
High-Level Exe
utable Spe
i�
ations ofDistributed AlgorithmsYanhong A. Liu, S
ott D. Stoller, and Bo LinComputer S
ien
e Department, State University of New York at Stony Brook{liu,stoller,bolin}�
s.stonybrook.eduAbstra
t. This paper des
ribes a method for spe
ifying
omplex dis-tributed algorithms at a very high yet exe
utable level, fo
using in par-ti
ular on general prin
iples for making properties and invariants expli
itwhile keeping the
ontrol �ow
lear. This is
riti
al for understanding thealgorithms and proving their
orre
tness. It is also
riti
al for generat-ing e�
ient implementations using invariant-preserving transformations,ensuring the
orre
tness of the optimizations.We have studied and experimented with a variety of important dis-tributed algorithms, in
luding well-known di�
ult variants of Paxos, byspe
ifying them in a very high-level language with an operational seman-ti
s. In the spe
i�
ations that resulted from following our method,
rit-i
al properties and invariants are expli
it, making the algorithms easierto understand and verify. Indeed, this helped us dis
over improvementsto some of the algorithms, for
orre
tness and for optimizations.1 Introdu
tionDistributed algorithms are at the
ore of distributed systems, whi
h are in-
reasingly indispensable in our daily lives. Yet, understanding and proving the
orre
tness of distributed algorithms remain
hallenging, re
urring tasks. Studyof distributed algorithms has relied on either pseudo
ode with English, whi
his high-level but impre
ise, or formal spe
i�
ation languages, whi
h are pre
isebut harder to understand or not exe
utable.For example, the well-known Paxos algorithm for distributed
onsensus, fromwhen Lamport �rst des
ribed it in 1990 [16℄, through all the variations, investiga-tions, and pra
ti
al deployments (in
luding Google's Chubby distributed lo
kingand storage servi
e [6℄) over the years, e.g., [8, 17, 5℄, remains as a
tively studiedas ever in spe
i�
ation and veri�
ation, e.g., [20, 33℄. The des
ription by van Re-nesse [33℄ �nally provides pre
ise pseudo
ode for full Paxos�multi-Paxos�with
omprehensive detailed explanations.This paper des
ribes a method to help make it easier to understand andverify
omplex distributed algorithms by spe
ifying them at a very high yet exe-
utable level. The method fo
uses in parti
ular on general prin
iples for makingproperties and invariants expli
it while keeping the
ontrol �ow
lear. It exploitsmessage history sequen
es and queries over sets and sequen
es to abstra
t thehandling of re
eived messages, and to abstra
t syn
hronization, when to sendwhat messages to whom, and sending of messages
olle
tively.

Making properties and invariants expli
it is
riti
al also for generating e�-
ient implementations using invariant-preserving transformations, ensuring the
orre
tness of the optimizations. In fa
t, it was during the study of these opti-mizations in the last several years, while trying to better understand and tea
hdistributed algorithms, that we developed the abstra
tions and the spe
i�
ationmethod.We have studied and experimented with a variety of important distributedalgorithms, in
luding well-known di�
ult variants of Paxos, by spe
ifying themin a very high-level language with an operational semanti
s. In the spe
i�
ationsthat resulted from following our method,
riti
al properties and invariants areexpli
it, making the algorithms easier to understand and verify. Indeed, thishelped us dis
over improvements to some of the algorithms, both for
orre
tnessand for optimizations, and also exposed some remaining
orre
tness
on
erns.2 Language and
ase studiesWe use a very high level, exe
utable language,
alled DistAlgo, that has anoperational semanti
s [23℄. We use parts of two
ase studies as examples indes
ribing our method.Language. To support distributed programming at a high level, we add fourmain
on
epts to
ommonly used obje
t-oriented programming languages, su
has Java and Python: (1) pro
esses as obje
ts, and sending of messages, (2) yieldpoints and waits for
ontrol �ows, and handling of re
eived messages, (3)
om-putations using high-level queries and message history sequen
es, and (4)
on�g-uration of pro
esses and
ommuni
ation me
hanisms. The following paragraphsdes
ribe the
onstru
ts that support these
on
epts in DistAlgo. For other
on-stru
ts, we mostly use Python syntax (indentation for s
oping, ':' for separa-tion, '#' for
omments, et
.), for su

in
tness, ex
ept with a few
onventionsfrom Java. The skip statement does nothing. We adopt the
onvention that anymethod named setup impli
itly assigns ea
h of its parameters to a �eld withthe same name as the parameter before exe
uting the rest of its body.Pro
esses and sending of messages. Pro
ess de�nition is done by de�ning
lasses that extend a spe
ial
lass Pro
ess. This is analogous to thread de�ni-tion in Java and Python, whi
h is done by de�ning
lasses that extend a spe
ial
lass Thread. The
lass must de�ne a run method. The start method inheritedfrom Pro
ess starts the exe
ution of the pro
ess, whi
h exe
utes its run method.Pro
esses
an be
reated using
onstru
tors of pro
ess
lasses. Those
onstru
-tors have an optional additional parameter that spe
i�es the site (ma
hine) onwhi
h the new pro
ess should be
reated. Pro
esses
an also be
reated by
all-ing newpro
esses(n,P,s), whi
h
reates and returns a set of n pro
esses of
lassP on site s.A send-statement send m to p sends a message m to a pro
ess p. If p is a setof pro
esses, m is sent to ea
h pro
ess in the set. A message
an be a tuple, wherethe �rst
omponent is a string spe
ifying the kind of the message.

