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ABSTRACT
Discrete mathematics is the foundation of computer science. It
focuses on concepts and reasoning methods that are studied using
math notations. It has long been argued that discrete math is better
taught with programming, which takes concepts and computing
methods and turns them into executable programs. What has been
lacking is a principled approach that supports all central concepts
of discrete math—especially predicate logic—and that directly and
precisely connects math notations with executable programs.

This paper introduces such an approach. It is based on the use of a
powerful language that extends the Python programming language
with proper logic quantification (“for all” and “exists some”), as well
as declarative set comprehension (also known as set builder) and
aggregation (e.g., sum and product). Math and logical statements
can be expressed precisely at a high level and be executed directly
on a computer, encouraging declarative programming together
with algorithmic programming. We describe the approach, detailed
examples, experience in using it, and the lessons learned.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Mathematics of computing → Discrete mathematics.
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1 INTRODUCTION
Discrete mathematics is the foundation of computer science. The
central concepts in it—from logic and reasoning, to sets and func-
tions, to sequences and recursion, to relations and graphs—are
essential mental tools for modeling real-world objects and develop-
ing programming solutions, whether for basic problem solving or
for advanced software development.

At the same time, the core discipline of computer science is
program development. It is taught in introductory programming
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sequences, branching at upper levels to projects in courses such
as databases, networking, security, and especially compilers that
have to deal with sophisticated discrete structures for representing
computer programs themselves.

As a result, the two primary courses in computer science are
typically discrete math and program development, the two largest-
by-hours areas in [33, p.37], but with very different course activities:
• The former teaches concepts and reasoning methods, with the
help of paper and pencil or text formatting tools for writing math
notations and natural language.

• The latter emphasizes transforming concepts and computing
methods into executable programs, overcoming idiosyncratic
issues of programming languages and systems.

Students can see some common concepts underlying both, e.g.,
sets and sequences in the former are realized as some collection
types in the latter. However, there are no direct, precise connections
between the two kinds of activities—the same concepts are studied
in completely different contexts, and computations involving these
concepts are expressed completely differently in math notations
than in most programming languages, especially Java, the current
dominant language used in teaching program development.

Clearly, the instruction of discretemath and programming should
be integrated to connect theory with practice, to let them reinforce
each other, and to help students better understand and master
both. This in fact has been pursued, in a great deal of prior work
and effort, as discussed in Section 2. What is lacking is a principled
approach for doing this, an approach that covers all central concepts
in discrete math and promotes disciplined uses of these concepts
in problem specifications and programming.

This paper presents such a principled approach. The approach
has four main features:
(1) It covers all central concepts in discrete math, especially includ-

ing the fundamental, challenging topic of predicate logic.
(2) It is based on a powerful language with precise syntax and se-

mantics, directly connecting math notations with programming
language notations.

(3) It supports clear and precise specifications of problem statements
using any combination of the language elements for all concepts.

(4) It promotes declarative expression of complex computation prob-
lems but also supports easy expression of algorithmic steps.

The language we use, referred to as DA in this paper, extends the
Python programming language. It supports proper logic quantifi-
cation, as well as declarative set comprehension (also known as
set former and set builder) and aggregation (e.g., sum and prod-
uct) over sets and sequences. Declarative specifications of problem
statements are directly executable in Python with the module for
DA extensions, just as algorithmic steps are.

This approach was used in teaching Foundations of Computer
Science at Stony Brook University in Spring 2020, entirely as
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extra-credit programming problems added to regular homework as-
signments. Our results and analysis of using this approach support
broader deployment, and we give suggestions for future adoption.

2 RELATEDWORK
Many methods for teaching discrete math have been studied since
the early ages of computer science, e.g., [6, 25], especially those
involving programming, e.g. [23].

Naturally, algorithms introduced in discrete math are frequently
selected for implementation in a programming language. For ex-
ample, students could be required to implement an algorithm of
their choosing in any programming language [22]. Even an entire
follow-up lab course could be developed, e.g., for students who
are already familiar with languages such as Java [31]. However,
these programming components do not require writing declarative,
logical specifications that are central to discrete math.

