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 A function f from a set X to a set Y 

f : X → Y
X is the domain,  Y is the co-domain
(1) every element in X is related to some element in Y 
(2) no element in X is related to more than one element in Y

 Thus, for any element x X, there is a unique element y Y 

such that f(x)=y

 range of  f  =  image of X under f  = {y Y | y = f(x), x X}

 inverse image of y = {x X | f (x) = y}
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Functions defined on general sets



Arrow diagrams
 An arrow diagram, with elements in X and  Y, and an arrow from 

each x in X to corresponding y in Y.

 It defines a function because:
(1) Every element of X has an arrow coming out of it
(2) No element of X has two arrows coming out of it that point to 
two different elements of  Y
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Arrow diagrams: example 1
 X = {a, b, c},     Y = {1, 2, 3, 4}

Which one defines a function?

This one!
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Arrow diagrams: example 2
 X = {a, b, c},     Y = {1, 2, 3, 4}

 domain of  f = {a, b, c},        co-domain of  f = {1, 2, 3, 4}
 range of  f = {2, 4}
 inverse image of 2 = {a, c}
 inverse image of 4 = {b}
 inverse image of 1 = 

 function representation as a set of pairs: {(a,2), (b,4), (c,2)}
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f (a) = 2
f (b) = 4
f (c) = 2



Function equality
Note the set notation for a function:  F(x) = y (x,y) F

 If F: X →Y and G: X →Y are functions, then F = G if, and only if, 
F(x) = G(x) for all x X.

Proof:

F X ×Y G X ×Y

F(x) = y (x, y) F G(x) = y (x, y) G

() Suppose F = G.  Then for all x X,

y = F(x) (x, y) F (x, y) G y = G(x)

F(x) = y = G(x)

() Suppose F(x) = G(x) for all x X. Then for any x X:

(x, y) F y = F(x) y = G(x) (x, y) G

F and G consist of exactly the same elements, hence F = G.
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Function equality: example 1
 J3 = {0, 1, 2}

f : J3 → J3 g : J3 → J3

f(x) = (x2 + x + 1) mod 3    g(x) = (x + 2)2 mod 3

f(0) = g(0) = 1

f(1) = g(1) = 0

f(2) = g(2) = 1

Hence, f  = g
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Function equality: example 2
 F: R → R and G: R → R

F + G: R → R and   G + F: R → R
(F + G)(x) = F(x) + G(x) 

(G + F)(x) = G(x) + F(x),    for all x R

For all real numbers x:

(F + G)(x) = F(x) + G(x) by definition of F + G

= G(x) + F(x) by commutative law for 
addition of real numbers

= (G + F)(x) by definition of G + F

Hence, F + G = G + F ■
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Example functions (I)
 Identity function on a set:

Given a set X, define identity function IX: X → X  by

IX(x) = x, for all x X

 Function for a sequence:

1, −1/2, 1/3, −1/4, 1/5,..., (−1)n/(n + 1),...

0 → 1,   1 → −1/2,   2 → 1/3 ,   3 → −1/4,   4 → 1/5

n → (−1)n/(n + 1)

f : N → R, for each integer n ≥ 0,  f(n) = (−1)n/(n + 1)

where (N = Znonneg)   OR

g : Z+ → R, for each integer n ≥ 1, g(n) = (−1)n+1/n

where (Z+ = Znonneg-{0})
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Example functions (II)
 Function defined on a power set:

F : P({a, b, c}) → Znonneg

For each X P({a, b, c}), 

F(X) = the number of elements in X (i.e., the cardinality of X)
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Example functions (III)
 Functions defined on a Cartesian product:

M : R × R → R and R : R × R → R × R

The multiplication function: M(a, b) = a * b

We omit parenthesis for tuples: M((a, b))=M(a,b) 

M(1, 1) = 1,     M(2, 2) = 4

The reflection function: R(a, b) = (-a, b)

R sends each point in the plane that corresponds to a pair of real 
numbers to the mirror image of the point across the vertical axis

