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Abstract

An aggregate array computation is a loop that computes accumulated quantities over ar-
ray elements. Such computations are common in programs that use arrays, and the array
elements involved in such computations often overlap, especially across iterations of loops, re-
sulting in significant redundancy in the overall computation. This paper presents a method and
algorithms that eliminate such overlapping aggregate array redundancies and shows analytical
and experimental performance improvements. The method is based on incrementalization, i.e.,
updating the values of aggregate array computations from iteration to iteration rather than
computing them from scratch in each iteration. This involves maintaining additional values not
maintained in the original program. We reduce various analysis problems to solving inequality
constraints on loop variables and array subscripts, and we apply results from work on array
data dependence analysis. For aggregate array computations that have significant redundancy,
incrementalization produces drastic speedup compared to previous optimizations; when there is
little redundancy, the benefit might be offset by cache effects and other factors. Previous meth-
ods for loop optimizations of arrays do not perform incrementalization, and previous techniques
for loop incrementalization do not handle arrays.

1 Introduction

We start with an example—the local summation problem in image processing: given an n-by-n

image, compute for each pixel 〈i, j〉 the sum sum[i, j] of the m-by-m square with upper left corner

〈i, j〉. The straightforward code (1) takes O(n2m2) time, whereas the optimized code (2) takes

O(n2) time.
for i := 0 to n−m do

for j := 0 to n−m do

sum[i, j] := 0;
for k := 0 to m − 1 do

for l := 0 to m − 1 do

sum[i, j] := sum[i, j] + a[i + k, j + l];

(1)

for i := 1 to n−m do

for j := 1 to n−m do

b[i−1+m, j] := b[i−1+m, j−1]−a[i−1+m, j−1] + a[i−1+m, j−1+m];
sum[i, j] := sum[i−1, j]−b[i−1, j]+b[i−1+m, j];

(2)
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Figure 1: The overlap of the two squares shows the redundancy in the straightforward code (1) for
the local summation problem.

For simplicity, the optimized code (2) does not include initializations of sum and b for array margins;

the complete code (27) appears in Section 6.

Inefficiency in the straightforward code (1) is caused by aggregate array computations (in the

inner two loops) that overlap as array subscripts are updated (by the outer two loops). We call

this overlapping aggregate array redundancy. Figure 1 illustrates this: the horizontally filled square

contributes to the aggregate computation sum[i−1, j], and the vertically filled square contributes

to the aggregate computation sum[i, j]. The overlap of these two squares reflects the redundancy

between the two computations. The optimization for eliminating it requires explicitly capturing

aggregate array computations in a loop body and, as the loop variable is updated, updating the

results of the aggregate computations incrementally rather than computing them from scratch. In

the optimized code (2), sum[i, j] is computed efficiently by updating sum[i−1, j]. Finding such

incrementality is the subject of this paper. It is beyond the scope of previous compiler optimizations.

There are many applications where programs can be written easily and clearly using arrays but

with a great deal of overlapping aggregate array redundancy. These include problems in image

processing, computational geometry, computer graphics, multimedia, matrix computation, list pro-

cessing, graph algorithms, distributed property detection [29], serializing parallel programs [9, 20],

etc. For example, in image processing, computing information about local neighborhoods is com-

mon [24, 37, 62, 64, 66, 67]. The local summation problem above is a simple but typical exam-

ple [64, 66]; it arises, for example, for blurring images, where local neighborhoods are most often

3-by-3, but 5-by-5, 7-by-7, 11-by-11, and larger neighborhoods are also used.

Overlapping aggregate array redundancy can cause severe performance degradation, especially

with the increasingly large data sets that many applications are facing, yet methods for eliminating

overlapping aggregate array redundancy have been lacking. Optimizations similar to incremental-

ization have been studied for various language features, e.g., [7, 16, 33, 46, 47, 48, 50, 51, 58, 65],

but no systematic technique handles aggregate computations on arrays. At the same time, many

optimizations have been studied for arrays, e.g., [1, 2, 3, 4, 5, 21, 28, 30, 35, 39, 57, 60], but none

of them achieves incrementalization.

This paper presents a method and algorithms for incrementalizing aggregate array computa-

tions. The method is composed of algorithms for four major problems: 1) identifying an aggregate

array computation and how its parameters are updated, 2) transforming an aggregate array com-

2



putation into an incremental computation with respect to an update, by exploiting array data

dependence analysis and algebraic properties of the primitive operators, 3) determining additional

values not maintained in the original program that need to be maintained for the incremental-

ization, using a method called cache-and-prune, and 4) forming a new loop using incrementalized

array computations, with any additional values needed appropriately initialized. Both analyti-

cal and experimental results show drastic speedups that are not achievable by previous compiler

optimizations.

Methods of explicit incrementalization [48], cache-and-prune [46], and use of auxiliary informa-

tion [47] were first formulated for a functional language. They have been adopted for optimizing

recursive functions [45, 44] and for optimizing loops with no arrays [42]. The latter generalizes

traditional strength reduction [16, 33]. This paper further extends it to handle programs that use

arrays. It presents a broad generalization of strength reduction from arithmetic operations to ag-

gregate computations in common high-level languages, such as Fortran, rather than to aggregates

in special very-high-level languages, such as SETL [26, 27, 50, 51]. Changes in hardware design

have reduced the importance of strength reduction on arithmetic operations, but the ability to

incrementalize aggregate computations remains essential.

Compared to work on parallelizing compilers, our method demonstrates a powerful alternative

that is both orthogonal and correlated. It is orthogonal, since it speeds up computations running

on a single processor, whether that processor is running alone or in parallel with others. It is cor-

related, since our optimization either allows subsequent parallelization to achieve greater speedup,

or achieves the same or greater speedup than parallelization would while using fewer processors. In

the latter case, resource requirements and communication costs are substantially reduced. Addi-

tionally, for this powerful optimization, we make use of techniques and tools for array dependence

analysis [22, 23, 49, 54, 55] and source-to-source transformation [5, 39, 53, 57] that were developed

for parallelizing compilers.

Comparing the straightforward code (1) with the optimized code (27) in Section 6, one can see

that performing the optimizations by hand is tedious and error-prone. One might not find as many

existing programs that contain straightforward code like (1), because for practical applications,

currently such code must be optimized by hand to avoid severe performance penalties. However,

straightforward code like (1) is preferred over complicated code like (27) for all good programming

principles except performance. A central goal of programming language and compiler research is to

allow programmers to write clear, straightforward programs and still have those programs execute

efficiently. That is exactly the goal of this work.

The rest of this paper is organized as follows. Section 2 covers preliminaries. Sections 3 describes

how to identify and incrementalize aggregate array computations and form incrementalized loops.

Section 4 describes how to maintain additional values to facilitate incrementalization. Section 5

presents the overall optimization algorithm and discusses the cache behavior, space consumption,

code size, and floating-point precision of the optimized programs. Section 6 describes examples and

experimental results. Section 7 compares with related work and concludes.
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2 Preliminaries

This paper considers an imperative language whose data types include multi-dimensional arrays.

The language has variables that can be array references (a[e1, . . . , en], where a is an array variable,

and subscripts e1, . . . , en are integer-valued expressions). To reduce clutter, we use indentation

to indicate syntactic scopes and omit begin and end. We use the following code as a running

example.

Example 2.1 Given an n1-by-n2 array a, the following code computes, for each row i in the

n1-dimension, the sum of the m-by-n2 rectangle starting at position i. It takes O(n1n2m) time.

for i := 0 to n1 − m do

s[i] := 0;
for k := 0 to m − 1 do

for l := 0 to n2 − 1 do

s[i] := s[i] + a[i + k, l];

(3)

The basic idea of our method is illustrated using this example as follows. Note that the example

computes, for each i from 0 to n1 − m,

s[i] =
m−1
∑

k=0

n2−1
∑

l=0

a[i + k, l],

but, for each i from 1 to n1 − m − 1,

s[i + 1] =
m−1
∑

k=0

n2−1
∑

l=0

a[i + 1 + k, l] = s[i] −
n2−1
∑

l=0

a[i, l] +
n2−1
∑

l=0

a[i + m, l].

