
High-Level Exeutable Spei�ations ofDistributed AlgorithmsYanhong A. Liu, Sott D. Stoller, and Bo LinComputer Siene Department, State University of New York at Stony Brook{liu,stoller,bolin}�s.stonybrook.eduAbstrat. This paper desribes a method for speifying omplex dis-tributed algorithms at a very high yet exeutable level, fousing in par-tiular on general priniples for making properties and invariants expliitwhile keeping the ontrol �ow lear. This is ritial for understanding thealgorithms and proving their orretness. It is also ritial for generat-ing e�ient implementations using invariant-preserving transformations,ensuring the orretness of the optimizations.We have studied and experimented with a variety of important dis-tributed algorithms, inluding well-known di�ult variants of Paxos, byspeifying them in a very high-level language with an operational seman-tis. In the spei�ations that resulted from following our method, rit-ial properties and invariants are expliit, making the algorithms easierto understand and verify. Indeed, this helped us disover improvementsto some of the algorithms, for orretness and for optimizations.1 IntrodutionDistributed algorithms are at the ore of distributed systems, whih are in-reasingly indispensable in our daily lives. Yet, understanding and proving theorretness of distributed algorithms remain hallenging, reurring tasks. Studyof distributed algorithms has relied on either pseudo ode with English, whihis high-level but impreise, or formal spei�ation languages, whih are preisebut harder to understand or not exeutable.For example, the well-known Paxos algorithm for distributed onsensus, fromwhen Lamport �rst desribed it in 1990 [16℄, through all the variations, investiga-tions, and pratial deployments (inluding Google's Chubby distributed lokingand storage servie [6℄) over the years, e.g., [8, 17, 5℄, remains as atively studiedas ever in spei�ation and veri�ation, e.g., [20, 33℄. The desription by van Re-nesse [33℄ �nally provides preise pseudo ode for full Paxos�multi-Paxos�withomprehensive detailed explanations.This paper desribes a method to help make it easier to understand andverify omplex distributed algorithms by speifying them at a very high yet exe-utable level. The method fouses in partiular on general priniples for makingproperties and invariants expliit while keeping the ontrol �ow lear. It exploitsmessage history sequenes and queries over sets and sequenes to abstrat thehandling of reeived messages, and to abstrat synhronization, when to sendwhat messages to whom, and sending of messages olletively.

Making properties and invariants expliit is ritial also for generating e�-ient implementations using invariant-preserving transformations, ensuring theorretness of the optimizations. In fat, it was during the study of these opti-mizations in the last several years, while trying to better understand and teahdistributed algorithms, that we developed the abstrations and the spei�ationmethod.We have studied and experimented with a variety of important distributedalgorithms, inluding well-known di�ult variants of Paxos, by speifying themin a very high-level language with an operational semantis. In the spei�ationsthat resulted from following our method, ritial properties and invariants areexpliit, making the algorithms easier to understand and verify. Indeed, thishelped us disover improvements to some of the algorithms, both for orretnessand for optimizations, and also exposed some remaining orretness onerns.2 Language and ase studiesWe use a very high level, exeutable language, alled DistAlgo, that has anoperational semantis [23℄. We use parts of two ase studies as examples indesribing our method.Language. To support distributed programming at a high level, we add fourmain onepts to ommonly used objet-oriented programming languages, suhas Java and Python: (1) proesses as objets, and sending of messages, (2) yieldpoints and waits for ontrol �ows, and handling of reeived messages, (3) om-putations using high-level queries and message history sequenes, and (4) on�g-uration of proesses and ommuniation mehanisms. The following paragraphsdesribe the onstruts that support these onepts in DistAlgo. For other on-struts, we mostly use Python syntax (indentation for soping, ':' for separa-tion, '#' for omments, et.), for suintness, exept with a few onventionsfrom Java. The skip statement does nothing. We adopt the onvention that anymethod named setup impliitly assigns eah of its parameters to a �eld withthe same name as the parameter before exeuting the rest of its body.Proesses and sending of messages. Proess de�nition is done by de�ninglasses that extend a speial lass Proess. This is analogous to thread de�ni-tion in Java and Python, whih is done by de�ning lasses that extend a speiallass Thread. The lass must de�ne a run method. The start method inheritedfrom Proess starts the exeution of the proess, whih exeutes its run method.Proesses an be reated using onstrutors of proess lasses. Those onstru-tors have an optional additional parameter that spei�es the site (mahine) onwhih the new proess should be reated. Proesses an also be reated by all-ing newproesses(n,P,s), whih reates and returns a set of n proesses of lassP on site s.A send-statement send m to p sends a message m to a proess p. If p is a setof proesses, m is sent to eah proess in the set. A message an be a tuple, wherethe �rst omponent is a string speifying the kind of the message.