There have been many uses of various declarative languages,
not only functional and logic languages, but also the SQL database
language. Examples include using FP, ML, and Prolog in a com-
plementary fashion [11], using SML extensively to write recursive
functions over lists for many set and logic operations [36], and
using SQL to program with sets and relations and especially its
EXISTS operator [26]. All of these efforts had to get around the lack
of real universal and existential quantifiers.

Other approaches used dedicated logic and modeling systems.
For example, an automated system could take a list of facts, and
generate a list of support facts to give students insight into how
first-order logic works [24]. The Alloy modeling language [37] is
excellent for writing specifications using sets, relations, and predi-
cate logic and then finding models that satisfy a specification [34],
although it suffers from issues with recursion. The powerful SMT
solver Z3 was also used, for solving puzzles [12]. These are farther
away from introductory programming.

There are also many studies of using supporting tools, especially
visual tools and more powerful proof tools. For example, specialized
programs were used for visualizing graphs and algorithms that do
depth-first search, etc. [2], for learning rules in solving visual logic
puzzles [5], for proof editing with helpful checks [3], and for giving
meta-level support [21]. There were also efforts that encourage
students to make their own tools, e.g., a proof checker of a natural
deduction system, a database management system, a propositional
logic proof system, and a symbolic execution engine [14].

Additionally, dedicated books have been written on the topic of
teaching discrete math with a programming language, e.g., C [1]
and Python [27, 32]. However, these do not cover writing logical
and declarative specifications for the central topic of predicate logic,
instead opting for writing iterations or recursions for traditional
written exercises on the subject, or avoiding the subject altogether.

3 APPROACH
We first discuss all central topics that a principled approach must
cover. We then describe the use of a powerful and precise language,
the support for clear and precise problem specifications, the foster-
ing of declarative as well as algorithmic programming, and the use
of programming as an enhancement.

Central topics in discrete math. Discrete math is typically one
of the first two courses in computer science, the other being intro-
ductory programming. Despite many textbooks written and used
for the subject, the central topics are well-known, as captured in
commonly used textbooks, e.g., [4, 7, 8, 28], as well as [33].
• Logic. This includes propositional logic, the more general predi-
cate logic that includes quantifiers, and proof methods.

• Sets, functions, and relations. This includes definitions, opera-
tions, and properties over sets, functions, and relations.

• Sequences and recursion. This includes definitions of sequences,
summation and product forms, recursive formulas, and proofs
by induction.

Additional topics are often included, but they are generally special,
expanded cases of the core topics. Typical such topics are:
• Graphs and trees. A graph is essentially a set of vertices plus a
binary relation on the vertices. A tree is simply a graph where
each vertex has one incoming edge and multiple outgoing edges
forming no cycles.

• Counting and probability. Counting corresponds to the cardi-
nality of sets of interest. Probability is essentially the count of
elements of interest divided by the count of all elements.

All topics above include aspects of reasoning and proofs, as well as
computations and algorithms. These aspects are often included in
the expositions of the topics above, e.g., proofs with logic in [28]
and both proofs and algorithms with many topics in [7, 8]. These
aspects are sometimes also covered as separate topics, e.g., proofs
in [4, 33] and algorithms in [28]. In the expositions of all these
topics, examples and applications from number theory are often
used [7, 28], and corresponding concepts such as Boolean algebra
are often introduced [4, 7, 28].

Among all topics in discrete math, logic is typically viewed as
the most fundamental topic—it is usually the first topic to study [4,
7, 28] and is also emphasized particularly as driving the entire
subject [10]. Therefore, a principled approach for discrete math
with programming must cover logic as well as all other topics.

Powerful and precise language. To cover all central topics, one
can see the variety of discrete values, operations on them, and
properties about them that must be expressed. To express all of
them precisely and unambiguously, and to connect them with pro-
gramming, a powerful language with precise syntax (i.e., forms)
and semantics (i.e., meanings) is needed.