Thus, we can compute s[i + 1] from s[i] by subtracting the sum of one row and adding the sum of

another row, instead of summing m rows. We can further improve the running time by storing and

using also the sum of each row, i.e.,
n2−1
∑

l=0

a[i, l]

for each i from 0 to n1 − 1, and computing each s[i + 1] by summing a single row and performing

a subtraction and an addition.

Our primary goal is to reduce the running time, by storing and reusing appropriate, possibly

additional, values. Because maintaining additional values takes extra space, our secondary goal is

to reduce the space consumption, by storing only values that are useful for speeding up subsequent

computations.

We use a[.i.] to denote a reference of array a that contains variable i in a subscript. We use

e(a1, . . . , am) to denote an expression e that contains array references a1, . . . , am. We use t[x := e]

to denote t with each occurrence of x replaced with e.

3 Incrementalizing aggregate array computations

We first show how to identify aggregate array computations and determine how the parameters they

depend on are updated. We then show how to incrementalize aggregate array computations with
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respect to given updates, by exploiting properties of the functions involved. Finally, we describe

how to transform a loop with aggregate array computations in the loop body into a new loop with

incrementalized aggregate array computations in the loop body.

3.1 Identifying candidates

Candidates for optimizations are in nested loops, where inner loops compute accumulated quantities

over array elements, and outer loops update the variables that the array subscripts depend on.

Definition 3.1 An aggregate array computation (AAC) is a loop that computes an accumulated

quantity over array elements. The canonical form of an AAC is

for i := e1 to e2 do v := f(v, e(a[.i.])); (4)

where e1 and e2 are expressions, f is a function of two arguments, and throughout the loop, v is a

variable (which may be an array reference) that refers to a fixed memory location and is updated

only with the result of f , and the values of variables (array reference or not) other than a[.i.] on

which e depends remain unchanged. An initial assignment to v may be included in an AAC; the

value of v immediately before the loop is the starting value of the AAC.

The existence of four items in the loop body identifies an AAC. First, an accumulating variable—

v—a variable that holds the accumulated quantity. This variable may itself be an array reference

whose subscripts depend only on variables defined outside the loop. Second, a contributing array

reference—a[.i.]—an array reference whose subscripts depend on the loop variable i. Third, a

contributing expression—e—an expression that contains the contributing array references but not

the accumulating variable. Fourth, an accumulating function—f—a function that updates the

accumulating variable using the result computed by the contributing expression.

More generally, an AAC may contain multiple for-clauses, multiple assignments, and multiple

array references. We use the above form only to avoid clutter in the exposition of the algorithms.

Extending the algorithms to allow these additional possibilities is straightforward; the extensions

are demonstrated through the examples.

The essential feature of an AAC A is that a set of computations on array elements are per-

formed using the contributing expression, and their results are accumulated using the accumulating

function. We characterize this set by the contributing set S(A), which describes the ranges of the

subscripts of the contributing array references. For an AAC of the form (4), the contributing set

is S(A) = {e(a[.i.]) : e1 ≤ i ≤ e2}. More generally, for an AAC A with contributing expression

e(a1, . . . , am),

S(A) = {e(a1, . . . , am) : R}, (5)

where R is the conjunction of the constraints defined by the ranges of all the loop variables of A.

For simplicity, we consider only AACs whose contributing array references a1, . . . , am together refer

to distinct tuples of array elements for distinct values of the AAC’s loop variables.

Example 3.1 For the code (3), the loop on k and the loop on l each forms an AAC; we denote

them as Ak and Al, respectively. For both of them, s[i] is the accumulating variable, a[i+k, l] is the
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contributing array reference and the contributing expression, and f(v, u) = v+u. The contributing

sets are
S(Ak) = {a[i + k, l] : 0 ≤ k ≤ m−1 ∧ 0 ≤ l ≤ n2 −1},
S(Al) = {a[i + k, l] : 0 ≤ l ≤ n2 −1}.

Definition 3.2 A parameter of an AAC A is a variable used in A but defined outside A. A

subscript update operation (SUO) for A is an update to a parameter of A on which the subscripts

of the contributing array references depend. A SUO for a parameter w is denoted ⊕w; in contexts

where it is irrelevant to the discussion which parameter is being considered, we simply write ⊕.

The parameters that a SUO can update include variables in the subscript expressions of the con-

tributing array reference as well as variables in the range expressions for the loop variable.

The heart of our approach is incrementalization of an AAC with respect to a SUO. We consider

only updates to parameters that are loop variables of loops enclosing the AAC. Since we omitted

specification of step size from for-loops, it is implied that the update operation for each parameter

is the operation “increment by 1”. It is straightforward to deal with updates in a more general

way.

Example 3.2 For Ak in the code (3), variables i, m, n2 are its parameters, and the update ⊕i is

a SUO. For Al in the code (3), i, k, n2 are its parameters, and the updates ⊕i and ⊕k are SUOs.

An AAC A and a SUO ⊕w together form a problem of incrementalization. We use A⊕w to

denote A with parameter w symbolically updated by ⊕w. For example, if A is of the form (4), w is

the loop variable of a loop enclosing A, and the update operation is “increment by 1”, then A⊕w is

for i := e⊕w
1

to e⊕w
2

do
v⊕w := f(v⊕w , e(a[.i.]⊕w));

(6)

where for any t, t⊕w abbreviates t[w := w + 1].

Example 3.3 For Ak in the code (3) and update ⊕i, A⊕i

k is simply

s[i + 1] := 0;
for k := 0 to m − 1 do

for l := 0 to n2 − 1 do

s[i + 1] := s[i + 1] + a[i + 1 + k, l];

(7)

3.2 Incrementalization

Incrementalization aims to perform an AAC A incrementally as its parameters are updated by a

SUO ⊕. The basic idea is to replace with corresponding retrievals, wherever possible, subcomputa-

tions of A⊕ that are also performed in A and whose values can be retrieved from the saved results

of A. To consider the effect of a SUO on an AAC, we consider 1) the ranges of the subscripts of the

array references on which the contributing function is computed and 2) the algebraic properties of

the accumulating function. These two aspects correspond to the following two steps.
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The first step computes the differences between the contributing sets of A and A⊕. These

differences are denoted
decS(A,⊕) = S(A) − S(A⊕),
incS(A,⊕) = S(A⊕) − S(A).

(8)

Any method for computing such set differences can be used. Since this most often involves solving

integer linear constraints, we first transform each of the contributing sets into a form that constrains

the array subscripts explicitly based on the subscript expressions and the ranges of loop variables.

Then we use the methods and tools developed by Pugh et al. in the Omega project [54, 55] to

simplify the constraints.

This method is embodied in the following algorithm. It first transforms both given sets by

introducing fresh variables to capture subscripts of the array references and adding existential

quantifiers to the loop variables. It then simplifies the constraints given by the difference of two

such transformed sets. Finally, it puts the simplified subscripts into the original contributing array

references, together with simplified constraints about the simplified subscripts.

Algorithm 3.1 (Difference of contributing sets)

Input: Two contributing sets S1 = {e(a11, . . . , a1m) : R1} and S2 = {e(a21, . . . , a2m) : R2}.

Output: The set difference S1 − S2.

1. Transform set S1 and S2, each of the form {e(a1, . . . , am) : R}, into sets T1 and T2, respectively,

each of a form that constrains the array subscripts explicitly.

1.1. Let ek1, . . . , eknk
be the subscripts of ak for k = 1..m.

1.2. Let vk1, . . . , vknk
be a set of fresh variables for k = 1..m.

1.3. Let i1, . . . , ij be the loop variables constrained by R.

1.4. Form the set

{〈v11, . . . , v1n1
〉 . . . 〈vm1, . . . , vmnm〉 : ∃〈i1, . . . , ij〉

∧

k=1..m

∧

l=1..nk
vkl = ekl ∧ R} (9)

2. Simplify T1 − T2, using Omega, to {〈v′
11

, . . . , v′
1n1

〉 . . . 〈v′m1
, . . . , v′mnm

〉 : R′}.