Control �ows and handling of reeived messages. The key idea is touse labels to speify program points where ontrol �ow an yield to handling ofmessages and resume afterwards. A yield point is a statement of the form -- l,where l is a label that names this point in the program. Messages are handledonly at yield points, so ode segments not ontaining yield points are atomi.Handling of reeived messages is expressed using reeive-de�nitions, whih aremembers of lass de�nitions for proesses and are of the form:reeive m1 from p1,...,mk from pk at l1,...,lj: stmtwhere eah mi is a variable or tuple pattern. This allows messages that math anyone of m1 from p1, ..., mk from pk to be handled at yield points labeled any oneof l1,...,lj, by exeuting the statement stmt at those points. A tuple pattern isa tuple in whih eah omponent is a onstant, a variable possibly pre�xed with�=�, or a wildard. A variable pre�xed with �=� means that the orrespondingpart of the tuple being mathed must equal the value of the variable for patternmathing to sueed. A variable that is not pre�xed with �=� mathes any valueand gets bound to the orresponding part of the tuple being mathed. A wildard,written as �_�, mathes any value. The at-lause is optional, and the defaultmeans all yield points. The from-lause is also optional. As syntati sugar, areeive-de�nition used at only one yield point an be written at that point.Synhronization uses the await-statement, whose general form isawait bexp1: stmt1 or ... or bexpk: stmtk timeout t: stmtThis statement waits for one of the Boolean expressions bexpi to beome trueor until t seonds have passed and then exeutes the orresponding statement.The statements stmti and the timeout-lause are optional. An await-statementmust be preeded by a yield point; if a yield point is not spei�ed expliitly, thedefault is that all message handlers an be exeuted at this point.High-level queries. Synhronization onditions an be expressed using high-level queries�quanti�ations, omprehensions, and aggregates�over sets of pro-esses and sequenes of messages. We de�ne operations on sets; operations onsequenes are the same exept that elements are proessed in order, and squarebrakets are used in plae of urly braes.� Quanti�ations are of the following two forms. Eah variable vi enumerateselements of the set value of expression expi; the return value is whether, foreah or some, respetively, ombination of values of v1,...,vk, the value ofBoolean expression bexp is true.eah v1 in exp1, ..., vk in expk | bexpsome v1 in exp1, ..., vk in expk | bexp� Comprehensions are of the following form. Eah variable vi enumerates el-ements of the set value of expression expi; for eah ombination of valuesof v1,...vk, if the value of Boolean expression bexp is true, the value ofexpression exp forms an element of the resulting set.{ exp: v1 in exp1, ..., vk in expk | bexp }

We abbreviate {v: v in exp | bexp} as {v in exp | bexp}.� Aggregates are of the form agg(exp), where agg is an operation, suh as ountor min, speifying the kind of aggregation over the set value of exp.� In the query forms above, eah vi an also be a tuple pattern, in whih aseeah enumerated element of the set value of expi is mathed against thepattern before bexp is evaluated. We omit |bexp when bexp is true.We use {} for empty set; s.add(x) and s.del(x) for element addition and deletion,respetively; and x in s and x not in s for membership test and its negation,respetively. We overload or to work for sets; s1 or s2 returns s1 if s1 is non-empty, otherwise it returns s2.DistAlgo has two built-in sequenes, reeived and sent, ontaining all mes-sages reeived and sent, respetively, by a proess.� Sequene reeived is updated only at yield points. An arrived message mfor whih the program ontains a mathing reeive-de�nition is added toreeived when the program reahes a yield point where m is handled, and allmathing message handlers assoiated with that yield point are exeuted form. An arrived message for whih the program ontains no mathing reeive-de�nitions is added to reeived at the next yield point. The sequene sentis updated at eah send-statement.� reeived(m from p) is a shorthand for m from p in reeived; from p is op-tional, but when it is used, eah message in reeived is automatially asso-iated with the orresponding sender. sent(m to p) is a shorthand for m top in sent; to p is optional, but when it is used, p is the proess or set ofproesses in the orresponding send-statement.Con�guration. Con�guration statements an speify various aspets of on�g-uration. For example, use fifo_hannel and use reliable_hannel speify thathannels are required to be FIFO and reliable, respetively; by default, han-nels are not required to be FIFO or reliable. The on�guration statement useLamport_lok spei�es that Lamport logial lok [15, 9, 25℄ is used; this on-�gures sending and reeiving of messages to update the lok, and de�nes afuntion Lamport_lok() that returns the value of the lok.Case studies. We use parts of two important algorithms as ase studies: (1)van Renesse's pseudo ode for multi-Paxos for distributed onsensus [33℄, whihhas been worked on for a long time, with the pseudo ode remaining the samefor a year or more, and is in the proess of being made a tehnial report, and(2) Lamport's desription of distributed mutual exlusion algorithm [15℄, whihLamport developed to illustrate the logial lok he invented. We use thembeause they are the learest desriptions we found for these problems.van Renesse's pseudo ode for multi-Paxos is for a set of leaders, ommanders,souts, and aeptors to reah onsensus among a set of replias in serving asequene of requests from lients. A replia reeives lient requests and proposesto leaders, and reeives deisions from leaders and replies bak to lients; aleader spawns o� ommander and souts to do the two phases of the onsensus

