
High-Level Executable Specifications

of Distributed Algorithms

Y. Annie Liu

Computer Science Department
State University of New York at Stony Brook

joint work with
Scott Stoller and Bo Lin

1

Specification of distributed algorithms

distributed algorithms are at the core of distributed systems.

understanding them and proving correctness remain challenging.

specification of distributed algorithms:

• pseudocode, English: high-level but lacking precise semantics

• formal specification languages: precise but often lower-level

• high-level programming languages: not sufficiently high-level

but precise and executable

e.g., distributed consensus: Paxos, simple to full, much to study

2

This work: high-level executable

specifications of distributed algorithms

use a simple and powerful language, DistAlgo: very high-level

• distributed processes as objects, sending messages

• yield points for control flow, handling of received messages

+await and synchronization conditions as queries ofmsg history

• high-level constructs for system configuration

exploit high-level abstractions of computation and control

1. high-level synchronization with explicit wait on received msgs

2. high-level assertions for when to send msgs and take actions

3. high-level queries for what to send in msgs to whom

4. collective send-actions for overall computation and control

experiment with important distributed algorithms

• including Paxos and multi-Paxos for distributed consensus

• discovered improvements to some, for correctness & efficiency
3

Not discussed in this paper

compilation, optimization to generate efficient implementations

transform expensive synchronization conditions

into efficient handlers as messages are sent and received,

by incrementalizing queries, especially logic quantifications,

via incremental aggregate ops on appropriate auxiliary values

use of message history −→ use of auxiliary values

[Liu et al OOPSLA 2012] and much prior work

4

DistAlgo: distributed procs, sending msgs

process definition

class P extends Process: class body with run

defines class P of process objects, with private fields

process creation

new P(...,s) newprocesses(n,P)

creates a new proc of class P on site s, returns the proc

sending messages

send m to p send m to ps

sends message m to process p

usually tuples or objects for messages;

first component or class indicates the kind of the message

5

DistAlgo: control flows, receiving msgs

label for yield point

-- l

defines program point l where the control flow can yield to

handling of certain messages and resume afterwards

handling messages received

receive m from p at l: stmt receive ms at ls

allows handling of message m at label l; default is at all labels

synchronization

await bexp: stmt or ... or timeout t: stmt

awaits value of bexp to be true, or time seconds have passed

high-level queries of sequences of messages received and sent

including quantifications, both existential and universal

6

DistAlgo: configurations

channel types

use fifo channel

default channel is not FIFO or reliable.

message handling

use handling all

all matching received msgs not yet handled must be handled

at each yield point. this is the default.

logical clocks

use Lamport clock

call Lamport clock() to get value of clock

7

1. Explicit wait for high-level synchronization

synchronization is at the core of distributed algorithms:

wait for conditions to become true before appropriate actions;

need to test truth value of conditions as msgs are received

principles:

1. specify waiting on conditions explicitly using await-statements

2. express the conditions using queries over received and sent

3. minimize local updates in actions

example: commander in multi-Paxos:

• spawed by a leader for each adopted (ballot num, slot num, prop)

• try having it accepted by acceptors & send replicas the decision

• in case preempted by a different ballot num, notify the leader

8

Example: Commander in multi-Paxos [vR11]

process Commander(λ, acceptors, replicas, 〈b, s, p〉)
var waitfor := acceptors;

∀α ∈ acceptors : send(α, 〈p2a, self(), 〈b, s, p〉〉);
for ever

switch receive()
case 〈p2b, α, b′〉 :
if b′ = b then

waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then

∀ρ ∈ replicas :
send(ρ, 〈decision, s, p〉);

exit();
end if;

else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch

end for

end process
9

Commander in multi-Paxos, in DistAlgo

class Commander extends Process:

def setup(leader, acceptors, replicas, b, s, p): skip

def run():

send (’p2a’, b, s, p) to acceptors

await count({a: received((’p2b’, =b) from a)}) > count(acceptors)/2:

send (’decision’, s, p) to replicas

or received(’p2b’, b2) and b2!=b:

send (’preempted’, b2) to leader

no local update — synchronization condition is completely clear.

