Efficient Symbolic Detection of Global
Properties in Distributed Systems

Scott D. Stoller and Yanhong A. Liu

Computer Science Dept., Indiana University, Bloomington, IN 47405, USA
{stoller,liu}@cs.indiana.edu.

Abstract. A new approach is presented for detecting whether a com-
putation of an asynchronous distributed system satisfies Poss & (read
“possibly #”), meaning the system could have passed through a global
state satisfying property @. Previous general-purpose algorithms for this
problem explicitly enumerate the set of global states through which the
system could have passed during the computation. The new approach is
to represent this set symbolically, in particular, using ordered binary deci-
sion diagrams. We describe an implementation of this approach, suitable
for off-line detection of properties, and compare its performance to the
enumeration-based algorithm of Alagar & Venkatesan. In typical cases,
the new algorithm is significantly faster. We have measured over 400-fold
speedup in some cases.

1 Introduction

A history of a distributed system can be modeled as a sequence of events in their
order of occurrence. Since execution of a particular sequence of events leaves the
system in a well-defined global state, a history uniquely determines a sequence
of global states through which the system has passed. In an asynchronous dis-
tributed system,! no process can determine in general the order in which events
on different processors actually occurred. Therefore, no process can determine
in general the sequence of global states through which the system passed. This
leads to an obvious difficulty for detecting whether a global property (i.e., a
predicate on global states) held.

Cooper and Marzullo’s solution to this difficulty involves two modalities,
which we denote by Poss (read “possibly”) and Def (read “definitely”) [CM91].
These modalities are based on logical time as embodied in the happened-before
relation, a partial order that reflects causal dependencies [Lam78]. A history of an
asynchronous distributed system can be approximated by a computation, which
comprises the local computation of each process together with the happened-
before relation. Happened-before is useful for detection algorithms because, using
vector clocks [Mat89], it can be determined by processes in the system.

! An asynchronous distributed system is characterized by lack of synchronized clocks
and lack of bounds on processor speed and network latency.



Happened-before is not a total order, so it does not uniquely determine the
history. But it does restrict the possibilities. Histories consistent with a compu-
tation ¢ are exactly those sequences of the events in ¢ that correspond to total
orders containing the happened-before relation. A consistent global state (CGS)
of a computation ¢ is a global state that appears in some history consistent
with ¢. A computation ¢ satisfies Poss @ iff, in some history consistent with ¢,
the system passes through a global state satisfying ¢. A computation ¢ satisfies
Def @ iff, in all histories consistent with ¢, the system passes through a global
state satisfying ®.

Cooper and Marzullo give centralized algorithms for detecting Poss & and
Def & for an arbitrary predicate & [CM91]. A stub at each process reports the
local states of that process to a central monitor. The central monitor incremen-
tally constructs a lattice whose elements correspond to CGSs of the computation.
Poss @ and Def @ are evaluated by straightforward traversals of the lattice.

Unfortunately, these algorithms can be expensive. In a system of N pro-
cesses, the worst-case number of CGSs is ©(SV), where S is the maximum
number of steps taken by a single process. This worst case comes from the (ex-
ponential) number of CGSs of a computation in which there is little communica-
tion. Any detection algorithm that enumerates all CGSs—Ilike the algorithms in
[CM91,MN91,AV97]—has time complexity that is at least linear in the number
of CGSs. This time complexity can be prohibitive, so researchers have sought
faster alternatives. One approach is to restrict the problem and develop efficient
algorithms for detecting only certain classes of predicates [GW94,TG93].2 An-
other approach is to modify some aspect of the problem—for example, detecting
a different modality [FR97] or assuming that the system is partially synchronous
[MN91,St097].

