES can be removed, again because the
range of SR is a subset of ROLES, and thus the r in a pair added to
SR must be in ROLES.

Rules for the four kinds of 1x queries are much simpler; each
of them just needs to store, use, and maintain one auxiliary map.
Rules similar to the rule for the CheckAccess query can be derived
for the other four kinds of 2x queries. For some queries, different
order of sets and relations being iterated may lead to different
complexities, because of differences in the order of binding the
variables. The number of possible orders is exponential in the
number of sets being iterated, but it is typically a small constant,
so we can simply consider all of them.

Applying incrementalization rules. Since all queries in core
RBAC are independent of each other, rules for incrementalizing
them can be applied in any order. There are two additional details
when applying individual rules. First, if the maintenance code at a
parameter update uses the value of the parameter before the update,
then it must be inserted before the parameter update; otherwise, it
can be inserted either before or after. Second, even though a query
result can be located in constant time, if it is iterated over, then a
copy of it needs to be made for the iteration if the query result may
be incrementally updated at updates to the query parameter during
the iteration; note that this copying does not increase the overall
asymptotic running time because the cost of copying is amortized
over the subsequent iteration.

5. Efficient implementations
An overall efficient implementation depends on the frequencies
and the needed response times of the operations, because there
are tradeoffs between the query times and the update times. We
describe three variants that make CheckAccess efficient, make all
queries efficient, and make retrievals over single relations efficient,
respectively, some at the expense of increased update times. Other
variants that make different sets of queries efficient can be obtained
using the same transformational method.

Making CheckAccess efficient. Supporting system functions
are typically the most frequently executed in all core RBAC func-
tionalities. Among these functions, CheckAccess is typically the
most frequent, and CreateSession and DeleteSession are the
next most frequent. Straightforward execution of them each takes
O(R) time.

Incrementally maintaining the CheckAccess query makes
CheckAccess efficient, as shown in Section 4, but it adds mainte-
nance work at the updates to SR in CreateSession and
DeleteSession, so this is a good tradeoff if CheckAccess
is performed much more frequently than CreateSession and
DeleteSession or if the response time of CheckAccess is most
critical compared to the other two. Meanwhile, the cost of O(R)
in CreateSession and DeleteSession can be eliminated, by
incrementally maintaining the expensive query AssignedRoles

that is called in CreateSession, and the expensive query in
DeleteSession that is the same as the query SessionRoles.

The third column in Figure 5 summarizes the time complexi-
ties of the functionalities in the resulting implementation. Space
complexity is the sum of O(S ∗ P + |PR | + |SR |) for storing
the maps for making CheckAccess constant time, O(|UR |) for
making AssignedRoles constant time, and O(|SR|) for making
SessionRoles constant time.

Making all queries efficient. All queries are listed in Figure 3.
To make them all efficient, we apply incrementalization rules to
all of them. This leads to further increase in the time complexities
of the update operations, and so is a good tradeoff if all queries
are performed much more frequently than the updates or if the
query response time is critical, such as during an intensive policy
review period. The fourth column in Figure 5 summarizes the time
complexities of the operations in the resulting implementation.
Space complexity is the sum of the sizes of all maps maintained
for all of the queries.

Making retrievals over single relations efficient. Retrievals
over single relations include all queries over one relation, as well
as retrievals over one relation in queries over two relations. They
can be made efficient by storing, using, and incrementally main-
taining auxiliary maps for single relations, not maps that map
parameters to results for queries over two relations. These aux-
iliary maps, determined by retrievals needed in the queries, are
all of URMapR2U, URMapU2R, SRMapR2S, SRMapS2R, SUMapS2U,
SUMapU2S, PRMapR2P, and PRMapOR2A.

These auxiliary maps allow the result of queries over single re-
lations to be located in constant time, and queries over two relations
to be answered in at most the time proportional to the product of the
sizes of the two image sets. For example, the CheckAccess query,
given the auxiliary map SRMapS2R, needs to enumerate only the
roles that are active in the given session, rather than all the roles as
in the straightforward implementation, and then do a constant-time
test against PR.

The last column in Figure 5 summarizes the time complexities
of the operations in the resulting implementation. While queries
over two relations are not as efficient, the update operations are
more efficient, compared with when all queries are incremental-
ized. Indeed, all query and update operations in this implementa-
tion are clearly more efficient compared with the straightforward
implementation. The space complexities is the sum of the sizes of
all auxiliary maps, which is only O(|UR| + |SR| + |SU| + |PR|).

Complexities. Figure 5 lists all core RBAC functionalities and
time complexities for their straightforward implementations, and
for the three variants discussed above.

6. Experiments
To help confirm the correctness of the transformations and the
complexity analysis results presented above, we first developed
a straightforward implementation of core RBAC that precisely
follows the specification; we then applied our transformational
method to it, both manually and automatically, using a number
of different combinations of incrementalization rules, and we per-
formed many experiments on the resulting implementations. All
experimental results confirmed our expectations.