Control �ows and handling of re
eived messages. The key idea is touse labels to spe
ify program points where
ontrol �ow
an yield to handling ofmessages and resume afterwards. A yield point is a statement of the form -- l,where l is a label that names this point in the program. Messages are handledonly at yield points, so
ode segments not
ontaining yield points are atomi
.Handling of re
eived messages is expressed using re
eive-de�nitions, whi
h aremembers of
lass de�nitions for pro
esses and are of the form:re
eive m1 from p1,...,mk from pk at l1,...,lj: stmtwhere ea
h mi is a variable or tuple pattern. This allows messages that mat
h anyone of m1 from p1, ..., mk from pk to be handled at yield points labeled any oneof l1,...,lj, by exe
uting the statement stmt at those points. A tuple pattern isa tuple in whi
h ea
h
omponent is a
onstant, a variable possibly pre�xed with�=�, or a wild
ard. A variable pre�xed with �=� means that the
orrespondingpart of the tuple being mat
hed must equal the value of the variable for patternmat
hing to su

eed. A variable that is not pre�xed with �=� mat
hes any valueand gets bound to the
orresponding part of the tuple being mat
hed. A wild
ard,written as �_�, mat
hes any value. The at-
lause is optional, and the defaultmeans all yield points. The from-
lause is also optional. As synta
ti
 sugar, are
eive-de�nition used at only one yield point
an be written at that point.Syn
hronization uses the await-statement, whose general form isawait bexp1: stmt1 or ... or bexpk: stmtk timeout t: stmtThis statement waits for one of the Boolean expressions bexpi to be
ome trueor until t se
onds have passed and then exe
utes the
orresponding statement.The statements stmti and the timeout-
lause are optional. An await-statementmust be pre
eded by a yield point; if a yield point is not spe
i�ed expli
itly, thedefault is that all message handlers
an be exe
uted at this point.High-level queries. Syn
hronization
onditions
an be expressed using high-level queries�quanti�
ations,
omprehensions, and aggregates�over sets of pro-
esses and sequen
es of messages. We de�ne operations on sets; operations onsequen
es are the same ex
ept that elements are pro
essed in order, and squarebra
kets are used in pla
e of
urly bra
es.� Quanti�
ations are of the following two forms. Ea
h variable vi enumerateselements of the set value of expression expi; the return value is whether, forea
h or some, respe
tively,
ombination of values of v1,...,vk, the value ofBoolean expression bexp is true.ea
h v1 in exp1, ..., vk in expk | bexpsome v1 in exp1, ..., vk in expk | bexp� Comprehensions are of the following form. Ea
h variable vi enumerates el-ements of the set value of expression expi; for ea
h
ombination of valuesof v1,...vk, if the value of Boolean expression bexp is true, the value ofexpression exp forms an element of the resulting set.{ exp: v1 in exp1, ..., vk in expk | bexp }

We abbreviate {v: v in exp | bexp} as {v in exp | bexp}.� Aggregates are of the form agg(exp), where agg is an operation, su
h as
ountor min, spe
ifying the kind of aggregation over the set value of exp.� In the query forms above, ea
h vi
an also be a tuple pattern, in whi
h
aseea
h enumerated element of the set value of expi is mat
hed against thepattern before bexp is evaluated. We omit |bexp when bexp is true.We use {} for empty set; s.add(x) and s.del(x) for element addition and deletion,respe
tively; and x in s and x not in s for membership test and its negation,respe
tively. We overload or to work for sets; s1 or s2 returns s1 if s1 is non-empty, otherwise it returns s2.DistAlgo has two built-in sequen
es, re
eived and sent,
ontaining all mes-sages re
eived and sent, respe
tively, by a pro
ess.� Sequen
e re
eived is updated only at yield points. An arrived message mfor whi
h the program
ontains a mat
hing re
eive-de�nition is added tore
eived when the program rea
hes a yield point where m is handled, and allmat
hing message handlers asso
iated with that yield point are exe
uted form. An arrived message for whi
h the program
ontains no mat
hing re
eive-de�nitions is added to re
eived at the next yield point. The sequen
e sentis updated at ea
h send-statement.� re
eived(m from p) is a shorthand for m from p in re
eived; from p is op-tional, but when it is used, ea
h message in re
eived is automati
ally asso-
iated with the
orresponding sender. sent(m to p) is a shorthand for m top in sent; to p is optional, but when it is used, p is the pro
ess or set ofpro
esses in the
orresponding send-statement.Con�guration. Con�guration statements
an spe
ify various aspe
ts of
on�g-uration. For example, use fifo_
hannel and use reliable_
hannel spe
ify that
hannels are required to be FIFO and reliable, respe
tively; by default,
han-nels are not required to be FIFO or reliable. The
on�guration statement useLamport_
lo
k spe
i�es that Lamport logi
al
lo
k [15, 9, 25℄ is used; this
on-�gures sending and re
eiving of messages to update the
lo
k, and de�nes afun
tion Lamport_
lo
k() that returns the value of the
lo
k.Case studies. We use parts of two important algorithms as
ase studies: (1)van Renesse's pseudo
ode for multi-Paxos for distributed
onsensus [33℄, whi
hhas been worked on for a long time, with the pseudo
ode remaining the samefor a year or more, and is in the pro
ess of being made a te
hni
al report, and(2) Lamport's des
ription of distributed mutual ex
lusion algorithm [15℄, whi
hLamport developed to illustrate the logi
al
lo
k he invented. We use thembe
ause they are the
learest des
riptions we found for these problems.van Renesse's pseudo
ode for multi-Paxos is for a set of leaders,
ommanders,s
outs, and a

