
Differentiation,

Finite Differencing,

Incrementalization:

From Clarity To Efficiency

Y. Annie Liu

Stony Brook University

1

At the center of computer science

two major concerns of study:

what to compute

how to compute efficiently

problem solving:

from clear specifications for ”what”

to efficient implementations for ”how”

2

From clarity to efficiency

conflict between clarity and efficiency:

clear specifications usually correspond to straightforward im-

plementations, not at all efficient.

efficient implementations are usually difficult to understand,

not at all clear.

challenge:

develop a method that is both general and systematic

3

A general and systematic method

iterate: determine a minimum increment to take repeatedly,

iteratively, to arrive at the desired program output

incrementalize: make expensive operations incremental in each

iteration by using and maintaining useful additional values

implement: design appropriate data structures for efficiently

storing and accessing the values maintained

applies to different programming paradigms abstraction

loops: incrementalize none

sets: incrementalize, implement data

recursion: iterate, incrementalize control

rules: iterate, incrementalize, implement both

objects: incrementalize across modules module

iterate and incrementalize → integration by differentiation

Loops — a simple example

eliminating multiplications:

i:=1 -- in grid with a columns and b rows

while i <= b:

:

...a*i... -- access last element of each row

:

i:=i+1

strength reduction: an oldest optimization, for array access.

Difference Engine, ENIAC: tabulating polynomials.

need to use language semantics and cost model

exploit algebraic properties: a*(i+1) = a*i+a

store, update, initialize value of a*i: where? how?

5

Loops — incrementalize

incrementalize

maintain invariant: c = a*i, use and update

i:=1 → i:=1; c:=a;

while i <= b:

:

...a*i... → ...c...

:

i:=i+1 → i:=i+1; c:=c+a;

exploit algebraic properties

maintain additional information

iterate and implement: too little or too much to do

6

Loops — more examples

hardware design: non-restoring binary integer square root
n := input()
m := 2^(l-1)
for i := l-2 downto 0:

p := n - m^2
if p > 0:

m := m + 2^i
else if p < 0:

m := m - 2^i
output(m) goal: a few +- and shifts per bit

image processing: blurring

| ______ |

goal: a few operations per pixel

need higher-level abstraction

7

Sets — a simple example

graph reachability: edges, source vertices → reachable vertices

r := s

while exists x in e[r] - r: -- e[r] = {y: (x,y) in e, x in r}
r := r + {x}

need to

handle composite set expressions: x[y], x - y

design representations of interrelated sets: e, s, r

8

Sets — incrementalize and implement

incrementalize: retrieve/add/delete element, test membership

two invariants for e[r] - r: t = e[r], w = t - r

chain rule: maintain t and then w.

derive rules for maintaining simple and complex invariants.

implement: s, domain of e, range of e, r, t, w

based representations: records for all elements of related sets;

a set retrieved from is a linked list of pointers to the records;

a set tested against is a field in the records.

iterate: directly from min r: s subset r, r + e[r] = r

9

Sets — more examples
query processing: join optimization

r := {[x,y]: x in s, y in t | f(x) = g(y)}
iterate:
r := {}
for x in s:

r := r + {[x,y]: y in t | f(x)=g(y)}

incrementalize: maintain
ginverse = {[g(y),y]: y in t}

derived:

ginverse := {}
for y in t:

ginverse = ginverse + {[g(y),y]}
r := {}
for x in s:

for y in ginverse{f(x)}
r := r + {[x,y]}

previous algorithm:

finverse := {}
for x in s:

finverse := finverse + {[f(x),x]}
ginverse := {}
for y in t:

if g(y) in domain(finverse):
ginverse := ginverse + {[g(y),y]}

r := {}
for z in domain(ginverse):

for x in finverse{z}:
for y in ginverse{z}:

r := r + {[x,y]}

compare:
same asymptotic time: O(#s + #t + #r); fewer loops and ops;
less space: O(#t) or O(min(#s,#t)), not O(#s+#t); simpler and shorter; derived!

role-based access control (RBAC)

core RBAC: 16 expensive queries, 9 kinds, updated in many places.
125 lines python → hundreds of lines. CheckAccess: constant time.