All implementations were written in Python, which has built-in
support for set comprehension; they include the straightforward im-
plementation, several manually incrementalized implementations,
and a system we developed to automatically apply incrementaliza-
tion rules to Python programs. Our current library of incremen-

core RBAC functionalities straightforward inc CheckAccess inc all queries inc retrievals

AddUser(u) 1

DeleteUser(u) R+S+s/u*R -R+r/u p/r*(r/u+s/u*r/s) r/u+s/u*r/s

AddRole(r) 1

DeleteRole(r) P+U+S*U+s/r*R +s/r*p/r+u/r p/r*(u/r+s/r*r/s) p/r+u/r+s/r*r/s

AssignUser(u,r) 1 p/r

DeassignUser(u,r) S+s/ur*R p/r*(1+s/ur*r/s) s/u+s/ur*r/s

GrantPermission(op,o,r) 1 s/r u/r+s/r

RevokePermission(op,o,r) 1 s/r u/r+s/r

CreateSession(u,s,ars) ars+R p/r*ars+r/s p/r*(ars+r/s) ars

DeleteSession(u,s) R p/r*r/s p/r*r/s r/s

AddActiveRole(u,s,r) R p/r p/r 1

DropActiveRole(u,s,r) 1 p/r p/r

CheckAccess(s,op,o) R 1 1 r/s

AssignedUsers(r) U 1 1

AssignedRoles(u) R 1 1 1

RolePermissions(r) P 1 1

UserPermissions(u) R*P 1 r/u*p/r

SessionRoles(s) R 1 1 1

SessionPermissions(s) R*P 1 r/s*p/r

RoleOperationsOnObject(r,o) A 1 1

UserOperationsOnObject(u,o) R*A 1 r/u*a/or

Figure 5. Time complexities of core RBAC functionalities. A blank means that it is the same as the straightforward version. A formula
prefixed with + or - specifies the difference in the amount from the straightforward version.

talization rules contains nine incrementalization rules, which were
developed following the method described in this paper and were
expressed using the rule language introduced in [14]. The trans-
formation system, named InvTS (Invariant-driven Transformation
System), consists of over 5,000 lines of Python. When applied to
the straightforward implementation of core RBAC, it took between
15 to 70 seconds to obtain variants of efficient implementations, de-
pending on the amount of caching used in InvTS, and the number
of queries incrementalized in each variant.

We can get a sense of how much effort incrementalization saved
us by comparing the size of the straightforward program to the size
of the incrementalized ones. We report the number of interesting
lines of code, defined as non-empty and non-comment lines. The
straightforward program consists of 125 lines of interesting code,
including 16 expensive queries that could be incrementally main-
tained. When all 16 queries are incrementalized, the code more than
tripled in size to 486 lines.

We developed a program that lets us perform black-box test-
ing on both an original and an incrementalized implementations, to
confirm that they produce the same output. It generates a sequence
of random RBAC operations that are applied to both implementa-
tions. When an operation produces a result, the results produced by
both implementations are compared, and verified to be identical.
This lets us automatically test the incrementalized program against
the original program it was generated from. All tested implementa-
tions produced identical results for a sequence of 50 million opera-
tions, giving us confidence in the correctness of the incrementalized
implementations.

We developed another program to generate data in a way that
is governed by one or more independent variables. We used this
program to generate a number of sets of input data, varying in some
parameter, for each of which we need to determine the running
time of each program. For each particular input and program, we
compute the running time by running the program repeatedly on

the data until the standard deviation of the set of running times is
less than 10 percent of the mean of the set of running times. In all
cases, the test programs were run a minimum of 10 times.

Our test programs are single-threaded, and were run under Win-
dows XP SP2 on a dual-processor Athlon XP 2.8Ghz with 2 GB of
memory, of which around 750 MB was free when running our pro-
grams. All of the experiments, written in Python, were run under
ActivePython 2.4 Build 244. This system was also used to run the
incrementalizer, which took around 30 seconds to complete the in-
crementalization of RBAC.

We compare the performance of the straightforward implemen-
tation and the second variant of the incrementalized implementa-
tions, since it shows the biggest tradeoffs on the most important op-
erations (CheckAccess, CreateSession, DeleteSession) and
therefore needs the most discussions for when to use the incre-
mentalized version. We measure the time it takes each implemen-
tation to complete 1000 repeats of a simple operation pattern. This
pattern consists of the creation of a session with 10 active roles,
1000 random access checks, and the deletion of the session. Fig-
ure 5 predicts that the operations and parameters that dominate the
asymptotic running time differ between the straightforward and in-
crementalized implementations. In the straightforward implemen-
tation, the asymptotic time of should be linear in the number of
roles, as access checks and session creation and deletion are all
linear in the number of roles. In the incrementalized implementa-
tion, CheckAccess should be constant time, and the asymptotic
time should be dominated by the cost of CreateSession and
DeleteSession, which is linear in the number of permissions as-
signed to the roles activated in a session.