eptors to rea
h
onsensus among a set of repli
as in serving asequen
e of requests from
lients. A repli
a re
eives
lient requests and proposesto leaders, and re
eives de
isions from leaders and replies ba
k to
lients; aleader spawns o�
ommander and s
outs to do the two phases of the
onsensus

algorithm;
ommander and s
outs
ommuni
ates with a

eptors to try to haveproposed values a

epted.Lamport's distributed mutual ex
lusion is for a set of pro
esses a

essinga shared resour
e that
an only be used by one pro
ess at a time. A pro
essmaintains a queue of pending requests sorted by their logi
al timestamps, addsself to the request queue and sends a message to all others to request the resour
e,waits for all others to reply and for self to be �rst on the queue to get a

ess,and sends release messages to all and dequeues itself afterwards; it enqueues anyrequest upon re
eiving the request message, and dequeues it upon re
eiving therelease message.3 High-level spe
i�
ations of distributed algorithmsOur method aims to spe
ify distributed algorithms at a high level while keepingthem fully exe
utable as they are designed for. The key idea is to preserve thesending and re
eive of messages while abstra
ting away details of lo
al
ompu-tations.Abstra
tions for spe
ifying distributed algorithms. Our method exploitstwo basi
 abstra
tions�message history sequen
es and queries over sets andsequen
es�and has four main
omponents:1. abstra
ting waiting on re
eived messages using high-level syn
hronizationwith expli
it wait,2. abstra
ting when to send messages using high-level assertions over sets andsequen
es,3. abstra
ting what to send in messages to whom using high-level set and ag-gregate
omputations, and4. abstra
ting what messages to send
olle
tively using loops and high-levelqueries.These abstra
tions help make invariants maintained in distributed algorithmsexpli
it, and thus help make the algorithms easier to understand and to verify.Note that our method does not yet make all invariants expli
it, if that is possible.The method emphasizes sending of messages and syn
hronization, be
ausea pro
ess has no
ontrol over when it re
eives what messages from whom, butonly when and how to handle them on
e they arrive, and handling of re
eivedmessages is driven by the need to send messages, besides waiting and yielding.Therefore, handling is implied by the four
omponents above, espe
ially as theyall heavily use queries over re
eived messages.Message sequen
es. For a distributed pro
ess to make de
isions, the key inputis the history of messages it has sent and re
eived. Therefore, at a high level,these de
isions should be expressed in terms of the sequen
es of messages sentand re
eived, not lower-level lo
al updates after ea
h message is sent or re
eived.High-level queries. Be
ause distributed
omputations involve sets of pro-
esses and sequen
es of message, de
ision making mainly involves assertions and

other
omputations over sets and sequen
es. To spe
ify these assertions and
om-putations at a high level, our method uses queries extensively, in
luding logi
quanti�
ations, set
omprehensions, and aggregate
omputations.Overall method. The four
omponents of our method are orthogonal and
anbe applied independently. We des
ribe these
omponents in more detail in foursubse
tions and show pre
isely how they help spe
ify distributed algorithms ata higher level.In
remental
omputations. Although abstra
tions with high-level querieshelp make algorithms easier to understand and to verify,
omputations usingthese abstra
tions
an be extremely ine�
ient, be
ause they involve iterationover sets and sequen
es, and they are performed repeatedly as the sets andsequen
es are updated. This
an take asymptoti
ally mu
h more time than ne
-essary, and furthermore the spa
e usage may be unbounded if the history ofmessages sent and re
eived is used in a
tual implementations.Optimization by in
rementalization, e.g., [28, 12, 22, 21℄, transforms su
h ex-pensive
omputations into e�
ient in
remental maintenan
e of appropriate aux-iliary values as the sets and sequen
es are updated. For distributed algorithms,the resulting in
remental
omputations be
ome e�
ient message handlers [23℄.In fa
t, it was during the study of su
h optimizations in the last several yearsthat we developed the abstra
tions, whi
h we believe was instrumental in leadingus to dis
over improvements to some of the algorithms.3.1 Expli
it high-level syn
hronizationSyn
hronization is at the
ore of distributed systems. It requires waiting for
er-tain
onditions to be
ome true before taking the
orresponding a
tions. Be
ausemessage passing is generally asyn
hronous in distributed systems, syn
hroniza-tion must be a
hieved by expli
itly tra
king syn
hronization
onditions, main-taining their truth values as messages are re
eived, until the
onditions be
ometrue, and then taking the
orresponding a
tions.Expressing su
h syn
hronization at a low level requires, in general, sophisti-
ated updates driven by the events of di�erent kinds of messages being re
eived,making it di�
ult to understand and verify the
onditions that the pro
ess iswaiting for.We use three prin
iples in spe
ifying su
h syn
hronization at a high level:(1) spe
ify the waiting on the
onditions and
orresponding a
tions expli
itlyusing await-statements, (2) express the
onditions using high-level queries oversequen
es of messages sent and re
eived, and (3) minimize lo
al updates in thea
tions.Example. In multi-Paxos [33℄, a
ommander pro
ess is spawned by a leaderfor ea
h adopted triple of ballot number, slot number, and proposal, to try tohave it a

epted by a

eptors and notify repli
as of the de
isions, and in
ase ofbeing preempted by a di�erent ballot number, to notify the leader.Fig. 1 shows the pseudo
ode for a
ommander in multi-Paxos. A
ommandermaintains waitfor�the set of a

eptors from whi
h it waits for p2b messages.

