Differentiation,
Finite Differencing,

Incrementalization:
From Clarity To Efficiency

Y. Annie Liu

Stony Brook University

At the center of computer science

two major concerns of study:

what to compute

how to compute efficiently

problem solving:

from clear specifications for "what”

to efficient implementations for " how”

From clarity to efficiency

conflict between clarity and efficiency:

clear specifications usually correspond to straightforward im-
plementations, not at all efficient.

efficient implementations are usually difficult to understand,
not at all clear.

challenge:

develop a method that is both general and systematic

A general and systematic method

iterate: determine a minimum increment to take repeatedly,
iteratively, to arrive at the desired program output

iIncrementalize: make expensive operations incremental in each
iteration by using and maintaining useful additional values

implement: design appropriate data structures for efficiently
storing and accessing the values maintained

applies to different programming paradigms abstraction
loops: iIncrementalize none
sets: iIncrementalize, implement data
recursion: iterate, incrementalize control
rules: iterate, incrementalize, implement both
objects: iIncrementalize across modules module

iterate and incrementalize — integration by differentiation

Loops — a simple example

eliminating multiplications:

i:=1 -— in grid with a columns and b rows
while i <= b:

L.akxi. .. —-— access last element of each row

i:=1i+1

strength reduction: an oldest optimization, for array access.
Difference Engine, ENIAC: tabulating polynomials.

need to use language semantics and cost model
exploit algebraic properties: ax(i+1) = axi+a

store, update, initialize value of axi: where? how?

Loops — incrementalize

iIncrementalize

maintain invariant: ¢ = a*i, use and update

i:=1 — 1:=1; c:=a;
while 1 <= b:

ooa*iooo %...C...

i:=i+1 — 1:=1+1; c:=c+a;

exploit algebraic properties

maintain additional information

iterate and implement: too little or too much to do

Loops — more examples

hardware design: non-restoring binary integer square root

n := input()
m := 27(1-1)
for i := 1-2 downto O:
p :=n - m2
if p > O:
m :=m+ 271
else if p < O:
m :=m - 271
output (m) goal: a few +- and shifts per bit

image processing: blurring

goal: a few operations per pixel

need higher-level abstraction

Sets — a simple example

graph reachability: edges, source vertices — reachable vertices

r = S
while exists x in elr] -r: -— e[r] = {y: (x,y) in e, x in r}
r :=r + {x}
need to

handle composite set expressions: x[yl, x-y

design representations of interrelated sets: e, s, r

Sets — incrementalize and implement

incrementalize: retrieve/add/delete element, test membership
two invariants for elr] -r: t = elr], w=t-r
chain rule: maintain t and then w.
derive rules for maintaining simple and complex invariants.

iImplement: s, domain of e, range of e, r, t, w
based representations: records for all elements of related sets;
a set retrieved from is a linked list of pointers to the records;
a set tested against is a field in the records.

iterate: directly from min r: s subset r, r + el[r] =r

Sets — more examples

query processing: join optimization
r := {[x,yl: xins, yin t | £(x) = g(y)}

iterate:
r := {}
for x in s: previous algorithm:
r :=r + {[x,y]l: yin t | £(x)=g(y)?} finverse := {}
incrementalize: maintain for x in s:
ginverse = {[g(y),y]l: y in t} finverse := finverse + {[f(x),x]}
derived: ginverse := {}
for y in t:
ginverse := {} if g(y) in domain(finverse):
for y in t: ginverse := ginverse + {[g(y),yl}
ginverse = ginverse + {[g(y),yl} r := {}
r := {} for z in domain(ginverse):
for x in s: for x in finverse{z}:
for y in ginverse{f(x)} for y in ginverse{z}:
r :=r + {[x,yl} r :=r + {[x,y]l}
compare:

same asymptotic time: O(#s + #t + #r); fewer loops and ops;
less space: O(#t) or O(min(#s, #t)), not O(#s+ #t); simpler and shorter; derived!

role-based access control (RBACQC)

core RBAC: 16 expensive queries, 9 kinds, updated in many places.
125 lines python — hundreds of lines. CheckAccess: constant time.

