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Models of Transactions

Chapter 19
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Structuring Applications 

• Many applications involve long transactions 
that make many database accesses

• To deal with such complex applications 
many transaction processing systems 
provide mechanisms for imposing some 
structure on transactions
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Flat Transaction

• Consists of:
– Computation on local variables 

• not seen by DBMS; hence will be 
ignored in most future discussion

– Access to DBMS using call or 
statement level interface

• This is transaction schedule; commit 
applies to these operations

• No internal structure
• Accesses a single DBMS
• Adequate for simple applications

begin transaction
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…..

commit
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Flat Transaction

• Abort causes the 
execution of a program 
that restores the 
variables updated by the 
transaction to the state 
they had when the 
transaction first accessed 
them.

begin transaction
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…..

if condition then abort

commit
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Some Limitations of Flat 
Transactions

• Only total rollback (abort) is possible
– Partial rollback not possible

• All work lost in case of crash

• Limited to accessing a single DBMS

• Entire transaction takes place at a single 
point in time

6

Providing Structure Within a 
Single Transaction
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Savepoints

• Problem: Transaction detects condition that 
requires rollback of recent database changes 
that it has made

• Solution 1: Transaction reverses changes 
itself

• Solution 2: Transaction uses the rollback 
facility within DBMS to undo the changes
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Savepoints

• Rollback to spi causes database updates subsequent to creation 
of spi to be undone

– S2 and S3 updated the database (else there is no point 
rolling back over them)

• Program counter and local variables are not rolled back

• Savepoint creation does not make prior database changes 
durable (abort rolls all changes back)

begin transaction
S1;
sp1 := create_savepoint();
S2;
sp2 := create_savepoint();
S3;
if (condition) {rollback (sp1); S5};
S4;  

commit

Call to DBMS
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Example of Savepoints

• Suppose we are making airplane 
reservations for a long trip
– London-NY   NY-Chicago  Chicago-Des Moines

• We might put savepoints after the code that made 
the London-NY and NY-Chicago reservations

• If we cannot get a reservation from Chicago to 
Des Moines, we would rollback to the savepoint 
after the London-NY reservation and then perhaps 
try to get a reservation through St Louis
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Distributed Systems: Integration 
of Legacy Applications

• Problem: Many enterprises support multiple
legacy systems doing separate tasks
– Increasing automation requires that these systems be 

integrated

Billing
Application

Inventory 
Application

DBMS 2

DBMS 1
withdraw part
return part
stock level 

order part
payment

Site B

Site C
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Distributed Transactions
• Incorporate transactions at multiple servers into a 

single (distributed) transaction
– Not all distributed applications are legacy systems; 

some are built from scratch as distributed systems

tx_begin;
order_part;
withdraw_part;
payment;

tx_commit;

DBMS 1

DBMS 2

Inventory
Application

Billing
Application

Site A

Site B

Site C
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Distributed Transactions

• Goal: distributed transaction should be ACID
– Each subtransaction is locally ACID (e.g., local 

constraints maintained, locally serializable)
– In addition the transaction should be globally ACID

• A: Either all subtransactions commit or all abort
• C: Global integrity constraints are maintained
• I:  Concurrently executing distributed transactions are 

globally serializable
• D: Each subtransaction is durable 
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Banking Example

• Global atomicity - funds transfer
– Either both subtransactions commit or neither does 

tx_begin; 

withdraw(acct1);  

deposit(acct2);  

tx_commit;
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Banking Example (con’t)

• Global consistency -
– Sum of all account balances at bank branches = 

total assets recorded at main office
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Banking Example (con’t)

• Global isolation - local serializability at each site 
does not guarantee global serializability
– post_interest subtransaction is serialized after audit

subtransaction in DBMS at branch 1 and before audit
in DBMS at branch 2 (local isolation), but

– there is no global order

post_interest audit
time 
↓ sum balances at branch 1;

post interest at branch 1;
post interest at branch 2;   

sum balances at branch 2;
16

Exported Interfaces

tx_begin;����� ���	��
 � � 
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tx_commit;

DBMS 1

DBMS 2

site A

site B

site C

subtransaction

subtransaction

Local system might export an interface for executing 
individual SQL statements.