similar for Scout process in multi-Paxos
10

2. Direct high-level assertions

determining state is key to taking actions:

can assert state in many ways; need to test truth value of

assertions as messages are sent and received

principles:

1. express assertions using queries over received and sent,

as for synchronization conditions

2. use quantifications directly, vs loops and low-level updates

3. use quantifications directly, vs comprehensions and aggregates

example: conditions in Lamport’s distributed mutex:

• request by self is before each other request in q

• an ack msg from each other proc is received after own request

11

Example: Lamport’s distributed mutex

using quantifications directly:

each (’request’,c2,p2) in q | (c2,p2)!=(c,self) implies (c,self) < (c2,p2)

and each p2 in s | some received(’ack’, c2, =p2) | c2 > c

using loops or updates: much more work, tedious and error-prone

using aggregates: (c,self) < min({(c2,p2) in q})

often incorrect and needs boundary values such as maxint,

even inefficient since min needs O(log n) update time,

but efficient incremental computation needs only O(1) time.

12

3. Straightforward high-level computations

computations are needed to achieve goals:

computations depend on messages sent and received;

need to compute results as messages are sent and received

principles:

1. compute aggregate values using aggregates over received/sent

2. compute set values using comprehensions over received/sent

3. specify repeated comps straightforwardly where results are used

example: acceptor in multi-Paxos:

• respond to p1a msgs from scouts with p1b msgs in phase 1

• respond to p2a msgs from commanders with p2b msgs in phase 2

13

Example: Acceptor in multi-Paxos [vR11]

process Acceptor()
var ballot num := ⊥, accepted := ∅;

for ever

switch receive()
case 〈p1a, λ, b〉 :
if b > ballot num then

ballot num := b;
end if;
send(λ, 〈p1b, self(), ballot num, accepted〉);

end case

case 〈p2a, λ, 〈b, s, p〉〉 :
if b ≥ ballot num then

ballot num := b;
accepted := accepted ∪ {〈b, s, p〉};

end if

send(λ, 〈p2b, self(), ballot num〉);
end case

end switch

end for

end process

14

Acceptor in multi-Paxos, in DistAlgo

class Acceptor extends Process:

def setup(): self.accepted = {}

def run(): await false

receive m:

self.ballot_num = max({b: received(’p1a’,b)}+{b: received(’p2a’,b,_,_)} or {(-1,-1)})

receive (’p1a’, _) from scout:

send (’p1b’, ballot_num, accepted) to scout

receive (’p2a’, b, s, p) from commander:

if b == ballot_num: accepted.add((b,s,p))

send (’p2b’, ballot_num) to commander

invariant for ballot num is completely clear. 15

4. Collective send-actions

sending collections of msgs is generally needed to achieve goals:

algorithms should be viewed as driven by send-actions,

as opposed to by handling of individual received messages

method:

1. identify the kinds of messages to be sent

2. for each kind, collect all situations where the msgs are sent

3. express situations collectively using loops, favoring for-loops

example: replica in multi-Paxos:

• for each request received, send proposal to leaders until accepted

• for each acceptance, apply it to state and send result to client

16

Example: Replica in multi-Paxos [vR11]

process Replica(leaders, initial state)
var state := initial state, slot num := 1;
var proposals := ∅, decisions := ∅;

function propose(p)
if 6 ∃s : 〈s, p〉 ∈ decisions then

s′ := min{s | s ∈ N
+ ∧

6 ∃p′ : 〈s, p′〉 ∈ proposals ∪ decisions};
proposals := proposals ∪ {〈s′, p〉};
∀λ ∈ leaders : send(λ, 〈propose, s′, p〉);