R(1, 1) = (-1, 1),     R(2, 5) = (-2, 5),      R(-2, 5) = (2, 5)
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Example functions (IV)
 Logarithms and logarithmic functions:
 The base of a logarithm, b, is a positive real number with b ≠ 1
 The logarithm with base b of x:     log b x = y  by = x
 The logarithmic function with base b: 

log b x : R+ → R
Examples:

log 3 9 = 2    because 32 = 9
log 10(1) = 0 because 100 = 1
log 2 ½ = -1  because 2-1 = ½
log 2 (2m) = m
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More example functions (I)
 Encoding and decoding functions on sequences of 0’s and 1’s

also called bit strings

Encoding function E: For each string s, 

E(s) = the string obtained from s by 

replacing each bit of s by the same bit written 3 times

Decoding function D:  For each string t in the range of E,  

D(t) = the string obtained from t by 

replacing each consecutive 3 identical bits of t 

by a single copy of that bit

Redundancy helps with error detection and fix.13



More example functions (II)
 The Hamming distance function

Let Sn be the set of all strings of 0’s and 1’s of length n.

H: Sn × Sn → Znonneg

For each pair of strings (s, t) Sn × Sn

H(s, t) = number of positions in which s and t differ

Examples: For n = 5,  H(11111, 00000) = 5

H(10101, 00000) = 3

H(01010, 00000) = 2

It is important in coding theory: gives a measure of “difference”. 14



More example functions (III)
 Boolean functions: (n-place) Boolean function 

f : {0, 1}n → {0, 1} Cartesian product

domain = set of all ordered n-tuples of 0’s and 1’s

co-domain = {0, 1}

The input/output tables correspond to some circuits.15



More example functions (IV)
 Boolean functions example:

f : {0, 1}3 → {0, 1}

f (x1, x2, x3) = (x1 + x2 + x3) mod 2

f (0, 0, 0) = (0 + 0 + 0) mod 2 = 0 mod 2 = 0

f (0, 0, 1) = (0 + 0 + 1) mod 2 = 1 mod 2 = 1

f (0, 1, 0) = (0 + 1 + 0) mod 2 = 1 mod 2 = 1

f (0, 1, 1) = (0 + 1 + 1) mod 2 = 2 mod 2 = 0

f (1, 0, 0) = (1 + 0 + 0) mod 2 = 1 mod 2 = 1

f (1, 0, 1) = (1 + 0 + 1) mod 2 = 2 mod 2 = 0

f (1, 1, 0) = (1 + 1 + 0) mod 2 = 2 mod 2 = 0

f (1, 1, 1) = (1 + 1 + 1) mod 2 = 3 mod 2 = 116



Checking well-definedness
 A “function” f is not well defined if:

(1) there is no element y in the co-domain that satisfies f(x) = y for   
some element x in the domain, or

(2) there are two different values of y that satisfy f(x) = y 

 Example:

f : R → R, f (x) is the real number y such that x2 + y2 = 1

f is not well defined:

(1) x = 2, there is no real number y such that 22 + y2 = 1

(2) x = 0, there are 2 real numbers y=1 and y=-1 such that 

02 + y2 = 1
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Checking well-definedness: example 2
 f : Q → Z, 

f(m/n) = m, for all integers m and n with n ≠ 0

f is not well defined:

1/2 = 2/4   f(1/2) = f(2/4)

but

f(1/2) = 1       ≠       2 = f(2/4) 

That is, there are two different values of y that satisfy f(x) = y 
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Functions acting on sets
 If  f : X →Y is a function and A X and C Y, then

f (A) = {y Y | y = f (x) for some x in A}

is the image of A

f−1(C) = {x X | f (x) C}

is the inverse image of C

Example: X = {1, 2, 3, 4},  Y = {a, b, c, d, e}, f : X →Y

f({1,4}) = {b}      f−1({a,b}) = {1, 2, 4} 

f(X) = {a, b, d}     f−1({c,e}) = 19



Functions acting on sets: 
an example proof
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 Let X and  Y be sets, let F : X →Y be a function, A X, and B X, 
then F(A B) F(A) F(B)

Proof:

Suppose y F(A B).

By definition of function, y = F(x) for some x A B. 

By definition of union, x A or x B.

Case 1, x A: F(x) = y, so y F(A).

By definition of union: y F(A) F(B)

Case 2, x B: F(x) = y, so y F(B).                             