3. Return {e(a′
1
, . . . , a′m) : R′} where a′k = ak[ek1 := v′k1

, . . . , eknk
:= v′knk

] for k = 1..m.

Example 3.4 For the code (3), consider incrementalizing Ak with respect to ⊕i, where S(Ak) is

as in Example 3.1, and

S(A⊕i

k ) = {a[i + 1 + k, l] : 0 ≤k ≤m−1 ∧ 0 ≤ l≤ n2 −1}.

The set differences are computed as follows:

1. Transform S(Ak) and S(A⊕i

k ) into the following sets T1 and T2 respectively:

T1 = {〈v1, v2〉 : ∃〈k, l〉 v1 = i + k ∧ v2 = l ∧
0 ≤ k ≤ m −1 ∧ 0 ≤ l ≤ n2 −1},

T2 = {〈v1, v2〉 : ∃〈k, l〉 v1 = i + 1 + k ∧ v2 = l ∧
0 ≤ k ≤ m −1 ∧ 0 ≤ l ≤ n2 −1},
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2. Simplify T1 − T2 and T2 − T1 using Omega:

T1 − T2 = {〈v1, v2〉 : v1 = i ∧ 0 ≤ v2 ≤ n2 −1}
= {〈i, l〉 : 0 ≤ l ≤ n2 −1},

T2 − T1 = {〈v1, v2〉 : v1 = i + m ∧ 0 ≤ v2 ≤ n2 −1}
= {〈i + m, l〉 : 0 ≤ l ≤ n2 −1}.

3. Return the differences in contributing sets:

decS(Ak,⊕i) = {a[i, l] : 0 ≤ l ≤ n2 −1},

incS(Ak,⊕i) = {a[i + m, l] : 0 ≤ l ≤ n2 −1}.
(10)

The second step in incrementalizing an AAC with respect to a SUO uses the properties of the

accumulating function to determine how a new AAC can be performed efficiently by updating the

result of the old AAC. The goal is to update the result of A by removing the contributions from

decS(A,⊕) and inserting the contributions from incS(A,⊕) in an appropriate order.

We order the elements of a contributing set S(A) by the order they are used in the loops of

A. The elements of decS(A,⊕) and incS(A,⊕) are ordered in the same way as those in S(A) and

S(A⊕), respectively. Let first(S) and last(S) denote the first and last element, respectively of S;

for example, last(decS(Ak,⊕i)) is a[i, n2 −1] and first(incS(Ak,⊕i)) is a[i+m, 0]. We say that a

subset S′ of S is at the end of S if the elements in S ′ are after the elements in S − S ′; for example,

incS(Ak,⊕i) is at the end of A⊕i

k , but decS(Ak,⊕i) is not at the end of Ak.

We remove contributions from decS(A,⊕) only if it is not empty. To remove contributions, we

require that the accumulating function f have an inverse f−1 with respect to its second argument,

satisfying f−1(f(v, c), c) = v. If decS(A,⊕) is not at the end of A or incS(A,⊕) is not at the

end of A⊕, then we also require that f be associative and commutative. Finally, if A and A⊕

have different starting values, then we also require that f have an inverse and be associative and

commutative. If these three requirements are satisfied, then A⊕ of the form (6) can be transformed

into an incrementalized version of the form

v⊕ := f(f−1(v, v0), v
⊕

0
);

for i := last(decS(A,⊕)) downto first(decS(A,⊕)) do
v⊕ := f−1(v⊕, e(a[.i.]));

for i := first(incS(A,⊕)) to last(incS(A,⊕)) do
v⊕ := f(v⊕, e(a[.i.]));

(11)

where v contains the result of the previous execution of A, v0 and v⊕
0

are the starting values of A

and A⊕, respectively, and i is a re-use of the loop variable of the outermost loop in A. If A and

A⊕ have the same starting value, then the initial assignment in (11) is simply v⊕ := v. If f is

not associative or not commutative, in which case decS(A,⊕) must be at the end of A, then the

contributions from the elements of decS(A,⊕) must be removed from v in the opposite order from

which they were added; this is why downto is used in (11).

The structure of the code in (11) is schematic; the exact loop structure needed to iterate

over decS(A,⊕) and incS(A,⊕) depends on the form of the simplified constraints in them, which

depends on the ranges of the loops in A and on subscripts in the contributing array references.

If the loop bounds and array subscripts are affine functions of the loop variables of A and the
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variable updated by ⊕, then the constraints can be simplified into a set of inequalities giving upper

and lower bounds on these variables; using Omega’s code generation facility, these inequalities are

easily converted into loops that iterate over decS(A,⊕) and incS(A,⊕). When the size of the set

decS(A,⊕) or incS(A,⊕) is zero, the corresponding for-loop can be omitted; when the size is a

small constant, the corresponding for-loop can be unrolled.

Example 3.5 For the running example, consider incrementalizing A⊕i

k in (7), based on the set

difference computed in (10). Since + has an inverse −, and since + is associative and commutative,

we obtain the following incrementalized AAC:

s[i + 1] := s[i];
for l := n2 − 1 downto 0 do

s[i + 1] := s[i + 1] − a[i, l];
for l := 0 to n2 − 1 do

s[i + 1] := s[i + 1] + a[i + m, l];

(12)

The transformation from (6) to (11) is worthwhile only if the total cost of (11) is not larger

than the total cost of (6). The costs of f and f−1 and the sizes of the contributing sets together

provide good estimates of the total costs.

First, consider the asymptotic time complexity. If f−1 is asymptotically at least as fast as f , and

|decS(A,⊕)| + |incS(A,⊕)| is asymptotically less than |S(A⊕)| (these quantities are all functions

of the size of the input), then the transformed code (11) is asymptotically faster than the original

code (6). For the running example, this condition holds, since f and f−1 are both constant-time,

|decS(Ak,⊕i)| + |incS(Ak,⊕i)| is O(n2), and |S(A⊕i

k )| is O(n2m).

Asymptotic time complexity is an important but coarse metric; statements about absolute

running time are also possible. If f−1 is at least as fast as f in an absolute sense, and if

|decS(A,⊕)| + |incS(A,⊕)| is less than |S(A⊕)|, then the transformed code is faster than the

original code in an absolute sense. For the running example, this condition holds when m > 2.

This speedup is supported by our experiments: the optimized program is consistently faster than

the unoptimized program by a factor of m/2 or slightly more.

Given an AAC A and a SUO ⊕w, the following algorithm is used to incrementalize A with

respect to ⊕w.

Algorithm 3.2 (Incrementalization of A with respect to ⊕w)

1. Obtain A⊕w from A by symbolically updating w.

2. Compute the contributing sets S(A) and S(A⊕w).

3. Compute decS(A,⊕w) and incS(A,⊕w), using Algorithm 3.1.

4. If 1) decS(A,⊕w) = ∅, or f has an inverse, 2) decS(A,⊕w) is at the end of A and incS(A,⊕w) is

at the end of A⊕, or f is associative and commutative, 3) A and A⊕ have the same starting values,

or f has an inverse and is associative and commutative, and 4) the condition on complexity holds,

then construct an incremental version of A⊕w , of the form (11).

3.3 Forming incrementalized loops

To use incrementalized AACs, we transform the original loop. The basic algorithm is to unroll the

first iteration of the original loop to form the initialization and, in the loop body for the remaining

9



iterations, replace AACs with incremental versions. While incrementalized AACs are formulated

to compute values of the next iteration based on values of the current iteration, we use them to

compute values of the current iteration based on values of the previous iteration. This requires a

straightforward modification. For the particular SUO ⊕w that is “increment by 1”, we just replace

w by w − 1.