We describe the use of such a language that combines the advan-
tages of the two kinds of languages used in introductory courses:
• Traditional mathematical notations used in discrete math. These
notations are high-level and concise. However, they generally
do not have formal semantics, and allow loose usage with no
automated checking for syntax or semantics.

• Programming languages, such as the dominant language Java,
used in introductory programming. These languages have pre-
cise syntax and semantics and are automatically checked for the
syntax and executed following the semantics. However, they are
lower-level, tedious, and verbose.

The languagewe use, DA, extends Python. Python is well-known for
being significantly more concise and higher-level than languages
like Java and C/C++, and is already widely used by scientists and



high-schoolers alike and taught to non-CS and novice students,
demonstrating its power and ease of use.

Python already supports sets and sequences, comprehensions
over them, and generator expressions with operators all, any, sum,
max, etc. on top of commonly used loops and recursive functions for
programming at a high level like pseudocode. The DA extensions
we use support the following main language constructs that are
not in Python, but are essential for expressing all central concepts
clearly and directly.
• Proper universal and existential quantifications. These capture
the exact meaning of quantified statements (that use universal
quantifier ∀ and existential quantifier ∃) in predicate logic.

• Comprehensions over sets and sequences with logic/pattern
variables. These correspond to set builder notations for forming
expressions over sets, relations, and sequences.

• Aggregations over sets and sequences with logic/pattern vari-
ables. These are similar to comprehensions but support summa-
tion, product, counting, maximum, and minimum.
The quantification forms are built on the best previous languages

that support quantified expressions, SETL [13, 30], designed exactly
as a set-theoretic programming language, and ABC [9], designed
exactly to teach introductory programming.1 These are discussed
in detail in Section 4.

Use of what we call logic variables, or pattern variables, in com-
prehension and aggregation, as well as quantification, was moti-
vated by a history of informal use in writing declarative set expres-
sions, e.g., [15, 19, 20], which led to its precise formalization with
patterns by Liu et al [17, 18]. These are discussed in Section 5.

Together, the extended language DA supports simpler and clearer
problem specification as well as expression of computations and
algorithms. In particular, logical statements about mathematical
concepts can be directly executed for computation and checking,
unlike math notations on paper that are disjoint from low-level
programs executed on computers.

The only aspect not supported in DA is formal development of
complete proofs, but such proof development is well-known to be
challenging even for the best experts. Support for easier writing of
proofs remains a direction for future study [29].

Clear and precise problem specification. With a powerful lan-
guage for expressing logical statements, problem specifications can
be written more easily and clearly. Whether for computations or
for proofs, precise problem specification is the most critical task.
The language we use supports such specification for any aspect
that needs it.
• Input specification. This specifies all sets, functions, etc. given,
plus logical statements specifying additional relationships among
the given structures.

• Output specification. This similarly specifies the sets, numbers,
etc. to be produced, plus logical statements specifying how the
output is related to the input.

• Auxiliary value specification. This specifies auxiliary sets, func-
tions, etc. to use, plus logical statements relating them to input,
output, and to each other.

1In fact, SETL is one of the earliest and most powerful programming languages. ABC
is a descendant of SETL, and Python is a descendant of ABC and C [35].

The language constructs we use for quantification, comprehension,
and aggregation can be arbitrarily combined in writing logical
statements. Section 4 gives example specifications.

Declarative as well as algorithmic programming. Dominant
programming languages such as Java and C/C++ do not support
quantification, comprehension, or aggregation, so they must be
programmed using iteration or recursion. For commonplace pro-
gramming taught in courses and used in practice, the most impor-
tant language constructs for expressing computations are iterations
carried out in loops, where assignments and conditions are used to
set and test values for starting and ending the loop and to update
variables in between.

Languages like Python with DA extensions support quantifi-
cation, comprehension, and aggregation as built-ins, which are
compiled into loops automatically for execution. When a specifi-
cation specifies an output using these constructs, which can be
executed automatically, the specification serves as a good example
of higher-level, declarative programming. Section 4 gives examples.