algorithm; ommander and souts ommuniates with aeptors to try to haveproposed values aepted.Lamport's distributed mutual exlusion is for a set of proesses aessinga shared resoure that an only be used by one proess at a time. A proessmaintains a queue of pending requests sorted by their logial timestamps, addsself to the request queue and sends a message to all others to request the resoure,waits for all others to reply and for self to be �rst on the queue to get aess,and sends release messages to all and dequeues itself afterwards; it enqueues anyrequest upon reeiving the request message, and dequeues it upon reeiving therelease message.3 High-level spei�ations of distributed algorithmsOur method aims to speify distributed algorithms at a high level while keepingthem fully exeutable as they are designed for. The key idea is to preserve thesending and reeive of messages while abstrating away details of loal ompu-tations.Abstrations for speifying distributed algorithms. Our method exploitstwo basi abstrations�message history sequenes and queries over sets andsequenes�and has four main omponents:1. abstrating waiting on reeived messages using high-level synhronizationwith expliit wait,2. abstrating when to send messages using high-level assertions over sets andsequenes,3. abstrating what to send in messages to whom using high-level set and ag-gregate omputations, and4. abstrating what messages to send olletively using loops and high-levelqueries.These abstrations help make invariants maintained in distributed algorithmsexpliit, and thus help make the algorithms easier to understand and to verify.Note that our method does not yet make all invariants expliit, if that is possible.The method emphasizes sending of messages and synhronization, beausea proess has no ontrol over when it reeives what messages from whom, butonly when and how to handle them one they arrive, and handling of reeivedmessages is driven by the need to send messages, besides waiting and yielding.Therefore, handling is implied by the four omponents above, espeially as theyall heavily use queries over reeived messages.Message sequenes. For a distributed proess to make deisions, the key inputis the history of messages it has sent and reeived. Therefore, at a high level,these deisions should be expressed in terms of the sequenes of messages sentand reeived, not lower-level loal updates after eah message is sent or reeived.High-level queries. Beause distributed omputations involve sets of pro-esses and sequenes of message, deision making mainly involves assertions and

other omputations over sets and sequenes. To speify these assertions and om-putations at a high level, our method uses queries extensively, inluding logiquanti�ations, set omprehensions, and aggregate omputations.Overall method. The four omponents of our method are orthogonal and anbe applied independently. We desribe these omponents in more detail in foursubsetions and show preisely how they help speify distributed algorithms ata higher level.Inremental omputations. Although abstrations with high-level querieshelp make algorithms easier to understand and to verify, omputations usingthese abstrations an be extremely ine�ient, beause they involve iterationover sets and sequenes, and they are performed repeatedly as the sets andsequenes are updated. This an take asymptotially muh more time than ne-essary, and furthermore the spae usage may be unbounded if the history ofmessages sent and reeived is used in atual implementations.Optimization by inrementalization, e.g., [28, 12, 22, 21℄, transforms suh ex-pensive omputations into e�ient inremental maintenane of appropriate aux-iliary values as the sets and sequenes are updated. For distributed algorithms,the resulting inremental omputations beome e�ient message handlers [23℄.In fat, it was during the study of suh optimizations in the last several yearsthat we developed the abstrations, whih we believe was instrumental in leadingus to disover improvements to some of the algorithms.3.1 Expliit high-level synhronizationSynhronization is at the ore of distributed systems. It requires waiting for er-tain onditions to beome true before taking the orresponding ations. Beausemessage passing is generally asynhronous in distributed systems, synhroniza-tion must be ahieved by expliitly traking synhronization onditions, main-taining their truth values as messages are reeived, until the onditions beometrue, and then taking the orresponding ations.Expressing suh synhronization at a low level requires, in general, sophisti-ated updates driven by the events of di�erent kinds of messages being reeived,making it di�ult to understand and verify the onditions that the proess iswaiting for.We use three priniples in speifying suh synhronization at a high level:(1) speify the waiting on the onditions and orresponding ations expliitlyusing await-statements, (2) express the onditions using high-level queries oversequenes of messages sent and reeived, and (3) minimize loal updates in theations.Example. In multi-Paxos [33℄, a ommander proess is spawned by a leaderfor eah adopted triple of ballot number, slot number, and proposal, to try tohave it aepted by aeptors and notify replias of the deisions, and in ase ofbeing preempted by a di�erent ballot number, to notify the leader.Fig. 1 shows the pseudo ode for a ommander in multi-Paxos. A ommandermaintains waitfor�the set of aeptors from whih it waits for p2b messages.