Alternatively, the local system might export an interface
for executing subtransactions.

17

Multidatabase

• Set of databases accessed by a distributed 
transaction is referred to as a multidatabase (or 
federated database)
– Each database retains its autonomy and might support 

local (non-distributed) transactions

• Multidatabase might have global integrity 
constraints
– e.g., Sum of balances of individual bank accounts at all 

branch offices = total assets stored at main office

18

Transaction Hierarchy

• A distributed transaction invokes subtransactions.
• General model: one distributed transaction might 

invoke another as a subtransaction, yielding a 
hierarchical structure

Distributed transactions



4

19

Models of Distributed Transactions

• Can siblings execute 
concurrently?

• Can parent execute concurrently 
with children? 

• Who initiates commit?

Hierarchical Model: No concurrency among subtransactions, root 
initiates commit

Peer Model: Concurrency among siblings and between parent and 
children, any subtransaction can initiate commit

20

Distributed Transactions

• Transaction designer has little control over 
the structure. Decomposition fixed by 
distribution of data and/or exported 
interfaces (legacy environment)

• Essentially a bottom-up design

21

Nested Transactions

• Problem: Lack of mechanisms that allow:
– a top-down, functional decomposition of a 

transaction into subtransactions
– individual subtransactions to abort without 

aborting the entire transaction

• Although a nested transaction looks similar 
to a distributed transaction, it is not
conceived of as a tool for accessing a 
multidatabase

22

Characteristics of Nested Transactions

• (1) Parent can create children to 
perform subtasks; children might 
execute sequentially or concurrently; 
parent waits until all children 
complete (no communication 
between parent and children).

•  (2) Each subtransaction (together with its descendants) is 
isolated with respect to each sibling (and its descendants). 
Hence, siblings are serializable, but order is not determined 
and nested transaction is non-deterministic. 
• (3) Concurrent nested transactions are serializable.
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Characteristics of Nested Transactions

• (4) A subtransaction is atomic.  It can 
abort or commit independently of other 
subtransactions.  Commit is conditional
on commit of parent (since child task is a 
subtask of parent task).  Abort causes 
abort of all subtransaction’s children.

• (5) Nested transaction commits when root  commits.  At 
that point updates of committed subtransactions are made 
durable.

24

Nested Transaction - Example

C

C C

A

C/A A

C

C C

Booking a flight from 
London to Des Moines 

L -- DM

L -- NY NY -- DM

NY -- Chic -- DM NY -- StL -- DM

NY -- Chic Chic -- DM NY -- StL StL -- DM

concurrent

sequential

concurrent

C = commit
A = abort

stop in Chicago stop in St. Louis
concurrent



5

25

Nested Transactions

isolation
isolation

parent of all 
nested transactions

isolation

concurrent
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Characteristics of Nested 
Transactions

• (6) Individual subtransactions are not necessarily 
consistent, but nested transaction as a whole is 
consistent

27

Structuring to Increase 
Transaction Performance

• Problem: In the models previously discussed, a 
transaction generally locks items it accesses and holds 
locks until commit time to guarantee serializabiltiy

– This eliminates bad interleavings, but limits concurrency and 
hence performance

acquire lock on x                     release lock on x

↓ ↓
T1:  r(x:12) .. compute .. w(x:13) commit

T2:                 request read(x)               r(x:13) ..compute.. w(x:14) .. 
↑ ↑

(wait) acquire lock on x
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Example - Switch Sections

Move(s1, s2)

L2 TestInc(s2)                                                   Dec(s1)

L1 Sel(t2)      Upd(t2)                                          Upd(t1)

L0 Rd(p2)      Rd(p2)   Wr(p2)                        Rd(p1)  Wr(p1)

time

transaction moves
student from section
s1 to section s2,
uses TestInc, Dec

Section abstr.