end if

end function

function perform(〈κ, cid, op〉)
if ∃s : s < slot num ∧

〈s, 〈κ, cid, op〉〉 ∈ decisions then

slot num := slot num + 1;
else

〈next, result〉 := op(state);
atomic

state := next;
slot num := slot num + 1;

end atomic

send(κ, 〈response, cid, result〉);
end if

end function

for ever

switch receive()
case 〈request, p〉 :

propose(p);
case 〈decision, s, p〉 :

decisions := decisions ∪ {〈s, p〉};
while ∃p

′ : 〈slot num, p
′〉 ∈ decisions do

if ∃p
′′ : 〈slot num, p

′′〉 ∈ proposals ∧
p
′′ 6= p

′ then

propose(p′′);
end if

perform(p′);
end while;

end switch

end for

end process
17

Replica in multi-Paxos, in DistAlgo

class Replica extends Process:

def setup(leaders, initial_state):

self.state = initial_state

self.slot_num = 1

def run():

while true:

-- propose

for (’request’,p) in received:

if each (’propose’,s,=p) in sent | some received(’decision’,=s,p2) | p2!=p:

s = min({s in 1.. max({s: sent(’propose’,s,_)}+{s: received(’decision’,s,_)})+1
| not (sent(’propose’,s,_) or received(’decision’,s,_))})

send (’propose’, s, p) to leaders

-- perform

while some (’decision’, =slot_num, p) in received:

if not some (’decision’, s, =p) in received | s < slot_num:

client, cmd_id, op = p

state, result = op(state)

send (’respond’, cmd_id, result) to client

slot_num += 1

conditions for send-actions are completely clear.

invariant for slot num is completely clear.

18

Experiments with important algorithms

algorithms with interesting results and their sizes in DistAlgo:

Algorithm Description Spec size Incr size
La mutex Lamport’s distributed mutual exclusion 32 43
2P commit Two-phase commit 44 67
La Paxos Lamport’s Paxos for distributed consensus 43 59
CL Paxos Castro-Liskov’s Byzantine Paxos 63 81
vR Paxos van Renesse’s pseudocode for multi-Paxos 86 160

sizes are in number of lines excluding comments and empty lines.

Incr indicates specs containing low-level incremental updates;

for multi-Paxos, Incr size is for following pseudocode in [vR11].

compare with other languages:

La Paxos: 43 DistAlgo, 83 PlusCal, 145 IOA, 230 Overlog, 157 Bloom

vR Paxos: 86 DistAlgo, 130 pseudocode, ∼3000 a Python implementation

19

Results for correctness & efficiency

La mutex:

algorithm simplified to not enqueue/dequeue own requests.

data structure for maintaining min request in O(log n) removed

2P commit:

succinct spec of coordinator: 2 awaits, 1 assertion, 1 set query

easy to see it is safe to add timeout to 1st wait, not 2nd wait

La Paxos and CR Paxos:

direct use of quantifications match English description.

our earlier uses of aggregates were incorrect or needed maxint.

vR Paxos:

for commander and scout, if / returns int, orig algo is incorrect.

for replica, re-proposals are delayed unnecessarily.

20

Generated implementations

size of Python implementations generated from DistAlgo specs:

Algorithm Spec size Generated size
La mutex 32 1395
La mutex incr 43 1424
2P commit 44 1432
2P commit incr 67 1437
La Paxos 43 1428
La Paxos incr 59 1498
CL Paxos 63 1480
CL Paxos incr 81 1530
vR Paxos 86 1555
vR Paxos incr 160 1606

“incr” indicates specs containing low-level incremental updates.

compilation times are between 13 and 44 seconds.

21

Performance of generated implementation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 25 50 75 100 125 150

T
im

e
(s

)

Total number of cohorts

Original(Commit)
Original(Abort)

Incrementalized(Commit)
Incrementalized(Abort)

for two-phase commit, for failure rates of 0 (Commit) and 100

(Abort), averaged over 50 rounds and 15 independent runs.

