Founded Semantics and Constraint Semantics
of Logic Rules*

Yanhong A. Liu and Scott D. Stoller

Computer Science Department, Stony Brook University, Stony Brook NY 11794, USA

Abstract. Logic rules and inference are fundamental in computer sci-
ence and have been studied extensively. However, prior semantics of logic
languages can have subtle implications and can disagree significantly.
This paper describes a simple new semantics for logic rules, founded
semantics, and its straightforward extension to another simple new se-
mantics, constraint semantics, that unify the core of different prior se-
mantics. The new semantics support unrestricted negation, as well as
unrestricted existential and universal quantifications. They are uniquely
expressive and intuitive by allowing assumptions about the predicates
and rules to be specified explicitly. They are completely declarative and
relate cleanly to prior semantics. In addition, founded semantics can be
computed in linear time in the size of the ground program.

Keywords: Datalog, unrestricted negation, existential and universal
quantifications, fixed-point semantics, constraints, well-founded seman-
tics, stable model semantics, Fitting (Kripke-Kleene) semantics, sup-
ported model semantics

1 Introduction

Logic rules and inference are fundamental in computer science, especially for
solving complex modeling, reasoning, and analysis problems in critical areas
such as program analysis and verification, security, and decision support.

The semantics of logic rules and their efficient computations have been a sub-
ject of significant study, especially for complex rules that involve recursion and
unrestricted negation and quantifications. Many different semantics and compu-
tation methods have been proposed, e.g., see surveys [1,2]. Even those used in
many Prolog-based systems and Answer Set Programming systems—mnegation
as failure [3], well-founded semantics (WFS) [4], and stable model semantics
(SMS) [5]—have subtle implications and differ significantly. Is it possible to cre-
ate a simple semantics that also unifies these different semantics?

In practice, different semantics may be useful under different assumptions
about the facts, rules, and reasoning used. For example, an application may

* This work was supported in part by NSF under grants CCF-1414078, CNS-1421893,
11S-1447549, CCF-1248184, CCF-0964196, and CCF-0613913; and ONR under
grants N000141512208 and N000140910651.

have complete information about some predicates, i.e., sets and relations, but
not other predicates. Capturing such situations is important for increasingly
larger and more complex applications. Any semantics that is based on a single
set of assumptions for all predicates cannot best model such applications. How
can a semantics be created to support all different assumptions and still be
simple and easy to use?

This paper describes a simple new semantics for logic rules, founded seman-
tics, and its straightforward extension to another simple new semantics, con-
straint semantics.

— The new semantics support unrestricted negation (both stratified and non-
stratified), as well as unrestricted combinations of existential and universal
quantifications.

— They allow each predicate to be specified explicitly as certain (each assertion
of the predicate has one of two values: true, false) or uncertain (has one of
three values: true, false, undefined), and as complete (all rules defining the
predicate are given) or not.

— Completion rules are added for predicates that are complete, as explicit
rules for inferring the negation of those predicates using the negation of the
hypotheses of the given rules.

— Founded semantics infers all true and false values that are founded, i.e.,
rooted in the given true or false values and exactly following the rules, and
it completes certain predicates with false values and completes uncertain
predicates with undefined values.

— Constraint semantics extends founded semantics by allowing undefined val-
ues to take all combinations of true and false values that satisfy the con-
straints imposed by the rules.

Founded semantics and constraint semantics unify the core of previous se-
mantics and have three main advantages:

1. They are expressive and intuitive, by allowing assumptions about predicates
and rules to be specified explicitly, by including the choice of uncertain pred-
icates to support common-sense reasoning with ignorance, and by adding
explicit completion rules to define the negation of predicates.

2. They are completely declarative. Founded semantics takes the given rules and
completion rules as recursive definitions of the predicates and their negation,
and is simply the least fixed point of the recursive functions. Constraint
semantics takes the given rules and completion rules as constraints, and is
simply the set of all solutions that are consistent with founded semantics.

3. They relate cleanly to prior semantics, including stratified semantics [6],
first-order logic, Fitting semantics (also called Kripke-Kleene semantics) [7],
supported models [6], as well as WFS and SMS, by precisely capturing cor-
responding assumptions about the predicates and rules.

Additionally, founded semantics can be computed in linear time in the size of
the ground program, as opposed to quadratic time for WFS.

Finally, founded semantics and constraint semantics can be extended to allow
uncertain, complete predicates to be specified as closed—making an assertion of
the predicate false if inferring it to be true (respectively false) using the given
rules and facts requires assuming itself to be true (respectively false)—and thus
match WFS and SMS, respectively.

2 Motivation for founded semantics and constraint
semantics

Founded semantics and constraint semantics are designed to be intuitive and ex-
pressive. For rules with no negation or with restricted negation, which have uni-
versally accepted semantics, the new semantics are consistent with the accepted
semantics. For rules with unrestricted negation, which so far lack a universally
accepted semantics, the new semantics unify the core of prior semantics with
two basic principles:

1. Assumptions about certain and uncertain predicates, with true (7") and false
(F) values, or possibly undefined (U) values, and about whether the rules
defining each predicate are complete must be made explicit.

2. Any easy-to-understand semantics must be consistent with one where every-
thing inferred that has a unique T or F' value is rooted in the given T or F’
values and following the rules.

This section gives informal explanations.

Rules with no negation. Consider a set of rules with no negation in the
hypotheses, e.g., a rule can be “q(x) if p(x)” but not “q(x) if not p(x)” for
predicates p and q and variable x. The meaning of the rules, given a set of facts,
e.g., a fact p(a) for constant a, is the set of all facts that are given or can be
inferred by applying the rules to the facts, e.g., {p(a),q(a)} using the example
rule and fact given. In particular,

1. Everything is either T or F', i.e., T" as given or inferred facts, or F' as other-
wise. So one can just explicitly express what are 7', and the rest are F.