Tuple abstr.

Page abstr.

enrollments
stored in tuples
t1 and t2

tuples stored 
in pages
p1 and p2

29

Structuring into Multiple 
Transactions

30

Chained Transactions

• Problem 1 (trivial): Invoking 
begin_transaction at the start of each 
transaction involves communication 
overhead

• With chaining, a new transaction is started 
automatically for an application program 
when the program commits or aborts the 
previous one
– This is the approach taken in SQL
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Chained Transactions

begin transaction
S1

commit
S2

begin transaction
S3

commit

S2 not included in a
transaction since it
has no db operations

begin transaction
S1

commit
begin transaction
S2
S3

commit

Equivalent since
S2 does not access
the database

S1
commit
S2
S3

commit

Chaining
equivalent

transaction
starts
implicitly

32

Chained Transactions
• Problem 2: If the system crashes during the 

execution of a long-running transaction, 
considerable work can be lost 

• Chaining allows a transaction
to be decomposed into sub-
transactions with intermediate
commit points

•    Database updates are made
durable at intermediate points
=> less work is lost in a crash

S1;
commit;
S2;

commit;
S3;

commit;

S1
S2
S3

commit

=>

33

Example

• Chaining compared with savepoints:
– Savepoint:  explicit rollback to arbitrary savepoint;  all 

updates lost in a crash

– Chaining:  abort rolls back to last commit; only the 
updates of the most recent transaction lost in a crash

S1; -- update recs 1 - 1000
commit;
S2;  -- update recs 1001 - 2000
commit;
S3;  -- update recs 2001 - 3000
commit;

34

Chaining Considerations -
Atomicity

• Transaction as a whole is not atomic.  If 
crash occurs
– DBMS cannot roll the entire transaction back 

• Initial subtransactions have committed, 
– Their updates are durable 
– The updates might have been accessed by other 

transactions (locks have been released)

– Hence, the application must roll itself forward

35

Chaining Considerations -
Atomicity

• Roll forward requires that on recovery the application 
can determine how much work has been committed
– Each subtransaction must tell successor where it left off

• Communication between successive subtransactions 
cannot use local variables (they are lost in a crash)
– Use the database to communicate between subtransactions

r(rec_index:0);
S1; -- update records 1 - 1000
w(rec_index:1000);   -- save index of last record updated
commit; 
r(rec_index:1000);    -- get index of last record updated
S2;          -- update records 1001 – 2000
w(rec_index:2000);
commit; 36

Chaining Considerations

• Transaction as a whole is not isolated. 
– Database state between successive subtransactions might 

change since locks are released (but performance improves)

• Subtransactions might not be consistent
– Inconsistent intermediate states visible to concurrent 

transactions during execution or after a crash  

subtransaction 1                                                subtransaction 2

T1:  r(x:15)…w(x:24)… commit                                 r(x:30)…
T2:                                             …w(x:30)…commit
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Alternative Semantics for 
Chaining

S1;

chain;

S2;

chain;

S3;

commit;

• Chain commits the transaction (makes it durable) and 
starts a new transaction, but does not release locks
– Individual transactions do not have to be consistent

– Recovery is complicated (as before); rollforward  required

– No performance gain
38

A Problem With Obtaining 
Atomicity With Chaining

• Suppose we use the first semantics for chaining
– Subtransactions give up locks when they commit

• Suppose that after a subtransaction of a transaction 
T makes its changes to some item and commits
– Another transaction changes the same item and 

commits
– T would then like to abort
– Based on our usual definition of chained transactions, 

atomicity cannot be achieved because of the committed 
subtransactions
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Partial Atomicity

• Suppose we want to achieve some measure 
of atomicity by undoing the effects of all 
the committed subtransactions when the 
overall transaction wants to abort

• We might think we can undo the updates 
made by T by just restoring the values each 
item had when T started  (physical logging)
– This will not work