22

Grad and undergrad projects in DistAlgo

Project Description Notes

Leader ring, randomized; arbitrary net 3 algorithms

Narada overlay multicast system

Chord distributed hash table (DHT)

Kademlia DHT

Pastry DHT

Tapestry DHT

HDFS Hadoop distributed file system part

UpRight cluster services part

AODV wireless mesh network routing python

OLSR optimized link state routing python

part: omitted replication, but done in our impl. of vR Paxos

python: in Python, but knew it would be easier in DistAlgo

each is about 300-600 lines, took about half a semester. 23

Summary and conclusion

use a simple and powerful language, DistAlgo: very high-level

• distributed processes as objects, sending messages

• yield points for control flow, handling of received messages

+await and synchronization conditions as queries ofmsg history

• high-level constructs for system configuration

exploit high-level abstractions of computation and control

1. high-level synchronization with explicit wait on received msgs

2. high-level assertions for when to send msgs and take actions

3. high-level queries for what to send in msgs to whom

4. collective send-actions for overall computation and control

experiment with important distributed algorithms

• including Paxos and multi-Paxos for distributed consensus

• discovered improvements to some, for correctness & efficiency

Future work

formal verification of higher-level algorithm specifications

by translating to PlusCal and other languages of verifiers

generating implementations in lower-level languages

C, Java, Erlang, ...

many additional, improved analyses and optimizations:

type analysis, deadcode analysis, cost analysis, ...

deriving optimized distributed algorithms

reducing message complexity and round complexity

25

Thanks!

26

Example: distributed mutual exclusion

Lamport’s algorithm: developed to show logical timestamps

n processes access a shared resource, need mutex, go in CS

a process that wants to enter critical section (CS)

• send requests to all

• wait for replies from all

• enter CS

• send releases to all

each process maintains a queue of requests

• order by logical timestamps

• enter CS only if its request is the first on the queue

• when receiving a request, enqueue

• when receiving a release, dequeue

safety, liveness, fairness, efficiency

27

How to express it

two extremes, and many in between

1. English: clear high-level flow; imprecise, informal

2. state machine based specs: precise; low-level control flow

Nancy Lynch’s I/O automata: 1 1/5 pages, most two-column

in between:

• Michel Raynal’s pseudocode: still informal and imprecise

• Leslie Lamport’s PlusCal: still complex

(90 lines excluding comments and empty lines, by Merz)

• Robbert van Renesse’s pseudocode: precise, almost high-level

lack concepts for building real systems — much more complex

most of these are not executable at all.

28

Original description in English

The algorithm is then defined by the following five rules. For convenience,
the actions defined by each rule are assumed to form a single event.

1. To request the resource, process Pi sends the message Tm : Pi requests

resource to every other process, and puts that message on its request queue,
where Tm is the timestamp of the message.

2. When process Pj receives the message Tm : Pi requests resource, it
places it on its request queue and sends a (timestamped) acknowledgment
message to Pi.

3. To release the resource, process Pi removes any Tm : Pi requests resource

message from its request queue and sends a (timestamped) Pi releases re-

source message to every other process.
4. When process Pj receives a Pi releases resource message, it removes

any Tm : Pi requests resource message from its request queue.
5. Process Pi is granted the resource when the following two conditions

are satisfied: (i) There is a Tm : Pi requests resource message in its request
queue which is ordered before any other request in its queue by the relation
<. (To define the relation < for messages, we identify a message with the
event of sending it.) (ii) Pi has received an acknowledgment message from
every other process timestamped later than Tm.
Note that conditions (i) and (ii) of rule 5 are tested locally by Pi.

29

Challenges

each process must

• act as both Pi and Pj in interactions with all other processes

• have an order of handling all events by the 5 rules, trying to

enter and exit CS while also responding to msgs from others

• keep testing the complex condition in rule 5 as events happen

actual implementations need many more details

• create processes, let them establish channels with each other

• incorporate appropriate clocks (e.g., Lamport, vector) if needed

• guarantee the specified channel properties (e.g., reliable, FIFO)

• integrate the algorithm with the overall application

how to do all of these in an easy and modular fashion?