2. Everything inferred must be founded, i.e., rooted in the given facts and
following the rules. So anything that always depends on itself, e.g., p(a),
given only the rule “p(x) if p(x)”, is not T

In technical terms, the semantics is 2-valued, and the set of all facts, i.e., true
assertions, is the minimum model, equal to the least fived point of applying the
rules starting from the given facts.

Rules with restricted negation. Consider rules with negation in the hy-
potheses, but with each negation only on a predicate all of whose facts can be
inferred without using rules that contain negation of that predicate, e.g., one
can have “q(x) if not p(x)” but not “p(x) if not p(x)”. The meaning of the
rules is as for rules with no negation except that a rule with negation is applied
only after all facts of the negated predicates have been inferred. In other words,

The true assertions of any predicate do not depend on the negation of that
predicate. So a negation could be just a test after all facts of the negated
predicate are inferred. The rest remains the same as for rules with no nega-
tion.

In technical terms, this is stratified negation; the semantics is still 2-valued, the
minimum model, and the set of all true assertions is the least fixed point of
applying the rules in order of the strata.

Rules with unrestricted negation. Consider rules with unrestricted nega-
tion in the hypotheses, where a predicate may cyclically depend on its own
negation, e.g., “p(x) if not p(x)”. Now the value of a negated assertion needs
to be established before all facts of the negated predicate have been inferred. In
particular,

There may not be a unique T or F' value for each assertion. For example,
given only rule “p(x) if not p(x)”, p(a) cannot be T' because inferring it
following the rule would require itself be F', and it cannot be F' because it
would lead to itself being T following the rule. That is, there may not be a
2-valued model.

In technical terms, the negation may be non-stratified. There are two best solu-
tions to this that generalize a unique 2-valued model: a unique 3-valued model
and a set of 2-valued models, as in well-founded semantics (WFS) and stable
model semantics (SMS), respectively.

In a unique 3-valued model, when a unique 7" or F' value cannot be established
for an assertion, a third value, undefined (U), is used. For example, given only
rule “p(x) if not p(x)”, p(a) is U, in both WFS and founded semantics.

— With the semantics being 3-valued, when one cannot infer that an assertion
is T, one should be able to express whether it is F' or U when there is a
choice. For example, given only rule “p(x) if p(x)”, p(a) is not T, so p(a)
may in general be F or U.

— WEFS requires that such an assertion be F', even though common sense gen-
erally says that it is U. WFS attempts to be the same as in the case of
2-valued semantics, even though one is now in a 3-valued situation.

— Founded semantics supports both, allowing one to choose explicitly when
there is a choice. Founded semantics is more expressive by supporting the
choice. It is also more intuitive by supporting the common-sense choice for
expressing ignorance.

For a set of 2-valued models, similar considerations motivate our constraint
semantics. In particular, given only rule “p(x) if not p(x)”, the semantics is the
empty set, i.e., there is no model, in both SMS and constraint semantics, because
no model can contain p(a) or not p(a), for any a, because p(a) cannot be T" or F’
as discussed above. However, given only rule “p(x) if p(x)”, SMS requires that
p(a) be F in all models, while constraint semantics allows the choice of p(a)
being F' in all models or being 7" in some models and F' in other models.

Certain or uncertain. Founded semantics and constraint semantics first allow
a predicate to be declared certain (i.e., each assertion of the predicate has one

of two values: T, F') or uncertain (i.e., each assertion of the predicate has one
of three values: T, F, U) when there is a choice. If a predicate is defined (as
conclusions of rules) with use of non-stratified negation, then it must be declared
uncertain, because it might not have a unique 2-valued model. Otherwise, it may
be declared certain or uncertain.

— For a certain predicate, everything 7" must be given or inferred by following
the rules, and the rest are F, in both founded semantics and constraint
semantics.

— For an uncertain predicate, everything 7" or F' must be given or inferred,
and the rest are U in founded semantics. Constraint semantics then extends
everything U to be combinations of 7" and F' that satisfy all the rules and
facts as constraints.

Complete or not. Founded semantics and constraint semantics then allow an
uncertain predicate that is in the conclusion of a rule to be declared complete,
i.e., all rules with that predicate in the conclusion are given.

— If a predicate is complete, then completion rules are added to define the
negation of the predicate explicitly using the negation of the hypotheses of
all given rules and facts of that predicates.

— Completion rules, if any, and given rules are used together to infer everything
T and F. The rest are U in founded semantics, and are combinations of T
and F' in constraint semantics as described above.

Closed or not. Finally, founded semantics and constraint semantics can be
extended to allow an uncertain, complete predicate to be declared closed, i.e.,
an assertion of the predicate is made F', called self-false, if inferring it to be T’
(respectively F') using the given rules and facts requires assuming itself to be T
(respectively F').

— Determining self-false assertions is similar to determining unfounded sets
in WFS. Repeatedly computing founded semantics and self-false assertions
until a least fixed point is reached yields WFS.

— Among combinations of 7" and F' values for assertions with U values in WFS,
removing each combination that has self-false assertions that are not already
F in that combination yields SMS.

Correspondence to prior semantics, more on motivation. Table 1 sum-
marizes corresponding declarations that capture different assumptions under
prior semantics; formal definitions and proofs for these and for additional re-
lationships appear in the following sections. Founded semantics and constraint
semantics allow additional combinations of declarations besides those in the ta-
ble.

Some observations from the table may help one better understand founded
semantics and constraint semantics.

— The 4 wide rows cover all combinations of allowed declarations (for all pred-
icates).

— Wide row 1 is a special case of wide row 4, because being certain implies being
complete and closed. So one could prefer to use only the latter two choices

Table 1. Correspondence between prior semantics and the new semantics, with decla-
rations for all predicates, capturing different assumptions under prior semantics. Strat-
ified semantics is given only for rules that do not use non-stratified negation, whereas
the other semantics are given for rules with unrestricted negation.