40

An Example

T1: Update(x)1,1 commit1,1 …                   abort1

T2:                                      Update(x) commit

If, when T1 aborts, we just restore the value of x to 
the value it had before T1 updated it, T2’s update 
would be lost

41

Compensation

• One approach to this problem is compensation
• Instead of restoring a value physically, we restore 

it logically by executing a compensating 
transaction
– In the student registration system,  a Deregistration

subtransaction compensates for a successful
Registration subtransaction

– Thus Registration increments the Enrollment attribute 
and Deregistration decrements that same attribute

• Compensation works even if some other concurrent 
Registration subtransaction has also incremented Enrollment

42

Sagas: An Extension To Chained 
Transactions That Achieves 

Partial Atomicity
• For each subtransaction, STi,j in a chained 

transaction, Ti a compensating transaction, CTi is  
designed

• Thus if a transaction T1 consisting of 5 chained 
subtransactions aborts after the first 3 
subtransactions have committed, then

ST1,1ST1,2ST1,3CT1,3CT1,2CT1,1

will perform the desired compensation
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Sagas and Atomicity

• With this type of compensation, when a 
transaction aborts, the value of every item it 
changed is eventually restored to the value 
it had before that transaction started

• However, complete atomicity is not 
guaranteed
– Some other concurrent transaction might have 

read the changed value before it was restored to 
its original value

44

Declarative Transaction 
Demarcation

• We have already talked about two ways in 
which procedures can execute within a 
transaction
– As a part of the transaction

• Stored procedure

– As a child in a nested transaction

45

Declarative Transaction 
Demarcation  (con’t)

• Two other possible ways
– The calling transaction  is suspended, and a new 

transaction is started.   When it completes the first 
transaction continues

• Example: The called procedure is at a site that charges for its 
services and wants to be paid even if the calling transaction 
aborts

– The calling transaction is suspended, and the called 
procedure executes outside of any transaction.  When it 
completes the first transaction continues

• Example: The called procedure accesses a non-transactional 
file system

46

Declarative Transaction 
Demarcation  (con’t)

• One way to implement such alternatives is 
through declarative transaction 
demarcation
– Declare in some data structure, outside of any 

transaction, the desired transactional behavior

– When the procedure is called, the system 
intercepts the call and provides the desired 
behavior

47

Implementation of Declarative 
Transaction  Demarcation

• Declarative transaction demarcation is 
implemented within J2EE and .NET
– We discuss J2EE (.NET is similar)

• The desired transactional behavior of each 
procedure is declared as an attributed in a 
separate file called the deployment 
descriptor

48

Transaction Attributes

• Possible attributes (in J2EE) are
– Required
– RequiresNew
– Mandatory
– NotSupported
– Supports
– Never

• The behavior for each attribute depends on 
whether or not the procedure is called from within 
a procedure
– All possibilities are on the next slide
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Exception 
Thrown

Transaction Not 
Started

Never

Executes Within 
the Transaction

Transaction Not 
Started

Supports

Transaction 
Suspended

Transaction Not 
Started

NotSupported

Executes Within 
the Transaction

Exception 
Thrown

Mandatory

Starts a New 
Transaction

Starts a New 
Transaction

RequiresNew

Executes Within 
the Transaction

Starts a New 
Transaction

Required

In a 
Transaction

Not in a 
Transaction

Attribute of Called 
Method

Status  of Calling Method

All Possibilities 50

Description of Each Attribute

• Required:
– The procedure must execute within a 

transaction
• If called from outside a transaction, a new 

transaction is started

• If called from within a transaction, it executes 
within that transaction

51

Description (con’t)

• RequiresNew:
– Must execute within a new transaction

• If called from outside a transaction, a new 
transaction is started

• If called from within a transaction, that transaction 
is suspended and a new transaction  is started.   
When that transaction completes, the first 
transaction resumes

– Note that this semantics is different from nested 
transactions.  In this case the commit of the  new 
transaction is not conditional.