• for both correctness verification and performance optimization
30

Original algorithm in DistAlgo
1 def setup(s):
2 self.s = s # set of all other processes
3 self.q = {} # set of pending requests with logical clock

4 def cs(task): # for calling task() in critical section
5 -- request
6 self.c = Lamport_clock() # rule 1
7 send (’request’, c, self) to s #
8 q.add((’request’, c, self)) #
9 await each (’request’,c2,p2) in q | (c2,p2) != (c,self) implies (c,self) < (c2,p2)

10 and each p2 in s | some received(’ack’,c2,=p2) | c2 > c # rule 5
11 task() # critical section
12 -- release
13 q.del((’request’, c, self)) # rule 3
14 send (’release’, Lamport_clock(), self) to s #

15 receive (’request’, c2, p2): # rule 2
16 q.add((’request’, c2, p2)) #
17 send (’ack’, Lamport_clock(), self) to p2 #

18 receive (’release’, _, p2): # rule 4
19 q.del((’request’, _, =p2)) #

31

Complete program in DistAlgo
0 class P extends Process:

... # content of the previous slide

20 def run():
...

21 def task(): ...
22 cs(task)

...

23 def main():
...

24 use reliable_channel
25 use fifo_channel
26 use Lamport_clock
27 ps = newprocesses(50,P)
28 for p in ps: p.setup(ps-{p})
29 for p in ps: p.start()

...

32

Optimized program after incrementalization
0 class P extends Process:
1 def setup(s):
2 self.s = s # self.q was removed
3 self.total = size(s) # total number of other processes
4 self.ds = new DS() # aux DS for maint min of requests by other processes

5 def cs(task):
6 -- request
7 self.c = Lamport_clock()
8 self.responded = {} # set of responded processes
9 self.count = 0 # count of responded processes

19 send (’request’, c, self) to s # q.add(...) was removed
11 await (ds.is_empty() or (c,self) < ds.min()) and count == total # use maintained
12 task()
13 -- release
14 send (’release’, Lamport_clock(), self) to s # q.del(...) was removed

15 receive (’request’, c2, p2):
16 ds.add((c2,p2)) # add to the auxiliary data structure
17 send (’ack’, Lamport_clock(), self) to p2 # q.add(...) was removed

18 receive (’ack’, c2, p2): # new message handler
19 if c2 > c: # test comparison in condition 2
20 if p2 in s: # test membership in condition 2
21 if p2 not in responded: # test whether responded already
22 responded.add(p2) # add to responded
23 count += 1 # increment count

24 receive (’release’, _, p2): # q.del(...) was removed
25 ds.del((_,=p2)) # remove from the auxiliary data structure 33

Simplified program by un-incrementalization
0 class P extends Process:
1 def setup(s):
2 self.s = s

3 def cs(task):
4 -- request
5 self.c = Lamport_clock()
6 send (’request’, c, self) to s
7 await each received(’request’,c2,p2) |
8 not some received(’release’,c3,=p2) | c3 > c2 implies (c,self) < (c2,p2)

and each p2 in s | some received(’ack’,c2,=p2) | c2 > c
9 task()

10 -- release
11 send (’release’, Lamport_clock(), self) to s

12 receive (’request’, _, p2):
13 send (’ack’, Lamport_clock(), self) to p2

34

Optimizedw/o queue after incrementalization
0 class P extends Process:
1 def setup(s):
2 self.s = s
3 self.q = {} # self.q is kept as a set, no aux ds
4 self.total = size(s) # total num of other processes

5 def cs(task):
6 -- request
7 self.c = Lamport_clock()
8 self.earlier = q # set of pending earlier reqs
9 self.count1 = size(earlier) # num of pending earlier reqs