It sends a p2a message to all a

eptors and then handles ea
h p2b messageit re
eives from an a

eptor, maintaining waitfor in one of two
ases. When|waitfor|<|a

eptors|/2 in the �rst
ase, it sends a de
ision message to allrepli
as and exits; it sends a preempted message in the se
ond
ase.We spe
ify a
ommander at aprocess Commander(λ, acceptors, replicas, 〈b, s, p〉)
var waitfor := acceptors;

∀α ∈ acceptors : send(α, 〈p2a, self(), 〈b, s, p〉〉);
for ever

switch receive()
case 〈p2b, α, b′〉 :
if b′ = b then

waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then

∀ρ ∈ replicas :
send(ρ, 〈decision, s, p〉);

exit();
end if;

else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch

end for

end processFig. 1. Pseudo
ode for a
ommander in multi-Paxos [33℄.

high level as follows. First, we spe
-ify the syn
hronization expli
itly us-ing an await-statement. Then, wenote that waitfor
an be queriedfrom the set of p2b messages re-
eived and the given set of a

ep-tors, so we do not maintain waitforexpli
itly; instead of starting fromall a

eptors and removing
ertaina

eptors until a minority remain,we dire
tly
he
k whether those
er-tain a

eptors are a majority. Fi-nally, the
orresponding a
tions aresimply single send-a
tions, yieldingthe spe
i�
ation in Fig. 2.The result is that the �ow thatleads to ea
h send-a
tion is made
learer, and the
onditions for thea
tions
an easily be read o�. Sim-ilar improvements
an be made tothe spe
i�
ation of a s
out.
lass Commander extends Pro
ess:def setup(leader, a

eptors, repli
as, b, s, p): skipdef run():send ('p2a', b, s, p) to a

eptorsawait
ount({a: re
eived(('p2b', =b) from a)}) >
ount(a

eptors)/2:send ('de
ision', s, p) to repli
asor re
eived('p2b', b2) and b2!=b:send ('preempted', b2) to leaderFig. 2. Higher-level spe
i�
ation for a
ommander in multi-Paxos.3.2 Dire
t high-level assertionsDetermining the state of a distributed system is key to syn
hronization andto making de
isions in general. Be
ause there is no shared memory, a pro
essmust assert the state to the best of its knowledge through sending and re
eivingmessages. The truth values of assertions about the state must be updated asmessages are sent and re
eived.We express assertions using high-level queries over sequen
es of messages sentand re
eived, as for syn
hronization
onditions. The queries may be in the forms

of quanti�
ations,
omprehensions, and aggregates. However, a same assertionmay be expressed using di�erent forms of queries. Be
ause quanti�
ations areusually not supported in exe
utable languages, loops and low-level updates aremost often used. Even in many high-level spe
i�
ations,
omprehensions andaggregates are often used in pla
e of quanti�
ations; this
an be error-prone orlead to poor performan
e.For example, an existential quanti�
ation may be spe
i�ed indire
tly as a set
omprehension followed by an emptiness test, but this may in
ur unne
essaryspa
e for maintaining the intermediate set. For another example, a universalquanti�
ation asserting that a number is greater than all elements in a set maybe spe
i�ed indire
tly as the number being greater than the maximum elementin the set, but this
auses an error when the set is empty; a spe
ial boundaryvalue may be used in
ase the set is empty, but this is error-prone and may besensitive to the maximum or minimum number that
an be represented, whi
hmay be determined by the memory word size.Our
ore prin
iple in spe
ifying assertions at a high level is to express existen-tially and universally quanti�ed properties dire
tly using logi
 quanti�
ations,not indire
tly using aggregates or
omprehensions. Quanti�
ations are easier and
learer for
orre
tly stating the requirements, and
an be systemati
ally
on-verted to aggregates and
omprehensions that allow the best optimizations [23℄.Example. In Lamport's distributed mutual ex
lusion [15℄, a pro
ess that re-quests a resour
e at time
 needs to wait for the following two key
onditions tohold before it is granted the resour
e:(i) the request time (
,self) in its request queue is ordered before every otherrequest in the queue, and (ii) it has re
eived an a
knowledgment message fromevery other pro
ess timestamped later than
.We express the assertion dire
tly using three quanti�
ations, in
luding anested quanti�
ation in the se
ond
ondition. The result is that the
onditions
an be dire
tly read o� the assertion.ea
h ('request',
2,p2) in q | (
2,p2)!=(
,self) implies (
,self) < (
2,p2)and ea
h p2 in s | some ('a
k',
2, =p2) in re
eived |
2 >
3.3 Straightforward high-level
omputationsA distributed algorithm is designed for a set of pro
esses to a
hieve a goal viasending and re
eiving messages. Computations needed for a
hieving the goalgenerally involve various
olle
tions of pro
esses and messages. This means thatthe algorithm spe
i�
ation must
apture the e�e
ts of sending and re
eivingmessages on the needed
omputations.Expressing these
omputations at a low level requires expli
itly storing theresults of these
omputations and updating their values appropriately as rele-vant messages are sent and re
eived. Maintaining these low-level values
orre
tlythrough updates
an be
hallenging and error-prone; some of them require
om-binations of sophisti
ated data stru
tures, while others are tedious.