This paper presents an efficient and general approach to detecting Poss ®.
In this approach, the set of CGSs is represented symbolically, using boolean for-
mulas implemented as ordered binary decision diagrams (BDDs), and Poss & is
detected by testing satisfiability of a formula. This can be much more efficient
than explicit enumeration. For simplicity, we consider here only off-line detec-
tion, in which the detection algorithm is run after the distributed computation
has terminated. The approach can also be applied to on-line detection. Section 2
provides some background. Section 3 describes our detection algorithm. Section
4 gives performance results from using the new algorithm and (for comparison)
an enumeration-based algorithm [AV97] to detect violations of invariants in a
coherence protocol and a spanning-tree algorithm. For both examples, when the
invariant is not violated, the new method is faster by a factor that increases
exponentially with the number of processes in the system. We also measure the
effects of judiciously applying the two variable-reordering methods. Both meth-
ods greatly reduce memory consumption, though at a significant cost in running
time. Section 5 compares our work to temporal-logic model checking. Directions
for future work include extending our algorithm to support on-line detection,
applying our symbolic approach to detection of Def &, and experimenting with

2 These restricted algorithms do not apply to the examples in Section 4.



the use of a satisfiability checker, such as tableau [CA96], instead of BDDs. Our
approach does not involve computation of fixed points, so the use of a canonical
form, such as BDDs, is not essential.

2 Background

2.1 System Model

A (distributed) system is a collection of processes connected by an asynchronous,
reliable, and FIFO network. Let NV denote the number of processes. We use the
numbers 0,1,..., N —1 as process identifiers, and define PID = {0,1,..., N—1}.
A local state s of a process p is a mapping from the local variables of p to values;
for example, s(z) is the value of variable z in local state s.

Each process starts in a specified initial state and optionally with its timer
set to a specified value. Computations contain only two kinds of events: timer
expiration and message reception. As a result of either kind of event, a process
can atomically (4.e., without interruption by other events) change its local state,
send a set of messages (with specified destinations), and set its timer.?> Processes
can be non-deterministic, i.e., the input event need not uniquely determine the
new local state, set of sent messages, and timer setting.

Each process has a timer. For convenience, we assume the timers all run at
the same speed, though this assumption is not required for correctness of the
example protocols in Section 4.

Each process p has a vector clock vc, with N components. We regard wvc,
as a (special) variable; thus, s(vc,) is the value of the vector clock in local
state s. In the initial state of process p, ve, = (0,0,...,0). The vector clock is
updated after each event, and the updated value is piggybacked on the outgoing
messages (if any). Thus, each message m has a vector timestamp ts(m). The rules
for updating the vector clock are: (1) For a timer expiration event of process p,
component p of vep is incremented by 1; (2) When process p receives a message
m, its vector clock vey, is assigned the component-wise maximum max(vep, ts(m))
and then component p is incremented by 1.

Given a system, a straightforward simulation can be used to generate a pos-
sible computation of that system. The intrinsic non-determinism of the asyn-
chronous network is modeled by selecting message latencies from a random dis-
tribution. Each running timer and in-transit message corresponds to a pending
event. When a pending event is generated, it is timestamped with its (future)
time of occurrence. The simulator repeatedly executes the pending event with the
lowest timestamp, thereby changing the local state of a process and generating
new pending events. Since some protocols are designed to service requests for-
ever, the simulator accepts a parameter maxlen, which is the maximum number

3 Thus, in contrast to most models of distributed computation, the sending of a mes-
sage is not modeled as a separate event. This difference is inessential but simplifies
our model slightly.



of events per process. So, the simulation ends either when there are no pending
events or when some process has executed mazlen events.

A computation of a system is represented as a sequence of N local compu-
tations, one per process. A local computation is a sequence of local states that
represents the execution history of a single process. Each local state includes
values of all the declared variables of the process and the value of the process’s
vector clock.

2.2 Consistent Global States and Poss &

A global state is a collection of local states, one from each process. For a sequence
¢ and natural number 4, c[i] denotes the i’th element of ¢ (we use 0-based index-
ing). A global state of a computation ¢ is a collection of local states sg,...,Sn—_1
such that, for each process p, sp is an element of ¢[p].

Some global states of a computation are uninteresting, because the system
could not have been in those global states during that computation. So, we
restrict attention to consistent global states, i.e., global states through which
the system might have passed during the computation. We define consistency
for global states in terms of the happened-before relation on local states [GW94].
Intuitively, a local state s; happened-before a local state sy (of the same or a
different process) if s1 finished before sy started. In particular, define — for a
computation ¢ to be the smallest transitive relation on the local states of ¢ such
that

1. For all proceses p and all local states s; and s of p in ¢, if s; immediately
precedes s, then s; — 5.

2. For all local states s; and ss in ¢, if the event immediately following s; is the
sending of a message and the event immediately preceding s, is the reception
of that message, then s; — s,.