10 self.responded = {} # set of responded processes
11 self.count = 0 # num of responded processes
12 send (’request’, c, self) to s
13 q.add((’request’, c, self)) # q.add is kept, no aux ds.add
14 await count1 == 0 and count == total # use maintained results
15 task()
16 -- release
17 q.del((’request’, c, self)) # q.del is kept,no aux ds.add
18 send (’release’, Lamport_clock(), self) to s

19 receive (’request’, c2, p2):
20 if c != undefined: # if c is defined
21 if (c,self) > (c2,p2): # test comparison in conjunct 1
22 if (’request’,c2,p2) not in earlier: # if not in earlier
23 earlier.add((’request’,c2,p2)) # add to earlier
24 count1 +=1 # increment count1
25 q.add((’request’,c2,p2)) # q.add is kept, no aux ds.add
26 send (’ack’, Lamport_clock(), self) to p2

35

27 receive (’ack’, c2, p2): # new message handler
28 if c2 > c: # test comparison in conjunct 2
29 if p2 in s: # test membership in conjunct 2
30 if p2 not in responded: # test whether responded already
31 responded.add(p2) # add to responded
31 count += 1 # increment count

33 receive (’release’, _, p2):
34 if c != undefined: # if c is defined
35 if (c,self) > (c2,p2): # test comparison in conjunct 1
36 if (’request’,c2,p2) in earlier: # if in earlier
37 earlier.del((’request’,c2,p2)) # delete from earlier
38 count1 -=1 # decrement count1
39 q.del((’request’,_,=p2)) # q.del is kept, no aux ds.del

Implementations of Lamport’s algorithm

Language Dist. programming features used Total Clean

C TCP socket library 358 272

Java TCP socket library 281 216

Python multiprocessing package 165 122

Erlang built-in message passing 177 99

PlusCal single process simulation with array 134 90

DistAlgo built-in high-level synchronization 48 32

program size in total number of lines of code,

and number of lines excluding comments and empty lines

36

Program size for well-known algorithms

Algorithm DistAlgo PlusCal IOA Overlog Bloom

La mutex 32 90 64

La mutex2 33

RA mutex 35

RA token 43

SK token 42

CR leader 30 41

HS leader 56

2P commit 44 68 85

DS crash 22

La Paxos 43 83 145 230 157

CL Paxos 63 166

vR Paxos 160

number of lines excluding comments and empty lines,

compared with specifications written by others in other languages

37

Compilation time and generated prog. sizes

Compilation DistAlgo Compiled Incremental-
Algorithm time (ms) size size ized size

La mutex 13.3 32 1395 1424

La mutex2 15.3 33 1402 1433

RA mutex 12.3 35 1395 1395

RA token 12.9 43 1402 1402

SK token 16.5 42 1405 1407

CR leader 10.7 30 1395 1395

HS leader 18.7 56 1415 1415

2P commit 21.4 44 1432 1437

DS crash 10.5 22 1399 1414

La Paxos 20.7 43 1428 1498

CL Paxos 32.3 63 1480 1530

vR Paxos 43.4 160 1555 1606

compilation time not including incrementalization time (all<30s),

and numbers of lines excluding comments and empty lines of

generated programs (including 1300 lines of fixed library code)

Performance of generated implementation

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22
 0.24
 0.26
 0.28

 25 50 75 100 125 150
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

T
im

e
(s

ec
)

M
em

or
y

(k
B

)

Number of processes

Original time
Original memory

Incrementalized time
Incrementalized memory

running time and memory usage for Lamport’s algorithm:

CPU time for each process to complete a call to cs(task),

including time spent handling messages from other processes,

averaged over processes and over runs of 30 calls each;

raw size of all data structures created, measured using Pympler
39

Example: two-phase commit

a coordinator and a set of cohorts try to commit a transaction

phase 1:

• coordinator sends a prepare to all cohorts.