It sends a p2a message to all aeptors and then handles eah p2b messageit reeives from an aeptor, maintaining waitfor in one of two ases. When|waitfor|<|aeptors|/2 in the �rst ase, it sends a deision message to allreplias and exits; it sends a preempted message in the seond ase.We speify a ommander at aprocess Commander(λ, acceptors, replicas, 〈b, s, p〉)
var waitfor := acceptors;

∀α ∈ acceptors : send(α, 〈p2a, self(), 〈b, s, p〉〉);
for ever

switch receive()
case 〈p2b, α, b′〉 :
if b′ = b then

waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then

∀ρ ∈ replicas :
send(ρ, 〈decision, s, p〉);

exit();
end if;

else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch

end for

end processFig. 1. Pseudo ode for a ommander in multi-Paxos [33℄.

high level as follows. First, we spe-ify the synhronization expliitly us-ing an await-statement. Then, wenote that waitfor an be queriedfrom the set of p2b messages re-eived and the given set of aep-tors, so we do not maintain waitforexpliitly; instead of starting fromall aeptors and removing ertainaeptors until a minority remain,we diretly hek whether those er-tain aeptors are a majority. Fi-nally, the orresponding ations aresimply single send-ations, yieldingthe spei�ation in Fig. 2.The result is that the �ow thatleads to eah send-ation is madelearer, and the onditions for theations an easily be read o�. Sim-ilar improvements an be made tothe spei�ation of a sout.lass Commander extends Proess:def setup(leader, aeptors, replias, b, s, p): skipdef run():send ('p2a', b, s, p) to aeptorsawait ount({a: reeived(('p2b', =b) from a)}) > ount(aeptors)/2:send ('deision', s, p) to repliasor reeived('p2b', b2) and b2!=b:send ('preempted', b2) to leaderFig. 2. Higher-level spei�ation for a ommander in multi-Paxos.3.2 Diret high-level assertionsDetermining the state of a distributed system is key to synhronization andto making deisions in general. Beause there is no shared memory, a proessmust assert the state to the best of its knowledge through sending and reeivingmessages. The truth values of assertions about the state must be updated asmessages are sent and reeived.We express assertions using high-level queries over sequenes of messages sentand reeived, as for synhronization onditions. The queries may be in the forms

of quanti�ations, omprehensions, and aggregates. However, a same assertionmay be expressed using di�erent forms of queries. Beause quanti�ations areusually not supported in exeutable languages, loops and low-level updates aremost often used. Even in many high-level spei�ations, omprehensions andaggregates are often used in plae of quanti�ations; this an be error-prone orlead to poor performane.For example, an existential quanti�ation may be spei�ed indiretly as a setomprehension followed by an emptiness test, but this may inur unneessaryspae for maintaining the intermediate set. For another example, a universalquanti�ation asserting that a number is greater than all elements in a set maybe spei�ed indiretly as the number being greater than the maximum elementin the set, but this auses an error when the set is empty; a speial boundaryvalue may be used in ase the set is empty, but this is error-prone and may besensitive to the maximum or minimum number that an be represented, whihmay be determined by the memory word size.Our ore priniple in speifying assertions at a high level is to express existen-tially and universally quanti�ed properties diretly using logi quanti�ations,not indiretly using aggregates or omprehensions. Quanti�ations are easier andlearer for orretly stating the requirements, and an be systematially on-verted to aggregates and omprehensions that allow the best optimizations [23℄.Example. In Lamport's distributed mutual exlusion [15℄, a proess that re-quests a resoure at time needs to wait for the following two key onditions tohold before it is granted the resoure:(i) the request time (,self) in its request queue is ordered before every otherrequest in the queue, and (ii) it has reeived an aknowledgment message fromevery other proess timestamped later than .We express the assertion diretly using three quanti�ations, inluding anested quanti�ation in the seond ondition. The result is that the onditionsan be diretly read o� the assertion.eah ('request',2,p2) in q | (2,p2)!=(,self) implies (,self) < (2,p2)and eah p2 in s | some ('ak', 2, =p2) in reeived | 2 > 3.3 Straightforward high-level omputationsA distributed algorithm is designed for a set of proesses to ahieve a goal viasending and reeiving messages. Computations needed for ahieving the goalgenerally involve various olletions of proesses and messages. This means thatthe algorithm spei�ation must apture the e�ets of sending and reeivingmessages on the needed omputations.Expressing these omputations at a low level requires expliitly storing theresults of these omputations and updating their values appropriately as rele-vant messages are sent and reeived. Maintaining these low-level values orretlythrough updates an be hallenging and error-prone; some of them require om-binations of sophistiated data strutures, while others are tedious.