We use three prin
iples in spe
ifying su
h
omputations at a high level: (1)spe
ify
omputations of aggregate values using aggregate queries over messagesequen
es, (2) spe
ify
omputations of set values using
omprehensions over mes-sage sequen
es, and (3) spe
ify repeated
omputations straightforwardly wherethe results are used.Example. In multi-Paxos [33℄, an a

eptor pro
ess responds to p1a messagesfrom s
outs with p1b messages in the �rst phase, and responds to p2a messagesfrom
ommanders with p2b messages in the se
ond phase.Fig. 3 shows the pseudo
ode for
process Acceptor()
var ballot num := ⊥, accepted := ∅;

for ever

switch receive()
case 〈p1a, λ, b〉 :
if b > ballot num then

ballot num := b;
end if;
send(λ, 〈p1b, self(), ballot num, accepted〉);

end case

case 〈p2a, λ, 〈b, s, p〉〉 :
if b ≥ ballot num then

ballot num := b;
accepted := accepted ∪ {〈b, s, p〉};

end if

send(λ, 〈p2b, self(), ballot num〉);
end case

end switch

end for

end processFig. 3. Pseudo
ode for an a

eptor inmulti-Paxos [33℄.

an a

eptor in multi-Paxos. An a
-
eptor maintains ballot_num�a bal-lot number, and a

epted�a set ofa

epted triples of ballot number, slotnumber, and proposal. It handles ap1a message by updating ballot_numand replying with a p1b message
on-taining ballot_num and a

epted, andhandles a p2a message by updatingballot_num and a

epted and reply-ing with a p2a message
ontainingballot_num.We spe
ify an a

eptor at a highlevel as follows. First, we note thatballot_num is updated to be the max-imum from p1a and p2a messages, sowe
ompute it using an aggregate.Then, we
ompute it straightforwardlywhere it is used in message handlers,yielding the spe
i�
ation in Fig. 4.
lass A

eptor extends Pro
ess:def setup(): self.a

epted = {}def run(): await falsere
eive m:self.ballot_num = max({b: re
eived('p1a',b)}+{b: re
eived('p2a',b,_,_)} or {(-1,-1)})re
eive ('p1a', _) from s
out:send ('p1b', ballot_num, a

epted) to s
outre
eive ('p2a', b, s, p) from
ommander:if b == ballot_num: a

epted.add((b,s,p))send ('p2b', ballot_num) to
ommanderFig. 4. Higher-level spe
i�
ation for an a

eptor in multi-Paxos.

The result is that the invariants relating the sent messages to the re
eivedmessages are made
learer. In parti
ular, it allowed us to make expli
it theproperty that (b,s,p) is added to a

epted only if b equals ballot_num.3.4 Colle
tive send-a
tions Distributed algorithms generally in-
process Replica(leaders, initial state)
var state := initial state, slot num := 1;
var proposals := ∅, decisions := ∅;

function propose(p)
if 6 ∃s : 〈s, p〉 ∈ decisions then

s′ := min{s | s ∈ N
+ ∧

6 ∃p′ : 〈s, p′〉 ∈ proposals ∪ decisions};
proposals := proposals ∪ {〈s′, p〉};
∀λ ∈ leaders : send(λ, 〈propose, s′, p〉);

end if

end function

function perform(〈κ, cid, op〉)
if ∃s : s < slot num ∧

〈s, 〈κ, cid, op〉〉 ∈ decisions then

slot num := slot num + 1;
else

〈next, result〉 := op(state);
atomic

state := next;
slot num := slot num + 1;

end atomic

send(κ, 〈response, cid, result〉);
end if

end function

for ever

switch receive()
case 〈request, p〉 :

propose(p);
case 〈decision, s, p〉 :

decisions := decisions ∪ {〈s, p〉};
while ∃p′ : 〈slot num, p′〉 ∈ decisions do

if ∃p′′ : 〈slot num, p′′〉 ∈ proposals ∧
p′′ 6= p′ then

propose(p′′);
end if

perform(p′);
end while;

end switch

end for

end processFig. 5. Pseudo
ode for a repli
a in multi-Paxos [33℄.

volve sending and re
eiving
olle
tionsof related messages. Pre
ise spe
i�
a-tions of distributed algorithms are
om-monly
entered around handling of in-dividual re
eived messages. This lower-level model makes it harder than ne
-essary to understand the overall work-ing of the algorithms.In
ontrast, a distributed algorithm
an be viewed as driven by send-a
tions,be
ause send-a
tions are observable ex-ternally, whi
h then in
ur the needed
omputations. Thus, distributed algo-rithms may be expressed at a higherlevel by spe
ifying send-a
tions
olle
-tively.Our method aims to spe
ify send-a
tions
olle
tively in three steps: (1)identify the kinds of sent messages, (2)for ea
h kind of sent messages,
olle
tall situations in whi
h messages of thiskind are sent, and (3) express the
ol-le
tive situations using loops,
hoosingfor-loops over while-loops if possible.Example. In multi-Paxos [33℄, a repli
apro
ess holds the state of the appli-
ation; it handles requests of opera-tions from
lients and proposes themwith minimum slot numbers to lead-ers, and it handles de
isions of opera-tions from leaders, applies the opera-tions following the order of slot num-bers, and sends the results to
lients.Fig. 5 shows the pseudo
ode for arepli
a in multi-Paxos. A repli
a main-tains state�the state of the appli
a-tion, slot_num�a slot number for thenext operation to be applied, proposals�the set of proposals it sent to leaders,and de
isions�the set of de
isions it re
eived from leaders. It handles a request