Prior Semantics “ New [Certain? [Complete?[Closed? HTheorem

Stratified Founde.d ves (implied |(implied 5
Constraint yes) yes)

First-Order Logic Constraint no no (mlll;())l)led 6
Fitting (Kripke-Kleene)|| Founded no except for os o 7
Supported Constraint |extensional pred’s y 11

WES Founded any allowed es es |17
SMS Constraint Y W Y Y 18

and omit the first choice. However, being certain is uniquely important, both
for conceptual simplicity and practical efficiency:
(1) Tt covers the vast class of database applications that do not use non-
stratified negation, for which stratified semantics is universally accepted. It
does not need to be understood by explicitly combining the latter two more
sophisticated notions.
(2) It allows founded semantics to match WFS for all example programs
we found in the literature, with predicates being certain when possible and
complete otherwise, but without the last, most sophisticated notion of being
closed; and the semantics can be computed in linear time.

— Wide rows 2 and 3 allow the assumption about predicates that are uncertain,
not complete, or not closed to be made explicitly.

In a sense, WFS uses F for both false and some kinds of ignorance (no
knowledge of something must mean it is F'), uses T for both true and some kinds
of ignorance inferred through negation of F, and uses U for conflict, remaining
kinds of ignorance from 7" and F', and imprecision; SMS resolves the ignorance
in U, but not the ignorance in F' and 7. In contrast,

— founded semantics uses T only for true, F' only for false, and U for conflict,
ignorance, and imprecision;

— constraint semantics further differentiates among conflict, ignorance, and
imprecision—corresponding to there being no model, multiple models, and
a unique model, respectively, consistent with founded semantics.

After all, any easy-to-understand semantics must be consistent with the T
and F' assertions that can be inferred by exactly following the rules and comple-
tion rules starting from the given facts.

— Founded semantics is the maximum set of such 7" and F assertions, as a
least fixed point of the given rules and completion rules if any, plus U for
the remaining assertions.

— Constraint semantics is the set of combinations of all 7" and F' assertions that
are consistent with founded semantics and satisfy the rules as constraints.

Founded semantics without closed predicates can be computed easily and ef-
ficiently, as a least fixed point, contrasting with an alternating fixed point or
iterated fixed point for computing WFS.

3 Language

We first consider Datalog with unrestricted negation in hypotheses. We extend
it in Section 7 to allow unrestricted combinations of existential and universal
quantifications and other features.

Datalog with unrestricted negation. A program in the core language is a
finite set of rules of the following form, where any P; may be preceded with
-, and any P; and @) over all rules may be declared certain or uncertain, and
declared complete or not:

Q(le---aXa) < Pl(Xlly"'7X1a1) A o A Ph(Xh17~-~7Xhah) (1)

Symbols <, A, and — indicate backward implication, conjunction, and negation,
respectively; h is a natural number, each P; (respectively @) is a predicate of
finite number a; (respectively a) of arguments, each X;; and X} is either a
constant or a variable, and each variable in the arguments of) must also be in
the arguments of some P;.

If h = 0, there is no P; or X;;, and each X must be a constant, in which case
Q(X1,...,X,) is called a fact. For the rest of the paper, “rule” refers only to the
case where h > 1, in which case each P;(X;1,..., Xia;) or 2 Pi(Xi1,..., Xia,) 18
called a hypothesis of the rule, and Q(X7y, ..., X,) is called the conclusion of the
rule. The set of hypotheses of the rule is called the body of the rule.

A predicate declared certain means that each assertion of the predicate has
a unique true (7') or false (F') value. A predicate declared uncertain means that
each assertion of the predicate has a unique true, false, or undefined (U) value.
A predicate declared complete means that all rules with that predicate in the
conclusion are given in the program.

A predicate in the conclusion of a rule is said to be defined using the predi-
cates or their negation in the hypotheses of the rule, and this defined-ness relation
is transitive.

— A predicate must be declared uncertain if it is defined transitively using its
own negation, or is defined using an uncertain predicate; otherwise, it may
be declared certain or uncertain and is by default certain.

— A predicate may be declared complete or not only if it is uncertain and is in
the conclusion of a rule, and it is by default complete.

In examples with no explicit specification of declarations, default declarations
are used.

Rules of form (1) without negation are captured exactly by Datalog [8,9], a
database query language based on the logic programming paradigm. Recursion

in Datalog allows queries not expressible in relational algebra or relational calcu-
lus. Negation allows more sophisticated logic to be expressed directly. However,
unrestricted negation in recursion has been the main challenge in defining the
semantics of such a language, e.g., [1, 2], including whether the semantics should
be 2-valued or 3-valued, and whether the rules are considered complete or not.

Example. We use win, the win-not-win game, as a running example, with
default declarations: move is certain, and win is uncertain and complete. A move
from position x to position y is represented by a fact move(x,y). The following
rule captures the win-not-win game: a position x is winning if there is a move
from x to some position y and y is not winning. Arguments x and y are variables.

win(x) < move(x,y) A — win(y)

Note that the declarations for predicates move and win are different. Other choices

of declarations can lead to different results, e.g., see the last example under least

fixed point in Section 4. |
Additional examples are given in Appendix A and in Appendix B of [10].

Notations. In arguments of predicates, we use letter sequences for variables,
and use numbers and quoted strings for constants.

In presenting the semantics, in particular the completion rules, we use equal-
ity and the notations below for existential and universal quantifications, respec-
tively, in the hypotheses of rules, and use negation in the conclusions.

3 X1,...,X, | Y existential quantification 2)
VY X1,..., X, | Y universal quantification

The quantifications return 7" iff for some or all, respectively, combinations of
values of X1,...,X,, the value of Boolean expression Y is T. The domain of
each quantified variable is the set of all constants in the program.