Two local states s1 and s, of a computation are concurrent, denoted s; || s2, iff
neither happened-before the other: s; || s2 25 /4 89 A 82 /» s1. A global state
is consistent iff its constituent local states are pairwise concurrent.

Vector timestamps are useful because they capture the happened-before re-
lation [Mat89]. Define a partial order < on vector timestamps by: v; < vy iff
(Vp € PID : v1[p] < va[p]). Then, for all computations ¢ and all processes p; and

25
P (Vi1 € dom(c[p1]) : (Via € dom(e[p2]) : (1)
c[p]lin] = elpeliz] = clpi]lir](vep,) < elpa]liz](vep.,)))
where for a sequence o, dom(s) ={0,1,...,(Jo| — 1)}, where |o| is the length of
0. Concurrency of two local states can be tested in constant time using vector
timestamps by exploiting the following theorem [FR94]: for a local state s; of
process p; and a local state s, of process ps,

s1ls2 = si(vep,)[p2] < s2(vep,)[p2] A s2(vep,)pi] < s1vep)lpr]  (2)
where, for example, s1 (vep,)[p2] is component py of the vector timestamp s1 (vep,).

Now we define Poss. A computation ¢ satisfies Poss @, denoted ¢ |= Poss &,
iff there exists a consistent global state of ¢ that satisfies &.



3 Detection Method

To test ¢ |= Poss @ efficiently using symbolic methods, we generate a formula b
such that b is satisfiable iff ¢ |= Poss @. In this formula, we use z, to denote the
local variables (excluding the vector clock) of process p, and we use the variable
vep,q to denote component g of the vector clock of process p (i.e., we treat each
vector clock as N separate variables). For convenience, we assume that the sets
of local variables of different processes are disjoint. Let  denote the collection of
variables zg,z1,...,zy_1, and let ve denote the collection of all @(N?2) vector-
clock variables. Using (2) to express concurrency of local states, it is easy to
show that b can be taken to be

&(x) A globalState,(x, ve) A consis.(ve) 3)
where
globalState,(x, ve) /\ \/ zp = c[p][i](xp) A /\ vep,g = ¢[p][E](vep)[g]
pEPID icdom(c[p]) qePID
consis.(ve) = /\ /\ VCpy.p1 < VCpy py

p1EPID pr€(PID\{p1})

Formulas obtained from (3) contain ©(N?) variables for the vector clocks.
To reduce the number of variables in the formula, and thereby reduce the cost
of testing satisfiability of the formula, we change variables. For each process p,
we introduce a new variable idz,, which contains the “index” of the local state
in c[p], i.e., (Vi € dom(c[p]) : ¢[p][i](idz,) = i).* Re-expressing globalState and
consis in terms of these new variables, we take b to be:

&(x) A globalState,(x, idz) A consis.(idz) 4)
where

globalState,(x, idx) /\ \/ zp = c[p[i](zp) A idzy, =1
pEPID iedom(c[p])

consis.(tdz) = /\ \/ idzp, =12 A c[p2]iz](vep,)[p1] < idzp,

p1 € PID is€dom(c[p2])
p2 € (PID\{p1})

where ¢dz denotes the collection of variables idzg, idzq,...,idxN_1.

For example, consider a system with N = 2. Suppose each process p has a sin-
gle local variable y,, and that we want to detect Poss(yo+y; = 1). Consider the
computation ¢ in which each local computation has length 2, and ¢[p][i](y,) = ¢,
[p][0](vep) = (0,0), c[0][1](veo) = (1,0), and ¢[1][1](vc1) = (1,1). Instantiating
(4) yields the formula

(yo +y1 = 1) A globalState,(yo, 1, ¢dx) A consis.(idz)

* We could take idz, to be wvcyp, since the rules for updating vector clocks imply
c[p][#](vep,») = . However, we find it easier to think of idz, as a new variable.



where

globalState, (yo,y1,tdz) = (Yo =0 A idzo =0)V (yo =1 A idzo = 1))
/\((y1:0 A id$1:0)V(y1:1 A idﬂ?l:l))

consis.(¢dz) = ((idz1 =0 A 0 < idzgy) V (idz; =1 A 1 < idzy))

A ((ld:l?() =0A0 S ’tdﬁlil) \Y (’tdﬁlio =1A0 S id.’L‘l))

3.1 Implementation and an Optimization

We represent the formula defined by (4) using ordered binary decision diagrams
(BDDs) [Bry92]. Let truepqq and falsepqg denote the BDDs representing true
and false, respectively. Let Apqq denote conjunction of BDDs. Let a formula
with an overline denote a function that returns the BDD representation of that
formula. Formula b is constructed and tested for satisfiability by procedure BDD-
detectionO in Figure 1.