10

Recursion — a simple example

longest common subsequence: sequences x and y → length

lcs(i,j)

= if i=0 or j=0: 0

else if x[i]=y[j]: lcs(i-1,j-1)+1

else: max(lcs(i,j-1),lcs(i-1,j))

need to

determine how to iterate: recursion to iteration

determine what and how to cache: dynamic programming

11

Recursion — iterate and incrementalize

lcs(i,j)

= if i=0 or j=0: 0

else if x[i]=y[j]: lcs(i-1,j-1)+1

else: max(lcs(i,j-1),lcs(i-1,j))

iterate: minimum increment from arguments of recursive calls
i,j → i+1,j

incrementalize: cache and use

lcs(i+1,j) use r = lcs(i,j) → lcs’(i,j,r)

= if i+1=0 lor j=0: 0

else if x[i+1]=y[j]: lcs(i,j-1)+1 use lcs(i,j-1), cache

else: max(lcs(i+1,j-1),lcs(i,j)) use lcs(i,j-1)

→ lcs’(i,j-1,lcs(i,j-1))

recursively

implement: directly map to recursive or indexed data structures

12

Recursion — more examples

sequence processing: editing distance, paragraph formatting,
matrix chain multiplications, ...

math puzzles: Hanoi tower, find solution in linear time

h(n,a,b,c) -- move n disks from a to b using c

= if n<=0: skip

else: h(n-1,a,c,b)::move(a,b)::h(n-1,c,b,a)

iterate: n,a,b,c → n+1,a,c,b

cache: hExt(n,a,b,c) = <h(n,a,b,c), h(n,b,c,a), h(n,c,a,b)>

hExt(n+1,a,c,b) use rExt=hExt(n,a,b,c) → hExt’(n,a,b,c,

= if n+1<=0: <skip,skip,skip> rExt)

else: 1st(rExt)::move(a,c)::2nd(rExt),

3rd(rExt)::move(c,b)::1st(rExt),

2nd(rExt)::move(b,a)::3rd(rExt)>

simpler than others: maintain 2 additional values, not 5

13

Rules — a simple example

transitive closure:

edge(u,v) -> path(u,v)

edge(u,w), path(w,v) -> path(u,v)

need to

find a way to proceed

determine what and how to maintain

design representations of different kinds of facts

additional question

can we give time and space complexity guarantees?

14

Rules — iterate, incrementalize, implement

iterate: add one fact at a time until fixed point is reached

incrementalize: maintain maps indexed by shared arguments

implement: design nested linked lists and arrays of records

time and space guarantees:

edge(u,v) -> path(u,v)

edge(u,w), path(w,v) -> path(u,v)

time: # of combinations of hypotheses — optimal

O(min(#edge×#path.2/1, #path×#edge.1/2))

edges vertices output indegree

space: O(#edge), for storing inverse map of edge

15

Rules — more examples

program analysis: dependence analysis, pointer analysis, infor-

mation flow analysis, ...

trust management: SPKI/SDSI authorization

auth(k1,[k2],TRUE,a1,v1), auth(k2,s2,d2,a2,v2)

-> auth(k1,s2,d2,PInt(a1,a2),VInt(v1,v2))

auth(k1,[k2 [n2 ns3]],d,a,v1), name(k2,n2,[k3],v2)

-> auth(k1,[k3 ns3],d,a,VInt(v1,v2))

name(k1,n1,[k2 [n2 ns3]],v1), name(k2,n2,[k3],v2)

-> name(k1,n1,[k3 ns3],VInt(v1,v2))

find authorized keys: O(in∗kp∗kn), better than O(in∗k ∗k).

16

Objects — a simple example

the “what” of a software component:

queries: compute information using data w/o changing data.

updates: change data.

example:

class LinkedList in Java has many methods:

size(), 18 add or remove, several other queries.

17

Objects — incrementalize

how to implement the queries and updates: varies significantly

straightforward:

queries compute requested information.

updates change base data.

example: size() contains a loop that computes the size.

observe:

queries are often repeated, many are easily expensive;

updates can be frequent, they are usually small.

sophisticated — incrementalized:

store derived information; queries return stored information.

updates also update stored information.

example: maintain size in a field, and update it in 18 places.

18

Objects — more examples

examples: wireless protocols, electronic health records, virtual
reality, games, ...

findStrongSignals(): return {s in signals | s.getStrength() > threshold}
class Protocol

signals: set(Signal)
threshold: float

+ strongSignals: set(Signal)
...
addSignal(signal): signals.add(signal)

+ signal.takeProtocol(this)
+ if signal.getStrength() > threshold
+ strongSignals.add(signal)
* findStrongSignals(): return strongSignals
+ updateSignal(signal):
+ if signals.contains(signal)
+ if strongSignals.contains(signal)
+ if not signal.getStrength()>threshold
+ strongSingals.remove(signal)
+ else
+ if signal.getStrength()>threshold
+ strongSingals.add(signal)

...

class Signal
strength: float

+ protocols: set(Protocol)
...

+ takeProtocol(protocol):
+ protocols.add(protocol)

setStrength(v):
strength = v

+ for protocol in protocols
+ protocol.updateSignal(this)

getStrength(): return strength
...