Programming as enhancement. When teaching discrete math
with programming in the DA language, all discrete structures, oper-
ations on them, and properties about them can be expressed directly
and precisely, and then executed directly. The programming part is
exactly to write these precisely and directly.

To ensure that students still learn and build their full skills at
least as well as they learn discrete math without programming,
we used three general methods: (1) assign the programming part
several days later than the non-programming part, (2) give in-class
exercises for doing the most important of these problems before
the programming part was assigned, and (3) assign more or larger
problems for the programming part so as to benefit more from
automatic execution.

Method (1) allows students to do homework problems first in
their head. Method (2) forces students to do, or at least try, home-
work problems earlier. Method (3) helps show that programming is
an enhancement.

4 PREDICATE LOGIC WITH PROGRAMMING
The topic on logic starts with propositional logic. It is about using
propositions and logical operators. Programming with these is
straightforward.

• Propositional logical statements can be directly and precisely
written in commonly-used programming languages: use pro-
gram variables for propositions, and use Boolean operators for
conjunction, etc.

• A small issue is that implication (e.g., p implies q) is not in
common programming languages, but it can be easily defined
or directly written using its equivalent form with negation and
disjunction (i.e., not p or q).

Predicate logic extends propositional logic to include the use of
predicates with arguments and quantifiers quantifying over val-
ues of these arguments. It is significantly more sophisticated and
cannot be expressed directly in most programming languages, not
even Prolog. Our approach for teaching predicate logic with pro-
gramming is as follows: (1) introduce the language, emphasizing



Logic and practice of programming
 CS: Logic/math versus practice of programming

 Practice: Python has become the most widely used language,

by both the least experienced and the most experienced.   C…

 Python’s inspiration and predecessor was ABC --- for beginners;

Python was also influenced by C --- system programming.

 ABC was inspired by SETL--- based on mathematical theory of sets.

 Logic and practice should be together --- much easier and simpler, 
providing much more assurance, and fun!            …DistAlgo, Alda
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Precise quantifiers each and some
 Universal quantification

 x ∈ S  ,   P(x)
 x ∈ S  |   P(x)
 x ∈ S  :   P(x)
...

each x in S  has P(x)
each(x in S, has= P(x))

all( P(x)  for x in S )
forall x in S  |  P(x)

 Existential quantification
 x ∈ S s.t. P(x) textbook

 x ∈ S  ,   P(x) others

...       |

...
some x in S  has P(x)  ABC,ideal

some(x in S, has= P(x)) da in py

any( P(x)  for x in S ) py

exists x in S  |  P(x) setl

43Figure 1: Slides introducing precise quantifications and rela-
tionships.

quantifications, (2) write specifications, especially through exam-
ples, and (3) execute the specifications, directly in Python with DA
extensions.

Language. Logical operators in Python are used, because they are
simple and easy to read: and for conjunction (∧ in math notation),
or for disjunction (∨ ), and not for negation (∼ or ¬).

Quantifications, for writing statements with universal and ex-
istential quantifiers (∀ and ∃ , respectively), are first discussed in
class as usual. Then, only two additional slides, shown in Figure 1,
are discussed.

The first slide gives an overview relating logic and practice of
programming, including programming languages related to Python.
In particular, Python and C are widely-used languages in practice,
and Python’s roots ABC and SETL were meant for beginners and
actually based on set theory, respectively. It ends with the name
of the language to be used, DistAlgo [17, 18], plus a tentative new
name, Alda, for it, abbreviated for both as DA in this paper.

The second slide shows the precise language constructs for quan-
tifications: the universal quantification means that each element x
in set S has property P(x), and the existential quantification means
that some element x in S has property P(x).
• The first line with ∀ and ∃ is from the textbook [7, 8] used for
the course. The second and third lines show a few other math
notations.

• The first line with each and some is from ABC and ideal for
reading. The next line is the form in DA as implemented in
Python.

• The last two lines show the forms in Python and SETL.

All ABC, DA, and SETL forms match the math notations better than
the Python form. More critically, the constructs in ABC, DA, SETL,
and informally in math notations—but not in Python—also give a
witness:

When the existential quantification is true, variable x

is bound to a value in set S that makes P(x) true.
This powerful feature is important for expressing search using math
and logic at a high level [13, 30].