The numbers in vector timestamps are encoded as unsigned integers, with
a binary variable representing each bit; the number of bits required is easily
determined, since we consider here only off-line detection. If Poss® holds, it
is straightforward to obtain a satisfying assignment for b and (from that) a
particular CGS satisfying &.

procedure BDD-detection0(c, ) procedure BDD-detection(c, \/_ g o.)
b := truepaq b := truepaq
b := b Apaa globalState,(x, idx) b := b Apaa globalState, (x, idx)
b := b Abaa consis.(zdx) b := b Abaa consis.(idzx)
b := b Apaa P(x) for each a in S
if b = falsepqq then bl := b Apaa Po(x)
return(“c [~ Poss(®)”) if b1 # falsepaqa then
else return(“c = Poss(®)”) return(“c |= Poss(®)”)

return(“c [~ Poss(®$)”)

Fig. 1. Pseudo-code for BDD-detection0 and BDD-detection.

Often (as in both examples in Section 4), @ is a disjunction: & = \/ ¢ Pa,
for some set S. Procedure BDD-detection0 can be optimized by distributing the
conjunctions over the disjunction, yielding procedure BDD-detection in Figure
1. By testing each disjunct of & separately, BDD-detection avoids constructing
the potentially large intermediate result &.

4 Examples

We compare the performance of BDD-detection to Alagar & Venkatesan’s off-
line detection algorithm [AV97], which (to our knowledge) is the most time-



and space-efficient previously known general-purpose algorithm for detecting
Poss. Their algorithm, which we refer to as DFS-detection, performs a depth-
first-search search of the lattice of CGSs. Their algorithm cleverly exploits the
presence of vector timestamps to avoid storing the set of explored CGSs.

To characterize the performance of a detection algorithm, it is important to
consider cases where ¢ = Poss® holds and cases where it doesn’t. The most
common use of detection algorithms for Poss is to check that an invariant I
holds, by detecting whether the computation satisfies Poss —I. So, we consider
correct and buggy versions of each example protocol.

For each version of each example, we use a simulator to generate a compu-
tation, and then we analyze that computation using both BDD-detection and
DFS-detection. By default, the simulator selects message delays from the distri-
bution p; = 1 + expRand(1), where expRand(u) denotes an exponential distri-
bution with mean p. To measure the sensitivity of the analysis cost to message
latencies, we consider also another (less realistic) distribution, po = expRand(1).

All measurements were made on a SGI Power Challenge with ten 75 MHz
MIPS R8000 CPUs and 2GB RAM. The algorithms we measured are sequential,
so the use of a parallel machine was irrelevant. We use the BDD library developed
by E. M. Clarke’s group at CMU [BDD]. The reported running times are “user
times” obtained from the UNIX time command; thus, they reflect the CPU time
consumed.

For BDD-detection, the variable ordering can affect performance. The overall
variable ordering is xo,1,...,ZN, tdTg,1d21,.. ., idry, where x, denotes the
sequence of binary variables encoding the local state of process p excluding idz,
and excluding variables not mentioned in the predicate being detected, and idz,,
denotes the sequence of binary variables encoding the “index” of the local state.

4.1 Coherence Protocol

We consider a protocol that uses read locks and write locks to provide coherent
access to shared data. The protocol allows concurrent reading of shared data, and
it prevents a process from reading or writing shared data while another process is
writing. Each process repeatedly tries to read or write the implicit shared data.
Before starting to write, a process sends WriteReq to all other processes and
waits for them to reply with WriteOK. On receiving WriteReq, a process replies
immediately with WriteOK unless it is reading or writing or is waiting to write
and had started waiting “before” the WriteReq was sent (as indicated by the
relevant vector timestamps, compared using lexicographic order). If a process
doesn’t reply immediately to a WriteReq, it remembers the request and replies
later. Before starting to read, a process waits for all processes to which it has sent
WriteOK to reply with WriteDone. When a process starts reading or writing, it
sets its timer to a value generated by expRand(4).> When the timer expires, the