By definition of union: y F(A) F(B) ■



One-to-one, onto, inverse functions
 F : X → Y is one-to-one (or injective) (often written 1-1) 

for all x1 X and x2 X, F(x1) = F(x2)  x1 = x2

or, equivalently (by contraposition), x1 ≠ x2 F(x1) ≠ F(x2)

 F : X → Y is not one-to-one 

x1 X and x2 X, such that x1 ≠ x2 and F(x1) = F(x2).
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One-to-one functions on finite sets
 Example 1: 

F:  {a,b,c,d} →{u,v,w,x,y} defined by the following arrow diagram 

is one-to-one:

x1 X and x2 X,    x1 ≠ x2 F(x1) ≠ F(x2)
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One-to-one functions on finite sets
 Example 2: 

G: {a,b,c,d} →{u,v,w,x,y} defined by the following arrow diagram 

is not one-to-one:

G(a) = G(c) = w

elements x1 X and x2 X, such that x1 ≠ x2 and G(x1) = G(x2)

that is, a X and c X, such that a ≠ c and G(a) = G(c)23



One-to-one functions on finite sets
 Example 3:

H:{1, 2, 3} →{a, b, c, d}, H(1) = c,  H(2) = a,  H(3) = d

H is one-to-one:

x1 X and x2 X,  x1 ≠ x2 H(x1) ≠ H(x2)

 Example 4: 

K:{1, 2, 3} →{a, b, c, d}, K(1) = d,  K(2) = b,  K(3) = d

K is not one-to-one:

K(1) = K(3) = d

That is, x1 X and x2 X, such that x1 ≠ x2 and K(x1)= K(x2)
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One-to-one functions on infinite sets
 Copied definition:

f is one-to-one  x1,x2 X, if f(x1) = f(x2) then x1 = x2

 To show f is one-to-one, generally use direct proof:
 suppose x1 and x2 are elements of X such that f(x1)=f(x2)
 show that x1 = x2.

 To show f is not one-to-one, generally use counterexample:
 find elements x1 and x2 in X so that f(x1)=f(x2) but x1≠ x2.
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One-to-one functions on infinite sets
copied: f is one-to-one x1,x2 X, if f(x1) = f(x2) then x1 = x2

 Example 1:    f : R → R ,

f (x) = 4x − 1 for all x R is f one-to-one?

Suppose x1 and x2 are any real numbers such that 4x1−1=4x2−1.

Adding 1 to both sides and and dividing by 4 both sides gives x1=x2.

Yes, f is one-to-one ■
 Example 2:    g : Z → Z ,         

g(n) = n2 for all n Z is g one-to-one?

Start by trying to show that g is one-to-one

Suppose n1 and n2 are integers such that n1
2=n2

2 and try to show    
n1=n2. but 12=(-1)2=1.

No, g is not one-to-one ■26



Application: hash functions
 Hash functions are functions defined from larger to smaller sets 

of integers used in identifying documents.

 Example: Hash:  SSN →{0, 1, 2, 3, 4, 5, 6}

SSN = set of all social security numbers (ignoring hyphens)

Hash(n) = n mod 7    for all social security numbers n

e.g., Hash(328343419) = 328343419 − (7·46906202) = 5

 Hash is not one-to one: called a collision for hash functions.

e.g., Hash(328343412) = 328343412 − (7· 46906201) = 5

Collision resolution: 
if position Hash(n) is already occupied, then start from that position 

and search downward to place the record in the first empty position.27



Onto functions
 F: X → Y is onto (surjective) 

y Y,   x X such that F(x) = y.

For arrow diagrams, a function is onto if each element in the co-
domain has an arrow to it from some element in the domain.

 F: X → Y is not onto (surjective) 

y Y such that x X, F(x) ≠ y.

There is some element in  Y that is not the image of any element in X.

For arrow diagrams, a function is not onto if at least one element in 
its co-domain does not have an arrow pointing to it.
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Onto functions with arrow diagrams
 F is onto:
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 G: {1,2,3,4,5} → {a,b,c,d}

G is onto 

because y Y,  x X, such that G(x) = y

30

Onto functions: example 1



Not onto functions
 F is not onto
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 F: {1,2,3,4,5} → {a,b,c,d}

F is not onto 

because b ≠ F(x) for any x in X

that is, y Y such that x X, F(x) ≠ y
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Onto functions: example 2



Onto functions: more examples
 H: {1,2,3,4} → {a,b,c}

H(1) = c,      H(2) = a,       H(3) = c, and        H(4) = b

H is onto because y Y,   x X such that H(x) = y:

a = H(2)

b = H(4) 

c = H(1) = H(3)

 K: {1,2,3,4} → {a,b,c}

K(1) = c,      K(2) = b,      K(3) = b, and       K(4) = c

H is not onto because a ≠ K(x) for any x {1, 2, 3, 4}.