We use three priniples in speifying suh omputations at a high level: (1)speify omputations of aggregate values using aggregate queries over messagesequenes, (2) speify omputations of set values using omprehensions over mes-sage sequenes, and (3) speify repeated omputations straightforwardly wherethe results are used.Example. In multi-Paxos [33℄, an aeptor proess responds to p1a messagesfrom souts with p1b messages in the �rst phase, and responds to p2a messagesfrom ommanders with p2b messages in the seond phase.Fig. 3 shows the pseudo ode for
process Acceptor()
var ballot num := ⊥, accepted := ∅;

for ever

switch receive()
case 〈p1a, λ, b〉 :
if b > ballot num then

ballot num := b;
end if;
send(λ, 〈p1b, self(), ballot num, accepted〉);

end case

case 〈p2a, λ, 〈b, s, p〉〉 :
if b ≥ ballot num then

ballot num := b;
accepted := accepted ∪ {〈b, s, p〉};

end if

send(λ, 〈p2b, self(), ballot num〉);
end case

end switch

end for

end processFig. 3. Pseudo ode for an aeptor inmulti-Paxos [33℄.

an aeptor in multi-Paxos. An a-eptor maintains ballot_num�a bal-lot number, and aepted�a set ofaepted triples of ballot number, slotnumber, and proposal. It handles ap1a message by updating ballot_numand replying with a p1b message on-taining ballot_num and aepted, andhandles a p2a message by updatingballot_num and aepted and reply-ing with a p2a message ontainingballot_num.We speify an aeptor at a highlevel as follows. First, we note thatballot_num is updated to be the max-imum from p1a and p2a messages, sowe ompute it using an aggregate.Then, we ompute it straightforwardlywhere it is used in message handlers,yielding the spei�ation in Fig. 4.lass Aeptor extends Proess:def setup(): self.aepted = {}def run(): await falsereeive m:self.ballot_num = max({b: reeived('p1a',b)}+{b: reeived('p2a',b,_,_)} or {(-1,-1)})reeive ('p1a', _) from sout:send ('p1b', ballot_num, aepted) to soutreeive ('p2a', b, s, p) from ommander:if b == ballot_num: aepted.add((b,s,p))send ('p2b', ballot_num) to ommanderFig. 4. Higher-level spei�ation for an aeptor in multi-Paxos.

The result is that the invariants relating the sent messages to the reeivedmessages are made learer. In partiular, it allowed us to make expliit theproperty that (b,s,p) is added to aepted only if b equals ballot_num.3.4 Colletive send-ations Distributed algorithms generally in-
process Replica(leaders, initial state)
var state := initial state, slot num := 1;
var proposals := ∅, decisions := ∅;

function propose(p)
if 6 ∃s : 〈s, p〉 ∈ decisions then

s′ := min{s | s ∈ N
+ ∧

6 ∃p′ : 〈s, p′〉 ∈ proposals ∪ decisions};
proposals := proposals ∪ {〈s′, p〉};
∀λ ∈ leaders : send(λ, 〈propose, s′, p〉);

end if

end function

function perform(〈κ, cid, op〉)
if ∃s : s < slot num ∧

〈s, 〈κ, cid, op〉〉 ∈ decisions then

slot num := slot num + 1;
else

〈next, result〉 := op(state);
atomic

state := next;
slot num := slot num + 1;

end atomic

send(κ, 〈response, cid, result〉);
end if

end function

for ever

switch receive()
case 〈request, p〉 :

propose(p);
case 〈decision, s, p〉 :

decisions := decisions ∪ {〈s, p〉};
while ∃p′ : 〈slot num, p′〉 ∈ decisions do

if ∃p′′ : 〈slot num, p′′〉 ∈ proposals ∧
p′′ 6= p′ then

propose(p′′);
end if

perform(p′);
end while;

end switch

end for

end processFig. 5. Pseudo ode for a replia in multi-Paxos [33℄.

volve sending and reeiving olletionsof related messages. Preise spei�a-tions of distributed algorithms are om-monly entered around handling of in-dividual reeived messages. This lower-level model makes it harder than ne-essary to understand the overall work-ing of the algorithms.In ontrast, a distributed algorithman be viewed as driven by send-ations,beause send-ations are observable ex-ternally, whih then inur the neededomputations. Thus, distributed algo-rithms may be expressed at a higherlevel by speifying send-ations olle-tively.Our method aims to speify send-ations olletively in three steps: (1)identify the kinds of sent messages, (2)for eah kind of sent messages, olletall situations in whih messages of thiskind are sent, and (3) express the ol-letive situations using loops, hoosingfor-loops over while-loops if possible.Example. In multi-Paxos [33℄, a repliaproess holds the state of the appli-ation; it handles requests of opera-tions from lients and proposes themwith minimum slot numbers to lead-ers, and it handles deisions of opera-tions from leaders, applies the opera-tions following the order of slot num-bers, and sends the results to lients.Fig. 5 shows the pseudo ode for areplia in multi-Paxos. A replia main-tains state�the state of the applia-tion, slot_num�a slot number for thenext operation to be applied, proposals�the set of proposals it sent to leaders,and deisions�the set of deisions it reeived from leaders. It handles a request

message by alling funtion propose. It handles a deision message by repeatedlyheking deisions, re-proposing a proposal if overridden by a deision, and all-ing funtion perform. Funtion propose(p) heks that requested operation p isnot in deisions, �nds a minimum unused slot number for it, updates proposals,and sends a propose message. Funtion perform heks whether the operation inthe argument is in deisions; if so, it only inrements slot_num; otherwise, it ap-plies the operation to state, atomially updates state and inrements slot_num,and sends the result to the lient.We speify a replia proess at a high level as follows. First, we identify thetwo send-ations as the driving goals of the proess. Then, we ollet all situationsin whih propose messages are sent: they are for all request messages reeived,inluding those already proposed but whose proposed slots are overridden bydeisions. Here, we add details to replae the set of positive natural numbers
N