We see that the second slide directly and precisely connects the
many different math notations with the best, easy-to-read program-
ming language constructs.

No more study of Python or DA was done in class, for three rea-
sons. (1) Time diverted from teaching all regularly taught materials
should be minimized. (2) The homework gave program files that
contained examples. (3) We were confident in the power and ease
of Python and DA extensions from past teaching experience.

Specification. We show the use of DA quantifications in specifying
examples with different combinations. Two main examples are used
in the textbook: a college cafeteria with students choosing items at
different stations, and Tarski’s world as a grid of blocks of various
colors and shapes. We name them cafe and tarski, respectively,
and use parts of cafe as examples.

For cafe, the textbook provides a figure with example students,
food stations, items in those stations, and the items each student
chose. It then lists four statements in math notations and discusses
their truth values in English. The first example has:

∃ an item 𝐼 such that ∀ students 𝑆 , 𝑆 chose 𝐼 .
“There is an item that was chosen by every student.”

We write the corresponding precise statement as an example in the
program file given to students:
some(I in items, has= each(S in students, has= chose(S,I)))

The homework then asks that several statements written in math
notations or English be written in DA. For example, an exercise
problem in the textbook was used in the homework, asking for the
truth values of a list of statements. The first statement is:

∀ students 𝑆 , ∃ a dessert 𝐷 such that 𝑆 chose 𝐷
The expected answer is:
each(S in students, has= some(D in desserts, has= chose(S,D)))

In total, in the programming part on predicate logic, 5 statements
for cafe and 2 for tarskiwere asked, all involving nested alternating
quantifiers as the example above, and some also involving and, or,
and not.

Execution. The most practically attractive aspect in teaching
discrete math with programming is that programs are executable to
give the specified meaning. We show execution of the statements
written, using the cafe example.

To execute a statement for cafe, the sets of stations, items, and
students with their choices for predicate chose must be given. The
given program file for cafe contains the following definitions, fol-
lowed by example quantifications as discussed earlier, plus printing
of the values of the quantifications.

1 # page 87 of textbook: Example 3.3.3.

2 # given knowledge from the first paragraph and shown in Figure 3.3.2:

3 salads = {'green salad ', 'fruit salad '}



4 main_courses = {'spaghetti ', 'fish'}

5 desserts = {'pie', 'cake'}

6 beverages = {'milk', 'soda', 'coffee '}

7 stations = [salads , main_courses , desserts , beverages]

8 choices = {

9 'Uta': {'green salad ', 'spaghetti ', 'pie', 'milk'},

10 'Tim': {'fruit salad ', 'fish', 'pie', 'cake', 'milk', 'coffee '},

11 'Yuen': {'spaghetti ', 'fish', 'pie', 'soda'} }

12 students = choices.keys()

13 # helper set and function , to capture English more easily:

14 items = setof(item , sta in stations , item in sta)

15 def chose(student , item): return item in choices[student]

Later extra-credit programming assignments gradually include writ-
ing more or all of such sets and definitions by students. Later as-
signments also tell students to use witnesses, e.g., print the value
of I in the first precise statement earlier in this section.

The resulting programs as well as the given programs can be
executed directly in Python with the module for DA extensions.
Students are given two files, cafe.da and tarski.da, and two com-
mands to run, python -m pip install pyDistAlgo for installing DA,
and python -m da cafe.da for running the cafe example.

Programming after thinking and preparing. Programming
should be an enhancement to traditional discrete math coursework,
while minimizing the chores of working with a computer system.
The homework instructions try to accomplish this. For the pred-
icate logic part, there are two prerequisites to doing extra-credit
programming.

First, for the cafe problem, students were given in-class exercises
to do the exercise problem in the textbook that will be used in the
programming part, before the programming part was posted. This
requires them to think about the problemmore before programming.
Only 3 of the 5 statements for cafe were given for the written part
of the homework.