4 Formal definition of founded semantics and constraint
semantics

Atoms, literals, and projection. Let 7 be a program. A predicate is inten-
sitonal in 7 if it appears in the conclusion of at least one rule; otherwise, it is
extensional. An atom of 7 is a formula formed by applying a predicate symbol in
7 to constants in w. A literal of 7 is an atom of 7 or the negation of an atom of
7. These are called positive literals and negative literals, respectively. The literals
p and —p are complements of each other. A set of literals is consistent if it does
not contain a literal and its complement. The projection of a program 7 onto a
set S of predicates, denoted Proj(m,S), contains all facts of = whose predicates
are in S and all rules of m whose conclusions contain predicates in S.

Interpretations, ground instances, models, and derivability. An inter-
pretation of m is a consistent set of literals of 7. Interpretations are generally
3-valued: a literal p is true (T') in interpretation I if it is in I, is false (F) in I if
its complement is in I, and is undefined (U) in I if neither it nor its complement
is in I. An interpretation of w is 2-valued if it contains, for each atom A of T,

either A or its complement. An interpretation [is 2-valued for predicate P if, for
each atom A for P, I contains A or its complement. Interpretations are ordered
by set inclusion C.

A ground instance of a rule R is any rule that can be obtained from R
by expanding universal quantifications into conjunctions over all constants in
the domain, and then instantiating the remaining variables with constants. For
example, q(a) + p(a) A r(b) is a ground instance of q(x) + p(x) Ay | r(y.
An interpretation is a model of a program if it contains all facts in the program
and satisfies all rules of the program, interpreted as formulas in 3-valued logic
[7], i.e., for each ground instance of each rule, if the body is true, then so is the
conclusion. The one-step derivability operator T, for program = performs one
step of inference using rules of m, starting from a given interpretation. Formally,
C e T,(I) iff C is a fact of 7 or there is a ground instance R of a rule of 7 with
conclusion C' such that each hypothesis of R is true in interpretation I.

Dependency graph. The dependency graph DG () of program 7 is a directed
graph with a node for each predicate of 7w, and an edge from @ to P labeled +
(respectively, —) if a rule whose conclusion contains @) has a positive (respec-
tively, negative) hypothesis that contains P. If the node for predicate P is in
a cycle containing only positive edges, then P has circular positive dependency
in 7r; if it is in a cycle containing a negative edge, then P has circular negative
dependency in 7.

Founded semantics. Intuitively, the founded model of a program m, denoted
Founded(m), is the least set of literals that are given as facts or can be inferred
by repeated use of the rules. We define Founded(w) = UnNameNeg(LFPbySCC(
NameNeg(Cmpl(r)))), where functions Cmpl, NameNeg, LFPbySCC, and
UnNameNeg are defined as follows.

Completion. The completion function, Cmpl(w), returns the completed pro-
gram of m. Formally, Cmpl(n) = AddInv(Combine(r)), where Combine and
AddInv are defined as follows.

The function Combine(r) returns the program obtained from 7 by replacing
the facts and rules defining each uncertain complete predicate @ with a single
combined rule for @, defined as follows. Transform the facts and rules defining
@ so they all have the same conclusion Q(V1,...,V,), where Vi,...,V, are fresh
variables (i.e., not occurring in the given rules defining @), by replacing each fact
orrule Q(X1,...,X,) « HiN-- - AHp with Q(V4,..., V)« 3Y1,..., Y | V1 =
XiN--ANVya=X,ANHyA---ANHp), where Y1, ..., Y} are all variables occurring
in the given fact or rule. Combine the resulting rules for @ into a single rule
defining whose body is the disjunction of the bodies of those rules. This
combined rule for @ is logically equivalent to the original facts and rules for Q.
Similar completion rules are used in Clark completion [3] and Fitting semantics
[7].

Ezxample. For the win example, the rule for win becomes the following. For
readability, we renamed variables to transform the equality conjuncts into tau-
tologies and then eliminated them.

win(x) < 3 y | (move(x,y) A — win(y)) [

The function AddInv(r) returns the program obtained from 7 by adding, for
each uncertain complete predicate @, a completion rule that derives negative
literals for). The completion rule for @) is obtained from the inverse of the
combined rule defining @ (recall that the inverse of C' < B is -C' < —B), by
putting the body of the rule in negation normal form, i.e., using laws of predicate
logic to move negation inwards and eliminate double negations, so that negation
is applied only to atoms.

Example. For the win example, the added rule is

- win(x) < V y | (= move(x,y) V win(y)) [

Least fixed point. The least fixed point is preceded and followed by func-
tions that introduce and remove, respectively, new predicates representing the
negations of the original predicates.

The function NameNeg(m) returns the program obtained from = by replac-
ing each negative literal ~P(Xq,...,X,) with n. P(X3,...,X,), where the new
predicate n. P represents the negation of predicate P.

Example. For the win example, this yields:

win(x) < J y | (move(x,y) A n.win(y))
n.win(x) < V y | (n.move(x,y) V win(y)) m

The function LFPbySCC(m) uses a least fixed point to infer facts for each
strongly connected component (SCC) in the dependency graph of 7, as follows.
Let S1,...,5, be alist of the SCCs in dependency order, so earlier SCCs do not
depend on later ones; it is easy to show that any linearization of the dependency
order leads to the same result for LEPbySCC. For convenience, we overload S
to also denote the set of predicates in the SCC.

Define LFPbySCC(7) = I,,, where I is the empty set and I; = AddNeg(LFP(
T1,_,UProj(x,s:)), Si) for i € 1.n. LFP is the least fixed point operator. The least
fixed point is well-defined, because the one-step derivability function T7, | proj(xr,s,)
is monotonic, because the program m does not contain negation. The func-
tion AddNeg(I,S) returns the interpretation obtained from interpretation I by
adding completion facts for certain predicates in S to I; specifically, for each
certain predicate P in S, for each combination of values vy, ..., v, of arguments
of P, if I does not contain P(v,...,v,), then add n. P(v1,...,v,).