+ with the range of integers from 1 to the maximum of the slot numbers usedplus 1. Finally, we ollet all situations in whih response messages are sent:they are for all deision messages reeived, applied in inreasing order of slotnumbers. Here we inrement slot_num in both branhes together, not worryingabout breaking the atomi blok, beause the loal updates are atomi by defaultwithout any yield point in between. We obtain the spei�ation in Fig. 6.lass Replia extends Proess:def setup(leaders, initial_state):self.state = initial_stateself.slot_num = 1def run():while true:-- proposefor ('request',p) in reeived:if eah ('propose',s,=p) in sent | some reeived('deision',=s,p2) | p2!=p:s = min({s in 1.. max({s: sent('propose',s,_)}+{s: reeived('deision',s,_)})+1| not (sent('propose',s,_) or reeived('deision',s,_))})send ('propose', s, p) to leaders-- performwhile some ('deision', =slot_num, p) in reeived:if not some ('deision', s, =p) in reeived | s < slot_num:lient, md_id, op = pstate, result = op(state)send ('respond', md_id, result) to lientslot_num += 1Fig. 6. Higher-level spei�ation for a replia in multi-Paxos.4 ExperimentsWe experimented with speifying a variety of important distributed algorithmsin DistAlgo, inluding the same algorithms spei�ed at both high levels and

low levels, and disovered improvements to some of the algorithms. We alsoimplemented DistAlgo, as desribed in [23℄, by automatially generating Pythonode from DistAlgo spei�ations following the operational semantis, and wetested the invariants and performane by running the generated implementationson many inputs.Algorithm spei�ations. Table 1 lists �ve algorithms with whih we had themost interesting experienes. The last two olumns show the sizes of DistAlgospei�ations at a high level and sizes of DistAlgo spei�ations ontaining low-level inremental updates; for multi-Paxos in the last row, the seond size isfor a spei�ation orresponding to the pseudo ode in [33℄. Eah spei�ationinludes spei�ation of a driver for on�guring and running the algorithm.These sizes are learly smaller than spei�ations in other languages. Forexample, our high-level spei�ation for La Paxos is 44 lines, ompared with 83lines of PlusCal [26℄, 145 lines of I/O automata [13℄, 230 lines of Overlog [27℄,and 157 lines of Bloom [29℄. For multi-Paxos, our high-level spei�ation is 86lines, ompared with 130 lines of pseudo ode in [33℄, and about 3000 lines ofPython in an implementation of that pseudo ode [32℄.Algorithm Desription Spe size Inr sizeLa mutex Lamport's distributed mutual exlusion [15℄ 31 432P ommit Two-phase ommit [11℄ 32 55La Paxos Lamport's Paxos for distributed onsensus [16, 17℄ 44 59CL Paxos Castro-Liskov's Byzantine Paxos [5℄ 72 81vR Paxos van Renesse's pseudo ode for multi-Paxos [33℄ 86 132Table 1. Distributed algorithms and sizes of DistAlgo spei�ations (number of lines).Improvements. We disovered improvements to some of the algorithms, aswell as orretness and performane issues, explained below.La mutex. Our method spei�es the key synhronization onditions using quan-ti�ations diretly, as disussed in Setion 3.2. Transforming them into bestforms of set and aggregate queries led to two disoveries: (1) Lamport's orig-inal algorithm an be simpli�ed to not enqueue and dequeue a proess's ownrequest, and (2) a standard heap-like data struture for maintaining the min-imum of all pending requests in O(log n) time per update an be removed,and the number of pending earlier requests an be maintained instead inO(1) time per update.2P ommit. Our method leads to a suint spei�ation of a oordinator pro-ess onsisting mainly of 4 queries: 2 await-onditions, an if-ondition, and aset omprehension. Even though the ore algorithm does not speify timeoutfor the waits, the suint spei�ation makes it easy to see that allowingtimeout of the �rst await-statement is safe, but allowing timeout of the se-ond await-statement is not safe.La Paxos and CL Paxos. Our method eventually led to spei�ations that usequanti�ations diretly and leanly, almost exatly as stated in the original