Example 3.6 For the running example, using the incrementalized AAC in (12), we obtain the

following code, which takes O(n1n2) time and no additional space.

init using
Ak in (3)

with i = 0

for-clause

inc using
(12) with

i dec 1







s[0] := 0;
for k := 0 to m − 1 do

for l := 0 to n2 − 1 do

s[0] := s[0] + a[k, l];
for i := 1 to n1 − m do











s[i] := s[i − 1];
for l := n2 − 1 downto 0 do

s[i] := s[i] − a[i − 1, l];
for l := 0 to n2 − 1 do

s[i] := s[i] + a[i − 1 + m, l];

(13)

4 Maintaining additional values

Additional values often need to be maintained for efficient incremental computation [46, 47]. These

values often come from intermediate results computed in the original computation [46]. They may

also come from auxiliary information that is not computed at all in the original computation [47].

The central issues are how to find, use, and maintain appropriate values.

General methods have been proposed and formulated for a functional language [46, 47]. Here

we apply them to AACs, using a variant of the cache-and-prune method [46]. We proceed in

three stages: I) transform the code for AACs to store all intermediate results and related auxiliary

information not stored already, II) incrementalize the resulting AACs from one iteration to the

next based on the stored results, and III) prune out stored values that were not useful in the

incrementalization.

4.1 Stage I: Caching results of all AACs

We consider saving and using results of all AACs. This allows greater speedup than saving and

using results of primitive operations.

After every AAC, we save in fresh variables the intermediate results that are not saved already,

e.g., the result of Al in (3). Since we consider AACs that are themselves performed inside loops, we

must distinguish intermediate results obtained after different iterations. To this end, for each AAC

A, we introduce a fresh array variable subscripted with loop variables of all the loops enclosing A,

and we add an assignment immediately after A to copy the value of the accumulating variable into

the corresponding element of the fresh array. For the example of Al in the code (3), we introduce a

fresh array s1 and add s1[i, k] = s[i] after Al. We can see that, for each k = 0..m− 1, s1[i, k] stores

the value computed by AAC Al in iteration k starting with the value in s1[i, k − 1], or 0 if k = 0.
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The values computed by Al’s in the code (3) can be stored in a related class of auxiliary infor-

mation to better facilitate incrementalization. This class of auxiliary information can be introduced

if the accumulating function f is associative and has a zero element 0 (i.e., f(v, 0) = f(0, v) = v).

In this case, we save in a fresh array values of the AAC starting from 0, rather than storing accumu-

lated intermediate results, i.e., we add an assignment before the AAC to initialize the fresh array

variable to 0, accumulate values computed in AAC into the fresh variable instead of the original

accumulating variable, and add an assignment after the AAC to accumulate the value of the fresh

variable into the original accumulating variable.

Example 4.1 For the code (3), storing such auxiliary information yields the following code that,

for each value of k, accumulates separately in s1[i, k] the sum computed by Al starting from 0, and

then accumulates that sum into the accumulating variable s[i]:

s[i] := 0;
for k := 0 to m − 1 do

s1[i, k] := 0;
for l := 0 to n2 − 1 do

s1[i, k] := s1[i, k] + a[i + k, l];
s[i] := s[i] + s1[i, k];

(14)

Essentially, this class of auxiliary information is obtained by chopping intermediate results into

independent pieces based on the associativity of g. These values are not computed at all in the

original program and thus are called auxiliary information. It helps reduce the analysis effort in

later stages, since the value of an aggregate computation is directly maintained rather than being

computed as the difference of two intermediate results of the larger computation.

An optimization at this stage that helps simplify analyses in later stages and reduce the space

consumed by the additional values is to avoid generation of redundant subscripts for the fresh arrays.

Redundancies arise when the same value is computed in multiple iterations and therefore stored in

multiple array entries. We detect such redundancies as follows. Let w̄ be the subscript vector of the

fresh array for an AAC A, i.e., w̄ is the tuple of the loop variables of all loops enclosing A. We define

two tuples w̄1 and w̄2 to be equivalent for A (denoted ≡A) if they lead to the same contributing

set, hence to the same auxiliary information, i.e., w̄1 ≡A w̄2 iff S(A)[w̄ := w1] = S(A)[w̄ := w̄2].

Example 4.2 For Al in (14), we have

〈i1, k1〉 ≡Al
〈i2, k2〉 iff ({a[i1+k1, l] : 0≤ l≤n2 −1} =

{a[i2+k2, l] : 0≤ l≤n2 −1})
iff (i1 + k1 = i2 + k2).

(15)

We exploit this equivalence by observing that the simplified expression for ≡A is always of the form

w̄1 ≡A w̄2 iff (e1[w̄ := w̄1] = e1[w̄ := w̄2]) ∧ · · · ∧
(eh[w̄ := w̄1] = eh[w̄ := w̄2])

(16)

for some expressions e1, . . . , eh. This implies that the values of e1, . . . , eh together distinguish the

equivalence classes of ≡A, so we can take the fresh array to be h-dimensional and use e1, . . . , eh as

its subscripts.
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Example 4.3 For Al in (14), the equivalence ≡Al
in (15) is of the form (16) with h = 1 and

e1 = i + k, so we take s1 to be a 1-dimensional array with subscript i + k, obtaining the extended

AAC
s[i] := 0;
for k := 0 to m − 1 do

s1[i + k] := 0;
for l := 0 to n2 − 1 do

s1[i + k] := s1[i + k] + a[i + k, l];
s[i] := s[i] + s1[i + k];

(17)

The auxiliary information now occupies O(n1 + m) space, compared to O(n1m) space in (14).

4.2 Stage II: Incrementalization

In general, we want to perform all AACs in an iteration efficiently using stored results of the

previous iteration. This is done by keeping track of all AACs in the loop body with the accumulating

variables that store their values. As a basic case, we avoid performing AACs whose values have

been computed completely in the previous iteration. We incrementalize other AACs using the

algorithms in Section 3.2. AACs whose values can not be computed incrementally using stored

results of the previous iteration are computed from scratch as in the original program.

For a conceptually simpler transformation, different AACs may be separated by splitting a loop

into multiple loops. This separation is not strictly necessary for the implementation.

Example 4.4 Incrementalize the code (17) with respect to ⊕i. The code (17) contains AAC Al,

with accumulating variable s1[i + k] and contributing set {a[i + k, l] : 0 ≤ l ≤ n2 −1}, for each

k = 0..m−1, and AAC Ak, with accumulating variable s[i] and contributing set {s1[i + k] : 0 ≤ k ≤

m −1}. They may be separated explicitly, yielding:

for k := 0 to m − 1 do

s1[i + k] := 0;
for l := 0 to n2 − 1 do

s1[i + k] := s1[i + k] + a[i + k, l];
s[i] := 0;
for k := 0 to m − 1 do

s[i] := s[i] + s1[i + k];

First, we avoid performing Al for values of k that have been performed in the previous iteration.

So we only need to compute Al whose accumulating variable is in the set difference {s1[i+1+k] :

0 ≤ k ≤ m−1} − {s1[i+k] : 0 ≤ k ≤ m−1} = {s1[i+m]}, as follows:

s1[i + m] := 0;
for l := 0 to n2 − 1 do

s1[i + m] := s1[i + m] + a[i + m, l];

Then, we incrementalize Ak with respect to ⊕i. We have

decS(Ak,⊕i) = {s1[i + k] : 0 ≤ k ≤ m−1} − {s1[i + 1 + k] : 0 ≤ k ≤ m−1}
= {s1[i]},

incS(Ak,⊕i) = {s1[i + 1 + k] : 0 ≤ k ≤ m−1} − {s1[i + k] : 0 ≤ k ≤ m−1}
= {s1[i+m]}.