10

Recursion — a simple example

longest common subsequence: sequences x and y — length

lcs(i,j)

= if i=0 or j=0: O
else if x[il=y[jl: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),lcs(i-1,j))

need to
determine how to iterate: recursion to iteration

determine what and how to cache: dynamic programming

11

Recursion — iterate and incrementalize

les(i,j)

= if i=0 or j=0: O
else if x[il=y[j]: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),lcs(i-1,3))

iterate: minimum increment from arguments of recursive calls
i,j — i+1,]
Incrementalize: cache and use
lcs(i+1,3) use r = lcs(i,j) — lcs’(i,j,r)
= if i+1=0 lor j=0: O
else if x[i+1]=y[jl: lcs(i,j-1)+1 wuse lcs(i,j-1), cache
else: max(lcs(i+1,j-1),1lcs(i,j)) use lcs(i,j-1)
— lcs’(i,j-1,1cs(i,j-1))
recursively

implement: directly map to recursive or indexed data structures

12

Recursion — more examples

sequence processing: editing distance, paragraph formatting,
matrix chain multiplications, ...

math puzzles: Hanoi tower, find solution in linear time

h(n,a,b,c) -- move n disks from a to b using c
= if n<=0: skip
else: h(n-1,a,c,b)::move(a,b)::h(n-1,c,b,a)

iterate: n,a,b,c — n+l1,a,c,b
cache: hExt(n,a,b,c) = <h(n,a,b,c), h(n,b,c,a), h(n,c,a,b)>

hExt (n+1,a,c,b) use rExt=hExt(n,a,b,c) — hExt’(n,a,b,c,
= if n+1<=0: <skip,skip,skip> rExt)
else: 1st(rExt)::move(a,c)::2nd(rExt),
3rd(rExt) : :move(c,b)::1st (rExt),
2nd (rExt) : :move(b,a) : : 3rd (rExt)>

simpler than others: maintain 2 additional values, not 5

13

Rules — a simple example

transitive closure:

edge(u,v) -> path(u,v)
edge(u,w), path(w,v) -> path(u,v)

need to

find a way to proceed
determine what and how to maintain
design representations of different kinds of facts

additional question

can we give time and space complexity guarantees?

14

Rules — iterate, incrementalize, implement

iterate: add one fact at a time until fixed point is reached
iIncrementalize: maintain maps indexed by shared arguments

Implement: design nested linked lists and arrays of records

time and space guarantees:

edge(u,v) -> path(u,v)
edge(u,w), path(w,v) -> path(u,v)

time: # of combinations of hypotheses — optimal
O(min(#edge x #path.2/1, #path X #edge.1/2))
edges vertices output indegree
space: O(#edge), for storing inverse map of edge

15

Rules — more examples

program analysis: dependence analysis, pointer analysis, infor-
mation flow analysis, ...

trust management: SPKI/SDSI authorization

auth(k1, [k2] ,TRUE,al,v1l), auth(k2,s2,d2,a2,v2)
-> auth(kl,s2,d2,PInt(al,a2),VIint(vli,v2))

auth(k1l, [k2 [n2 ns3]],d,a,vl), name(k2,n2, [k3],v2)
-> auth(k1l, [k3 ns3],d,a,VInt(vl,v2))

name (k1,n1, [k2 [n2 ns3]],v1l), name(k2,n2, [k3],v2)
-> name(k1l,nl1, [k3 ns3],VInt(vl,v2))

find authorized keys: O(inxkpx*kn), better than O(inxkxk).

16

Objects — a simple example

the “what” of a software component:
queries: compute information using data w/o changing data.

updates: change data.

example:
class LinkedList in Java has many methods:

size(), 18 add or remove, several other queries.

17

Objects — incrementalize

how to implement the queries and updates: varies significantly

straightforward:
queries compute requested information.
updates change base data.

example: size() contains a loop that computes the size.

observe:
queries are often repeated, many are easily expensive;
updates can be frequent, they are usually small.

sophisticated — incrementalized:
store derived information; queries return stored information.
updates also update stored information.

example: maintain size in a field, and update it in 18 places.

18

Objects — more examples

examples: wireless protocols, electronic health records, virtual
reality, games,

findStrongSignals(): return {s in signals | s.getStrength() > threshold}

class Protocol
signals: set(Signal)
threshold: float
+ strongSignals: set(Signal)

class Signal
strength: float
+ protocols: set(Protocol)

addSignal(signal): signals.add(signal) + takeProtocol(protocol):

+ signal.takeProtocol(this) " protocols.add(protocol)

+ if signal.getStrength() > threshold setStrength(v):

+ strongSignals.add(signal) strength = v _

* findStrongSignals(): return strongSignals " for protocol in pr9tocols _
+ updateSignal(signal) : + protocol.updateSignal (this)
+ if signals.contains(signal) getStrength(): return strength
+ if strongSignals.contains(signal)

+ if not signal.getStrength()>threshold

+ strongSingals.remove(signal)

+ else original lines

+ if signal.getStrength()>threshold * Changed lines
+ strongSingals.add(signal) + _added lines

findéfrongSignal:(D(##signals)-—}()(l). setStrength: O(1) — O(#protocols).
19

Iterate, Incrementalize, Implement

iterate at a minimum increment step; incrementalize expensive
computations; implement on efficient data structures.

loopsS iter, inc, impl
maintaining invariants, algebraic properties, additional values

sets iter, inc, impl
chain rule, deriving maintenance rules; based representations

recursion iter, inc, impl
recursion to iteration; dynamic programming

rules iter, inc, impl
all, giving time and space complexity guarantees

objects
all, across modules

connect theory w/ practice. like differentiation & integration.