Second, students should install Python and be able to run it on a
command line. This was not needed if students used machines in
the computer lab.

5 OTHER TOPICS
The same approach was also used in teaching all other topics. We
highlight the power of DA extensions to facilitate this.

Language. Topics other than predicate logic require simpler lan-
guage constructs, and no dedicated slides are used—only one or two
slides for each topic with some notes on the side. Figure 2 shows
two examples. Most such slides only have one or two lines of notes
on them; these slides are the exceptions.

The first slide shows set operations and properties, all of which
can be directly written in DA. The notes added on the bottom-right
use set intersection as an example, showing it is in given file sets.da,
and giving the exact comprehension constructs for expressing it in
DA, in Python (thus in DA too, as DA extends Python), and in an
ideal notation.
• The comprehension in DA means the set of x satisfying mem-
bership clauses x in A and x in B. In general, any membership
and Boolean conditions can be written; the semantics of DA
automatically avoids the well-known Russell’s paradox.

• In particular, x is a logic variable, meaning that different occur-
rences of it in a comprehension automatically have the same

Properties of sets
 Inclusion of intersection:  A ∩ B A    and A ∩ B B

 Inclusion in union:            A A B    and B A B

 Transitivity of subset:       A B and B C A C

 Set operations: logical definitions (textbook calls them procedural)
 x A B x A or x B
 x A ∩ B x A and x B                              in given file sets.da

 x B − A x B and x A
 x Ac x A
 (x, y) A × B x A and y B

setof(x, x in A, x in B) da

{x for x in A if x in B} da/py
{x: x in A, x in B} da ideal23

Sequences in computer programming

 Array: a[1], a[2], …, A[50] a = [7,4,25,9]   list in py/da

 for i in range(1,n+1): ints(1,n)  da

print (a[i])

 Summation

s = a[1]

for k in …

s = sum(a[k] for k in range(1,n+1))

s = sumof(a[k], k in ints(1,n)) da

24
Figure 2: Slides on set properties and operations, and on pro-
gramming with sequences.

value. So either order of the two membership clauses has the
same meaning, and the DA compiler can decide how to imple-
ment them efficiently.

It is critical to note that the comprehension in Python, with for

followed by if, is different (and so are comprehensions in SETL): it
means to iterate over elements in A and, for each element x, if it is
also in B, put it in the resulting set.

Aggregations such as sum and product over sets and sequences
can also be expressed easily in DA. For example, given a set of
sequence S, sumof(x, x in S) means the sum of all elements of S.

The second slide shows pseudocode for programming with se-
quences. The notes added on the right show corresponding con-
structs in Python, in green, and alternatives in DA, in blue. In
particular, for computing summation, a for-loop block can be pro-
grammed as a 1-line aggregation for sum, in both Python and DA.

In general, Python is both powerful and easy to use and is well-
known to be close to pseudocode when used to program algorithms.
Comprehensions and aggregations in DA improve over those in
Python by being completely declarative, exactly as in math.

Specification. Using more powerful constructs in DA, specifica-
tions of problem statements and computations for other topics can
also be written easily and precisely as for predicate logic, and be
made executable in Python.

Dozens of extra-credit programming problems were given on
expressing operations on and properties of sets, sequences, func-
tions, and relations, e.g., writing operations on sequences using



Figure 3: Exam performance vs. number of relevant pro-
gramming assignment submissions. The number of stu-
dents in each category is shown on the bottom of the bar.

both aggregations and recursive definitions; writing definitions of
1-1 and onto functions and using them to check given functions;
writing definitions of reflexivity, symmetry, and transitivity and
using them to check given relations; writing Euclid algorithm using
both iteration and recursion; writing recursion for Hanoi Tower;
and expressing transitive closure with an existential quantification
with witness in a while loop.

Execution. All specifications in Python and DA can be executed
directly as discussed in Section 4. The main difference is that, for
later topics, students are asked to write more parts or even all parts
of the solution to a problem on their own.

