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Abstract. This paper describes a general and powerful method for dead
code analysis and elimination in the presence of recursive data construc-
tions. We represent partially dead recursive data using liveness patterns
based on general regular tree grammars extended with the notion of live
and dead, and we formulate the analysis as computing liveness patterns
at all program points based on program semantics. This analysis yields a
most precise liveness pattern for the data at each program point, which is
significantly more precise than results from previous methods. The anal-
ysis algorithm takes cubic time in terms of the size of the program in the
worst case but is very efficient in practice, as shown by our prototype
implementation. The analysis results are used to identify and eliminate
dead code. The general framework for representing and analyzing prop-
erties of recursive data structures using general regular tree grammars
applies to other analyses as well.

1 Introduction

Dead computations produce values that never get used [1]. While programmers
are not likely to write code that performs dead computations, such code appears
often as the result of program optimization, modification, and reuse [40, 1]. There
are also other programming activities that do not explicitly involve live or dead
code but rely on similar notions. Examples are program slicing [60, 45], special-
ization [45], incrementalization [34, 33], and compile-time garbage collection [24,
21,42,57]. Analysis for identifying dead code, or code having similar properties,
has been studied and used widely [8,7,25,41,1,24, 21,10, 26, 34,54, 45,33, 57]. It
is essentially backward dependence analysis that aims to compute the minimum
sufficient information needed for producing certain results. We call this dead code
analysis, bearing in mind that it may be used for many other purposes.

In recent years, dead code analysis has been made more precise so as to
be effective in more complicated settings [21,10, 26,45, 5,33]. Since recursive
data constructions are used increasingly widely in high-level languages [52, 14,
37,3], an important problem is to identify partially dead recursive data—that
is, recursive data whose dead parts form recursive substructures—and eliminate
computations of them.! Tt is difficult because recursive data structures can be de-
fined by the user, and dead substructures may interleave with live substructures.
Several methods have been studied [24, 21,45, 33], but all have limitations.

This paper describes a general and powerful method for analyzing and elim-
inating dead computations in the presence of recursive data constructions. We
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! This is different from partial dead code, which is code that is dead on some but not
all computation paths [26, 5].



represent partially dead recursive data using liveness patterns based on general
regular tree grammars extended with the notion of live and dead, and we formu-
late the analysis as computing liveness patterns at all program points based on
program semantics. This analysis yields a most precise liveness pattern for the
data at each program point. The analysis algorithm takes cubic time in terms of
the size of the program in the worst case but is very efficient in practice, as shown
in our prototype implementation. The analysis results are used to identify and
eliminate dead code. The framework for representing and analyzing properties
of recursive data structures using general regular tree grammars applies to other
analyses as well.

The rest of the paper is organized as follows. Section 2 describes a pro-
gramming language with recursive data constructions. Section 3 defines liveness
patterns that represent partially dead recursive data. Section 4 formulates the
analysis as solving sets of constraints on grammars. Section 5 presents efficient
algorithms for computing liveness patterns at every program point. Section 6
describes dead code elimination, our implementation, and extensions. Section 7
compares this work with related work and concludes.

2 Language

We use a simple first-order functional programming language. The expressions
of the language are:

en=wv variable
| cler,...,en) constructor application
pler,...,en) primitive function application
if e¢; then e; else e3  conditional expression
| let v =e€1 in e binding expression
| Fler, ... en) function application

Each constructor ¢, primitive function p, and user-defined function f has a fixed
arity. If a constructor ¢ has arity 0, then we write ¢ instead of ¢(). New con-
structors can be declared, together with their arities. When needed, we use ¢ to
denote that ¢ has arity n. For each constructor ¢™, there is a primitive function
¢? that tests whether the argument is an application of ¢, and if n > 0, then
for each i = 1..n, there is a primitive function c¢; that selects the ith component
in an application of ¢, e.g., c5(c*(x,y,2)) = y. A program is a set of mutually
recursive function definitions of the form:

for,.yvp) £ e (1)

together with a set of constructor declarations. Figure 1 gives some example
definitions, assuming that min and max are primitive functions, and that con-
structors nil®, cons?, and triple® are declared in the programs where they are
used. For ease of reading, we use null instead of nil?, car instead of consi, cdr
instead of consz, and 1st, 2nd, and 3rd instead of tripley, triples, and triples,
respectively.

This language has call-by-value semantics. Well-defined expressions evaluate
to constructed data, such as cons(3,nil). We use L to denote the value of unde-
fined (non-terminating) expressions; an expression must evaluate to L if any of
its subexpressions evaluates to L. Since a program can use data constructions



minmaxz(z) : compute min and max for all suffixes of z len(z) : compute length of z

minmaz(z) 2if null(z) then nil len(x) 2ir null(z) then 0
else if null(cdr(z)) then else 1 4 len(cdr(z))
cons(triple(car(z), car(z), car(z)), nil)
else let v = minmaz(cdr(z)) in
cons(triple(car(z),

min(car(z), 2nd(car(v))), odd(z) : get elements of z at
max(car(z),3rd(car(v)))), odd positions

v) even(z) : get elements of = at
even positions

listsecond(z) : list the second element in each triple in z A

listsecond(z) 2if null(z) then nil odd(z) = Lfisneucli(zg(zzlf(r;)nil
else cons(2nd(car(z)),listsecond(cdr(z))) even(cdr(a;)))

getmin(z) g compute the min elements for all suffixes of z even(z) Ace null(z) then nil

getmin(z) = listsecond(minmaz(z)) else odd(cdr(z))

Fig. 1. Example function definitions.

c(e1,...,en) in recursive function definitions, it can build data structures of un-
bounded sizes, i.e., sizes not bounded in any way by the size of the program but
determined by particular inputs to the program.