Both sets have size 1, so we unroll the loops over them and obtain

s[i + 1] := s[i] − s1[i] + s1[i + m];
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Putting the two parts together, we obtain the following incrementalized code for (17) with respect

to ⊕i.
s1[i + m] := 0;
for l := 0 to n2 − 1 do

s1[i + m] := s1[i + m] + a[i + m, l];
s[i + 1] := s[i] − s1[i] + s1[i + m];

(18)

4.3 Stage III: Pruning

Some of the additional values saved in Stage I might not be useful for the incrementalization in

Stage II. Stage III analyzes dependencies in the incrementalized computation and prunes out useless

values and the associated computations.

The analysis starts with the uses of such values in computing the original accumulating variables

and follows dependencies back to the definitions that compute such values. The dependencies are

transitive [46] and can be used to compute all the values that are useful. Pruning then eliminates

useless data and code, saving space and time.

Example 4.5 In the code (18), computing s[i + 1] uses s1[i] and s1[i + m]. Therefore, a simple

dependence analysis determines that incrementally computing s[1] through s[n1 − m] uses s1[0]

through s1[n1 −1], so no saved additional values are pruned.

4.4 Forming incrementalized loops

The incrementalized loop is formed as in Section 3.3, but using the AACs that have been extended

with useful additional values.

Example 4.6 From the code in (17) and its incremental version in (18) that together compute

and maintain useful additional values, we obtain the following optimized code, which takes O(n1n2)

time and O(n1) additional space.

init
using
(17)
with
i = 0

for-clause

inc using
(18) with

i dec 1















s[0] := 0;
for k := 0 to m − 1 do

s1[k] := 0;
for l := 0 to n2 − 1 do

s1[k] := s1[k] + a[k, l];
s[0] := s[0] + s1[k];

for i := 1 to n1 − m do






s1[i− 1+m] := 0;
for l := 0 to n2 − 1 do

s1[i−1+m] := s1[i−1+m]+a[i−1+m, l];
s[i] := s[i−1] − s1[i−1] + s1[i−1+m];

(19)

Compared with the code in (13), this code eliminates a constant factor of 2 in the execution time

and thus is twice as fast. Our experimental results support this speedup.

5 The overall algorithm and improvements

The overall optimization algorithm aims to incrementalize AACs in every loop of a program.
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Algorithm 5.1 (Eliminating overlapping aggregate array redundancies)

Consider nested loops from inner to outer and, for each loop L encountered, perform Steps 1-5.

1. Let w denote the loop variable of L. Identify all loops in the body of L that are AACs and for

which ⊕w is a SUO, as defined in Section 3.1.

2. Extend the AACs identified in Step 1 to save in fresh variables appropriate additional values

not saved already, as described in Section 4.1.

3. Incrementalize all AACs obtained from Step 2 with respect to ⊕w, as described in Sections 4.2

and 3.2.

4. Prune saved additional values that are not useful for the incrementalization in Step 3, as de-

scribed in Section 4.3.

5. If the incrementalized AACs after Step 4 are faster than the original AACs, form an incremen-

talized loop for L using the incrementalized AACs, as described in Sections 4.4 and 3.3.

This algorithm is restricted by the requirements on AACs and SUOs in Step 1 and the conditions

for incrementalization in Step 3. Since we use Omega in constraint simplification and code gener-

ation, loop bounds and array subscripts in an AAC must be affine functions of the loop variables

of the AAC and the variable updated by the SUO.

This algorithm may be expensive on deeply nested loops, but it is fully automatable, and a

number of optimizations can make it more efficient. In particular, Step 1 needs to consider only

AACs whose contributing array references depend on the loop variable of L. Also, since we consider

nested loops from inner to outer, Step 2 only needs to consider saving results of AACs outside of

loops considered already.

This algorithm can scale well since it considers only expensive AACs and updates to their

parameters. These AACs and updates may be scattered through large programs but are localized

in nested loops that are typically separate from each other. Separately incrementalizing these AACs

with respect to the updates in large programs does not blow up the complexity.

Even if only scattered AACs are optimized, the overall speedup may be large, because typically

small fragments of a program, all in loops, account for the majority of its running time [8, 40].

5.1 Speedup

The amount of speedup depends on many factors, including the amount of redundancy in the

unoptimized code, the size of additional values maintained in the optimized code, the optimizations

done by the compiler, and the machine’s cache size.

As analyzed at the end of Section 3.2, incrementalization reduces the number of redundant

operations by a factor of |S(A⊕)| over |decS(A,⊕)|+ |incS(A,⊕)|, which can be asymptotic. When

no additional values are maintained, the speedup of the optimized code over the unoptimized code

is determined by this factor, and this is confirmed by our experiments.

However, since incremental computation accesses array elements differently and may use addi-

tional space, the running times may also be affected by cache behavior and compiler optimizations.

Cache behavior of the optimized code may degrade at rare boundary cases, as discussed below in

Section 5.4. Parallelizing compiler optimizations may benefit the unoptimized code more because
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it has less computation dependency. The optimized program is faster overall when the factor of

redundancy reduction is not dominated by these other factors.

The analysis at the end of Section 3.2 currently does not consider these other factors. Never-

theless, in all our experiments with all the examples, the analysis correctly predicted performance

improvements for all except one case: the image local neighborhood problem (for which relatively

many additional values are maintained), at the boundary case of m = 3 when both relatively small

cache and the compiler’s highest optimization level are used.

5.2 Maintaining additional values and space consumption

Maintaining additional values for incremental computation leads to increased space consumption.

Pruning helps reduce such space, but can we do better? Is there an alternative to cache-and-prune,

and what are the trade-offs?

First, more sophisticated pruning might reduce the additional space consumption. For example,

a more powerful analysis may determine for the code (18) that after each s[i] is computed, all s1[0]

through s1[i − 1] will no longer be needed, and therefore an array that keeps only s1[i] through

s1[i − 1 + m] is needed. Based on this analysis result, a more sophisticated transformation may

replace the array s1 of size n1 with an array of size m and use a rotating index computed using the

modulo operation to access the elements. Details of the analysis and transformation are a subject

for further study.

Another approach is to use selective caching instead of cache-and-prune. The idea is to deter-

mine what additional values to cache based on what is needed for incremental computation. In

particular, for AACs whose accumulating function is associative and has a zero element zero, we

may determine what to cache by incrementalizing A⊕ just as in Section 3 except that, instead

of (11), we form the following incrementalized version:

v⊕ := f(f−1(v, v0), v
⊕

0
);

v⊕
1

:= zero;
for i := first(decS(A,⊕)) to last(decS(A,⊕)) do

v⊕
1

:= f(v⊕
1

, e(a[.i.]));
v⊕
2

:= zero;
for i := first(incS(A,⊕)) to last(incS(A,⊕)) do

v⊕
2

:= f(v⊕
2

, e(a[.i.]));
v⊕ := f(f−1(v⊕, v⊕

1
), v⊕

2
);

(20)

and thus exposing additional AACs whose values (in fresh variables v⊕

1
and v⊕

2
) are useful for

the incremental computation. Caching and reusing the values of these additional AACs will yield

optimized programs similar to those in Section 4, i.e., having the same asymptotic running times.

Interestingly, alternative caching and incrementalization methods may yield programs having

different space consumption or absolute running times. For example, for the image local neigh-

borhood problem, applying our overall algorithm as in Section 6.2 yields an optimized program

that performs four ±’s per pixel and caches n2 sums of local rows; more powerful pruning could

reduce the space from n2 to mn. Suppose we use selective caching with powerful pruning, then if

we optimize inner loops first as in our overall algorithm, we could obtain an optimized program
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that caches n sums of local columns for one row of the image and performs four ±’s per pixel; if

we optimize outer loops first, we could obtain an optimized program that caches only two sums of

local rows but performs six ±’s per pixel. Optimizing outer loops first while using cache-and-prune

yields the same program as optimizing inner loops first since what’s cached remains the same.

5.3 Code size

In general, there may be multiple AACs and possibly other computations in the body of an original

loop. Our overall algorithm handles this. A remaining problem is, if the body of the original loop

contains many other computations and is large, then unrolling the first iteration of the loop to form

the final optimized program may increase the code size by the size of the loop body. To remedy

this, one can move computations that are independent of AACs into a separate loop. For this

separate loop, there is no need to unroll the first iteration.