33



Onto functions on infinite sets
 Copied definition:

F is onto y Y, x X such that F(x) = y.

 To prove F is onto, generally use direct proof:
 suppose y is any element of  Y, 
 show there is an element x of X with F(x)=y.

 To prove F is not onto, use counterexample:
 find an element y of  Y such that y ≠ F(x) for any x in X.
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Onto functions on infinite sets: examples
 Prove that a function is onto or give counterexample

 f : R → R

f(x) = 4x − 1 for all x R

Suppose y R. Show there is a real number x such that y = 4x − 1.

4x − 1 = y  x = (y + 1)/4 R.  So, f is onto ■

 h : Z → Z  

h(n) = 4n − 1 for all n Z

0 Z, h(n) = 0 4n − 1 = 0  n = 1/4 Z

h(n) ≠ 0 for any integer n.  So h is not onto ■
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Exponential functions
 The exponential function with base b: expb : R → R+

expb(x) = bx

expb(0) = b0 = 1 

expb(-x) = b-x = 1/bx

 The exponential function is one-to-one and onto:

for any positive real number b≠1,  bv = bu  u = v,  u,v R

 Laws of exponents: b, c R+ and u,v R
bubv = bu+v

bu/bv = bu-v

(bu)v = buv

(bc)u = bucu
36



Logarithmic functions
 The logarithmic function with base b: logb : R+ → R

logb(x) = y  by = x

 The logarithmic function is one-to-one and onto:

for any positive real number b≠1, 

logbu = logbv  u = v,    u,v R+

 Properties of logarithms: b, c, x R+, with b ≠ 1 and c ≠ 1

logb(xy) = logbx + logby

logb(x/y) = logbx − logby

logb(xa) = a logbx

logcx = logbx / logbc

37



Logarithmic functions: example proofs 
 b, c, x R+, with b ≠ 1 and c ≠ 1:  logcx = logbx / logbc

Proof: 

Suppose positive real numbers b, c, and x are given, s.t.

(1) u = logbc (2) v = logc x (3) w = logb x

By definition of logarithm: c = bu, x = cv and x = bw

x = cv = (bu)v = buv ,   by laws of exponents

So x = bw = buv , so uv = w

That is, (logbc)(logc x) = logb x, by (1), (2), and (3)

By dividing both sides by logbc:  logcx = logbx / logbc ■
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Logarithmic functions: notations
 Logarithms with base 10 are called common logarithms

and are denoted by simply log.

 Logarithms with base e are called natural logarithms

and are denoted by ln.

 Example:

log 25 = log 5 / log 2 = ln 5 / ln 2
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One-to-one correspondences
 A one-to-one correspondence (or bijection) 

from a set X to a set  Y is a function F: X →Y 

that is both one-to-one and onto.

 Example: 
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One-to-one correspondences: example 2
 A function from a power set to a set of strings

h : P({a, b}) → {00, 01, 10, 11}

If a is in A, write a 1 in the 1st position of the string h(A). 

If a is not in A, write a 0 in the 1st position of the string h(A). 

If b is in A, write a 1 in the 2nd position of the string h(A). 

If b is not in A, write a 0 in the 2nd position of the string h(A). 
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One-to-one correspondences: example 3
 Example:  F: R × R → R × R 

F(x, y) = (x + y, x − y), for all (x, y) R × R

Proof that F is one-to-one:

Suppose that (x1,y1) and (x2,y2) are any ordered pairs in R × R such 
that F(x1,y1) = F(x2,y2).