There can be values, which can be subparts of constructed data, computed
by a program that are not needed in obtaining the output of the program. To
improve program efficiency, we can eliminate such dead computations and use a
special symbol _ as a placeholder for their values. A constructor application does
not evaluate to _ even if some arguments evaluate to _. A primitive function
application (or a conditional expression) must evaluate to _, if not L, if any
of its subexpressions (or the condition, respectively) evaluates to _. Whether
a function application (or a binding expression) evaluates to — depends on the
values of the arguments (or the bound variable, respectively) and how they are
used in the function definition (or the body, respectively).

Dead code may exist in a program especially when only certain parts of its
result or intermediate results are needed. Such parts can be specified by a user
or determined by how these results are used in computing other values, e.g., by
how the value of minmax is used in computing getmin, in which case all the
max operations are dead.

3 Liveness patterns

We represent partially dead recursive data using liveness patterns. A liveness
pattern indicates which parts of data must be dead and which parts may be live.
D indicates that a part must be completely dead, and L indicates that a part
may be completely live. Partial liveness is represented using constructors. For
example, cons(D, L) indicates a cons structure with a definitely dead head and
a possibly live tail. Also, nil() indicates the liveness pattern corresponding to
a nil structure, so there is no confusion between a liveness pattern and a data
value. A liveness pattern is a function; when applied to a data value, it returns
the data with the live parts unchanged and the dead parts replaced by _. For
example,

cons(D, cons(L, D)) (cons(0, cons(1, cons(2,nil)))) = cons(—, cons(1,_)).



Formally, liveness patterns are domain projections [48,17], which provide a
clean tool for describing substructures of constructed data by projecting out the
parts that are of interest [56,27,39,45,33]. Let X be the domain of all possible
values computed by our programs, including | and values containing _. We
define an ordering C on X, where we read x; C x5 as “zr; is more dead than
xz2”: for all z in X, L C z, and for two values x; and x5 other than 1,

1 Cxy iff ;y = _, or 1 = x2, Or
1 = (11, -, T1n), T2 = (X1, ..., Tan), and x1; C zo; for i = 1..n.
(2)
A liveness pattern over X is a function 7 : X — X such that n(z) C z and
m(m(z)) = w(zx) for all z € X. L is the identity function: L(z) = z. D is the
absence function: D(z) = _ for all  # L, and D(L) = L. ¢"(m1,...,7y,) is the
function:
" ifx =c"
¢, -y mn)(2) = {CL(WI(QEI), Tnen) ot}aljerwcise(xh on) (3)
Grammar-based liveness patterns. We represent liveness patterns as grammars.
For example, the grammar S — nil()|cons(D,S) projects out a list whose
elements are dead but whose spine is live. It generates the set of sentences
{nil(), cons(D,nil()), cons(D, cons(D,nil())), ...}. Applying each element to a
given value, say, cons(2, cons(4,nil)), yields L, 1, cons(—_,cons(—,nil)), L, ..., in
which cons(_, cons(_,nil)) is the least upper bound.

Formally, the grammars we use for describing liveness patterns are regular
tree grammars [16], which allow bounded, and often precise, representations
of unbounded data [23,38,39,2,51,9,45]. A regular-tree-grammar-based liveness
pattern G is a quadruple (7,N,P,S), where 7 is a set of terminal symbols
including L, D, and all possible constructors ¢, A is a set of nonterminal symbols
N, P is a set of productions of the form:

N—D, N—L or N—c*(Ny,..N,), (4)

and nonterminal S is the start symbol. So, our liveness patterns use general
regular tree grammars [23,16,9] extended with the special constants D and L.

The language L generated by G is the set {7 € 7*| S 5¢ 7} of sentences. The
projection function that G represents is:

G(z) = W{r(z) |7 € La} (5)

where L is the least upper bound operation for C. It is easy to see that G(z) is
well-defined for all x € X. We overload L to denote the grammar that generates
sentence L, and overload D to denote the grammar that generates only sentence
D. For ease of presentation, when no confusion arises, we write grammars in
compact forms. For example, {S — nil()|cons(N,S), N — triple(D, L, D)},
where | denotes alternation, projects out a list whose elements are triples whose
first and third components are dead.
We extend regular tree grammars to allow productions of the form:

N—N', N-¢(N'), or N—[N'R (6)



for R’ of the form L, ¢"(Ny,...,N,), or N” and we define:

Lifr=L ) B
Gm={mifr=c(m,...,m) and [x]n' = {Df fr=D
D otherwise 7w otherwise

These extended forms are for convenience later; the selector form in the middle
of (6) is the same as that first used by Jones and Muchnick [23], and the con-
ditional form on the right of (6) is for similar purposes as those used in several
other analyses, e.g., the operator > used by Wadler and Hughes for strictness
analysis [56]. Given an extended regular tree grammar G that contains produc-
tions of the forms in (4) and (6), we can construct a regular tree grammar G’
that contains only productions of the form (4) such that Lo = Lg, i.e., G' and
G represent the same projection function; an algorithm is given in Section 5.

When using a grammar G, what matters is the projection function that G
represents. In fact, different grammars can represent the same projection func-
tion. A basic idea of this work is to capture the information of interest—liveness
patterns—using grammars that are constructed based on program semantics and
then simplify the grammars to equivalent grammars in simpler forms where, in
particular, the only grammar that represents D is {S— D}.

We define an ordering < on regular-tree-grammar-based liveness patterns.
For two grammars G; and G, we define:

Gl S G2 iff V7r1 € £G17 EI71—2 S *CGza 1 S 2, (8)
where for two sentences m and 7y, we define (overloading <):

m <7y iff 1y =D, or 73 =L, or
T = ¢(T11, ooy T1n), T2 = (M1, ..., Tan), and m1; < wo; for ¢ = 1..n.