Programming as enhancement. Besides similar use of program-
ming as for predicate logic, more computation problems are given,
such as Hanoi Tower. There was even an extra extra-credit pro-
gramming part on solving the online exam scheduling problem that
the course itself had, by writing quantifications, comprehensions,
and aggregations in DA and feeding them to a solver.

6 RESULTS, ANALYSIS, AND ADOPTION
To give insight into whether extra-credit programming was truly
beneficial, we mainly considered two metrics: student test perfor-
mance, a quantitative metric; and student surveys, a qualitative
metric. Additional details can be found in [16].

Student test performance. To see if extra-credit programming
helped students learn better, we examine whether students who did
more programming on certain topics performed better on exams
covering those topics. We consider three groups of programming
assignments: the first two assignments before Midterm 1, the next
three before Midterm 2, and all six before the Final, grouped by
their relevancy to the exam. In each group, students are categorized
by how many they submitted for that group, and the test average
from each category was taken. Figure 3 shows the results.

With a very slight exception in group 2, there is a clear positive
correlation between the number of programming assignments sub-
mitted and exam performance. Unfortunately, this is not enough to
prove that the assignments by themselves improved student perfor-
mance, due to self-selection bias—it is probable that students who
would do better on exams would do more extra-credit work. In the
future, it may be worthwhile to introduce these assignments in a
way that eliminates self-selection bias.

Student surveys. For each homework, an online survey was cre-
ated, containing a section asking for qualitative feedback on extra-
credit programming.

For the first programming assignment, on predicate logic, of
115 students enrolled, 109 submitted the homework; 53 (48.7%) did

not try the extra credit, 20 (18.3%) tried but had issues installing
or running Python, and 36 (33.0%) completed all or part of the
programming. For the 53 who did not try, and the 20 who tried
but failed, the optional nature of the extra credit, being <1% of the
course grade, mostly likely did not motivate them enough. Of the 36
who did programming successfully, 31 (86.1%) completed both cafe

and tarski, and 5 (13.9%) completed one of them. Overall, 21 of 36
(58.3%) indicated they enjoyed the programming, and 24 (66.7%)
indicated they wanted more programming like this.

For comparison, the last programming assignment had 96 stu-
dents respond; only 9 (9.4%) failed to install or run Python—much
less than before—but it also reveals that these students did not
try sooner. 43 (45.3%) did not try the extra credit, and 44 (46.3%)
successfully did one or more programming problems—again an
improvement. Of the 44 who succeeded, 32 (72.7%) indicated they
enjoyed the programming—another positive result.

Suggestions for adoption. The feedback we have received, from
both the surveys and in-person interactions with students, supports
that students enjoy discrete math more with programming. For
students who succeeded installing and running Python, extra-credit
programming was well received.

Clearly not all students come to a discrete math course equally
capable of configuring the minutia of their programming environ-
ment. As programming was optional, system configuration was
only briefly covered in lectures. For the future, we suggest making
programming required to a degree, and providing in-class configu-
ration sessions.

Once required, the programming part could be givenmoreweight
in the course grade, and could be tested in the exams as well. Be-
cause it was extra-credit programming worth <1% of the course
grade for each assignment, and because it came with entirely differ-
ent and much longer problem descriptions, it was harder to initially
motivate the average student. However, this can be easily overcome
by increasing its weight in the course grade.

Indeed, most students who did not do extra-credit programming
indicated they would have liked to, and some asked about exercises
after the course ended. Already, we have had positive results with
56 students who successfully did some or all programming prob-
lems. Some went beyond—running distributed algorithms using
DA, asking deep questions about Python, and asking to do research
projects.

We will make problem descriptions and program files for the pro-
gramming assignments publicly available. Programming solutions
will be made available to instructors by requests.

7 CONCLUSION
We have presented a principled approach for teaching discrete
math with programming by using a powerful language that extends
Python. The approach and language cover all central topics, and
allows novice users to understand the concepts precisely, write them
rigorously in specifications, and use them directly in executions.

Our results and analysis of using the approach support broader
deployment. Exploiting Python also allows the approach to be built
on to teach more advanced subjects later on, especially with the
increasing growth of Python libraries.
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