(x1 + y1, x1 − y1) = (x2 + y 2, x 2 − y 2),  by definition of F

(1) x1 + y1 = x2 + y 2 and (2) x1 − y1 = x 2 − y 2, by pair equalty

(1) + (2)  2x1 = 2x2 (3) x1 = x2

Substituting (3) in (2)  x1 + y1 = x1 + y2  y1 = y2

So, (x1, y1) = (x2, y2)

So, F is one-to-one.42



One-to-one correspondences: example 3
 Example:  F: R × R → R × R 

F(x, y) = (x + y, x − y), for all (x, y) R × R

Proof that F is onto:

Let (u,v) be any ordered pair in R × R 

Suppose that we found (r, s) R × R such that F(r, s) = (u, v).

(r + s, r − s) = (u, v) r + s = u   and   r − s = v 

2r = u + v     and    2s = u − v

r = (u + v)/2     and    s = (u − v)/2

We found (r, s) R × R such that F(r, s) = (u,v)

So, F is onto.

Thus,  F is a One-to-One correspondence. ■43



Inverse functions
 If F: X →Y is a one-to-one correspondence, then there is an 

inverse function for F,  F−1: Y → X , such that for any element 
y Y,

F−1(y) = that unique element x X such that F(x) = y

F−1(y) = x  y = F(x)
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Inverse functions: example 1
 Function h:

The inverse function for h is  h−1:
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Inverse functions: example 2
 Function f : R → R

f(x) = 4x − 1 for all real numbers x.

The inverse function for f is  f−1 : R → R, 

for any y in R,

f −1(y) is that unique real number x such that f(x) = y.

f (x) = y  4x − 1 = y  x = (y + 1)/4

Hence, f −1(y) = (y + 1)/4.
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Inverse functions: one-to-one, onto
 If X and  Y are sets and F : X →Y is one-to-one and onto, 

then F −1 :  Y → X is also one-to-one and onto.

Proof:

F −1 is one-to-one:

Suppose y1 and y2 are elements of  Y, such that F−1(y1)= F−1(y2)

Let x = F−1(y1) = F−1(y2). Then x X.

By definition of F−1, F(x) = y1 and F(x) = y2 , so y1 = y2

F −1 is onto: 

Suppose x X. Need to find y in Y, such that F −1(y)=x

Let y = F(x).  Then y Y.

By definition of F−1, F −1(y) = x.47



The Pigeonhole principle (sec 9.4)
 A function from a finite set to a smaller set cannot be 1-1: 

at least 2 elements in the domain have the same image in co-domain
If n pigeons fly into m pigeonholes with n > m, 
then at least one hole contains two or more pigeons.

at least 2 arrows point to the same element in co-domain48



The Pigeonhole principle: example 1
 In a group of 6 people, must there be at least two who were born in 

the same month?

 In a group of 13 people, must there be at least two who were born 
in the same month
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The Pigeonhole principle: example 2
 Finding the number to pick to ensure a result:

at least the cardinality of the co-domain + 1

 A drawer contains black and white socks.

What is the least number of socks you must pull out to be sure to 
get a matched pair?

2 socks are not enough: 

one white and one black

3 socks are enough by the pigeonhole principle
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The Pigeonhole principle: example 3
 Reach a certain sum:  Let A = {1, 2, 3, 4, 5, 6, 7, 8}

 If we select 4 integers from A, must at least one pair of the integers 
have a sum of 9?

No.   Let B ={1,2,3,4}

1+2 = 3 ; 1+3 = 4 ; 1+4 = 5 ; 2+3 = 5 ; 2+4 = 6 ; 3+4 = 7

 If we select 5 integers from A, must at least one pair of the integers 
have a sum of 9?

Yes.
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Generalized Pigeonhole principle
 For any function f from a finite set X with n elements to a finite set  Y 

with m elements and for any positive integer k, 

if k < n/m (i.e., km < n), then there is some y Y such that 

y is the image of at least k + 1 distinct elements of X.

 Example:

n = 9 pigeons

m = 4 holes

a least one pigeonhole 

contains 3 or more pigeons.

k = 2 < 9/4, k+1 = 352



One-to-one and onto for finite sets
 Let X and Y be finite sets with the same number of elements 

and f is a function from X to Y.  Then f is 1-1  f is onto
Proof :  Let X = {x1, x2,..., xm} and  Y = {y1, y2,..., ym}

() If f is 1-1, then f (xi) for i = 1,…m are all distinct. 