% The choice of this distribution is arbitrary, in the sense that correctness of the pro-
tocol does not depend on it.



log(time) log(time)

- o - N w [N 2] = o = N w [N 2]
w T T T T T o T T T T T T
o®
g8 ag
B no 4 o - H u
rt

T 0T

(101d Boj) siemM/SIopeay
1

(101d Boj) 9311 Buuueds

9T

8T
T

0T

Fig. 2. Left: Logarithm of running time of detection algorithms on coherence protocol.
Right: Logarithm of running time of detection algorithms on spanning-tree algorithm.

process stops reading or writing, respectively, and again sets its timer to a value
generated by expRand(4). When the timer expires, the process tries to read or
write (the choice is random) the shared data. The buggy version of the protocol
is the same except that WriteOK is included with every WriteDone.

4.2 Analysis of Coherence Protocol

We use the detection algorithms to find violations of the following invariant ®¢:
when one process is writing, no other process is reading or writing. Formally,

b = \/ \/ wrtg,, A (rdg,, V wrtg,,).
p1EPID py€PID\{p1}

where boolean variables rdg,, and wrtg,, indicate whether process p is reading or
writing, respectively.

To make the computations of the coherence protocol finite, we take the ar-
gument mazlen of the simulator to be 8 V; on average, this lets each process
read or write the shared data twice during a computation. The left graph in
Figure 2 shows log;,(tspp (IV)) and log;,(tprs(N)) for the coherence protocol,
where tgpp (V) and tprs(N) denote the average running times, in seconds, of
BDD-detection and DFS-detection, respectively. The average is over 10 different



seeds of the random number generator; the error bars show the standard devi-
ation. These functions both exhibit exponential growth—mnot surprising, since
the number of CGSs is exponential in N. Nevertheless, for larger values of N,
the difference in the running times of the two procedures is dramatic. For ex-
ample tprs(9)/tepp(9) ~ 433; that is, the BDD algorithm is 433 times faster,
running in about 2.4 minutes, compared to 17 hours. More generally, the ratio
tprs(N)/tepp(IN) increases exponentially with N. This behavior also occurs
with latency distribution pg.

Now consider the buggy coherence protocol. We ignore computations in which
the bug does not manifest itself in a violation of #¢. BDD-detection is again
faster than DFS-detection, though by a smaller margin—for example, by a factor
of 46 at N = 9. The running time of BDD-detection is roughly independent of
whether ¢ = Poss®¢ holds. In contrast, the average running time of DFS-
detection is reduced by a factor of 7 to 10 when ¢ |= Poss $¢ holds, because
DF'S-detection halts as soon as it finds a consistent global state satisfying the
predicate, and with luck, that can happen early in the search.

4.3 Spanning Tree

The following algorithm constructs a spanning tree in a network [Lyn96, Section
15.3]. For convenience, we assume that process 0 always initiates the algorithm
and therefore always becomes the root of the spanning tree. Process 0 initiates
the algorithm by sending its level in the tree (namely, 0) to each of its neighbors
in the network. When a process other than process 0 receives its first message,
it takes the sender of that message as its parent, sets its level to one plus the
level of its parent, and sends its level to each of its neighbors, except its parent.
A process ignores subsequent messages.

To save space in local states, we represent the identity of the parent us-
ing relative coordinates rather than absolute coordinates. For example, in a
(2-dimensional) grid with N processes, we can represent the parent with 2 bits
(0O=left neighbor, 1=upper neighbor, etc.), compared to log, N bits to store a
PID. The type RC corresponds to these relative coordinates. For a process p
and relative coordinate r, PIDofRC(p,r) is the PID of the process with rela-
tive coordinate r with respect to process p. If process q is a neighbor of process
p, then RCofPID(p, q) is the relative coordinate of ¢ with respect to p. Thus,
PIDofRC(p, RCofPID(p, q)) = q.

In the buggy version of the algorithm, process 0 “forgets” to retain its special
role, so it accepts the sender of the first message it receives (if any) as its parent.
If the initial message from process 0 to a neighbor p has a high latency, then p
might receive a message from some other process p; before p receives a message
from process 0. In that case, process p sends a message to process 0, and (because
of the bug) process 0 takes process p as its parent, creating a cycle. To make this
error manifest itself more often, when simulating the spanning tree algorithm,
we always take the latency of messages from process 0 to process 1 to be 5.