9)
For convenience, we define G; > G5 if and only if G5 < (. It is easy to see that
if Gy <Gz, then Vz, Gi(x) C G2(x). (10)

This means that if G; < @3, then G; projects out values that are more dead than
those that G5 projects out. This is a basis of our correctness proof. The converse
is not true, e.g., G; = {S— cons(L, L)} and G2 = {S — cons(L, D) | cons(D, L)}
form a counterexample for the converse, but this converse is not used. Note that
this ordering on grammars does not form a complete partial order.

Notation. We use CON to denote the grammar that projects any constructor
but none of its arguments: letting 7. be the set of all possible constructors,

n

CON = (T,U{D}, {S}, {S— c*(D,...D)|c" € T.}, S).2 (11)

Given a grammar G = (T,N, P, S), we use con. ;(G) to denote using G as the
ith component of a ¢" structure (¢ < n) whose other components are dead:
assuming S’ is a nonterminal not used in G,

i—1 n—i
con.i(G) = (T, Nu{S"}, Pu{S'— *(D,..,D,S,D,...D)}, §), (12

2 For convenience, we fold D into the right sides of the productions.



and we use sel; ;(G) to denote the part of G corresponding to the ith component
of a ¢" structure (¢ < n): assuming S’ is a nonterminal not in used in G,

selei(G) = (T, NU{S'}, PU{S'— ¢;(9)}, §'). (13)

For example, if nil and cons are all possible constructors where a liveness pattern
CON is used, as we assume for functions len, odd, and even, then CON = {S —
nil() | cons(D,D)}. If G = {S— L}, then concons,1(G) = {S'— cons(S,D), S—
L} and selcons,1(G) = {S"— car(S), S— L}. Finally, we define a conditional:

D ifGy =D

G5 otherwise. (14)

cond(G1,G2) = {

4 Analysis of liveness patterns using constraints

Dead code analysis computes liveness patterns associated with values at program
points, such as function definitions, parameters, and subexpressions. We develop
such a backward dependence analysis. Given liveness patterns associated with
certain program points, it computes liveness patterns at all program points, so
that the liveness specified by the given liveness patterns is guaranteed. The basic
idea is that a liveness pattern associated with a program point is constrained
by liveness patterns associated with other points based on the semantics of the
program segments involved.

Sufficiency conditions. The resulting liveness patterns must satisfy two kinds
of sufficiency conditions. First, the resulting grammar at a program point must
project out values that are more live than required by the given grammar (if any)
associated with that point. Precisely, at each subexpression e where a liveness
pattern is given, if the given grammar is Gy, and the resulting grammar is G,
then Gy(e) E G(e) for all values of the free variables in e. Second, the resulting
grammars must satisfy the constraints determined by the program semantics.
Precisely, assume a resulting grammar is associated with each parameter and
each subexpression of all function definitions. Let e denote that grammar G is
associated with e. Then (1) the liveness patterns at function parameters must
be sufficient to guarantee the liveness pattern at the function return, i.e., for

each definition of the form f(%twy,....5v,) = e, the following sufficiency
condition must be satisfied for all values vy, ..., v,:

G(f(01,y.eyvn)) C f(G1(v1), ...y Gn(vn)) (15)

and (2) the liveness pattern at each subexpression must be sufficient to guarantee
the liveness pattern at the enclosing expression, i.e., for each subexpression that
is of a form in the left column below, the corresponding sufficiency condition
in the right column must be satisfied for all values of the free variables in the



subexpression:

Gie(Cligy,...,0n%,) G(c(ery ... en)) C c(Gi(e1), ..., Gnlen))
Giz(Se’) Glei(e")) E e3(G'(€")
Gi(G'e!) G(c?(e) T (G ()

Gig(C1ieq,...,%n"e,) if ¢ is p other than c; or ¢?

G(q(e1, ... €n)) E q(G1(e1); .. Gnlen))
Gif Gl'e; then 2y else F3'%ey  G(if e; then ey else e3) T if G1(e1) then Ga(ez) else Ga(es)
Glet u="C1%; in 2, G(let u=e; in ez) C let u=G1(e1) in Ga(ez)

G:f(Glzelv---aG":en) G(f(eli "'7en)) c f(Gl(el)i "'7Gﬂ(en))

Note that no approximation is made in these conditions. For example, the con-
dition of a conditional expression does not have to be evaluated, so it does not
have to be associated with L. In particular, the liveness patterns associated with
a function application are not related to liveness patterns associated with the
definition of the function, and thus, different applications of the same function
may require different parts of the function definition to be live. For example,
consider functions f and g below:

f(z,y) 2 if £ > 0 then z else y 9(2) 4 ao: F(E1,P2) 4+ £(Fo,Liz)

Given Gy = L at the definition of g, the liveness patterns associated with all
program points, where the liveness patterns not explicitly written are all L,
satisfy the sufficiency conditions. Note that the two calls to f need different
parts of f to be live.

Grammar constraints. Given liveness patterns associated with certain subex-
pressions, we construct a set of constraints on the resulting liveness patterns
that guarantee the sufficiency conditions. First, at each subexpression e where a
liveness pattern is given, if the given grammar is Gy, and the resulting grammar
is G, then we construct G > Gy. Second, for a function definition of the form

. . A .
F(Gvwy,....%,) = e, we construct, for i = 1..n and for each occurrence ¢
in e, the constraint

.
l'vi

Gi > G (16)

and, for each subexpression of e that is of a form in the left column of Figure 2, we
construct the corresponding constraints in the right column. These constraints
make approximations while guaranteeing the sufficiency conditions, as explained
below.