20

References

loops [Allen69..., Liu97, LS98a/LSLRO5...]

sets [Earley76..., PK82, Willard96, Willard02, LWGRCZZ06...]
recursion [BD77..., Smith90, LS99/03, LS00, LS02/09...]
rules [Forgy82, Vardi82..., McAllester99, LS03/09...]

objects [..., LSGRLO05, RLO0S...]

more: Systematic Program Design: From Clarity to Efficiency

21

Beyond — far and near, new and old

distributed: synchronous and asynchronous communications
sets (of procs) and sequences (of msgs), quantifications

secure: cryptographic primitives
synchronous and asynchronous comm, declarative policies

probabilistic: probability distribution functions
sets and aggregations, continuous mathematics

game theoretical: conflict and cooperation, equilibrium
fixed points, logic semantics and constraints

22

In DistAlgo: Lamport’s distributed mutex

w N

© 00N O O

10

12
13
14

15
16
17

18
19

def setup(s):
self.s = s
self.q = {}

set of all other processes
set of pending requests with logical clock

def mutex(task): # for doing task() in critical section
—— request
self.c = logical_clock() # rule 1
send (’request’, c, self) to s #
q.add((’request’, c, self)) #
await each (’request’,c2,p2) in q | (c2,p2) !'= (c,self) implies (c,self) < (c2,p2)

and each p2 in s | some received(’ack’,c2,=p2) | c2 > ¢ # rule 5

task() # critical section
-- release
q.del((’request’, c, self)) # rule 3
send (’release’, logical_clock(), self) to s #

receive (’request’, c2, p2): # rule 2
g.add((’request’, c2, p2)) #
send (’ack’, logical_clock(), self) to p2 #

receive (’release’, _, p2): # rule 4
q.del((’request’, _, =p2)) #

23

Complete program in

DistAlgo

0

20

21
22

23

24
25
26
27
28

class P extends Process:

. # content of the previous slide

def run():

def task():
mutex (task)

def main():

configure channel = reliable, fifo
configure clock = Lamport

ps = 50 new P

for p in ps: p.setup(ps-{p})
ps.start()

some syntax in Python:

class P(process)

send(m, to= ps)

some(elem in s, has= bexp)

config(channel= {’reliable’,’fifo’})
new(P, num= 50)

Simplified spec by un-incrementalization

0O class P extends Process:

1
2

0 ~NO Ok W

10
11

12
13

def setup(s):
self.s = s

def mutex(task):
—— request
self.c = logical_clock()
send (’request’, c, self) to s
await each received(’request’,c2,p2) |

not (some received(’release’,c3,=p2) | c3 > c2) implies (c,self) < (c2,p2)

and each p2 in s | some received(’ack’,c2,=p2)
task ()
-—- release
send (’release’, logical_clock(), self) to s

receive (’request’, _, p2):
send (’ack’, logical_clock(), self) to p2

c2 > c

25

Multi-Paxos for distributed consensus

in C4++4/Java/Python by students: thousands of lines

in DistAlgo by students: hundreds of lines

in DistAlgo better spec: tens of lines

26

Some more examples of incrementalization

birthday conflict probability: from Russel's BLOG
some x in P, some y in P: x != y, x.bday = y.bday

efficient MCMC sampling: O(1) after each update
win-not-win game:
win(x) if move(x,y), not win(y)

efficient WFS computation: O(#move) total

27

Some ongoing projects and results

objects and nested sets: generating incremental implementa-
tions of queries with complexity guarantees [arxiv/PPDP 2016]

datalog and extensions: generating efficient implementations
for demand-driven queries [PPDP 10, SIGMOD 11],
applications to many pointer analyses [arxiv/ICLP/TPLP 2016]

quantifications and arbitrary negation: generating optimized im-
plementations by using aggregations [OOPSLA 12],
founded semantics and constraint semantics [arxiv 16]

distributed algorithms: from high-level specifications to efficient
implementations [OOPSLA 12, SSS 12, arxivl6/ TOPLAS to appear]

28