Let S ={y ∈Y|∀x ∈ X, f(x) ≠ y}; all{f (xi)} and S are mutually disjoint.

m = |Y| = |{f (x1)}|+|{f (x2)}|+... + |{f (xm)}|+ |S| = m + |S|

⇔ |S| = 0,  no element of  Y is not the image of some element of X.

That is, f is onto.

()  If f is onto, then|f−1(yi)| ≥ 1 for all i = 1,...,m.

all {f−1(yi)} are mutually disjoint by f.

m = |X| >= |f−1(y1)| +...+ |f−1(ym)|.  m terms, so |f−1(yi)| = 1.

That is, f is 1-1.53



Composition of functions
 Let f : X →Y’ and g: Y → Z be functions with the property that 

the range of f is a subset of the domain of g:   Y’ Y

The composition of f and g is a function  g ◦ f : X → Z :

(g ◦ f )(x) = g( f (x)) for all x X
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Composition of functions: example 1
 f : Z → Z and g: Z → Z

f (n)=n + 1, for all n Z

g(n) = n2 , for all n Z

(g ◦ f )(n) = g(f (n)) = g(n+1) = (n + 1) 2 , for all n Z

(f ◦ g)(n) = f (g(n)) = f (n2) = n2 + 1, for all n Z

(g ◦ f )(1) = (1 + 1) 2 = 4

( f ◦ g)(1) = 12 + 1 = 2

So, f ◦ g  ≠  g ◦ f 
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Composition of functions: example 2
 f : {1,2,3} → {a,b,c,d} and g: {a,b,c,d,e} → {x,y,z}
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 X = {a, b, c, d} and  Y = {u, v, w},  f : X →Y

IX : X → X is an identity function IY :  Y →Y is an identity function

IX(x) = x, for all x ∈ X IY(y) = y, for all y ∈Y

(f ◦ IX )(x) = f (IX(x)) = f (x) , for all x ∈ X (IY◦ f )(x) = IY(f (x)) = f(x), for all x ∈ X

Composition of functions: example 3
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 Composing a function with its inverse:

Let f : {a, b, c} → {x, y, z} be a one-to-one and onto function

f is one-to-one correspondence  f−1 : {x, y, z} → {a, b, c}

( f −1 ◦ f )(a) = f −1( f (a)) = f −1(z) = a

( f −1 ◦ f )(b)= f −1( f (b)) = f −1(x) = b  f −1 ◦ f = IX

( f −1 ◦ f )(c) = f −1( f (c)) = f −1(y) = c also   f ◦ f −1 = IY

Composition of functions: example 4



 Composing a function with its inverse:

If f : X→Y is a one-to-one and onto function with inverse function 

f −1:  Y→X, then (1) f −1◦ f = IX and (2) f ◦ f −1 = IY

Proof of (1):

Let x be any element in X:  (f −1◦ f )(x) = f −1(f (x)) = x’ X (*)

Definition of inverse function: 

f −1(b) = a  f (a) = b for all a X and b Y

 f −1(f (x)) = x’  f(x’) = f(x)

Since f is one-to-one, this implies that x’ = x.

(*)  (f −1◦ f )(x) = x

Composition of functions: example 4
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 If  f : X →Y and g: Y → Z are both one-to-one functions, 

then g ◦ f is also one-to-one.

Proof (by direct proof):

Suppose f : X →Y and g: Y → Z are both one-to-one functions.

Suppose x1, x2 X such that: (g ◦ f )(x1) = (g ◦ f )(x2)

By definition of composition of functions, g(f (x1)) = g(f (x2)).

Since g is one-to-one, f (x1) = f(x2).

Since f is one-to-one, x1 = x2.

Composition of one-to-one functions
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 Example: 

Composition of one-to-one functions
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 If f: X→Y and g:  Y→Z are both onto functions, then g ◦ f is onto.

Proof:

Suppose f : X →Y and g: Y → Z are both onto functions.

Let z be an element of Z.

Since g is onto, there is an element y in  Y such that g(y) = z.