Formula (16) for function definitions requires that the liveness pattern at
formal parameter v; be greater than or equal to the liveness patterns at all
uses of v;. Rule (7) for function calls requires that, for all non-dead calls of the
same function, the liveness patterns at the arguments be greater than or equal
to the liveness patterns at the corresponding formal parameters, and that the
liveness pattern for the return value of the function be greater than or equal
to the liveness patterns at all calls. Thus, if a function call is dead, then all its
arguments are also dead, even though the formal parameters of the function may
not be dead due to other calls to the same function.

Other constraints are based on the semantics of each construct locally. Rules
(1)-(3) handle data constructions. Rule (1) says that liveness pattern at a com-
ponent of a construction must be no less than the corresponding component in



(1) (e, ...,5 e,) G; > sele,i(G) fori=1..n
(2) G:c;(Gl:e') G' > cond(G, cone,;(@))
(3) Fcr(C'%e) G' > cond(G, CON)

(4) G:q(Gl:el, ...,G":en) if ¢ is p other than cj or c?

G; > cond(G,L) fori=1..n
(5) Gif G1'e; then 2%, else F3%¢y;  G1 > cond(G, L), G2 > G, G > G
(6) Flet u=C1'%; in F2%, G1 > cond(G,G') for each occurrence of Gy in ea, G2> G

(7) €F(%tiey,...,%""e,) where f(Gll:vl, ...,GI":'U,,) =Gy
G; > cond(G,G}) fori=1..n, G' > G

Fig. 2. Grammar constraints for expressions.

the liveness pattern at the result of the construction. As a special case of (1),
for any constructor of arity 0, no constraint is added. Rule (2) requires that,
if the result of a selection by ¢; is not dead, then the argument be as live as a
construction using ¢ whose ith component is as live as the result of the selection.
Rule (3) says that, if the result of an application of a tester is not dead, then the
liveness pattern at the argument needs to project out the outermost constructor
but none of the components. Rule (4) says that, if the result of a primitive oper-
ation is not dead, then each argument must be live. If we assume that primitive
functions are defined only on primitive types such as Boolean and integer, then
we could use CON in place of L in the constraints. Rule (5) requires that the
condition be live if the result of the entire conditional expression is not dead, and
that both branches be as live as the result. Again, we could use CON in place
of L as a sufficient context for e;; furthermore, if e; equals es, in fact as long
as G(ez) equals G(e3), then we could use D in place of L as a sufficient context
for e; and thus no constraint for Gy would be needed. Rule (6) is similar to a
function call, since it equals an application of Au.es to e;. It requires that the
defining expression e; be as live as all its uses in the body, and that the body
be as live as the result.

We can show by a standard inductive argument that the constraints for each
construct guarantee sufficient information, and thus an inductive proof shows
that the sufficiency conditions are satisfied.

5 Construction and simplification of liveness patterns

We describe a straightforward method for building minimum grammars that
satisfy the above constraints; these grammars may contain productions of the
extended forms in (6). Then, we simplify the grammars by eliminating extended
forms; this makes explicit whether the grammar associated with a program point
equals dead.

Constructing the grammars. Let 7, be the set of all possible constructors in the
program. Let Ay be the set of nonterminals used in the given liveness patterns
associated with selected subexpressions. We associate a unique nonterminal, not
in Ny, with each parameter and each subexpression of all function definitions.



Then we add productions using these terminals and nonterminals. Finally, the
resulting grammar at a program point is formed by using these terminals, non-
terminals, and productions, and by using the nonterminal associated with that
point as the start symbol.

We add two kinds of productions. For each subexpression e where a grammar
Gy is given, let Ny be the start symbol of Gy, and let N be the nonterminal
associated with e. We add N — Ny as well as all productions in Gy. Second, for
each function definition f(Mwy,...,N*'v,) = e, we add, for each i = 1..n and

for each occurrence Viw; in e, the production

and, for each subexpression of e that is of a form in the left column of Figure 3,
the corresponding productions in the right column.

(1) Nie(Ney,...,Nnie,) N;— c;(N) for i =1..n
(2) Niez(Ve) N'— [N]¢™(D,...,D,N,D,...,D)

with ¢ —1 D’s before N and n — ¢ D’s after N
(3) Ni2(N'e) N'— [N]¢™(D, ..., D)

with n D’s for each possible constructor c¢™

(4) Nig(Ntteq,...,Nnie,) if g is p other than c; or c?
N; — [N]L fori=1..n

(5) Mif Ni'eq then N2'es else V3'es N1— [N]L, No— N, N3— N
(6) Nlet u = N1'es in N2'ey N1 — [N]N' for each occurrence of N in ez, Na— N
(7) N’f(Nl’el, ...,N"’e") where f(Ni’vl, ...,N;t’vn) =Nl’e

N; > [N]N/ fori=1..n, N'> N

Fig. 3. Productions added for expressions.

It is easy to show that the resulting grammars satisfy the grammar con-
straints in Figure 2 and thus give sufficient information at every program point.
To show this, simply notice that the productions in Figure 3 can be obtained
from the constraints in Figure 2 by replacing G with N and > with —, and by
replacing grammar operations with the corresponding productions based on def-
initions: sel. ;(G) with ¢;(N), con.,i;(G) with ¢(D,...,D,N,D,...,D), CON with
¢(D, ..., D) for all ¢, and cond(G1,G3) with [N1]N5. Thus, each production con-
structed here guarantees exactly a corresponding grammar constraint in Figure 2
simply by definitions. Furthermore, the resulting grammars are minimal among
all solutions that use the same set of nonterminals, and they give minimum suffi-
cient information. To see this, notice that a smaller grammar at any point would
make the nonterminal at that point correspond to a smaller grammar than the
grammar generated by the right hand side(s) of the nonterminal, violating the
corresponding grammar constraints.

Let n denote the size of the program. Assume that the maximum arity of
constructors, primitive functions, and user-defined functions is bounded by a
constant. Since a constant number of productions are added at each program
point, the above construction takes O(n) time.