message by
alling fun
tion propose. It handles a de
ision message by repeatedly
he
king de
isions, re-proposing a proposal if overridden by a de
ision, and
all-ing fun
tion perform. Fun
tion propose(p)
he
ks that requested operation p isnot in de
isions, �nds a minimum unused slot number for it, updates proposals,and sends a propose message. Fun
tion perform
he
ks whether the operation inthe argument is in de
isions; if so, it only in
rements slot_num; otherwise, it ap-plies the operation to state, atomi
ally updates state and in
rements slot_num,and sends the result to the
lient.We spe
ify a repli
a pro
ess at a high level as follows. First, we identify thetwo send-a
tions as the driving goals of the pro
ess. Then, we
olle
t all situationsin whi
h propose messages are sent: they are for all request messages re
eived,in
luding those already proposed but whose proposed slots are overridden byde
isions. Here, we add details to repla
e the set of positive natural numbers
N

+ with the range of integers from 1 to the maximum of the slot numbers usedplus 1. Finally, we
olle
t all situations in whi
h response messages are sent:they are for all de
ision messages re
eived, applied in in
reasing order of slotnumbers. Here we in
rement slot_num in both bran
hes together, not worryingabout breaking the atomi
 blo
k, be
ause the lo
al updates are atomi
 by defaultwithout any yield point in between. We obtain the spe
i�
ation in Fig. 6.
lass Repli
a extends Pro
ess:def setup(leaders, initial_state):self.state = initial_stateself.slot_num = 1def run():while true:-- proposefor ('request',p) in re
eived:if ea
h ('propose',s,=p) in sent | some re
eived('de
ision',=s,p2) | p2!=p:s = min({s in 1.. max({s: sent('propose',s,_)}+{s: re
eived('de
ision',s,_)})+1| not (sent('propose',s,_) or re
eived('de
ision',s,_))})send ('propose', s, p) to leaders-- performwhile some ('de
ision', =slot_num, p) in re
eived:if not some ('de
ision', s, =p) in re
eived | s < slot_num:
lient,
md_id, op = pstate, result = op(state)send ('respond',
md_id, result) to
lientslot_num += 1Fig. 6. Higher-level spe
i�
ation for a repli
a in multi-Paxos.4 ExperimentsWe experimented with spe
ifying a variety of important distributed algorithmsin DistAlgo, in
luding the same algorithms spe
i�ed at both high levels and

low levels, and dis
overed improvements to some of the algorithms. We alsoimplemented DistAlgo, as des
ribed in [23℄, by automati
ally generating Python
ode from DistAlgo spe
i�
ations following the operational semanti
s, and wetested the invariants and performan
e by running the generated implementationson many inputs.Algorithm spe
i�
ations. Table 1 lists �ve algorithms with whi
h we had themost interesting experien
es. The last two
olumns show the sizes of DistAlgospe
i�
ations at a high level and sizes of DistAlgo spe
i�
ations
ontaining low-level in
remental updates; for multi-Paxos in the last row, the se
ond size isfor a spe
i�
ation
orresponding to the pseudo
ode in [33℄. Ea
h spe
i�
ationin
ludes spe
i�
ation of a driver for
on�guring and running the algorithm.These sizes are
learly smaller than spe
i�
ations in other languages. Forexample, our high-level spe
i�
ation for La Paxos is 44 lines,
ompared with 83lines of PlusCal [26℄, 145 lines of I/O automata [13℄, 230 lines of Overlog [27℄,and 157 lines of Bloom [29℄. For multi-Paxos, our high-level spe
i�
ation is 86lines,
ompared with 130 lines of pseudo
ode in [33℄, and about 3000 lines ofPython in an implementation of that pseudo
ode [32℄.Algorithm Des
ription Spe
 size In
r sizeLa mutex Lamport's distributed mutual ex
lusion [15℄ 31 432P
ommit Two-phase
ommit [11℄ 32 55La Paxos Lamport's Paxos for distributed
onsensus [16, 17℄ 44 59CL Paxos Castro-Liskov's Byzantine Paxos [5℄ 72 81vR Paxos van Renesse's pseudo
ode for multi-Paxos [33℄ 86 132Table 1. Distributed algorithms and sizes of DistAlgo spe
i�
ations (number of lines).Improvements. We dis
overed improvements to some of the algorithms, aswell as
orre
tness and performan
e issues, explained below.La mutex. Our method spe
i�es the key syn
hronization
onditions using quan-ti�
ations dire
tly, as dis
ussed in Se
tion 3.2. Transforming them into bestforms of set and aggregate queries led to two dis
overies: (1) Lamport's orig-inal algorithm
an be simpli�ed to not enqueue and dequeue a pro
ess's ownrequest, and (2) a standard heap-like data stru
ture for maintaining the min-imum of all pending requests in O(log n) time per update
an be removed,and the number of pending earlier requests
an be maintained instead inO(1) time per update.2P
ommit. Our method leads to a su

in
t spe
i�
ation of a
oordinator pro-
ess
onsisting mainly of 4 queries: 2 await-
onditions, an if-
ondition, and aset
omprehension. Even though the
ore algorithm does not spe
ify timeoutfor the waits, the su

in
t spe
i�
ation makes it easy to see that allowingtimeout of the �rst await-statement is safe, but allowing timeout of the se
-ond await-statement is not safe.La Paxos and CL Paxos. Our method eventually led to spe
i�
ations that usequanti�
ations dire
tly and
leanly, almost exa
tly as stated in the original