Figure 6 compares the performance of the implementations
where the number of permissions per session is fixed at 100 and
number of roles varies. It shows that the incrementalized imple-
mentation is unaffected by the increasing number of roles in the
system. The straightforward implementation of CheckAccess is

Figure 6. Running time of RBAC operations, 100 permissions per
session, 1000 repeats.

Figure 7. Running time of RBAC operations, 30 roles, 1000 re-
peats.

linear in the number of roles in the system; so are CreateSession
and DeleteSession, albeit with a much smaller slope, as they
occur only once per session, compared to the 1000 times of
CheckAccess. These conform to the complexity analysis. The
total running time of the straightforward version is linear in the
number of roles, while the running time of the incrementalized
version is constant. This improved asymptotic behavior leads to a
practical speedup; with 100 roles, incrementalization improves the
total running time from .94 to .37 seconds.

Figure 7 shows the results of a second experiment, where the
number of roles in the system is fixed at 30 as the number of
permissions per session varies. Again, the results conform to our

Figure 8. Total running time of RBAC, 100 permissions per ses-
sion, 30 roles, 1000 repeats.

expectations. The asymptotic cost of the incrementalized session
creation and deletion increases with the number of permissions
per session, while the cost of CheckAccess remains constant. The
running time of all of the operations in the straightforward version
are also asymptotically constant, although the practical cost of the
straightforward version of CheckAccess is larger than that of the
incrementalized version.

These two experiments show that the operations that dominate
the running times differ between the two implementations, mak-
ing it necessary to choose the one that is superior for a given ap-
plication. When the number of roles and number of permissions
per session are fixed, which implementation is faster depends on
the number of access checks per session. While both implementa-
tions are asymptotically linear in the number of access checks per
session, Figure 8 shows that there is a critical number of access
checks above which the incrementalized implementation is faster.
When this threshold is reached, the decreased cost of the repeated
CheckAccess operation is enough to pay for the increased cost
of CreateSession and DeleteSession. While the exact value
of this critical number will vary with the number of roles and the
number of permissions per session, incrementalization will always
win for a large enough number of access checks per session.

The incrementalized version is also superior when the cost of
access checks is more important than the cost of session creation
and deletion. This may be the case in an interactive system in which
one is not concerned with the time it takes to create a session, but
once that session has been created, demands that operations in it be
performed as fast as possible. Here, it makes sense to move costs
to non-critical times.

7. Related work and conclusion
The idea of incrementally maintaining the results of set expres-
sions is decades old. In particular, Paige et al studied the subject
extensively under the names formal differentiation and finite differ-
encing [16, 19, 18]. Related topics have also been studied by Ear-
ley [3], Fong [7, 6], and Yellin and Strom [22], among others, and
used for many applications (e.g., [17, 2, 9]). Note that memoization

and dependence graph based techniques can not achieve the same
kind of incrementalization, because they do not support specialized
auxiliary maps and differential updates. Paige’s finite differencing
rules are the closest to our incrementalization rules. However, no
method was given for systematically deriving the rules. Indeed, de-
veloping these rules is the realm of experts and becomes tedious
and error-prone when there are many queries that vary slightly from
one another.

Liu et al studied a method for incrementalization across object
abstraction that is appropriate for implementing core RBAC as a
class in the context of larger applications [14]. They also used in-
crementalization rules without giving the method for deriving the
rules. The method described in this paper was taught to graduate
students not in programming languages, each deriving rules for
some of the expensive queries in core RBAC and applying them
to the straightforward implementation, the results of which were
then merged straightforwardly though tediously by one of the stu-
dents, resulting in one of the successful prototypes. Multiple tries
by the same group of students before the method was taught failed
to produce an efficient implementation with complexity assurance.
This helped show that the method is easy to learn and to use by
non-experts and is effective. We have also completing the imple-
mentation of a prototype system that automatically generates in-
crementalization rules for queries over sets and objects.

This work is made possible because RBAC has been speci-
fied formally and precisely in a set-based specification language,
Z [10, 21], in the ANSI standard [1, 5]. The standard defined and
incrementally maintained 7 additional maps, in addition to or in
place of, the two relations SU and SR defined in Section 3; they ap-
pear to be caused by efficiency concerns but complicate the spec-
ification unnecessarily. That specification was debugged and sim-
plified in [13], resulting in the specification we used in Section 3.
There are many implementations of RBAC (e.g., [23, 15]), but we
are not aware of any that provides precise complexity guarantees.
Deriving efficient implementations following a systematic transfor-
mational method also provides higher assurance for the correctness
of the implementations with respect to the specification.