FEzxample 1. For functions len, odd, and even in Figure 1, the nonterminals la-
beling the program points and the added productions are shown in Figure 4. For
example, we have Ni2 — [Ni3]cons(Ni3, Ny), where Ng— D is the last produc-
tion on the last line. It means that Ni, is conditioned on Ny3: if Ny3 is D, so
is N2, otherwise Nyo is cons(Ny3, Ny), i.e., it projects out a cons structure, the
first component of which is projected out by Ni3. Suppose we need the result of

len(N29%) 2 Nosif Na7inull(N26°z) then V257

else V24:N23] L Na2:jop(N21icgp(N207y))
odd(N19°z) 2 Migyf N17nyull(N16°z) then N1574]

else NM4icons(N13icar(N12z), V11 eyen(N10cdr (Vo))
even(N8'z) 4 Nrye Ne'null(N5'z) then N4'nil

else V3'odd(N2'cdr(N1'z))

N2g — Nag, Nag— Nag, N2g— [N27] cons(No, No), Nag — [Naz|nil(), Naz — [N2g]L, Nas— Noasg,
N23 —[N24]L, N3o—[Na1]cons(No, N21), Nai—[N22]Nag, Nag— Noa, Nag—[N24]L, Nag— Nag,

Nig— Nig, N1ig— N1z, Nig— No, Nig—[N17] cons(No, No), N1g —[N17]nil(), N1z — [N1g]L,
Ni5— Ni1g, Ni1a—[Nis]cons(Nis, No), Niz— car(Nia), No— [Ni1o] cons(No, N1o), Nio—[N11|Ns,
N7— Ni11, N11— cdr(Nia), N14 — Nig,

Ng— N5, Ng— Ni, N5— [Ng]cons(No, No), N5s— [Ns]nil(), N¢ — [N7] L, Ny— N7,

Ni— [N2]cons(No, N2), N2 — [N3] N1g, N1g — N3, N3 — N7, Ng— D

Fig. 4. Productions constructed for the example functions.

len; we add Nog — L, since Nog corresponds to the return value of len. Suppose
we need the result of odd; we add Nig — L. Suppose we need to know whether
the result of odd is nil or cons; we add Nyg— nil(), Nig— cons(D, D).

Simplifying the grammars. The grammars obtained above may contain produc-
tions of the extended forms in (6) and thus be difficult to understand and use. We
simplify the grammars by removing extended forms using an iterative algorithm
given in Figure 5. After the simplification, nonterminals that do not appear on

input: a grammar (7, N, P, S)
/* assume R is of the form L or ¢(Ny,..., N,), and R’ is of the form L, ¢(N1,...,N,), or N */
repeat
if P contains N— N’ and N' — R, then add N— R to P;
if P contains N — c;(N') and N’ — L, then add N— L to P;
if P contains N — c;(N') and N' — ¢" (N1, ..., N,,), then add N — N; to P;
if P contains N — [N'|R' and N' — R, then add N — R’ to P;
until no more productions can be added;
remove all productions of the extended forms from P;
return simplified grammar (7, N, P, S)

Fig. 5. Algorithm for simplifying the grammars.

the left side of a production with L or ¢(Ny, ..., N;,) on the right side are implied



to derive only D. We can read off the grammar at any function parameter or
subexpression by starting at the associated nonterminal and collecting all pro-
ductions whose left sides are reachable from this start symbol. The correctness
of this algorithm is based on the definitions of the extended forms and can be
proved in a similar way to when only the selector form is used [23].

Nonterminals are associated with program points, so there are O(n) of them.
Each step adds a production of the form N — L, N — ¢(Ny, ..., Ni), or N— N'.
Since each right side of the form ¢(Ny, ..., N) is among the right sides of the
originally constructed grammar, there are at most O(n) of them. Thus, for each
nonterminal, at most O(n) productions are added. So totally at most O(n?)
productions are added. Adding a production has O(n) cost to check what other
productions to add. Thus, the overall simplification takes O(n?) time. Although
this appears expensive, the analysis is very fast in practice, as shown by our
prototype implementation.

Example 2. Suppose we need the result of len and therefore added Nog — L; we
obtain the productions

N29 d nil(), N29—> COns(No,No), N29—> cons(No, Nzl), st d L, N27—> L, Nga d nil(),
N26—> COTLS(N(],N()), N25 s L7 N24—) L, N23—> L, N22 s L,N21 s nzl(), N21 s COnS(No,N()),
N31 — cons(Ng, Na1), Naog— cons(No, Nay)

Suppose we need the result of odd and therefore added N1g — L; we obtain the
productions

Nig — cons(No, No), N1ig— nil(), Nig — cons(Niz, Ng), N1g — cons(No, N1¢), Nig— L,

Ni7— L, Nig— nil(), Nig — cons(No, No), Nis— L, N14— L, Ni3— L, N12 — cons(N13, Ng),
N11 — L, Nip— nil(), N1g — cons(No, Ng), N1gp — cons(No, N2), Ng — cons(Ng, N1g),

N5—> COns(No,No), Ng—) nz'l(), N3—> COns(No,Ng), N7—> L, N6—> L, N5—> nil(),

N5 — cons(No, No), Na— L, N3— L, Na— cons(Ng, N1g), N2 — cons(N13, No), N2 — nil(),
N3 — cons(No, Ng), N1— cons(No, N2)

Suppose we added Nyg— nil(), Nig— cons(D, D); we obtain the productions

N19—> cons No,No ) N19—> nil(), N1s—> nil(), N13—> cons(No,No), N17—> L, N16—> 'ﬂil(),
N1 — cons(Ng, Ng), N15s — cons(Ng, Ng), Nis — nil(), N1a — cons(Ng, Ng), N1a— nil()

In each case, other nonterminals derive only D.