informal algorithm des
riptions. Our earlier versions used aggregates, andwe dis
overed later that some of them were in
orre
t, while others neededto use spe
ial boundary values.vR Paxos. Our method led to a spe
i�
ation easier to understand, as dis
ussedin Se
tions 3.1, 3.3, and 3.4. The
learer spe
i�
ation led to two dis
overies:(1) for a
ommander and s
out, if the division operator /, whi
h returnsan integer in
ommon programming languages, is used dire
tly, the original
he
king of minority would be in
orre
t, and (2) for a repli
a, re-proposals,due to earlier proposals being overridden, are delayed unne
essarily.Code generation. The table below shows the sizes (number of lines) ofPython implementations generated from DistAlgo spe
i�
ations, and the
ompi-lation time (ms) for generating the implementations. Our generated implemen-tation of multi-Paxos
orresponding to the pseudo
ode in [33℄ is 1099 lines ofPython, mu
h smaller than a manually written implementation of 3000 lines ofPython [32℄. Smaller higher-level spe
i�
ations may take longer to
ompile thanlarger lower-level spe
i�
ations, be
ause transforming queries that use re
eivedand sent takes extra time, and may produ
e longer, more generi

ode.We also measured time and spa
e performan
e of generated implementationsfrom both high-level and low-level DistAlgo spe
i�
ations for these algorithms.The measurements
on�rmed the analyzed time and spa
e
omplexities. Thegraph below shows the running times of generated implementations of 2P
ommitand 2P
ommit in
r, for the
ommit
ase and abort
ase.Spe
 Gen'd CompilAlgorithm size size timeLa mutex 31 951 4.451La mutex in
r 43 960 4.9882P
ommit 32 978 5.9102P
ommit in
r 55 1001 6.816La Paxos 44 1003 9.121La Paxos in
r 59 999 7.613CL Paxos 72 1044 13.055CL Paxos in
r 81 1024 12.348vR Paxos 86 1116 19.064vR Paxos in
r 132 1099 21.602�in
r� indi
ates spe
i�
ations
ontaininglow-level in
remental updates.
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 25 50 75 100 125 150

T
im

e
(s

)

Total number of cohorts

orig (commit)
orig (abort)

incr (commit)
incr (abort)

Running times are averaged over 50 roundsand 15 independent runs, measured on anIntel Core-i7 2600K CPU with 16GB ofmain memory, running Linux 3.0.0 kerneland Python 3.2.2.5 Related workThere has been mu
h study on distributed algorithms, e.g., [30, 24, 10, 31℄, in-
luding espe
ially mu
h work on Paxos, from original [16℄, Byzantine [5, 20℄,made simple [17℄, made live in Google's Chubby servi
e [6℄, and many more,to most re
ently pre
ise pseudo
ode for full Paxos [33℄. Distributed algorithmshave been heavily and in
reasingly studied both be
ause of their importan
e

in in
reasingly more distributed appli
ations, e.g., Google's
omputing infras-tru
ture, and be
ause of
hallenges in pre
isely spe
ifying, implementing, andimproving them to satisfy the needs of appli
ations.Distributed algorithms have been expressed in a wide range of languages andnotations, from informal pseudo
ode to formal state ma
hine based spe
i�
a-tions, with many variations in between. Formal spe
i�
ation languages, su
h asI/O automata [24, 14℄, TLA+ [18℄, and PlusCal [19℄, are instrumental in pre
iseveri�
ation. While study of languages is important, making spe
i�
ations higherlevel is orthogonal, be
ause the most essential language features are alreadypresent in many existing languages.Besides state-ma
hine based approa
hes, e.g., I/O automata [24, 14℄, estab-lished spe
i�
ation methods in
lude notably the a
tor model [1℄ and generalevent-driven models where events in
lude re
eipts of messages. These modelsfo
us on spe
ifying a
tions and state transitions driven by the re
eipts of indi-vidual messages. Our spe
i�
ation method aims to make it easier to understandthe algorithms at a high level, by abstra
ting away low-level state updates. Itfo
uses on relating send-a
tions, whi
h are externally observable, with the his-tory of messages sent and re
eived at a high level, by using high-level queries toexpress the assertions and
omputations.More de
larative languages for expressing distributed algorithms have alsobeen studied, e.g., Datalog-based languages Overlog [2℄ and Bloom [3℄, and alogi
-based language EventML [4, 7℄. More de
larative languages generally ab-stra
t away some or all
ontrol �ow information and may be more su

in
t, butthey are also harder to understand when used for spe
i�
ations of algorithms, inwhi
h
ontrol �ow is essential. Our method uses de
larative queries over sets andsequen
es to express assertions and
omputations, and keeps the
ontrol �ow ofsending and re
eiving messages
lear.Our method
an make the resulting exe
utable spe
i�
ations extremely in-e�
ient if exe
uted straightforwardly, be
ause of repeated expensive high-levelqueries. Optimization by in
rementalization [28, 12, 22, 21, 23℄ transforms su
hexpensive queries into e�
ient in
remental maintenan
e of appropriate auxiliaryvalues. Invariants made expli
it following our spe
i�
ation method not only helpprove the
orre
tness of the algorithms, but also help apply the optimizations.How to make more or all invariants expli
it to make veri�
ation of distributedalgorithms even easier is open for future study; so is the veri�
ation.Referen
es[1℄ G. Agha. A
tors: a model of
on
urrent
omputation in distributed systems. MITPress, 1986.[2℄ P. Alvaro, T. Condie, N. Conway, J. Hellerstein, and R. Sears. I do de
lare: Con-sensus in a logi
 language. ACM SIGOPS Operating Systems Review, 43(4):25�30,2010.[3℄ Berkeley Orders of Magnitude. Bloom Programming Language.http://www.bloom-lang.net/.[4℄ M. Bi
kford. Component spe
i�
ation using event
lasses. In Pro
eedings of the12th International Symposium on Component-Based Software Engineering, pages140�155. Springer, 2009.