...

original lines
* changed lines
+ added lines

findStrongSignal: O(#signals)→O(1). setStrength: O(1)→O(#protocols).

19

Iterate, Incrementalize, Implement

iterate at a minimum increment step; incrementalize expensive
computations; implement on efficient data structures.

loops iter, inc, impl

maintaining invariants, algebraic properties, additional values

sets iter, inc, impl

chain rule, deriving maintenance rules; based representations

recursion iter, inc, impl

recursion to iteration; dynamic programming

rules iter, inc, impl

all, giving time and space complexity guarantees

objects
all, across modules

connect theory w/ practice. like differentiation & integration.

20

References

loops [Allen69..., Liu97, LS98a/LSLR05...]

sets [Earley76..., PK82, Willard96, Willard02, LWGRCZZ06...]

recursion [BD77..., Smith90, LS99/03, LS00, LS02/09...]

rules [Forgy82, Vardi82..., McAllester99, LS03/09...]

objects [..., LSGRL05, RL08...]

more: Systematic Program Design: From Clarity to Efficiency

21

Beyond — far and near, new and old

distributed: synchronous and asynchronous communications

sets (of procs) and sequences (of msgs), quantifications

secure: cryptographic primitives

synchronous and asynchronous comm, declarative policies

probabilistic: probability distribution functions

sets and aggregations, continuous mathematics

game theoretical: conflict and cooperation, equilibrium

fixed points, logic semantics and constraints

22

In DistAlgo: Lamport’s distributed mutex
1 def setup(s):
2 self.s = s # set of all other processes
3 self.q = {} # set of pending requests with logical clock

4 def mutex(task): # for doing task() in critical section
5 -- request
6 self.c = logical_clock() # rule 1
7 send (’request’, c, self) to s #
8 q.add((’request’, c, self)) #
9 await each (’request’,c2,p2) in q | (c2,p2) != (c,self) implies (c,self) < (c2,p2)

10 and each p2 in s | some received(’ack’,c2,=p2) | c2 > c # rule 5
11 task() # critical section
12 -- release
13 q.del((’request’, c, self)) # rule 3
14 send (’release’, logical_clock(), self) to s #

15 receive (’request’, c2, p2): # rule 2
16 q.add((’request’, c2, p2)) #
17 send (’ack’, logical_clock(), self) to p2 #

18 receive (’release’, _, p2): # rule 4
19 q.del((’request’, _, =p2)) #

23

Complete program in DistAlgo
0 class P extends Process:

... # content of the previous slide

20 def run():
...

21 def task(): ...
22 mutex(task)

...

23 def main():
...

24 configure channel = reliable, fifo
25 configure clock = Lamport
26 ps = 50 new P
27 for p in ps: p.setup(ps-{p})
28 ps.start()

...

some syntax in Python:

class P(process)
send(m, to= ps)
some(elem in s, has= bexp)
config(channel= {’reliable’,’fifo’})
new(P, num= 50)

24

Simplified spec by un-incrementalization
0 class P extends Process:
1 def setup(s):
2 self.s = s

3 def mutex(task):
4 -- request
5 self.c = logical_clock()
6 send (’request’, c, self) to s
7 await each received(’request’,c2,p2) |
8 not (some received(’release’,c3,=p2) | c3 > c2) implies (c,self) < (c2,p2)

and each p2 in s | some received(’ack’,c2,=p2) | c2 > c
9 task()

10 -- release
11 send (’release’, logical_clock(), self) to s

12 receive (’request’, _, p2):
13 send (’ack’, logical_clock(), self) to p2

25

Multi-Paxos for distributed consensus

in C++/Java/Python by students: thousands of lines

in DistAlgo by students: hundreds of lines

in DistAlgo better spec: tens of lines

26

Some more examples of incrementalization

birthday conflict probability: from Russel’s BLOG

some x in P, some y in P: x != y, x.bday = y.bday

efficient MCMC sampling: O(1) after each update

win-not-win game:

win(x) if move(x,y), not win(y)

efficient WFS computation: O(#move) total

27

Some ongoing projects and results

objects and nested sets: generating incremental implementa-

tions of queries with complexity guarantees [arxiv/PPDP 2016]

datalog and extensions: generating efficient implementations

for demand-driven queries [PPDP 10, SIGMOD 11],

applications to many pointer analyses [arxiv/ICLP/TPLP 2016]

quantifications and arbitrary negation: generating optimized im-

plementations by using aggregations [OOPSLA 12],

founded semantics and constraint semantics [arxiv 16]

distributed algorithms: from high-level specifications to efficient

implementations [OOPSLA 12, SSS 12, arxiv16/TOPLAS to appear]

28