The resulting grammars can be further simplified by minimization [16], but
minimization is not needed for identifying dead code, since minimization does
not affect whether a nonterminal derives only D.

6 Dead code elimination, implementation, and extensions

Consider all function parameters and subexpressions whose associated liveness
patterns are D. These parts of the program are dead, so we eliminate them by
replacing them with _.

Ezample 3. Suppose we need to know whether the result of odd is nil or cons
and therefore added Nig — mil(), Nig — cons(D,D); eliminating dead code
based on the simplified grammar in Example 2, where N1 to N3 all have only
D on the right hand sides, yields:

A, .
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Suppose we need the result of function getmin, given in Figure 1; analyzing
and eliminating dead code yields the following function along with functions
listsecond and getmin:

minmaz(z) 2 i null(z) then nil
else if null(cdr(z)) then cons(triple(—,car(z),—),nil)
else let v = minmaxz(cdr(z)) in cons(triple(—, min(car(z),2nd(car(v))), - ), v)
19

As another example, if the result of minmax is used as argument to len instead
of listsecond, then our algorithm finds that the entire triple constructions in
minmaz are dead. However, if the result of minmaz is used as argument to
odd, then none of the subexpressions in minmax is dead, since the triple is used
in every odd recursive call.

Our dead code elimination preserves semantics in the sense that, if the origi-
nal program terminates with a value, then the new program terminates with the
same value.

Two further optimizations are possible but need further study. First, minmax
in (19) can be further optimized by removing the ¢riple constructions and selec-
tors. Second, when the result of minmax is used as argument to odd, there is
no dead code in minmaz, but the triple in every even call is indeed dead. One
needs to unfold the definition of minmaz to remove such dead computations.

Eliminating dead code may improve efficiency in many ways. First, the re-
sulting programs can run faster and use less space. Additionally, compilation
of the optimized programs takes less time and also less space, which is espe-
cially desirable when using libraries. Furthermore, smaller programs are easier
to understand and maintain, yielding higher software productivity.

Implementation. We have implemented the analysis in a prototype system. The
implementation uses the Synthesizer Generator [44]. The algorithm for simpli-
fying the grammars is written in the Synthesizer Generator Scripting Language,
STk, a dialect of Scheme, and consists of about 300 lines of code. Other parts
of the system support editing of programs, display of nonterminals at program
points, construction of grammars, highlighting of dead code, etc., and consist of
about 3000 lines of SSL, the Synthesizer Generator Specification Language. All
the grammars for the examples in this paper are generated automatically using
the system.

We have used the system to analyze dozens of examples. The lengths of those
programs range from dozens of lines to over a thousand lines. The analysis, al-
though written in STk, is very efficient. Our original motivation for studying this
general problem was for identifying appropriate intermediate results to cache and
use for incremental computation [33]. There, we propose a method, called cache-
and-prune, that first transforms a program to cache all intermediate results,
then reuses them in a computation on incremented input, and finally prunes out
cached values that are not used. Reusing cached values often produces asymp-
totic speedup, but leaving in unused values can be extremely inefficient. The
analysis method studied in this paper, when adopted for pruning, is extremely
effective. The pruned programs consistently run faster, use less space, and are
smaller in code size. We also used the analysis for eliminating dead code in de-
riving incremental programs [34]. There, the speedup is often asymptotic. For
example, dead code elimination enables incremental selection sort to improve
from O(n?) time to O(n) time.



Figure 6 summarizes the experimental results for a number of examples. Pro-
gram minmax is as in Figure 1. Programs incsort and incout [34] are derived
incremental programs for selection sort and outer product, respectively, where
dead code after incrementalization is to be eliminated. Programs cachebin and
cachelcs [31] are dynamic-programming programs transformed from straight-
forward exponential-time programs for computing binomial coefficients and lon-
gest common subsequences, respectively, with intermediate results cached, reused,
and to be pruned. Program calend is a collection of calendrical calculation func-
tions [12], and program takr is a 100-function version of TAK that tries to defeat
cache memory effects [47].

rogram functions total dead live [number of [ number of [analysis| analysis
pnagme of [programprogramjprogram| initial resulting |time (ms)|time (ms)
interest points | points | points productionsproductionsfincl. GC)excl. GC)

minmax getlen 81 50 31 111 90 0.007 0.005
minmax getmin 81 32 49 111 150 0.016 0.011
[incsort] sort’ T 108] 84] 24] 143] 34]  0.006] 0.005]
[ incout | out’ i 117] 62] 55] 151] 78] 0.007] 0.006]
[cachebin] bin T T4] 7] 67] 90] 114]  0.014] 0.010]
|cachelcs 1cs i 101] 12] 89] 139] 206] 0.033] 0.033]
calend | gregorian2absolute 1551 1359 192 1839 229 0.067 0.053
calend islamic-date 1551 1205 346 1839 419 0.083 0.069
calend |eastern-orthodox-Xmas| 1551 1176 375 1839 461 0.086 0.069
calend yahrzeit 1551 1123 428 1839 485 0.086 0.068
takr run-takr 2804 [ 2804 4005 2805 0.403 0.304
takr tak99 2804 4 2800 4005 2801 0.419 0.310

Fig. 6. Experimental results.

When using dead code analysis for incrementalization and for pruning unused
intermediate results, there is always a particular function of interest, shown in
Figure 6. For general programs, especially libraries, such as the calend example,
there may not be a single function that is of interest, so we have applied the
analysis on several different functions of interested.

The size of a program is precisely captured by the total number of program
points, which for most programs is about twice the number of lines of code. The
number of dead program points depends on both the program and the function
of interest. For example, for libraries, such as the calend program, much dead
code is found, whereas for takr, all 100 functions other than the driver function
run-takr, are involved in calling each other. Our highlighting allows us to easily
see the resulting live or dead slices. For example, for several functions in the
calend program, only the slice for date, not year or month, is needed. We can
see the number of initial productions is roughly linear in the size of the given
program, and the number of resulting productions is roughly linear in the number
of live program points.