For expensive AACs, incrementalization may still increase the code size. It is possible sometimes

to exploit special initial values and algebraic properties of the computations involved so as to fold

the first iteration back into the loop body, as done in [12, 42]. In general, code size might have

to increase. In fact, it is exactly the optimization studied in this paper that allows a programmer

to write the original program that is much more succinct and clearer than the optimized program

that must perform much more complex initializations and incremental computations and that he

or she would otherwise need to write manually to achieve the desired efficient computation.

5.4 Cache behavior

In the incremental version (11), variable v⊕ is repeatedly accessed for incremental updates. When

variable v, and thus v⊕, is an array reference, these repeated accesses are to a memory location

and result in unfavorable memory and cache behavior. This problem can easily be solved by using

a temporary variable, say r, in place of v⊕ in (11) and assigning r to v⊕ at the end of (11). The

resulting register-variant version allows a compiler to allocate r in a register, avoiding repeated

accesses of v⊕ in the memory. This optimization can also be done with general scalar replacement

techniques [13].

Still, incremental computation accesses array elements differently and may use additional space.

How does this affect cache behavior? It is easy to see that, while incrementalization eliminates

redundant computation, it also eliminates redundant data accesses and reduces the total number of

data accesses, even though it may use additional space. This generally preserves or improves cache

locality, and the improvements are often significant. The only exception is when pruning is not

powerful enough to eliminate unnecessary space consumption, or when all three of the following

conditions hold simultaneously: 1) all elements of the contributing set of an AAC just fit into

the cache, 2) incremental computation needs to remove contributions from elements before the

contributing set, and 3) subsequent computations need to access all elements in the contributing

set. These three conditions together only cause slightly worse cache behavior at rare points. These

reasons explain the increases in cache misses in the sequence local average example in Section 6.3,

whereas in the partial sum and image local neighborhood (except for very small m) examples in

Sections 6.1 and 6.2, respectively, cache misses are significantly reduced.
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Even in the rare cases where cache misses increase, the optimized programs may still be sig-

nificantly faster because of the large number of operations saved. Section 6 reports running times

and cache misses for both the original and optimized versions of example programs. The measured

cache misses are also consistent with the results of exact static cache analysis [14] applied by Erin

Parker to some of our examples.

5.5 Floating-point precision

Our optimization uses an exact inverse f−1 when decS(A,⊕) 6= ∅. If the computations involve

floating-point numbers, this might be computed only approximately, and thus the optimized pro-

gram might produce less accurate results than the original program. Inaccuracies also arise in

other optimizations that re-organize loops, but inaccuracies caused by incrementalization are easy

to remedy.

Basically, since incremental computation of AACs is performed in each iteration of a loop,

inexact removal of contributions from decS(A,⊕) in each iteration causes inaccuracies to accumulate

gradually over iterations. Thus, to keep inaccuracies within an allowed range, one can simply

compute AACs from scratch periodically in selected iterations.

To determine how often AACs should be computed from scratch, an analysis is needed. It can

be based on work on analyzing precision of floating-point computation [36]. An easy, conservative

analysis could simply sum the maximum possible inaccuracies that are accumulated over the itera-

tions and compute the maximum number of iterations after which the inaccuracies are still within

allowed errors. Recent results on analyzing precision for programs that use loops [32] might help

do the analysis both accurately and automatically.

6 Examples and experimental results

The following examples and performance results show the speedups obtained by our optimization.

We also show measurements for cache misses and floating-point errors.

The overall optimization algorithm, plus a method for selective caching, is implemented in a

prototype system. The examples can be optimized automatically using the system. The imple-

mentation uses the Synthesizer Generator [56] and Omega [54]. Synthesizer Generator is used to

implement the interfaces and the algorithms described in this paper. Omega is used for simpli-

fying inequality constraints on loop variables and array subscripts and for generating loops from

simplified constraints. The system consists of 3900 lines of code, mostly in SSL, the Synthesizer

Generator language for specifying editors, and the rest in STk, a dialect of Scheme as part of the

Synthesizer Generator Scripting Language, and C. The system supports source language syntax of

several languages, including C and Fortran, for a subset that involves loops and arrays; this was

easily implemented thanks to the Synthesizer Generator.

Graphs illustrating the behavior of the original and optimized code were created by running

programs implemented in the C subset of C++. The programs were run on arrays whose elements

were floating-point numbers between 0 and 1. An Athlon XP 1600+ running at 1364 MHz with

a 64 KB L1 data cache and a 64 KB exclusive L2 data cache were used, on a computer equipped
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with 1 gigabyte of RAM, running Debian GNU/Linux with the 2.4.18 Linux kernel. The programs

were compiled using g++ 3.1.1, with the optimization flag -O3, the highest documented level of

optimization. All array and register variables were declared to be of 64-bit precision, but the actual

calculations were performed by the FPU that uses 80-bit precision. Each program for each input

size was run on 5 different arrays of data, and the means of the measurements are reported.

Where running times are given, CPU times in seconds are reported. The timers used had a

natural precision of 10 milliseconds, so in some cases (the partial sum example) the optimized

program was placed inside a loop that caused it to be repeated 20 times, and the total time for the

loop was divided by 20; cache misses for each of the 20 times are roughly the same. Cache misses

were measured using the performance monitoring counters on the Athlon to tally the number of

L1 data cache misses. The performance monitoring counters were accessed using the perfctr patch

applied to the Linux kernel. Cache measurements were taken on an actual system and thus may

include some error introduced by context switching. No actions were taken to initialize the cache.

Floating-point relative error [36] was obtained by taking the results of the original and optimized

implementations, summing the absolute difference element-wise, and dividing by the total sum of

all the elements in the result array created by the unoptimized program.

Besides the examples below, we also found AACs in a number of other programs. One is a

real-time application for vibration testing in mechanical engineering [41] and consists of 664 lines

of Fortran code. All four of the large expensive do-loops are AACs similar to the sequence local

average example below, and each of them can be improved to be about five times faster.

Although the examples below use only 1- or 2-dimensional arrays, the same optimization method

applies just as well to 3- and higher-dimensional computations. For example, consider blurring a

3-dimensional space. Essentially, incrementalization is done one dimension at a time, from inner

to outer loops in the program. Specifically, incrementalization with respect to an increment in

one dimension essentially replaces each 3-dimensional local neighborhood computation with two

2-dimensional local neighborhood computations. Incrementalization of these 2-dimensional compu-

tations with respect to increments in the two remaining dimensions is similar to incrementalization

for the image local neighborhood example.

6.1 Partial sum

Partial sum is a simple illustrative example. Given an array a[0..n−1] of numbers, for each index i

from 0 to n−1 (in the outer for-clause), compute the sum of elements 0 to i (in the inner for-loop).

The straightforward code (21) takes O(n2) time.

for i := 0 to n−1 do

s[i] := 0;
for j := 0 to i do

s[i] := s[i] + a[j];

(21)

This straightforward code can be optimized using our algorithm. First, consider the inner loop.

Its loop body does not contain any AACs. Now, consider the outer loop. Step 1. Its loop body

contains an AAC Aj , where s[i] is the accumulating variable, and its loop increment is a SUO ⊕i.

Step 2. No additional values need to be saved. Step 3. decS(A,⊕i) = ∅ and incS(A,⊕i) = {a[i+1]}.