52

Description (con’t)

• Mandatory:
– Must execute within an existing transaction

• If called from outside a transaction, an exception is 
thrown

• If called from within a transaction, it executes 
within that transaction

53

Description (con’t)

• NotSupported:
– Does not support transaction

• If called from outside a transaction, a transaction is 
not started

• If called from inside a transaction, that transaction is 
suspended until the procedure completes after which 
the transaction resumes
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Description (con’t)

• Supports:
– Can execute within or not within a transaction, 

but cannot start a new transaction
• If called from outside a transaction, a transaction is 

not started

• If called from inside a transaction, it executes within 
that transaction
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Description (con’t)

• Never:
– Can never execute within a transaction

• If called from outside a transaction, a new 
transaction is not started

• If called from within a transaction, an exception is 
thrown

56

Example

• The Deposit and Withdraw transactions in 
a banking application would have attribute 
Required.
– If called to perform a deposit, a new transaction 

would be started

– If called from within a Transfer transaction to 
transfer money between accounts, they would 
execute within that transaction

57

Advantages

• Designer of individual procedures does not  have 
to know the transactional context in which the 
procedure will be used

• The same procedure can be used in different 
transaction contexts
– Different attributes are specified for each different 

context

• We discuss J2EE in more detail and how 
declarative transaction demarcation is 
implemented in J2EE in the Architecture chapter.

58

Multilevel Transactions

• A multilevel transaction is a nested set of 
subtransactions.  
– The commitment of a subtransaction is 

unconditional, causing it to release its locks, but

– Multilevel transactions are atomic and their 
concurrent execution is serializable

59

Multilevel Transactions

• Data is viewed as a sequence of increasing, 
application oriented, levels of abstraction  

• Each level supports a set of abstract objects 
and abstract operations (methods) for 
accessing  those objects

• Each abstract operation is implemented as a 
transaction using the abstractions at the next 
lower level

60

Example - Switch Sections

Move(s1, s2)

L2 TestInc(s2)                                       Dec(s1)

L1 Sel(t2)      Upd(t2)                            Upd(t1)

L0 Rd(p2)      Rd(p2)   Wr(p2)                        Rd(p1)      Wr(p1)

time

transaction (sequential),
moves student from one
section to another, 
uses TestInc, Dec

Section abstr.

Tuple abstr.

Page abstr.
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Multilevel Transactions

• Parent initiates a single subtransaction at a 
time and waits for its completion.  Hence a 
multilevel transaction is sequential.

• All leaf subtransactions in the tree are at the 
same level

• Only leaf transactions access the database.
• Compare with distributed and nested 

models

62

Multilevel Transactions

• When a subtransaction (at any level) completes, it 
commits unconditionally and releases locks that it 
has acquired on items at the next lower level. 
– TestInc(s2) locks t2; unlocks t2  when it commits

• The change it has made to the locked item becomes 
visible to subtransactions of other transactions 
– The incremented value of t2 is visible to a subsequent 

execution of TestInc or Dec by concurrent transactions

• This creates problems maintaining isolation and 
atomicity.

63

Maintaining Isolation

• Problem: Interleaved execution of two 
TestInc’s results in error (we will return to this 
later)

p2 is unlocked
when Sel commits

↓
TestInc1:  Sel(t2)                             Upd(t2)
TestInc2:              Sel(t2)   Upd(t2)

↑
Sel2 can lock p2

64

Maintaining Atomicity

• When T1 aborts, the value of s1 that existed prior to its 
access cannot simply be restored (physical restoration)

• Logical restoration must be done using compensating 
transactions

– Inc compensates for Dec; Dec compensates for a 
successful TestInc; no compensation needed for 
unsuccessful TestInc

Move1:  TestInc(s2)  Dec(s1)                                            abort
Move2:                                   TestInc(s3)  Dec(s1)  commit

65

Compensating Transactions

• Multilevel model uses compensating 
transaction

logical restoration 
(using compensation)
caused by abort

T1:  TestInc(s2)  Dec(s1)                                            Inc(s1)  Dec(s2)
T2:                                   TestInc(s3)  Dec(s1)  commit

66

Correctness of Multilevel 
Transactions

• As we shall see later,
– Multilevel transactions are atomic

• In contrast with Sagas, which also use 
compensation, but do not guarantee atomicity

– Concurrent execution of multilevel transactions 
is serializable
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Recoverable Queues

• Problem:  Distributed model assumes that the
subtransactions of a transaction follow one 
another immediately (or are concurrent).