• each cohort replies with a ready vote if it is prepared to commit,

or else replies with an abort vote and aborts.

phase 2:

• if coordinator receives a ready vote from all cohorts,

it sends a commit to all cohorts;

each cohort commits and sends a done to coordinator;

coordinator completes when receives a done from all cohorts.

• if coordinator receives an abort vote from any cohort,

it sends an abort to all cohorts who sent a ready vote;

each cohort who sent a ready vote aborts.

agreement, validity, weak termination, 4n-4 msgs

40

How to express it

two extremes, and many in between

1. English: clear high-level flow; imprecise, informal

2. state machine based specs: precise; low-level control flow

Nancy Lynch’s I/O automata: book p183-184, but 2n-2 msgs

in between:

• Michel Raynal’s pseudocode: still informal and imprecise

• Leslie Lamport’s PlusCal: still complex

(P2TwoPhase, 68 lines excluding comments and empty lines)

• Robbert van Renesse’s pseudocode: precise, almost high-level

lack concepts for building real systems — much more complex

most of these are not executable at all.

41

Original description in English
Phase 1: Summary of the protocol [KBL06 DB and TP]

1. The coordinator sends a prepare message to all cohorts.

2. Each cohort waits until it receives a prepare message from the coordinator. If it is
prepared to commit, it forces a prepared record to its log, enters a state in which it cannot
be aborted by its local control, and sends “ready” in the vote message to the coordinator.

If it cannot commit, it appends an abort record to its log. Or it might already have
aborted. In either case, it sends “aborting” in the vote message to the coordinator, rolls
back any changes the subtransaction has made to the database, release the subtransaction’s
locks, and terminates its participation in the protocol.

Phase 2:

1. The coordinator waits until it receives votes from all cohorts. If it receives at least one
“aborting” vote, it decides to abort, sends an abort message to all cohorts that voted “ready”,
deallocates the transaction record in volatile memory, and terminates its participation in the
protocol.

If all votes are “ready”, the coordinator decides to commit (and stores that fact in the
transaction record), forces a commit record (which includes a copy of the transaction record)
to its log, and sends a commit message to each cohort.

2. Each cohort that voted “ready” waits to receive a message from the coordinator. If
a cohort receives an abort message, it rolls back any changes the subtransaction has made
to the database, appends an abort record to its log, releases the subtransaction’s locks, and
terminates it participation in the protocol.

If the cohort received a commit message, it forces a commit record to its log, releases
all locks, sends a done message to the coordinator, and terminates its participation in the
protocol.

3. If the coordinator committed the transaction, it waits until it receives done message

from all cohorts. Then it appends a completion record to its log, deletes the transaction
record from volatile memory, and terminates it participation in the protocol.

Original algorithm in DistAlgo
1 class Coordinator extends Process:

2 def setup(tid, cohorts): pass # transaction id and cohorts

3 def run():

4 send (’prepare’,tid) to cohorts

5 await each c in cohorts | received(’vote’,_,tid) from c

6 if each c in cohorts | received(’vote’,’ready’,tid) from c:

7 send (’commit’,tid) to cohorts

8 await each c in cohorts | received(’done’,tid) from c

9 print(complete’+tid)

10 else:

11 s = {c in cohorts | received(’vote’,’ready’,tid) from c}
12 send (’abort’,tid) to s

13 print(’terminate’+tid)

14 class Cohort extends Process:

15 def setup(f): pass # failure rate

16 def run():

17 await(False)

18 receive (’prepare’,tid) from c:

19 if prepared(tid):

20 send (’vote’,’ready,tid) to c # await commit or abort here?