The analysis time for simplifying the grammars, in milliseconds, is measured
on an Ultra 10 with 299MHz CPU and 124 MB main memory. We can see that
the analysis time is roughly linear in the number of live program points. This
is important, especially for analyzing libraries, where being linear in the size of
the entire program is clearly not good. We achieved this high efficiency by a
careful but simple optimization in our simplification algorithm: after adding a
new production, we consider only productions in extended forms whose right-
hand sides use the left-hand side symbol of the new production. This makes the



analysis proceed in an incremental fashion, and only program points that are
not dead are followed.

To summarize, our method produces precise analysis results as desired. The
analysis is also very fast compared with other reported analyses using con-
straints. For example, Heintze’s analysis takes on the order of seconds for pro-
grams of 100 lines to over 1000 lines [19].

Figure 7 is a screen dump of the system on a small example of four functions
and constructors nil and cons. Program points are annotated with nonterminals
highlighted in red. The shaded region contains the function of interest. The two
sets of productions are the original set and resulting set. Dead code (function
bigfun as well as the first argument of cons in function f) is highlighted in
green.

Cachet File Edit Yiew Tools Options Structure Text ransforns Help

£z x) =
NE: if NM: null (M33: x) then
aiE: nil

else
ML cons (MM: bigfun(M2%: car(N2H: x)), NE7: f(M6: cdriNES: x)));

bigfun(%24: x) =

M23: WED: NRN: W2O: NI%: x ¢ WIB: x + NI17: x ¢ Wif: x * NIS: x;

Len (N14: =) =
Wi3: if MI2: null(Mid: x) then
wid: 0
else
M iz 1 + M= len(Mii: cdr (M: x));

lenfidd: x) =

8- len(n®: FlMi x))

cons : cons? (car, edc);
nil : null (cident’);

N36->N33, N3E-)N2B, N3E->N2S, N33-»([N34]cons(WO,NO), W33->[N3|nil(),
N34-5 [N3S]L, N32-5N3S, N26->[N29]cons(N29,NO), N29->[N3D|N24, N23->N30
W30->car (N31), N2S->([N2€]cons (ND,N2€), N2€->[N2ZTIN3E, N3S-:N2T,

H27-5cdc (N31), N31-ON35, N24->N19, N24-5N18, N24-5N17, N24-O>N16, N24->N1S,
Wid->[N20)L, Wi8->[N20]L, W20->[WZ1]L, Wi7->[m21lL, w21->[N22]L,

N16-5 [N22]L, W22-3[N23|L, WI1S-»[N23]L, N14->N1l, N14->NS
Wil->[Ni2]cons (WO, NO), W1i->[WiZlndl(). WiZ->[N13]L, N10->N13, m8->[NOIL,
MS-> [N6]cons (N0, NE), N6-5[NT|N14, N13-5N7, W7-5[NS|L, NO->N13, N4->NI,
Wi->[N2]N36, W3S->NZ, N2->[N3]N14, W13->N3, NWO->D

W36->nil(), N36->cons(ND,N26), W3S->nil(), N35->cons(N0,NE), N34-L.
N33-5mil(), NW33->cons (ND,NO), N32->nil(), N32-jcons (NO,NE), N31->mail().
W3l->cons (NO, NE), N27->cons (NO,WE), NET-»nill). W26-mil(),
N26->cons (ND, N26), N2S->cons (NO,N26), N14->nil(), N14->cons (NO,N6), N13-3L,
Wi2-5L, Nil->ndl(), Wil->cons(ND,N0), N10-»L, NO->L, N&->L, NT-OL,
M6->nil(), W6->cons (NO,NE). NS->cons(NO,NE), Nd->mil(), Nd->cons(NO,N26),
N3->L, N2->nil(), N2->cons(NO,NE), W1-nil(), Wi1->cons(NO,N26), WO->D

Command: |!

Fig. 7. A prototype implementation.

Ezxtensions. We believe that our method for dead code analysis can be extended
to handle side effects. The extension is to use graph grammars instead of tree
grammars. The ideas of including L and D as terminals, constructing grammars
based on program points as well as the semantics of program constructs con-
necting these points, and doing grammar simplifications are the same. Recent
work by Sagiv, Reps, and Wilhelm [46] uses graph grammars for shape analysis.
We believe we can make similar use of graph grammars for dead code analysis
in the presence of destructive updates.

Our method can also be extended to handle higher-order functions in two
ways, and we have worked out this extension in the second way. First, we can
simply apply a control-flow analysis [50] before we do dead code analysis. This



allows our method to handle complete programs that contain higher-order func-
tions. Second, we can directly construct productions corresponding to function
abstraction and application and add rules for simplifying them. This is similar to
how Henglein [20] addresses higher-order binding-time analysis and how Heintze
[19] handles higher-order functions for analyzing sets of values for ML programs.
Similar use of constraints has been studied for stopping deforestation for higher-
order programs [49]. Our extension adds two constraints/productions for each
lambda expression and uses two additional rules for simplification; it is not yet
implemented. Handling higher-order functions does not increase the time com-
plexity of our algorithms. In fact, for a language with higher-order functions but
not recursive data construction, the constraints may be simplified in worst-case
almost linear time [20].

Our method is described here for an untyped language, but the analysis
results provide an important kind of type information; the analysis may also
be adopted to enhance soft typing; and the analysis applies to typed languages
as well. For example, consider the third set of productions in Example 2. The
grammar at each program point gives its liveness together with the shape of
data. Dead code should be reported to the programmer before, or at least at the
same time as, type errors such as 3rd(cons(1,2)) in the dead code. Live code
may have its type inferred by small refinements of our rules. For example, if we
replace L by Boolean for the condition in rule (5) of Figure 2, we have N7 —
Boolean in the third set of productions in Example 2; and thus everything there
is precisely typed. Finally, for a typed language, possible values are restricted
also by type information, so the overall analysis results can be more precise,
e.g., type information about the value of an expression e can help restrict the
grammar at e when e is the argument of a primitive function c?.