• In some applications the requirement is that a 
subtransaction be eventually executed, but not 
necessarily immediately.

• A recoverable queue is a transactional data 
structure in which information about 
transactions to be executed later can be durably 
stored.

68

Transactional Features

• Item is enqueued if T1 commits (deleted if it aborts);  item 
is deleted if T2 commits (restored if it aborts)

• An item enqueued by T1 cannot be dequeued by T2 until 
T1 commits

• Queue is durable

T1: begin transaction; T2: begin transaction;
compute;                                                   dequeue(item);
item := service perform requested

description service;
enqueue(item); commit; 

commit;                          

recoverable
queue

69

Pipeline Queue for  Billing 
Application

order entry
transaction

shipping
transaction

billing
transaction

shipping 
queue

billing 
queue

70

Concurrent Implemention of the 
Same Application

order entry
transaction

shipping
transaction

billing
transaction

billing 
queue

shipping 
queue

71

Recoverable Queue

• Queue could be implemented within database, 
but performance suffers
– A transaction should not hold long duration locks 

on a heavily used data structure
acquire lock on queue in db                                     release lock on queue

↓ ↓
T1:  enq(I1) …………..compute………………commit
T2:           request enq(I2) (wait) enq(I2)
T3:               request enq(I3) (wait)                                                 

T4:                               request enq(I4) (wait)
acquire lock on queue

72

Recoverable Queue

• Separate implementation takes advantage 
of semantics to improve performance
– enqueue and dequeue are atomic and isolated, 

but some queue locks are released 
immediately

acquire lock on queue and entry I1

release lock on queue                                release lock on I1

T1:  enq(I1) …………..compute………………commit
T2:           enq(I2) …………….compute…………..
T3:                       enq(I3) ………………..compute …………
T4:                                  enq(I4)…………….compute …..acquire lock 

on queue and I2
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Recoverable Queue

• Queue and DBMS are two separate systems
– Transaction must be committed at both but

• isolation is implemented at the DBMS and applies to the 
schedule of requests made to the DBMS only

begin transaction
select
update
enqueue
select
dequeue

commit

DBMS

recoverable 
queue

74

Scheduling

• As a result, any scheduling policy for 
accessing the queue might be enforced 
– but a FIFO queue might not behave in a FIFO 

manner

T1:  enq(I1) …commit                                                        restore I1

T2:                          enq(I2) …commit
T3:                                                   deq(I1) … abort
T4:                                                             deq(I2) …commit

75

Performing Real-World Actions

• Problem: A real-world action performed from within a 
transaction, T, cannot be rolled back if crash occurs before 
commit.

• On recovery after a crash, how can we tell if the action has 
occurred? 

– ATM example: We do not want to dispense cash twice.

T:  begin_transaction;
compute;   
update database;   
activate device;

commit;

crash

76

Performing Real-World Actions

• Solution: (part 1) T enqueues entry. If T aborts, item 
is dequeued; if T commits action executed later

T queue TD device

TD: begin_transaction;
dequeue entry;
activate device;

commit;

T:  begin_transaction;
compute;   
update database;   
enqueue entry;

commit;

• Server executes TD in a loop
– but problem still exists within TD

77

Performing Real-World Actions

• Solution: (part 2)
– Device maintains read-only counter (hardware) that 

is automatically incremented with each action
• Action and increment are assumed to occur atomically

– Server performs:

T queue TD counter

device

TD: begin_transaction;
dequeue;
activate device;
record counter in db;

commit; 78

Performing Real-World Actions

• On recovery:

Restore queue and database (value read from
counter) to last commit;

if (device value > recorded value) 
then discard head entry;

Restart server;
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Example of Real World Action

• Suppose the hardware counter and the database counter 
were both at 100 before the transaction started
– When the hardware performs its action,  it increments its counter to 

101
– TD would then increment the database counter to 101

• If the system crashed after the hardware performed its 
action the database increment (if it had occurred) would be 
rolled back to 100

• Thus when the system recovered
– If the hardware counter was 101 and the database counter was 100, 

we would know that the action had been performed.
– If  both counters were the same  (100), we would know that the 

action had not taken place.

80

Forwarding Agent
• Implementing deferred service.

client agent server

Request
queue

Response
queue

enqueue dequeue

dequeue enqueue

invoke

reply

• In general there are multiple clients (producers) and 
multiple servers (consumers)

81

Workflows

• Problem:  None of the previous models are 
sufficiently flexible to describe complex, 
long-running enterprise processes involving 
computational and non-computational tasks 
in distributed, heterogeneous systems over 
extended periods of time

82

Workflow Task

• Self-contained job performed by an agent
– Inventory transaction (agent = database server)

– Packing task (agent = human)

• Has an associated role that defines type of job
– An agent can perform specified roles

• Accepts input from other tasks, produces output 

• Has physical status: committed, aborted,  ... 
– Committed task has logical status: success, failure

83

Workflow

• Task execution precedence specified 
separately from task itself
– using control flow language:

– or using graphical tool:

initiate T2, T3 when T1 committed

T1

T2

T3 AND condition
concurrency

84

Workflow

• Conditional alternatives can be specified:

• Conditions:
– Logical/physical status of a task

– Time of day

– Value of a variable output by a task

• Alternative paths can be specified in case of 
task failure

if  (condition) execute T1 else execute T2
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Workflow

• Specifies flow of data between tasks

T1

T2

T3

86

Execution Precedence in a 
Catalog Ordering System

take 
order

remove package shipping

by
air

by land

complete

bill

update

AND

O
R

OR

87

Flow of Data in a Catalog 
Ordering System

take 
order

remove package shipping

by
air

by land

complete

bill

update

88

Workflow Agent

• Capable of performing tasks
• Has a set of associated roles describing tasks it can 

do
• Has a worklist listing tasks that have been 

assigned to it 
• Possible implementation: 

– Worklist stored in a recoverable queue
– Agent is an infinitely looping process that processes 

one queue element on each iteration
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Workflow and ACID Properties

• Individual tasks might be ACID, but 
workflow as a whole is not
– Some task might not be essential:  its failure is 

ignored even though workflow completes

– Concurrent workflows might see each other’s 
intermediate state

– Might not choose to compensate for a task even 
though workflow fails
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Workflow and ACID Properties

• Each task is either

– Retriable:  Can ultimately be made to commit if 
retried a sufficient number of times (e.g., deposit)

– Compensatable:  Compensating task exists (e.g., 
withdraw)

– Pivot:  Neither retriable nor compensatable (e.g.,
buy a non-refundable ticket)
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Workflow and ACID Properties

• The atomicity of a workflow is guaranteed 
if each execution path is characterized by 

{compensatable}*, [pivot], {retriable}*

• This does not guarantee isolation since 
intermediate states are visible
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Workflow Management System

• Provides mechanism for specifying workflow (control 
flow language, GUI)

• Provides mechanism for controlling execution of 
concurrent workflows:
– Roles and agents

– Worklists and load balancing

– Filters (data reformatting) and controls flow of data

– Task activation

– Maintain workflow state durably (data, task status)

– Use of recoverable queues

– Failure recovery of WFMS itself (resume workflows)
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Importance of Workflows

• Allows management of an enterprise to 
guarantee that certain activities are carried 
out in accordance with established business 
rules, even though those activities involve  a 
collection of agents, perhaps in different 
locations and perhaps with minimal training