21 else:

22 send (’vote’,’abort’,tid) to c

23 abort(tid)

24 receive (’commit’,tid) from c:

25 commit(tid)

26 send (’done’,tid) to c 29 def prepared(tid): return randint(0,100) > f

27 receive (’abort’,tid): 30 def abort(tid): print(’abort’+tid)

28 abort(tid) 31 def commit(tid): print(’commit’+tid)

Complete program in DistAlgo
0 from random import randint

... # content of the previous slide

32 def main():

33 cs = createprocs(Cohort,25,(10)) # create 25 cohorts

34 c = createprocs(Coordinator,1,(0,cs)) # create 1 coordinator

35 startprocs(cs) # start cohorts

36 startprocs(c) # start coordinator

Optimized after incrementalization (part 1)
1 class Coordinator extends Process:

2 def setup(tid, cohorts):

3 ncohorts = size(cohorts) # number of cohorts

4 svoted = {} # set of voted cohorts

5 nvoted = 0 # number of voted cohorts

6 sready = {} # set of ready cohorts

7 nready = 0 # number of ready cohorts

8 sdone = {} # set of done cohorts

9 ndone = 0 # number of done cohorts

10 def run():

11 send (’prepare’,tid) to cohorts

12 await nvoted == ncohorts # replaced universal quantification

13 if nready == ncohorts: # replaced universal quantification

14 send (’commit’,tid) to cohorts

15 await ndone == ncohorts # replaced universal quantification

16 print(’complete’+tid)

17 else:

18 s = sready # replaced set query

19 send (’abort’,tid) to s

20 print(’terminate’+tid)

45

Optimized after incrementalization (part 2)
new message handler

21 receive (’vote’,v,tid) from c:

22 if c in cohorts:

23 if c not in svoted:

24 svoted.add(c)

25 nvoted += 1

26 if v == ’ready’:

27 if c not in sready:

28 sready.add(c)

29 nready += 1

new message handler

30 receive (’done’,tid) from c:

31 if c in cohorts:

32 if c not in sdone:

33 sdone.add(c)

34 ndone += 1

35 class Cohort extends Process:

52 ... # no change

53 def main():

57 ... # no change

46

Performance of generated implementation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 25 50 75 100 125 150

T
im

e
(s

)

Total number of cohorts

Original(Commit)
Original(Abort)

Incrementalized(Commit)
Incrementalized(Abort)

for two-phase commit, for failure rates of 0 (Commit) and 100

(Abort), averaged over 50 rounds and 15 independent runs.

47

Expensive queries using quantifications

expensive computation of synchronization condition:

each (’request’,c2,p2) in q | (c2,p2) != (c,self) implies (c,self) < (c2,p2)
and each p2 in s | some received(’ack’,c2,p2) | c2 > c

all updates to variables used by expensive computations:

2 self.s = s
3 self.q = {}

7 self.c = Lamport_clock()
8 q.add((’request’, c, self))
13 q.del((’request’, c, self))
16 q.add((’request’, c2, p2))
19 q.del((’request’, _, p2))

* received.add((’ack’,c2,p2))

transform queries into efficient incremental computation at updates

how?

48

Optimization by incrementalization

• introduce variables to store values of queries

• transform the queries to use introduced variables

• incrementally maintain stored values at each update

new: systematic handling of

1. quantifications for synchronization as expensive queries

2. updates caused by sending, receiving, and handling of msgs

in the same way as other updates in the program

transform expensive synchronization conditions into efficient

tests and incremental updates as msgs are sent and received

sequences received and sent will be removed as appropriate

only values needed for incremental computation of synchro-

nization conditions will be stored and incrementally updated
49

Incrementalization of quantifications

transform quantifications into aggregates:

({(c2,p2) : (’request’,c2,p2) in q | (c2,p2) != (c,self)} == {} or
(c,self) < min({(c2,p2) : (’request’,c2,p2) in q | (c2,p2) != (c,self)}))
and
size({p2: p2 in s, (’ack’,c2,=p2) in received | c2 > c}) == size(s)

without queue:

size({(’request’,c2,p2) in q | (c,self) > (c2,p2)}) == 0 and ...

use incrementally maintained query results:

(ds.is_empty() or (c,self) < ds.min()) and count == total

without queue:

count1 == 0 and ...

use max and min if no deletion — maintain single value, not set

50