informal algorithm desriptions. Our earlier versions used aggregates, andwe disovered later that some of them were inorret, while others neededto use speial boundary values.vR Paxos. Our method led to a spei�ation easier to understand, as disussedin Setions 3.1, 3.3, and 3.4. The learer spei�ation led to two disoveries:(1) for a ommander and sout, if the division operator /, whih returnsan integer in ommon programming languages, is used diretly, the originalheking of minority would be inorret, and (2) for a replia, re-proposals,due to earlier proposals being overridden, are delayed unneessarily.Code generation. The table below shows the sizes (number of lines) ofPython implementations generated from DistAlgo spei�ations, and the ompi-lation time (ms) for generating the implementations. Our generated implemen-tation of multi-Paxos orresponding to the pseudo ode in [33℄ is 1099 lines ofPython, muh smaller than a manually written implementation of 3000 lines ofPython [32℄. Smaller higher-level spei�ations may take longer to ompile thanlarger lower-level spei�ations, beause transforming queries that use reeivedand sent takes extra time, and may produe longer, more generi ode.We also measured time and spae performane of generated implementationsfrom both high-level and low-level DistAlgo spei�ations for these algorithms.The measurements on�rmed the analyzed time and spae omplexities. Thegraph below shows the running times of generated implementations of 2P ommitand 2P ommit inr, for the ommit ase and abort ase.Spe Gen'd CompilAlgorithm size size timeLa mutex 31 951 4.451La mutex inr 43 960 4.9882P ommit 32 978 5.9102P ommit inr 55 1001 6.816La Paxos 44 1003 9.121La Paxos inr 59 999 7.613CL Paxos 72 1044 13.055CL Paxos inr 81 1024 12.348vR Paxos 86 1116 19.064vR Paxos inr 132 1099 21.602�inr� indiates spei�ations ontaininglow-level inremental updates.
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 25 50 75 100 125 150

T
im

e
(s

)

Total number of cohorts

orig (commit)
orig (abort)

incr (commit)
incr (abort)

Running times are averaged over 50 roundsand 15 independent runs, measured on anIntel Core-i7 2600K CPU with 16GB ofmain memory, running Linux 3.0.0 kerneland Python 3.2.2.5 Related workThere has been muh study on distributed algorithms, e.g., [30, 24, 10, 31℄, in-luding espeially muh work on Paxos, from original [16℄, Byzantine [5, 20℄,made simple [17℄, made live in Google's Chubby servie [6℄, and many more,to most reently preise pseudo ode for full Paxos [33℄. Distributed algorithmshave been heavily and inreasingly studied both beause of their importane

in inreasingly more distributed appliations, e.g., Google's omputing infras-truture, and beause of hallenges in preisely speifying, implementing, andimproving them to satisfy the needs of appliations.Distributed algorithms have been expressed in a wide range of languages andnotations, from informal pseudo ode to formal state mahine based spei�a-tions, with many variations in between. Formal spei�ation languages, suh asI/O automata [24, 14℄, TLA+ [18℄, and PlusCal [19℄, are instrumental in preiseveri�ation. While study of languages is important, making spei�ations higherlevel is orthogonal, beause the most essential language features are alreadypresent in many existing languages.Besides state-mahine based approahes, e.g., I/O automata [24, 14℄, estab-lished spei�ation methods inlude notably the ator model [1℄ and generalevent-driven models where events inlude reeipts of messages. These modelsfous on speifying ations and state transitions driven by the reeipts of indi-vidual messages. Our spei�ation method aims to make it easier to understandthe algorithms at a high level, by abstrating away low-level state updates. Itfouses on relating send-ations, whih are externally observable, with the his-tory of messages sent and reeived at a high level, by using high-level queries toexpress the assertions and omputations.More delarative languages for expressing distributed algorithms have alsobeen studied, e.g., Datalog-based languages Overlog [2℄ and Bloom [3℄, and alogi-based language EventML [4, 7℄. More delarative languages generally ab-strat away some or all ontrol �ow information and may be more suint, butthey are also harder to understand when used for spei�ations of algorithms, inwhih ontrol �ow is essential. Our method uses delarative queries over sets andsequenes to express assertions and omputations, and keeps the ontrol �ow ofsending and reeiving messages lear.Our method an make the resulting exeutable spei�ations extremely in-e�ient if exeuted straightforwardly, beause of repeated expensive high-levelqueries. Optimization by inrementalization [28, 12, 22, 21, 23℄ transforms suhexpensive queries into e�ient inremental maintenane of appropriate auxiliaryvalues. Invariants made expliit following our spei�ation method not only helpprove the orretness of the algorithms, but also help apply the optimizations.How to make more or all invariants expliit to make veri�ation of distributedalgorithms even easier is open for future study; so is the veri�ation.Referenes[1℄ G. Agha. Ators: a model of onurrent omputation in distributed systems. MITPress, 1986.[2℄ P. Alvaro, T. Condie, N. Conway, J. Hellerstein, and R. Sears. I do delare: Con-sensus in a logi language. ACM SIGOPS Operating Systems Review, 43(4):25�30,2010.[3℄ Berkeley Orders of Magnitude. Bloom Programming Language.http://www.bloom-lang.net/.[4℄ M. Bikford. Component spei�ation using event lasses. In Proeedings of the12th International Symposium on Component-Based Software Engineering, pages140�155. Springer, 2009.