Example. For the win example, the least fixed point calculation

1. infers n.win(x) for any x that does not have move(x,y) for any y, i.e., has no
move to anywhere;
2. infers win(x) for any x that has move(x,y) for some y and n.win(y) has been

inferred;
3. infers more n.win(x) for any x such that any y having move (x,y) has win(y);
4. repeatedly does 2 and 3 above until a fixed point is reached. [

The function UnNameNeg(I) returns the interpretation obtained from inter-
pretation I by replacing each atom n.P(Xy,...,X,) with =P(Xy,..., X,).

Exzample. For the win example, positions x for which win(x) is 7', F, and U,
respectively, in the founded model correspond exactly to the well-known winning,
losing, and draw positions, respectively. In particular,

1. alosing position is one that either does not have a move to anywhere or has
moves only to winning positions;

2. a winning position is one that has a move to a losing position; and

3. a draw position is one not satisfying either case above, i.e., it is in a cycle of
moves that do not have a move to a losing position, called a draw cycle, or
is a position that has only sequences of moves to positions in draw cycles.g

Ezxample. Suppose the running example uses the declaration that move is
uncertain instead of the default of being certain. This means that moves not in
the given move have U values, not allowing any n.win or win facts to be inferred.
Therefore, the founded semantics infers that win is U for all positions. |

Constraint semantics. Constraint semantics is a set of 2-valued models based
on founded semantics. A constraint model of 7 is a consistent 2-valued interpre-
tation M such that M is a model of Cmpl(r) and Founded(w) C M. We define
Constraint(m) to be the set of constraint models of 7. Constraint models can be
computed from Founded(7) by iterating over all assignments of true and false
to atoms that are undefined in Founded(7), and checking which of the resulting
interpretations satisfy all rules in Cmpl (7).

Example. For win, draw positions (i.e., positions for which win is undefined)
are in draw cycles, i.e., cycles that do not have a move to a n.win position, or are
positions that have only a sequence of moves to positions in draw cycles.

1. If some SCC has draw cycles of only odd lengths, then there is no satisfying
assignment of T and F' to win for positions in the SCC, so there are no
constraint models of the program.

2. If some SCC has draw cycles of only even lengths, then there are two satis-
fying assignments of T' and F' to win for positions in the SCC, with the truth
values alternating between 7" and F' around each cycle, and with the second
truth assignment obtained from the first by swapping 7" and F'. The total
number of constraint models of the program is exponential in the number of
such SCCs. [

5 Properties of founded semantics and constraint
semantics

Proofs of theorems appear in Appendix C of [10].

Consistency and correctness. The most important properties are consistency
and correctness.

Theorem 1. The founded model and constraint models of a program 7 are
consistent.

Theorem 2. The founded model of a program 7 is a model of # and Cmpl ().
The constraint models of 7 are 2-valued models of 7 and Cmpl(m).

Same SCC, same certainty. All predicates in an SCC have the same certainty.
Theorem 3. For every program, for every SCC S in its dependence graph, all
predicates in S are certain, or all of them are uncertain.

Higher-order programming. Higher-order logic programs, in languages such
as HiLog, can be encoded as first-order logic programs by a semantics-preserving
transformation that replaces uses of the original predicates with uses of a single
predicate holds whose first argument is the name of an original predicate [11].
For example, win (x) is replaced with holds (win,x). This transformation merges a
set of predicates into a single predicate, facilitating higher-order programming.
We show that founded semantics and constraint semantics are preserved by
merging of compatible predicates, defined below, if a simple type system is used
to distinguish the constants in the original program from the new constants
representing the original predicates.

We extend the language with a simple type system. A type denotes a set of
constants. Each predicate has a type signature that specifies the type of each
argument. A program is well-typed if, in each rule or fact, (1) each constant
belongs to the type of the argument where the constant occurs, and (2) for
each variable, all its occurrences are as arguments with the same type. In the
semantics, the values of predicate arguments are restricted to the appropriate
type.

Predicates of program 7 are compatible if they are in the same SCC in DG(7)

and have the same arity, same type signature, and (if uncertain) same complete-
ness declaration. For a set S of compatible predicates of program 7 with arity a
and type signature 11, ..., T,, the predicate-merge transformation Merge ¢ trans-
forms 7 into a program Mergeg () in which predicates in S are replaced with a
single fresh predicate holds whose first parameter ranges over S, and which has
the same completeness declaration as the predicates in S. Each atom A in a rule
or fact of 7 is replaced with MergeAtomg(A), where the function MergeAtomg
on atoms is defined by: MergeAtomg(P(X1,..., X)) equals holds("P", X1, ...,
X,) if P € S and equals P(Xy,...,X,) otherwise. We extend MergeAtomg
pointwise to a function on sets of atoms and a function on sets of sets of atoms.
The predicate-merge transformation introduces S as a new type. The type sig-
nature of holds is S, 71,...,T,.
Theorem 4. Let S be a set of compatible predicates of program m. Then
Mergeg(m) and m have the same founded semantics, in the sense that
Founded(Mergeg(m)) = MergeAtomg(Founded(r)). Mergeg(m) and 7 also have
the same constraint semantics, in the sense that Constraint(Mergeg(m)) =
MergeAtomg(Constraint(r)).

6 Comparison with other semantics

Stratified semantics. Let Stratified(m) denote the unique 2-valued model of a
program with stratified negation, as discussed in Section 2.

Theorem 5. For a program 7 with stratified negation and in which all predicates
are certain, Founded(m) = Stratified ().

First-order logic. The next theorem relates constraint models with the inter-
pretation of a program as a set of formulas in first-order logic.

Theorem 6. For a program 7 in which all predicates are uncertain and not
complete, the constraint models of 7 are exactly the 2-valued models of 7.

Fitting semantics. The Fitting model of a program m, denoted Fitting(w), is
the least model of a formula in 3-valued logic [7]; Section 6 of [10] summarizes
the definition.

Theorem 7. For a program 7 in which all extensional predicates are certain, and
all intensional predicates are uncertain and complete, Founded(w) = Fitting(r).