In conclusion, we have developed a systematic method for gen-
erating efficient implementations from set-based specifications, and
applied it successfully, both manually and automatically, to obtain
efficient implementations of core RBAC from a straightforward im-
plementation of the specification based on the ANSI standard. Pos-
sible future work includes on-demand computation, i.e., maintain-
ing the query results on demand, as opposed to at all updates to the
parameters; other auxiliary data structures beside maps, to possibly
improve the query and update times further; efficient methods for
considering the order of the sets being iterated; and finally, efficient
implementations of hierarchical and constrained RBAC.

References
[1] American National Standards Institute, Inc. Role-Based Access

Control. ANSI INCITS 359-2004. Approved Feb. 3, 2004.

[2] B. Bloom and R. Paige. Transformational design and implementation
of a new efficient solution to the ready simulation problem. Science
of Computer Programming, 24(3):189–220, 1995.

[3] J. Earley. High level iterators and a method for automatically
designing data structure representation. J. Comput. Lang., 1:321–
342, 1976.

[4] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings
of the NIST-NSA National Computer Security Conference, pages
554–563, 1992.

[5] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli. Proposed NIST standard for role-based access control.

ACM Transactions on Information and Systems Security, 4(3):224–
274, 2001.

[6] A. C. Fong. Inductively computable constructs in very high level
languages. In Conference Record of the 6th Annual ACM Symposium
on Principles of Programming Languages, pages 21–28, 1979.

[7] A. C. Fong and J. D. Ullman. Inductive variables in very high level
languages. In Conference Record of the 3rd Annual ACM Symposium
on Principles of Programming Languages, pages 104–112, 1976.

[8] A. Gavrila and J. Barkley. Formal specification for RBAC user/role
and role relationship management. In Proceedings of the 3rd ACM
Workshop on Role Based Access Control, pages 81–90, 1998.

[9] D. Goyal and R. Paige. The formal reconstruction and improvement
of the linear time fragment of willard’s relational calculus subset. In
R. Bird and L. Meertens, editors, Algorithmic Languages and Calculi,
pages 382–414. Chapman & Hall, London, U.K., 1997.

[10] International Organization for Standardization. Z formal specification
notation – Syntax, type system and semantics. ISO/IEC 13568:2002.

[11] T. Jaeger and J. Tidswell. Rebuttal to the NIST RBAC model proposal.
In Proceedings of the 5th ACM Workshop on Role Based Access
Control, pages 66–66, Berlin, Germany, July 2000.

[12] C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A security model
for military message systems. ACM Trans. Comput. Syst., 2(3):198–
222, 1984.

[13] Y. A. Liu and S. D. Stoller. Role-based access control: A corrected
and simplified specification. Technical Report DAR 05-24, Computer
Science Department, SUNY Stony Brook, Aug. (Revised Dec.) 2005.

[14] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and Y. E.
Liu. Incrementalization across object abstraction. In Proceedings of
the 20th ACM Conference Object-Oriented Programming, Systems,
Languages, and Applications, pages 473–486, San Diego, California,
Oct. 2005.

[15] National Institute of Standards and Technology. Role-Based Access
Control. http://csrc.nist.gov/rbac.

[16] B. Paige and J. T. Schwartz. Expression continuity and the formal
differentiation of algorithms. In Conference Record of the 4th Annual
ACM Symposium on Principles of Programming Languages, pages
58–71, 1977.

[17] R. Paige. Applications of finite differencing to database integrity
control and query/transaction optimization. In H. Gallaire, J. Minker,
and J.-M. Nicolas, editors, Advances in Database Theory, Vol. 2,
pages 171–209. Plenum Press, New York, Mar. 1984.

[18] R. Paige. Symbolic finite differencing—Part I. In N. D. Jones,
editor, Proceedings of the 3rd European Symposium on Programming,
volume 432 of LNCS, pages 36–56. Springer-Verlag, Berlin, 1990.

[19] R. Paige and S. Koenig. Finite differencing of computable
expressions. ACM Trans. Program. Lang. Syst., 4(3):402–454, July
1982.

[20] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-
based access control: Towards a unified standard. In Proceedings of
the 5th ACM Workshop on Role-Based Access Control, pages 47–63,
Berlin, Germany, July 2000.

[21] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall,
2nd edition, 1992.

[22] D. M. Yellin and R. E. Strom. INC: A language for incremental
computations. ACM Trans. Program. Lang. Syst., 13(2):211–236,
Apr. 1991.

[23] C. Zhao, Y. Chen, D. Xu, N. Heilili, and Z. Lin. Integrative security
management for web-based enterprise applications. In Proceedings
of the 6th International Conference on Web-Age Information
Management (WAIM 2005), volume 3739 of LNCS, pages 618–
625–138. Springer-Verlag, Berlin, 2005.