[5℄ M. Castro and B. Liskov. Pratial Byzantine fault tolerane and proative reov-ery. ACM Transations on Computer Systems, 20:398�461, 2002.[6℄ T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live�An engineeringperspetive. In Proeedings of the 26th Annual ACM Symposium on Priniples ofDistributed Computing (PODC), pages 398�407, 2007.[7℄ CRASH Projet. EventML. http://www.nuprl.org/software/#WhatisEventML,Last dated February 13, 2012.[8℄ R. De Priso, B. Lampson, and N. Lynh. Revisiting the Paxos algorithm. Theo-retial Computer Siene, 243:35�91, 2000.[9℄ C. J. Fidge. Timestamps in message-passing systems that preserve the partialordering. In Proeedings of the 11th Australian Computer Siene Conferene,pages 56�66, 1988.[10℄ V. K. Garg. Elements of Distributed Computing. Wiley, 2002.[11℄ J. Gray. Notes on Data Base Operating Systems. In Advaned Course: OperatingSystems, volume 60 of Leture Notes in Computer Siene, pages 393�481, 1978.[12℄ A. Gupta, I. S. Mumik, and V. S. Subrahmanian. Maintaining views inre-mentally. In Proeedings of the 1993 ACM SIGMOD International Conferene onManagement of Data, pages 157�166, 1993.[13℄ http://groups.sail.mit.edu/tds/ioa/distributions/IOA_Toolkit-tools.tar.gz. ThePaxos ode is under Examples/Paxos.[14℄ D. Kaynar, N. Lynh, R. Segala, and F. Vaandrager. The Theory of Timed I/OAutomata. Morgan Claypool Publishers, 2nd edition, 2010.[15℄ L. Lamport. Time, loks, and the ordering of events in a distributed system.Communiations of the ACM, 21:558�565, 1978.[16℄ L. Lamport. The part-time parliament. ACM Transations on Computer Systems,16(2):133�169, 1998.[17℄ L. Lamport. Paxos made simple. SIGACT News (Distributed Computing Column),32(4):51�58, 2001.[18℄ L. Lamport. Speifying Systems: The TLA+ Language and Tools for Hardwareand Software Engineers. Addison-Wesley, 2002.[19℄ L. Lamport. The PlusCal algorithm language. In Proeedings of the 6th Interna-tional Colloquium on Theoretial Aspets of Computing, pages 36�60, 2009.[20℄ L. Lamport. Byzantizing Paxos by re�nement. In Proeedings of the 25th Inter-national Symposium on Distributed Computing, pages 211�224. Springer, 2011.[21℄ Y. A. Liu, M. Gorbovitski, and S. D. Stoller. A language and framework forinvariant-driven transformations. In Proeedings of the 8th International Confer-ene on Generative Programming and Component Engineering, pages 55�64, 2009.[22℄ Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and Y. E. Liu. Inremen-talization aross objet abstration. In Proeedings of the 20th ACM Conferene onObjet-Oriented Programming, Systems, Languages, and Appliations, pages 473�486, 2005.[23℄ Y. A. Liu, S. D. Stoller, B. Lin, and M. Gorbovitski. From larity to e�ieny fordistributed algorithms. In Proeedings of the 27th ACM SIGPLAN Conferene onObjet-Oriented Programming, Systems, Languages and Appliations, 2012.[24℄ N. A. Lynh. Distributed Algorithms. Morgan Kaufman, 1996.[25℄ F. Mattern. Virtual time and global states of distributed systems. In Pro. Inter-national Workshop on Parallel and Distributed Algorithms, pages 120�131, 1989.[26℄ Mehanially heked safety proof of a Byzantine Paxos algorithm.http://researh.mirosoft.om/en-us/um/people/lamport/tla/byzpaxos.html.Last modi�ed 1 September 2011.[27℄ https://svn.delarativity.net/overlog-paxos/sr/olg/ore/.[28℄ R. Paige and S. Koenig. Finite di�erening of omputable expressions. ACMTransations on Programming Languages and Systems, 4(3):402�454, 1982.[29℄ https://github.om/bloom-lang/bud-sandbox/tree/master/paxos.[30℄ M. Raynal. Distributed Algorithms and Protools. Wiley, 1988.[31℄ M. Raynal. Communiation and Agreement Abstrations for Fault-Tolerant Asyn-hronous Distributed Systems. Morgan & Claypool, 2010.[32℄ E. G. Sirer, August 12, 2011. Email.[33℄ R. van Renesse. Paxos made moderately omplex, Otober 11, 2011. An onlineversion is at www.s.ornell.edu/ourses/CS7412/2011sp/paxos.pdf.