Theorem 8. (a) For a program 7 in which all intensional predicates are un-
certain and complete, Founded(n) C Fitting(r). (b) If, furthermore, some ex-
tensional predicate is uncertain, and some positive literal p for some uncertain
extensional predicate does not appear in m, then Founded(n) C Fitting(r).
Theorem 9. (a) For a program = in which all predicates have default declara-
tions as certain or uncertain and complete or not, Fitting(mw) C Founded(w). (b)
If, furthermore, Fitting(m) is not 2-valued for some certain intensional predicate
P, then Fitting(m) C Founded(r).

Well-founded semantics. The well-founded model of a program 7, denoted
WES(w), is the least fixed point of a monotone operator W, on interpretations
[4]; Section 6 of [10] summarizes the definition.

Theorem 10. For every program 7, Founded(m) C WES(r).

Supported models. Supported model semantics of a logic program 7 is a set
of 2-valued models [6], denoted Supported(w); Section 6 of [10] summarizes the
definition.

Theorem 11. For a program =7 in which all extensional predicates are cer-
tain, and all intensional predicates are uncertain and complete, Supported(mw) =
Constraint(m).

Theorem 12. For a program 7 in which all intensional predicates are uncertain
and complete, Supported(m) C Constraint(r).

Theorem 13. For a program m in which all predicates have default declarations
as certain or uncertain and complete or not, Constraint(m) C Supported(r).

Stable models. Gelfond and Lifschitz define stable model semantics (SMS) of
logic programs [5]. They define the stable models of a program 7 to be the 2-
valued interpretations of 7 that are fixed points of a particular transformation.
Let SMS(w) denote the set of stable models of .
Theorem 1. For a program w in which all predicates have default declarations
as certain or uncertain, SMS(w) C Constraint(r).

Exzample. For the win example with default declarations, Fitting semantics
and WEFS are the same as founded semantics in Section 4, and supported model
semantics and SMS are the same as constraint semantics in Section 4. Additional
examples can be found in Appendix B of [10]. |

7 Computational complexity and extensions

Computing founded semantics and constraint semantics.
Theorem 15. Computing founded semantics is linear time in the size of the
ground program.

Proof. First ground all given rules, using any grounding. Then add com-
pletion rules, if any, by adding an inverse rule for each group of the grounded
given rules that have the same conclusion, yielding ground completion rules of
the same asymptotic size as the grounded given rules.

Now compute the least fixed point for each SCC of the resulting ground
rules using a previous method [12]. To do so, first introduce a new intermediate
predicate and rule for each conjunction and disjunction in the rules, yielding a
new set of rules of the same asymptotic size. In computing the least fixed point,
each resulting rule incurs at most one rule firing because there are no variables
in the rule, and each firing takes worst-case O(1) time. Thus, the total time is
worst-case linear in the size of all ground rules and therefore in the size of the
grounded given rules. |

The size of the ground program is polynomial in the size n of input data, i.e.,
the given facts, because each variable in each rule can be instantiated at most
O(n) times (because the domain size is at most n), and there is a fixed number
of variables in each rule, and a fixed size of the given rules. Precisely, the size
of the ground program is in the worst case O(n* x r), where k is the maximum
number of variables in a rule, and r is the size of the given rules.

Computing constraint semantics may take exponential time in the size of the
input data, because in the worst case, all assertions of all predicates may have U
values in founded semantics, and there is an exponential number of combinations
of T"and F values of all assertions, where each combination may be checked for
whether it satisfies the constraints imposed by all rules.

These complexity analyses also apply to the extensions below except that
computing founded semantics with closed predicates may take quadratic time
in the size of the ground program, because of repeated computation of founded
semantics and self-false assertions.

Closed predicate assumption. We can extend the language to support dec-
laration of uncertain complete predicates as closed. Informally, this means that
an atom A of the predicate is false in an interpretation I, called self-false in I, if
every ground instance of rules that concludes A, or recursively concludes some
hypothesis of that rule instance, has a hypothesis that is false or, recursively, is
self-false in I. Self-false atoms are elements of unfounded sets [4].

Formally, SelfFalse, (I), the set of self-false atoms of program 7 with respect
to interpretation I, is defined in the same way as the greatest unfounded set of
7w with respect to I, except replacing “some positive hypothesis of R is in U”
with “some positive hypothesis of R for a closed predicate is in U”. The founded
semantics of this extended language is defined by repeatedly computing the
semantics as per Section 4 and then setting self-false atoms to false, until a least
fixed point is reached. Formally, the founded semantics is FoundedClosed(mw) =
LFP(Fy), where F(I) = Founded(m UI)U — - SelfFalse, (Founded(m UI)).

The constraint semantics for this extended language includes only inter-
pretations that contain the negative literals required by the closed declara-
tions. Formally, a constraint model of a program 7 with closed declarations is
a consistent 2-valued interpretation M such that M is a model of Cmpl(r),
FoundedClosed(n) C M, and — - SelfFalse, (M) C M. Let ConstraintClosed ()
denote the set of constraint models of 7.

The next theorem states that changing predicate declarations from uncertain,
complete, and closed to certain when allowed, or vice versa, preserves founded
and constraint semantics. Theorem 3 implies that this change needs to be made
for all predicates in an SCC.

Theorem 16. Let 7 be a program. Let S be an SCC in its dependence graph
containing only predicates that are uncertain, complete, and closed. Let 7’ be a
program identical to 7 except that all predicates in S are declared certain. Note
that, for the declarations in both programs to be allowed, predicates in SCCs that
follow S in dependency order must be uncertain, predicates in SCCs that precede
S in dependency order must be certain, and predicates in S must not have
circular negative dependency. Then FoundedClosed(mw) = FoundedClosed (') and
ConstraintClosed(n) = ConstraintClosed(n").

Theorem 17. For a program 7 in which every uncertain predicate is complete
and closed, FoundedClosed(r) = WFS(x).

Theorem 18. For a program 7 in which every uncertain predicate is complete
and closed, ConstraintClosed(r) = SMS(r).