4.4 Analysis of Spanning Tree

We use the detection algorithms to find violations of the following invariant @g:
the level of a process is larger than the level of its parent. Formally,

bg = \/ hasParent,, A level, < le'l)elPIDofRC(parentpl)
p1€PID

where boolean variable hasParent, indicates whether process p has gotten a
parent, parent, is the (relative coordinate of) the parent of process p, and level,
is the level of process p in the spanning tree. &g implies absence of cycles.

&g cannot be expressed directly as a boolean formula using the given vari-
ables, because levelPIDoch(parentm) is not a particular variable. So, we use DFS-
detection to detect @5 but use BDD-detection to detect the following logically
equivalent predicate:

Py = V \/ hasParent,, A parent, =ps A levelp, < levely,.
p1EPID p, ePID\{p;}

We analyze computations of this algorithm in a network with a grid topology.
Each row in the grid contains m = |v/N| processes. Each process is connected
to its neighbors in the grid. Thus, process ¢ is connected to processes i — 1 (if
i>0),i+1(fi<N—1),i—m (ifi>m), and i +m (if i < N —m).

The right graph in Figure 2 shows log;,(tgpp(V)) and log,q(tprs(IV)) for
the spanning-tree algorithm. Again, the average is over 10 different seeds of
the random number generator, and the error bars show the standard devia-
tion. BDD-detection is significantly faster for larger values of N; for example,
tprs(20)/tepp(20) ~ 21.2. The ratio tprs(N)/tepp(IN) again increases expo-
nentially with V. This behavior also occurs with latency distribution pg.

For the buggy spanning-tree algorithm, DFS-detection is much faster than
BDD-detection when Poss $g holds and is much slower than BDD-detection
when Poss &g does not hold. The running time of the BDD algorithm is again
roughly independent of whether ¢ = Poss &g holds. In contrast, when Poss &g
holds, DFS-detection is “lucky” and finds a CGS satisfying $¢ very early in the
search: for 4 < N < 20, DFS-detection is approximately 105 times faster when
¢ = Poss &g than when ¢ [~ Poss &5.

We also implemented the spanning-tree algorithm using PIDs rather than
relative coordinates to indicate a process’s parent. The effect on the running
time of DFS-detection is negligible. The memory usage and running time of
BDD-detection increase by roughly the same percentage as the number of bits
per global state (which is the number of variables in the BDD), e.g., for N = 20,
by approximately 20%.

4.5 Memory Usage

BDD-detection uses significantly more memory than DFS-detection, because
DFS-detection never stores any representation of the entire set of CGSs. Let



mppp (V) and mprs(N) denote the memory used by BDD-detection and DFS-
detection, respectively. For the coherence protocol, mppp(IN) grows exponen-
tially with N, to 28.5 MB at N = 9, while mprg(N) is linear in N, growing
to 2.6 MB at N = 9. For the spanning-tree example, the same asymptotic be-
havior occurs, though mppp (V) is much larger in absolute terms. For example,
mupp (20) = 914M B, while mprs(20) = 2.5M B. The memory usage of BDD-
detection can be greatly reduced by variable reordering, as discussed next.

4.6 Effect of Variable Reordering

We also ran BDD-detection using the two variable-reordering methods, called
sift and window3, provided by the BDD package [BDD]. Variables were reordered
once, immediately after construction of globalState,(x, idz) Apda consis.(idz).
According to [BDD], the sift method “generally achieves greater size reductions,
but is slower” than window3. For the coherence protocol, the window method
is preferable, because the increase in running time is smaller (typically a factor
of about 1.5, compared to a factor of about 4 for sift) and, unexpectedly, the
the decrease in memory usage is greater (typically a factor in the range 0.2-0.4,
compared to 0.3-0.5 for sift). For the spanning-tree example, the sift method
is preferable, because the decrease in memory usage is greater (e.g., a factor of
0.05 at N = 9, compared to 0.08 for window) and, unexpectedly, the increase
in running time is smaller (typically a factor of about 6, compared to 9 for
window). For the spanning-tree example, the fractional reduction in memory
usage increases with N.