7 Related work and conclusion

Our backward dependence analysis uses liveness patterns, which are domain pro-
jections, to specify sufficient information. Wadler and Hughes use projections for
strictness analysis [56]. Their analysis is also backward but seeks necessary rather
than sufficient information, and it uses a fixed finite abstract domain for all pro-
grams. Launchbury uses projections for binding-time analysis of partially static
data structures in partial evaluation [27]. It is a forward analysis equivalent to
strictness analysis and uses a fixed finite abstract domain as well [28]. Mogensen
[39], De Niel, and others [11] also use projections, based on grammars in par-
ticular, for binding-time analysis and program bifurcation, but they use only
a restricted class of regular tree grammars. Another kind of analysis is escape
analysis [42,13,4], but existing methods can not express as precise information
as we do.

Several analyses are in the same spirit as ours. The necessity interpretation by
Jones and Le Métayer [24] uses necessity patterns that correspond to a restricted
class of liveness patterns. Necessity patterns specify only heads and tails of list
values. The absence analysis by Hughes [21] uses contexts that correspond to
a restricted class of liveness patterns. Even if it is extended for recursive data
types, it handles only a finite domain of list contexts where every head context
and every tail context is the same. The analysis for pruning by Liu, Stoller,
and Teitelbaum [33] uses projections to specify specific components of tuple



values and thereby provide more accurate information. However, methods used
there for handling unbounded growth of such projections are crude. Wand and
Siveroni’s recent work [58] discusses safe elimination of dead variables but does
not handle data constructions. Our method of replacing all dead code (including
dead variables) by a dummy constant _ is simple, direct, and more general than
their method; in particular, it is safe to simply remove dead function parameters.

The idea of using regular tree grammars for program flow analysis is due to
Jones and Muchnick [22], where it is used mainly for shape analysis and hence
for improving storage allocation. It is later used to describe other data flow in-
formation such as types and binding times [38,39,2,11, 59, 51,45]. In particular,
the analysis for backward slicing by Reps and Turnidge [45] explicitly adopts
regular tree grammars to represent projections. It is closest in goal and scope
to our analysis. However, it uses only a limited class of regular tree grammars,
in which each nonterminal appears on the left side of one production, and each
right side is one of five forms, corresponding to L, D, atom, pair, and atom | pair.
It forces grammars to be deterministic in a most approximate way, and it gives
no algorithms for computing the least fixed point from the set of equations. Our
work uses general regular tree grammars extended with L and D. We also use
productions of extended forms to make the framework more flexible. We give
efficient algorithms for constructing and simplifying the grammars. Compared
with [45], we also handle more program constructs, namely, binding expressions
and user-defined constructors of arbitrary arity.

Our treatment is rigorous, since we have adopted the view that regular-tree-
grammar-based program analysis is also abstract interpretation and approxima-
tions can be built into the grammar transformers as a set of constraints [9]. We
extend the grammars and handle L and D specially in grammar manipulations.
The result can also be viewed as using program-based finite grammar domains for
yielding precise and efficient analysis methods. Another standard way to obtain
the analysis result is to do a fixed point computation using general grammar
transformers on potentially infinite grammar domains and use approximation
operations to guarantee termination. Approximation operations provide a more
general solution and make the analysis framework more modular and flexible
[9]. In a separate paper [30], we describe three approximation operations that
together produce significantly more precise analysis results than previous meth-
ods. Each operation is efficient, but due to their generality and interaction, that
work does not have an exact characterization of the total number of iterations
needed. The finite domains described in this work make a complete analysis easy,
and it yields a most precise liveness pattern for the data at each program point.

Regular-tree-grammar-based program analysis can be reformulated as set-
constraint-based analysis [18,19,9], but we do not know any work that treats
precise and efficient dead code analysis for recursive data as we do. Melski
and Reps [35,36] show the interconvertibility of a class of set constraints and
context-free-language reachability and, at the end of [35], they show how gen-
eral CFL-reachability can be applied nicely to program slicing. That essentially
addresses the same problem we do with a similar framework, but their descrip-
tion is sketchy, with little discussion about correctness and with no results from
implementation, experiments, or applications.

The method and algorithms for dead code elimination studied here have many
applications: program slicing and specialization [60, 45], strength reduction, finite
differencing, and incrementalization [7,41,34,32], caching intermediate results



for program improvement [33], deforestation and fusion [55, 6], as well as compile-
time garbage collection [24,21,42,57]. The analysis results also provide a kind
of type information.

The overall goal of this work is to analyze dead data and eliminate compu-
tations of them across recursions and loops, possibly interleaved with wrappers
such as classes in object-oriented programs. This paper discusses techniques
for recursion. The basic ideas should extend to loops. Pugh and Rosser’s work
has started this direction; it extends slicing to symbolically capture particular
iterations in a loop [43]. Object-oriented programming is used widely, but cross-
class optimization heavily depends on inlining, which often causes code blow-up.
Grammar-based analysis and transformation can be applied to methods across
classes without inlining. A direct application would be to improve techniques for
eliminating dead data members, as noted by Sweeney and Tip [53]

Even though this paper focuses on dead code analysis and dead code elim-
ination for recursive data, the framework for representing recursive substruc-
tures using general regular tree grammars and the algorithms for computing
them applies to other analyses and optimizations on recursive data as well, e.g.,
binding-time analysis for partial evaluation [27,39]. We have recently developed
a binding-time analysis using the same framework.
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