Thus, the computation of s[i + 1] is incrementalized by accumulating to the value of s[i] the only
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Figure 2: Running times for partial sum. Running time for the optimized code grows roughly
linearly from 0.04 to 3.36 milliseconds. Running time for the unoptimized code grows from 0.038
to 55.614 seconds.

contribution a[i + 1]. We obtain s[i + 1] := s[i] + a[i + 1]. Step 4. Pruning leaves the code

unchanged. Step 5. Initializing s[0] to a[0] and forming the rest of the loop for i = 1..n−1, we

obtain the code (22). This optimized code takes only O(n) time.

s[0] := a[0];
for i := 1 to n−1 do

s[i] := s[i−1] + a[i];
(22)

Running times for the unoptimized version (21) and the optimized version (22) are plotted in

Figure 2. It shows that the rate of increase of the optimized program is very small. Figure 3 shows

similar improvements in cache misses. Figure 4 shows the relative error of the results. The error

is introduced by a compiler optimization to the unoptimized version that keeps the intermediate

value of s[i] in an 80-bit floating-point register and omits converting it to the specified 64 bits, and

error accumulates as n increases. When g++ was given an option to force these conversions in the

unoptimized version, no error was found.

6.2 Image local neighborhood

This problem was introduced in Section 1. We show that applying our optimization algorithm to

the straightforward code (1) yields the efficient code (2) with appropriate initializations of the array

margins.

First, consider the innermost loop Ll on l. There is no AAC in its body. Then, consider the

loop Lk on k. Its loop body Ll is an AAC Al, and its loop increment is a SUO ⊕k. Array analysis

yields decS(Al,⊕k) = S(Al) and incS(Al,⊕k) = S(A⊕k

l ), so incrementalization is not worthwhile.

The algorithm leaves the code unchanged.
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Figure 3: Cache misses for partial sum. Cache misses for the optimized code grows roughly linearly
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Figure 4: Relative error for partial sum.
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Next, consider the loop Lj on j. Step 1. Its loop body contains two AACs, Al and Ak, and its

loop increment is a SUO ⊕j . Step 2. Since the accumulating function + is associative, saving the

values of Al in an array b yields a new loop body

sum[i, j] := 0;
for k := 0 to m−1 do

b[i+k, j] := 0;
for l := 0 to m−1 do

b[i+k, j] := b[i+k, j] + a[i+k, j+l];
sum[i, j] := sum[i, j] + b[i+k, j];

(23)

Step 3. Incrementalizing Al in the body of the loop on k with respect to ⊕j , we have decS(Al,⊕j) =

{a[i+k, j]} and incS(Al,⊕j) = {a[i+k, j+m]}. Incrementalizing Ak with respect to ⊕j , we have

decS(Ak,⊕j) = S(Ak) and incS(Ak,⊕j) = S(A
⊕j

k ), so incrementalization is not worthwhile. We

obtain
sum[i, j+1] := 0;
for k := 0 to m−1 do

b[i+k, j+1] := b[i+k, j] − a[i+k, j] + a[i+k, j+m];
sum[i, j+1] := sum[i, j+1] + b[i+k, j+1];

(24)

Step 4. Pruning (24) leaves the code unchanged. Step 5. Initialize using (23) with j = 0 and form

loop for j = 1..n−m using (24) as loop body. We obtain

init
using
(23)
with

j = 0

for-clause

inc using
(24) with

j dec 1















sum[i, 0] := 0;
for k := 0 to m−1 do

b[i+k, 0] := 0;
for l := 0 to m−1 do

b[i+k, 0] := b[i+k, 0] + a[i+k, l];
sum[i, 0] := sum[i, 0] + b[i+k, 0];

for j := 1 to n−m do










sum[i, j] := 0;
for k := 0 to m−1 do

b[i+k, j] := b[i+k, j−1]−a[i+k, j−1]
+a[i+k, j−1+m];

sum[i, j] := sum[i, j] + b[i+k, j];

(25)

Finally, consider the outermost loop Li. Step 1. Its loop body is now (25); the first half

contains the AACs Ak and Al, and the second half contains, in the body of the loop on j, the

incrementalized AAC of b[i + k, j] and the AAC Ak′ of sum[i, j] by the loop over k. Its loop

increment is a SUO ⊕i. Step 2. No additional values need to be saved. Step 3. Incrementalize

AACs in (25) with respect to ⊕i. In the first half of the code, only Al in {b[i+m, 0]} needs to be

computed; also, decS(Ak,⊕i) = {b[i, 0]} and incS(Ak,⊕i) = {b[i+m, 0]}. In the second half, in the

body of the loop on j, only Ak′ in {b[i+m, j]} needs to be computed; also, decS(Aj ,⊕i) = {b[i, j]}

and incS(Aj ,⊕i) = {b[i+m, j]}. We obtain

b[i+m, 0] := 0;
for l := 0 to m−1 do

b[i+m, 0] := b[i+m, 0] + a[i+m, l];
sum[i+1, 0] := sum[i, 0] − b[i, 0] + b[i+m, 0];
for j := 1 to n−m do

b[i+m, j] := b[i+m, j−1]−a[i+m, j−1]
+a[i+m, j−1+m];

sum[i+1, j] := sum[i, j] − b[i, j] + b[i+m, j];

(26)
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Step 4. Pruning (26) leaves the code unchanged. Step 5. Initialize using (25) with i = 0 and form

loop for i = 1..n−m using (26) as loop body. We obtain the optimized code in (27). Starred lines

correspond to the code in (2); other lines perform array margin initialization, mostly incrementally

also.

init
using
(25)
with
i = 0

for-clause

inc
using
(26)
with

i dec 1

































sum[0, 0] := 0;
for k := 0 to m−1 do

b[k, 0] := 0;
for l := 0 to m−1 do

b[k, 0] := b[k, 0] + a[k, l];
sum[0, 0] := sum[0, 0] + b[k, 0];

for j := 1 to n−m do

sum[0, j] := 0;
for k := 0 to m−1 do

b[k, j] := b[k, j−1]−a[k, j−1] + a[k, j−1+m];
sum[0, j] := sum[0, j] + b[k, j];

for i := 1 to n−m do ?




















b[i−1+m, 0] := 0;
for l := 0 to m−1 do

b[i−1+m, 0] := b[i−1+m, 0] + a[i−1+m, l];
sum[i, 0] := sum[i−1, 0]−b[i−1, 0]+b[i−1+m, 0];
for j := 1 to n−m do ?

b[i−1+m, j] := b[i−1+m, j−1]−a[i−1+m, j−1]
+a[i−1+m, j−1+m]; ?

sum[i, j] := sum[i−1, j]−b[i−1, j]+b[i−1+m, j]; ?

(27)

The cost analysis in incrementalization steps (24) and (26) ensures that the transformations are

worthwhile when m > 2. In the resulting code (27), only four ± operations are performed for each

pixel, independent of m. Thus, the optimized code takes O(n2) time.

Figures 5 and 6 show the running times and cache misses, respectively, for the unoptimized

version (1) and the optimized version (27) when m = 20. Both measures confirm with the constant-

factor improvements when a fixed factor based on m is eliminated. They also show that the rate of

improvements for cache misses is smaller. The cache misses are reduced because AACs that sum

m2 array elements are replaced with two pairs of ±’s where each pair accesses two elements that

are only m + 1 positions apart. Figure 7 shows the relative error for m = 20. The error goes up

gradually, as expected.

The effects of the optimization are also illustrated through measurements for n = 2000 and

varying m. Figure 8 shows that, as m increases, the running time of the unoptimized code in-

creases quadratically, while the optimized program’s running time remains constant, as expected.

Figure 9 shows that the number of cache misses increases mostly linearly first and then faster for

the unoptimized code, but it remains nearly a constant for the optimized version. Finally, Figure 10

does not show any sort of simple correlation between m and the relative error. It seems that the

error has a bound but it cycles and its period and amplitude increase; we hope that future work

will help explain this precisely.