4.7 Comparing Performance of BDD-detection and BDD-detection0

Predicates & and &/ are disjunctions, so it is interesting to compare procedures
BDD-detection and BDD-detectionQ. For the correct and buggy coherence pro-
tocols, the two procedures have the same the running time and same amount of
memory used, to within 1%. For the spanning-tree algorithm, BDD-detection
is significantly more efficient than BDD-detection0, with benefits that appear
to grow exponentially with V. For example, for N = 12, so BDD-detection is
493 times faster than BDD-detection0 and uses 0.017 as much memory. Further
work is needed to characterize the class of examples for which the optimization
in BDD-detection is effective.

5 Comparison with Symbolic Model Checking for CTL

Detection of Poss @ can be reduced to CTL model checking [CT92]: a computa-
tion is encoded as a transition system whose runs are the histories consistent with
the computation, and a CTL model checker is used to check whether that transi-
tion system satisfies the CTL formula 3o @. With this encoding, an BDD-based
model checker, such as SMV [SMV], would represent sets of CGSs as BDDs,
as we do. However, that approach could still differ appreciably in performance
from our algorithm, because different intermediate BDDs would be constructed.



For example, with our method, the iterative calculations in the construction of
globalState and consis are independent of &. With SMV, the corresponding it-
erative fixed-point calculation used to evaluate 3¢ & depends on @ (roughly, the
effect is as if lines 2 and 4 were swapped in BDD-detection), which might make
the BDDs obtained in each iteration larger. Further experiments are needed to
determine the performance impact of such differences.

References

[AV97] Sridhar Alagar and S. Venkatesan. Techniques to tackle state explosion in
global predicate detection. Submitted to IEEE Transactions on Software En-
gineering, 1997. Preliminary version appeared in International Conference on
Parallel and Distributed Systems (ICPDS’94), pp. 412-417, 1994.

[BDD] The BDD Library (ver. 1.0). http://www.cs.cmu.edu/ modelcheck/bdd.html.

[Bry92] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3), 1992.

[Ct92] E. M. Clarke et al. Automatic verification of sequential circuit design. In
C. A. R. Hoare and M. J. C. Gordon, editors, Mechanized Reasoning and
Hardware Design. Prentice-Hall, 1992.

[CA96] James M. Crawford and Larry D. Auton. Experimental results on the crossover
point in random 3-SAT. Artificial Intelligence, 81(1):31-57, 1996.

[CM9I1] Robert Cooper and Keith Marzullo. Consistent detection of global predicates.
In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, 1991.
Appeared as ACM SIGPLAN Notices 26(12):167-174, December 1991.

[FR94] Eddy Fromentin and Michel Raynal. Local states in distributed computations:
A few relations and formulas. Operating Systems Review, 28(2), April 1994.

[FR97] Eddy Fromentin and Michel Raynal. Inevitable global states: a concept to
detect unstable properties of distributed computations in an observer inde-
pendent way. Journal of Computer and System Sciences, 55(3), Dec. 1997.

[GW94] Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates in
distributed programs. IEEE Transactions on Parallel and Distributed Systems,
5(3):299-307, 1994.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-564, 1978.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed systems. In
M. Corsnard, editor, Proc. International Workshop on Parallel and Distributed
Algorithms, pages 120-131. North-Holland, 1989.

[MN91] Keith Marzullo and Gil Neiger. Detection of global state predicates. In Proc.
5th Int’l. Workshop on Distributed Algorithms (WDAG ’91), volume 579 of
Lecture Notes in Computer Science, pages 254-272. Springer-Verlag, 1991.

[SMV] SMV. http://www.cs.cmu.edu/ modelcheck/smv.html.

[Sto97] Scott D. Stoller. Detecting global predicates in distributed systems with clocks.
In Marios Mavronikolas, editor, Proc. 11th International Workshop on Dis-
tributed Algorithms (WDAG ’97), volume 1320 of Lecture Notes in Computer
Science, pages 185-199. Springer-Verlag, 1997.

[TG93] Alexander I. Tomlinson and Vijay K. Garg. Detecting relational global pred-
icates in distributed systems. In Proc. ACM/ONR Workshop on Parallel and
Distributed Debugging, 1993. ACM SIGPLAN Notices 28(12), December 1993.