Note, however, that founded semantics for default declarations (certain when
possible and complete otherwise) allows the number of repetitions for computing
self-false atoms to be greatly reduced, even to zero, compared with WFS that
does repeated computation of unfounded sets.

In all examples we have found in the literature, and all natural examples
we have been able to think of, founded semantics for default declarations, with-
out closed predicate assumption, infers the same result as WFS. However, while
founded semantics computes a single least fixed point without the outer repeti-
tion and is worst-case linear time, WFS computes an alternating fixed point or
iterated fixed point and is worst-case quadratic. In fact, we have not found any
natural example showing that an actual quadratic-time alternating or iterated
fixed-point for computing WFS is needed.!

Unrestricted quantifications in hypotheses. We extend the language to
allow unrestricted combinations of existential and universal quantifications as
well as negation, conjunction, and disjunction in hypotheses. The domain of
each quantified variable is the set of all constants in the program.

Exzample. For the win example, the following two rules may be given instead:

! Even a contrived example that demonstrates the worst-case quadratic-time compu-
tation of WF'S has been challenging to find. For example, the quadratic-time example
in [13] turns out to be linear in XSB; after significant effort between us and Warren,
we found a much more sophisticated example that appears to take quadratic time,
but a remaining bug in XSB makes the correctness of its computation unclear.

win(x) < 3 y | move(x,y) A lose(y)
lose(x) <~ V y | — move(x,y) V win(y) =

The semantics in Section 4 is easily extended to accommodate this exten-
sion: these constructs simply need to be interpreted, using their 3-valued logic
semantics [7], when defining one-step derivability. Theorems 1-3 hold for this
extended language. The other semantics discussed in Section 6 are not defined
for this extension, thus we do not have theorems relating to them.

Negation in facts and conclusions. We extend the language to allow nega-
tion in given facts and in conclusions of given rules; such facts and rules are said
to be negative. The Yale shooting example in Appendix B of [10] is a simple
example.

The definition of founded semantics applies directly to this extension, because
it already introduces and handles negative rules, and it already infers and handles
negative facts. Note that Combine combines only positive facts and positive rules
to form combined rules; negative facts and negative rules are copied unchanged
into the completed program.

With this extension, a program and hence its founded model may be incon-
sistent; for example, a program could contain or imply p and —p. Thus, Theorem
1 does not hold for such programs. When the founded model is inconsistent,
the inconsistent literals in it can easily be reported. When the founded model is
consistent, the definition of constraint semantics applies directly, and Theorems
2-3 hold. The other semantics discussed in Section 6 are not defined for this
extended language, so we do not have theorems relating to them.

8 Related work and conclusion

There is a large literature on logic language semantics and efficient computations.
Several overview articles [1,14,15,2] give a good sense of the challenges when
there is unrestricted negation. We discuss major prior semantics here.

Clark [3] describes completion of logic programs to give a semantics for nega-
tion as failure. Numerous others, e.g., [16-21], describe similar additions. Fit-
ting [7] presents a semantics, called Fitting semantics or Kripke-Kleene seman-
tics, that aims to give a least 3-valued model. Apt et al. [6] defines supported
model semantics, which is a set of 2-valued models; the models correspond to
extensions of the Fitting model. Apt et al. [6] introduces stratified semantics.
WES [4] also gives a 3-valued model but aims to maximize false values. SMS [5]
also gives a set of 2-valued models and aims to maximize false values. Other
formalisms and semantics include partial stable models, also called stationary
models [14], and FO(ID), for first-order logic with inductive definitions [22].
There are also many studies that relate different semantics, e.g., [23, 24].

Our founded semantics, which extends to constraint semantics, is unique in
that it allows predicates to be specified as certain or uncertain, as complete or
not, and as closed or not. These choices clearly and explicitly capture the dif-
ferent assumptions one can have about the predicates, rules, and reasoning, in-
cluding the well-known closed-world assumption vs open-world assumption—i.e.,

whether or not all rules and facts about a predicate are given in the program—
and allow both to co-exist naturally. These choices make our new semantics
more expressive and intuitive. Instead of using many separate semantics, one
just need to make the assumptions explicit; the same underlying logic is used for
inference. In this way, founded semantics and constraint semantics unify different
semantics.

In addition, founded semantics and constraint semantics are completely declar-
ative, as a least fixed point and as constraint satisfaction, respectively. Our de-
fault declarations without closed predicates lead to the same semantics as WFS
and SMS for all natural examples we have found. Additionally, founded seman-
tics without closed predicates can be computed in linear time in the size of the
ground program, as opposed to quadratic time for WFS.

There are many directions for future study, including additional relationships
with prior semantics, further extensions, efficient implementations, and applica-
tions.

Acknowledgment. We thank David S. Warren, Michael Kifer, Anil Nerode,
Tuncay Tekle, Molham Aref, Marc Denecker, Cordell Green, Goyal Gupta, Bob
Kowalski, Fangzhen Lin, Alberto Pettorossi, Maurizio Proietti, Neng-Fa Zhou,
and many others for helpful comments and discussions on logic languages, se-
mantics, and efficient computations.

References

1. Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. Journal of Logic
Programming 19 (1994) 9-71

2. Fitting, M.: Fixpoint semantics for logic programming: A survey. Theoretical
Computer Science 278(1) (2002) 25-51

3. Clark, K.L.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and
Databases. Plenum Press (1978) 293-322

4. Van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3) (1991) 620-650

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference and Symposium on Logic Pro-
gramming, MIT Press (1988) 1070-1080

6. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Foundations of Deductive Databases and Logic Programming. Morgan Kaufman
(1988) 89-148

7. Fitting, M.: A Kripke-Kleene semantics for logic programs. Journal of Logic
Programming 2(4) (1985) 295-312

8. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer
(1990)

9. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level.
Addison-Wesley (1995)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A

Liu, Y.A., Stoller, S.D.: The founded semantics and constraint semantics of logic
rules. Computing Research Repository arXiv:1606.06269 [cs.LO] (2016 (Re-
vised 2017)) http://arxiv.org/abs/1606.06269.