[5℄ M. Castro and B. Liskov. Pra
ti
al Byzantine fault toleran
e and proa
tive re
ov-ery. ACM Transa
tions on Computer Systems, 20:398�461, 2002.[6℄ T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live�An engineeringperspe
tive. In Pro
eedings of the 26th Annual ACM Symposium on Prin
iples ofDistributed Computing (PODC), pages 398�407, 2007.[7℄ CRASH Proje
t. EventML. http://www.nuprl.org/software/#WhatisEventML,Last dated February 13, 2012.[8℄ R. De Pris
o, B. Lampson, and N. Lyn
h. Revisiting the Paxos algorithm. Theo-reti
al Computer S
ien
e, 243:35�91, 2000.[9℄ C. J. Fidge. Timestamps in message-passing systems that preserve the partialordering. In Pro
eedings of the 11th Australian Computer S
ien
e Conferen
e,pages 56�66, 1988.[10℄ V. K. Garg. Elements of Distributed Computing. Wiley, 2002.[11℄ J. Gray. Notes on Data Base Operating Systems. In Advan
ed Course: OperatingSystems, volume 60 of Le
ture Notes in Computer S
ien
e, pages 393�481, 1978.[12℄ A. Gupta, I. S. Mumi
k, and V. S. Subrahmanian. Maintaining views in
re-mentally. In Pro
eedings of the 1993 ACM SIGMOD International Conferen
e onManagement of Data, pages 157�166, 1993.[13℄ http://groups.
sail.mit.edu/tds/ioa/distributions/IOA_Toolkit-tools.tar.gz. ThePaxos
ode is under Examples/Paxos.[14℄ D. Kaynar, N. Lyn
h, R. Segala, and F. Vaandrager. The Theory of Timed I/OAutomata. Morgan Claypool Publishers, 2nd edition, 2010.[15℄ L. Lamport. Time,
lo
ks, and the ordering of events in a distributed system.Communi
ations of the ACM, 21:558�565, 1978.[16℄ L. Lamport. The part-time parliament. ACM Transa
tions on Computer Systems,16(2):133�169, 1998.[17℄ L. Lamport. Paxos made simple. SIGACT News (Distributed Computing Column),32(4):51�58, 2001.[18℄ L. Lamport. Spe
ifying Systems: The TLA+ Language and Tools for Hardwareand Software Engineers. Addison-Wesley, 2002.[19℄ L. Lamport. The PlusCal algorithm language. In Pro
eedings of the 6th Interna-tional Colloquium on Theoreti
al Aspe
ts of Computing, pages 36�60, 2009.[20℄ L. Lamport. Byzantizing Paxos by re�nement. In Pro
eedings of the 25th Inter-national Symposium on Distributed Computing, pages 211�224. Springer, 2011.[21℄ Y. A. Liu, M. Gorbovitski, and S. D. Stoller. A language and framework forinvariant-driven transformations. In Pro
eedings of the 8th International Confer-en
e on Generative Programming and Component Engineering, pages 55�64, 2009.[22℄ Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and Y. E. Liu. In
remen-talization a
ross obje
t abstra
tion. In Pro
eedings of the 20th ACM Conferen
e onObje
t-Oriented Programming, Systems, Languages, and Appli
ations, pages 473�486, 2005.[23℄ Y. A. Liu, S. D. Stoller, B. Lin, and M. Gorbovitski. From
larity to e�
ien
y fordistributed algorithms. In Pro
eedings of the 27th ACM SIGPLAN Conferen
e onObje
t-Oriented Programming, Systems, Languages and Appli
ations, 2012.[24℄ N. A. Lyn
h. Distributed Algorithms. Morgan Kaufman, 1996.[25℄ F. Mattern. Virtual time and global states of distributed systems. In Pro
. Inter-national Workshop on Parallel and Distributed Algorithms, pages 120�131, 1989.[26℄ Me
hani
ally
he
ked safety proof of a Byzantine Paxos algorithm.http://resear
h.mi
rosoft.
om/en-us/um/people/lamport/tla/byzpaxos.html.Last modi�ed 1 September 2011.[27℄ https://svn.de
larativity.net/overlog-paxos/sr
/olg/
ore/.[28℄ R. Paige and S. Koenig. Finite di�eren
ing of
omputable expressions. ACMTransa
tions on Programming Languages and Systems, 4(3):402�454, 1982.[29℄ https://github.
om/bloom-lang/bud-sandbox/tree/master/paxos.[30℄ M. Raynal. Distributed Algorithms and Proto
ols. Wiley, 1988.[31℄ M. Raynal. Communi
ation and Agreement Abstra
tions for Fault-Tolerant Asyn-
hronous Distributed Systems. Morgan & Claypool, 2010.[32℄ E. G. Sirer, August 12, 2011. Email.[33℄ R. van Renesse. Paxos made moderately
omplex, O
tober 11, 2011. An onlineversion is at www.
s.
ornell.edu/
ourses/CS7412/2011sp/paxos.pdf.