6.3 Sequence local average

Sequence local average is commonly used in sequence processing, for example, in computing 100-

day stock averages and in taking averages of sampled data. Given an array a[0..n−1] of numbers,

for each index i from 0 to n−k (in the outer for-clause), compute the sum of elements i to i+k− 1
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(in the inner for-loop). The straightforward code (21) takes O(nk) time.

for i := 0 to n−k do

s := 0;
for j := i to i+k−1 do

s := s + a[j];
ave[i] := s/k;

(28)

The above code can be optimized using our algorithm as follows. First, consider the inner

loop. Its loop body does not contain any AACs. Now, consider the outer loop. Step 1. Its loop

body contains an AAC Aj , where s is the accumulating variable, and its loop increment is a SUO

⊕i. Step 2. Save the values of Aj in an array s indexed by i, yielding the same body of the

loop over i except with each occurrence of s replaced by s[i]. Step 3. decS(A,⊕i) = {a[i]} and

incS(A,⊕i) = {a[i+k]}. We obtain the incrementalized AAC s[i+1] := s[i]−a[i]+a[i+k]. Step 4.

Pruning leaves the code unchanged. Step 5. Initialize s[0] using the body of the outer loop except

with i replaced by 0 and s replaced by s[0], and form the rest of the loop for i = 1..n−1 using the

incrementalized AAC, we obtain the code (29). The optimized code takes only O(n) time.

s[0] := 0;
for j := 0 to k−1 do

s[0] := s[0] + a[j];
ave[0] := s[0]/k;
for i := 1 to n−k do

s[i] := s[i−1] − a[i−1] + a[i−1+k];
ave[i] := s[i]/k;

(29)

This optimized code takes O(n) extra space to store the value of s[i]. Using a more powerful

pruning method, as discussed in Section 5.2, even a degenerate version, or using selective caching,

also as discussed in Section 5.2, we could obtain a further optimized program that is exactly as

in (29) except with all occurrences of s[0] and s[i] replaced with s and therefore uses no extra space.

We call this the further pruned version.

Running times for the unoptimized version (28) and the optimized version (29) are plotted in

Figures 11 and 14, for k = 1000 and for n = 20000 + k, respectively. Figure 11 shows that the

running time of the optimized code is extremely small when n is small. Figure 14 shows that the

running time does not increase when k is increased.

Figure 12 shows cache misses of unoptimized, optimized, and further pruned version for k = 1000

and varying n. The cache behavior of the optimized version is actually worse than that of the

unoptimized version, due to the use of array s to store cached values, but the cache behavior of

the further pruned version is basically identical to the unoptimized version. Note that even though

the optimized version has more cache misses than the unoptimized version, the optimized program

runs much faster, as shown in Figure 11.

Figure 15 shows cache misses for varying k and n = 20000 + k. For the unoptimized code, the

number of misses stays small until k reaches 4000, after which the amount of memory accessed to

compute each average exceeds the cache size, causing increasingly more cache misses; the irregularity

in the extra cache misses appears to be the effect of a particular cache replacement strategy. For

the optimized code, the number of cache misses remains basically constant except for the periodic

spikes; it is larger than for the unoptimized code initially due to the use of the extra array s. We
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Figure 11: Running time for sequence local average with k=1000.

think that the periodic spikes are from loading chunks of memory into the cache: with three arrays

interfering with one another, the misses add up periodically. For the further pruned version, the

number of cache misses is smallest and stays constant except for the slight increase after k = 4000;

it might be larger than for the unoptimized for one value of k slightly above 4000, but this effect

is so small and rare that we did not observe in our experiments.

Figure 13 shows that the relative error in the result increases with n, i.e., the error accumulates,

as expected. Figure 16 shows no correlation between the value of k and the relative error.

7 Related work and conclusion

The basic idea of incrementalization is at least as old as Babbage’s difference machine [31]. Strength

reduction is the first realization of this idea in optimizing compilers [16, 33]. The idea is to com-

pute certain multiplications in loops incrementally using additions. This work extends traditional

strength reduction from arithmetic operations to aggregate array computations. Comparison with

our other work on incrementalization [43] appears in Section 1.

Finite differencing generalizes strength reduction to handle set operations in very-high-level

languages like SETL [19, 26, 27, 51]. The idea is to replace aggregate operations on sets with

incremental operations. Similar ideas are used in the language INC [65], which allows programs to

be written using operations on bags, rather than sets. Our work exploits the semantics underlying

finite differencing to handle aggregate computations on arrays, which are more common in high-level

languages and are more convenient for expressing many application problems.

APL compilers optimize aggregate array operations by performing computations in a piece-wise

and on-demand fashion, avoiding unnecessary storage of large intermediate results in sequences of

operations [28, 35, 63]. The same basic idea underlies techniques such as fusion [3, 4, 15, 30, 60],
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deforestation [59], and transformation of series expressions [61]. These optimizations do not aim

to compute each piece of the aggregate operations incrementally using previous pieces.

Specialization techniques such as data specialization, run-time specialization and code genera-

tion, and dynamic compilation and code generation [17, 52] have been used in program optimizations

and achieved certain large speedups. These optimizations allow subcomputations repeated on fixed

dynamic values to be computed once and reused in loops or recursions. Our optimization exploits

subcomputations whose values can be efficiently updated, in addition to directly reused, from one

iteration to the next.

General program transformations [11, 38] can be used for optimization, as demonstrated in

projects like CIP [6, 10]. In contrast to such manual or semi-automatic approaches, our optimiza-

tion of aggregate array computations is fully automatable and requires no user intervention or

annotations. Our method for maintaining additional values is an automatic method for strength-

ening loop invariants [18, 34].

Directionals are unary operations, such as LEFT and UP, invented by Fisher and Highnam [24,

25, 37], to describe computations involving small numbers of neighboring nodes on grid structures.

Such computations are optimized by rule-based transformations and common subexpression elimi-

nation, which essentially eliminate overlapping subcomputations. Their experiments show that the

Cray Fortran compiler cannot perform these optimizations. Since local computations are written

using directionals but no loops, their optimizations can potentially exploit more associativities than

ours. Their work has also limitations. They optimize only computations involving a small number

of neighbors, not other overlapping computations, such as those in the partial sum example. Also,

programs must be written using directionals to take advantage of their optimizations; this is incon-

venient when more than a few neighbors are involved. Finally, they do not give general methods

for handling grid margins.

Loop reordering [5, 39, 57], pipelining [2], and array data dependence analysis [22, 23, 49, 54, 55]
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have been studied extensively for optimizing—in particular, parallelizing—array computations.

While they aim to determine dependencies among uses of array elements, we further seek to de-

termine exactly how subcomputations differ from one another. We reduce our analysis problem to

symbolic simplification of constraints on loop variables and array subscripts, so methods and tech-

niques developed for such simplifications for parallelizing compilers can be exploited. In particular,

we have used tools developed by Pugh’s group [54, 55]. Interestingly, ideas of incrementalization

are used for optimizations in serializing parallel programs [9, 20].

In conclusion, this work describes a method and algorithms that allow more drastic optimiza-

tions of aggregate array computations than previous methods. Our techniques fall out of one general

approach, optimization by incrementalization [43], rather than simply being yet another new but

ad hoc method. Applying incrementalization allows us to study important issues of programming

cost, program performance, and trade-offs among running time, space consumption, code size, and

cache behavior more explicitly and precisely than before. Future work includes improved analyses

for costs and tradeoffs, and optimizations for more general classes of aggregate computations.

Acknowledgment

We would like to thank Erin Parker and Sid Chatterjee for applying their exact cache analysis

to some of our examples, which suggested the improvements described in the first paragraph of

Section 5.4 and which helped us understand the effect of our optimization on cache.

References

[1] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations for locality enhancement of

imperfectly-nested loop nests. International Journal of Parallel Programming, 29(5):493–544, Oct.
2001.

[2] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. ACM Comput. Surv.,

27(3):366–432, Sept. 1995.

[3] F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In R. Rustin, editor, Design and
Optimization of Compilers, pages 1–30. Prentice-Hall, 1971.

[4] J. R. Allen. Dependence Analysis for Subscripted Variables and Its Application to Program Transfor-
mations. PhD thesis, Rice University, 1983.

[5] U. Banerjee. Unimodular transformations of double loops. In Proceedings of the Workshop on Advances
in Languages and Compilers for Parallel Processing, pages 192–219, Aug. 1990.
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