Chen, W., Kifer, M., Warren, D.S.: HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming 15(3) (1993) 187-230

Liu, Y.A., Stoller, S.D.: From Datalog rules to efficient programs with time and
space guarantees. ACM Transactions on Programming Languages and Systems
31(6) (2009) 1-38

Zukowski, U.: Flexible Computation of the Well-Founded Semantics of Normal
Logic Programs. PhD thesis, Faculty of Computer Science and Mathematics, Uni-
versity of Passau (2001)

Przymusinski, T.C.: Well-founded and stationary models of logic programs. Annals
of Mathematics and Artificial Intelligence 12(3) (1994) 141-187

Ramakrishnan, R., Ullman, J.D.: A survey of deductive database systems. Journal
of Logic Programming 23(2) (1995) 125-149

Lloyd, J.W., Topor, R.W.: Making Prolog more expressive. Journal of Logic
Programming 1(3) (1984) 225-240

Sato, T., Tamaki, H.: Transformational logic program synthesis. In: Proceedings
of the International Conference on Fifth Generation Computer Systems. (1984)
195-201

Jaffar, J., Lassez, J.L., Maher, M.J.: Some issues and trends in the semantics of
logic programming. In: Proceedings of the 3rd International Conference on Logic
Programming, Springer (1986) 223-241

Chan, D.: Constructive negation based on the completed database. In: Proceedings
of the 5th International Conference and Symposium on Logic Programming, MIT
Press (1988) 111-125

Foo, N.Y., Rao, A.S., Taylor, A., Walker, A.: Deduced relevant types and construc-
tive negation. In: Proceedings of the 5th International Conference and Symposium
on Logic Programming. (1988) 126-139

Stuckey, P.J.: Constructive negation for constraint logic programming. In: Pro-
ceedings of the 6th Annual IEEE Symposium on Logic in Computer Science. (1991)
328-339

Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Transactions on Computational Logic 9(2) (2008) 14

Dung, P.M.: On the relations between stable and well-founded semantics of logic
programs. Theoretical Computer Science 105(1) (1992) 7-25

Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by sat solvers.
Artificial Intelligence 157(1-2) (2004) 115-137

Comparison of semantics for well-known small
examples and more

Table 2 shows well-known example rules and more for tricky boundary cases
in the semantics, where all uncertain predicates that are in a conclusion are
declared complete, but not closed, and shows different semantics for them.

— Programs 1 and 2 contain only negative cycles. All three of Founded, WFS,
and Fitting agree. All three of Constraint, SMS, and Supported agree.

— Programs 3 and 4 contain only positive cycles. Founded for certain agrees
with WEFS; Founded for uncertain agrees with Fitting. Constraint for certain
agrees with SMS; Constraint for uncertain agrees with Supported.

— Programs 5 and 6 contain no cycles. Founded for certain agrees with WFS
and Fitting; Founded for uncertain has more undefined. Constraint for cer-
tain agrees with SMS and Supported; Constraint for uncertain has more
models.

— Programs 7 and 8 contain both negative and positive cycles. For program
7 where - q and q are disjunctive, all three of Founded, WFS, and Fitting
agree; Constraint and Supported agree, but SMS has no model. For program
8 where — q and q are conjunctive, Founded and Fitting agree, but WFS has
q being F; all three of Constraint, SMS, and Supported agree.

For all 8 programs, with default complete but not closed predicates, we have the
following:

— If all predicates are the default certain or uncertain, then Founded agrees
with WFS, and Constraint agrees with SMS, with one exception for each:
(1) Program 7 concludes q whether q is F' or T', so SMS having no model is
an extreme outlier among all 6 semantics and is not consistent with common
sense.

(2) Program 8 concludes q if q is F' and T, so Founded semantics with q
being U is imprecise, but Constraint has q being F. WFS has q being F
because it uses F' for ignorance.

— If predicates not in any conclusion are certain (not shown in Table 2 but
only needed for q in programs 5 and 6), and other predicates are uncertain,
then Founded equals Fitting, and Constraint equals Supported, as captured
in Theorems 7 and 11, respectively.

— If all predicates are uncertain, then Founded has all values being U, capturing
the well-known unclear situations in all these programs, and Constraint gives
all different models except for programs 2 and 5, and programs 4 and 6, which
are pair-wise equivalent under completion, capturing exactly the differences
among all these programs.

Finally, if all predicates in these programs are not complete, then Founded and
Constraint are the same as in Table 2 except that Constraint for uncertain
becomes equivalent to truth values in first-order logic: programs 1 and 8 have an
additional model, {q}, program 6 has an additional model, {p, q}, and programs
2 and 5 have an additional model, {p,q}.

Table 2. Different semantics for programs where all uncertain predicates that are in a conclusion are declared complete, but not closed.

4

certain are declared certain;

[}

mean p is 7', F', and U, respectively.

‘uncertain” means all predicates in the program are declared uncertain. “certain” means all predicates in the program that can be declared
means no predicates can be declared certain, so the semantics is the same as “uncertain”. p, p and p

Program || Founded (not closed) | WFS | Fitting (| Constraint (not closed) SMS Supported
uncertain| certain (Kripke || uncertain certain
-Kleene)
llg« —-q {a} - {a} {a} no model - no model no model
20 ol e | - |pa g |eadmagl - (e ae) dE
3la+q {a} {at fat | {a} {ab.{a} {at {at fab.{a}
it | ee | ma D kd|edls) G| GD |PadEd
Slac-p| {pat | {pat [{pd} {poa} [{p, @D 4} {p, 4} {p, 4} {p, 4}
6la<p fp,a} | ot [{p.a| {pa@ [{p, a}{p. @] {p a} {p, @} {p, @}
— -

Mg q | @ S R CUN Y {a} = | nomodel | {a}
s197 Lol @ - @ @ @ - {a) {a)