Since f is onto, there is an element x in X such that f (x) = y.

z = g(y) = g(f(x)) = (g ◦ f ) (x)  g ◦ f is onto

Composition of onto functions
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 Example:

Composition of onto functions
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Cardinality and sizes of infinity
 cardinal number (cardinal): describe number of elements in a set.

ordinal number (ordinal): describe order of elements in an ordered set.

 finite set: the empty set or a set that can be put into                                       
1-1 correspondence with {1,2,…,n} for some positive integer n.

infinite set: a nonempty set that cannot be put into                                
1-1 correspondence with {1,2,…,n} for any positive integer n.

 a set A has the same cardinality a set B if, and only if, there is a 1-1 
correspondence from A to B.
 reflexivity:  A has same cardinality as A
 symmetry:  if  A has same cardinality as B, then B has same cardinality as A
 transitivity:  if  A has same cardinality as B, and B has same cardinality as C, 

then A has same cardinality as C.64



Cardinality: surprising example
 An infinite set and a proper subset can have the              

same cardinality

 Example:  

Z, the set of integers, and 

2Z, the set of even numbers 

have the same cardinality.

Proof:  define function H: Z → 2Z as H(n) = 2n  for all n Z.

H is 1-1: if H(n1) = H(n2) then n1 = n2,  by def of H and div by 2.

H is onto : any m 2Z, m is even, so m= 2k for some k Z
Thus H is a 1-1 correspondence.65



Countable sets
 Counting

 A set is countably infinite if, and only if, it has the same 
cardinality as Z+, the set of positive integers.

 A set is countable if, and only if, it is finite or countbly infinite.

 A set is uncountable if and only if it is not countable.
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Countable sets: easy example
 The set Z of all integers is countable (and so 2Z is too)

Proof:

No n in Z is counted twice:

1-1: n in Z -- at most 1 m in Z+

All n in Z is counted:

onto: each n in Z -- some m in Z+

Formally, define function F:  Z+ → Z  as

F(n) = n/2 if n is an even positive integer 

-(n-1)/2  if n is an odd positive integer67



Countable sets of same cardinality
 For function f:  A → B, where A and B have the same cardinality,

if A and B are finite, then f is 1-1 f is onto (slide 53)

 If A and B are infinite, then there exist

functions that are both 1-1 and onto,

functions that are 1-1 but not onto,

functions that are onto but not 1-1.

Examples: Z+ and Z have the same cardinality (previous slide) 

i: Z+ → Z with i(n)=n is 1-1 but not onto

j: Z → Z+ with j(n)=|n|+1 is onto but not 1-1
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Larger infinities? surprising example
 The set Q+ of all positive rational numbers is countable

Rational number are dense:

between any two, there is another!

Proof: 

Count following arrows, skipping duplicates
F(1)=1/1, F(2)=1/2, F(3)=2/1,F(4)=3/1,

skip 2/2=1/1, F(t)=1/3, …

F is onto: all q in Q+ will be counted

F is 1-1: no q in Q+ is counted twice
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Larger infinities: famous example
 The set of all real numbers between 0 and 1 is uncountable

Proof (by contradiction): Suppose the set [0,1] is countable. 

Then decimal representations of all these

numbers can be written in a list, on right:

The i-th number’s j-th decimal digit is aij:

e.g., a11=2, a22 =1,

a33 =3, …

Construct a decimal number 

e.g., d1=1, d2=2, d3=1, … so d = 0.12112...

Each n, d differs from the n-th number on list in n-th decimal digit.

d is not in the list, contradiction! Cantor diagonalization process70



Larger infinities: famous example 2
 The set of all real numbers and the set of real numbers 

between 0 and 1 have the same cardinality

Proof: 

Let S = {x R| 0 < x < 1}. Make a circle:

no 0 or 1, so top-most point of circle is omitted

Define function F: S → R where F(x)

is projection of x on number line.

F is 1-1: different points on circle go 

to distinct points on number line 

F is onto: for any point on number line, a line can be drawn 

to top of circle and intersect circle at some point.

Thus, F is a 1-1 correspondence from S to R.71



More countable sets and infinities
 The set of all bit strings (strings of 0’s and 1’s) is countable

(think of mapping each positive integer to its binary representation)

 The set of all computer programs in a language is countable

(finite alphabet, each symbol translated to bit string)

 The set of all functions from integers to {0,1} is uncountable

 Any subset of any countable set is countable

 Any set with an uncountable subset is uncountable

 There is an infinite sequence of larger infinities.

Example: Z, P(Z), P(P(Z)), P(P(P(Z))), …
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