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Functions defined on general sets

® A function f from a set X to a setY
f:X—>Y
X is the domain, Y is the co-domain
(1) every element in X is related to some element inY

(2) no element in X is related to more than one element inY

® Thus, for any element x € X, there is a unique elementy € Y

such that f(x)=y

® range of f = image of Xunderf = {y €Y | y = f(x), x € X}
® inverse image of y = {x EX | f(x) = y}
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Arrow diagrams

® An arrow diasram. with elements in X and Y. and an arrow from
g ) ’

ecach x in X to corresponding y inY.

X f Y
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| Xye |.| —» e V3 |

® |t defines a function because:
(1) Every element of X has an arrow coming out of it

(2) No element of X has two arrows coming out of it that point to

two different elements of Y
(-,
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Arrow diagrams: example 1

°* X={a,byc}, Y={1,2,3,4}
Which one defines a function?
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Arrow diagrams: example 2

'X:{abc} Y:{123,4}

m. B 1%1/\ f(a)=2

| b e £(b) =4
- Cce | ®3 f()=2
\_/ -_/ C

® domain of = {a, b, c}, co-domain of f= {1, 2, 3,4}
® range of f= {2,4}

® inverse image of 2 = {a, c}

® inverse image of 4 = {b}

® inverse image of 1 =0

® function representation as a set of pairs: {(a,2), (b,4), (c,2)}
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Function equality

Note the set notation for a function: F(x) =y & (x,y) EF

F(x) = G(x) for all x € X.

Proof:
FC X XY G <€ X XY
Fx)=y& (x,y) €EF Gx) =y x,v)€G

(=) Suppose F = G. Then for all x € X,
y=Fx)ex,y)EFE (x,y) EGEy = G(x)
Fx) =y = G(x)

(€) Suppose F(x) = G(x) for all x € X. Then for any x € X:
(x,y) EFSy=Fx) ©y=G(x) & (x,y) €EG

F and G consist of exactly the same elements, hence F = G.
o

°* If F: X —Y and G: X —Y are functions, then F = G if, and only if,

/
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Function equality: example 1

J;=10,1, 2}
f:]3—];

f(x) = (x> + x+ 1) mod 3

g1
g(x) = (x T 2)’ mod 3

x 24+x+4+1 f(x)=x*4+x+1)mod3 (x +2)? g(x)=(x+2)> mod 3
0 I | mod 3 =1 4 4dmod3 =1

l 3 3mod3 =0 9 Omod3 =0

2 7 Tmod3 =1 16 16 mod 3 = 1
£(0) = g(0) =1

f(1) =g(1) =

((2) =g(2)=1

Hence, I = ¢
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Function equality: example 2

e F:R—Rand G:R—R
F+G:R—R and G+F.R—R
(F + G)(x) = F(x) + G(x)
(G +F)(x) = Gx) + Fx), forallx €ER

For all real numbers x:

(F + G)(x) = F(x) + G(x) by definition of F + G
= G(x) T F(x) by commutative law for
addition of real numbers
= (G + F)(x) by detinition of G + F
Hence,F -+ G =G + F |

L
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Example functions (I)

* Identity function on a set:
Given a set X, define identity function I,: X — X by
L (x) = x, forall x € X

* Function for a sequence:
1, —=1/2,1/3,—1/4,1/5,..., (=1)"/(n + 1),...
O0—1, 1—>—-1/2, 2—>1/3, 3—>—1/4, 4—1/5
n— (—1)"/(n+ 1)

f: N — R, for each integer n 2 0, f(n) = (—1)"/(n + 1)
where (N = Zm°"¢8) OR

g: 7" — R, for each integer n 2 1, g(n) = (=1)""!/n
where (Z* = Z"°"8-{0})

o
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Example functions (Il

* Function defined on a power set:
F:P({a,b, c}) — Znonn<g
For each X € P({a, b, c}),
F(X) = the number of elements in X (i.e., the cardinality of X)

L v




-
Example functions (lll)

e Functions defined on a Cartesian product:

M:RXR—R and R:RXR—RXR

The multiplication function: M(a,b) =a*b
We omit parenthesis for tuples: M((a, b))=M(a,b)
M(1,1)=1, M@2,2)=4

The reflection function: R(a,b) = (-a, b)

R sends each point in the plane that corresponds to a pair of real

numbers to the mirror image of the point across the vertical axis

R(1,1)=(-1,1), R(2,5) =(2,5), R(-2,5) =(2,5)
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Example functions (IV)

Logarithms and logarithmic functions:

® The base of a logarithm, b, is a positive real number with b # 1
® The logarithm with basebotx: log, x =y & b"=x

® The logarithmic function with base b:

long:R+—>R

Examples:
log,9 =2 because 32=9
log (1) =0 because 10°=1
log, 2 = -1 because 2l =1,
log, (2™) =m
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More example functions (I)

* Encoding and decoding functions on sequences of O’s and 1’s
also called bit strings
Encoding function E: For each string s,
E(s) = the string obtained from s by

replacing each bit of s by the same bit written 3 times

Decoding function D: For each string t in the range of E,
D(t) = the string obtained from t by
replacing each consecutive 3 identical bits of t

by a single copy of that bit

@ Redundancy helps with error detection and fix. Yy
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More example functions (ll)

e The Hamming distance function

Let S, be the set of all strings of 0’s and 1’s of length n.
H:S XS —> Zmomeg

For each pair of strings (s, t) €S X §

H(s, t) = number of positions in which s and t ditter

Examples: Forn =5, H(11111, 00000) = 5
H(10101, 00000) = 3
H(01010, 00000) = 2

@ It is important in coding theory: gives a measure of “difference”.
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Input Output
P 0 R S
1 I 1 1
1 I 0 1
1 0 1 0
1 0 0 1
0 [ 1 0
0 [ 0 1
0 0 1 0
0 0 0 0

[0, 1

More example functions (ll)
* Boolean functions: (n-place) Boolean function
f.:{0,1}"—
domain = set of all ordered n-tuples of 0’s and 1’s

co-domain = {0, 1}

} Cartesian product

(I, 1, ])-—
(I,1,0)e

(1,0, 1)e— N
(1,0, m.f—f -
0,1, 1)e—

(0, 1,0)e ""
(0 0,1)e
(0,0,0)e—

@ The input/output tables correspond to some circuits.
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More example functions (V)

e Boolean functions example:
f. {O, 1}3 —> {O, 1}
f(x;, x5, x3) = (x; T x, T x3) mod 2

£(0,0,0)=(0+0+0)mod2=0mod 2 =0
f0,0,H)=0+0+1)mod2=1mod2 =1
£0,1,0) =0+ 1+0)mod2=1mod2 =1
f0,1,1H)=O+1+1)mod2=2mod2 =0
t(1,0,0)=(1+0+0)mod2=1mod 2 =1
f(1,0,1)=(1+0+1)mod2=2mod2 =0
t(1,1,0)=(1+1+0)mod2=2mod2 =0
@ f(1,1,H)=(1+1+1)mod2=3mod2 =1
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Checking well-definedness

e A “tunction” f is not well defined if:

(1) there is no element y in the co-domain that satisties f(x) = y for

some element x in the domain, or

(2) there are two ditferent values of y that satisty f(x) =y

* Example:
f: R — R, f (x) is the real number y such that x* + y* = 1
f is not well detined:
(1) x = 2, there is no real number y such that 2? + y* = 1

(2) x = 0, there are 2 real numbers y=1 and y=-1 such that
02 + y2 =1

o




4 N
Checking well-definedness: example 2
°*{:Q—7Z,

f(m/n) = m, for all integers m and n withn #0

f is not well defined:

1/2=2/4 =2 f(1/2) =£2/4)
but

f(1/2) =1 =  2=1(2/4)

That is, there are two different values of y that satisty f(x) =y
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Functions acting on sets

o If f: X—Yisafunctionand A € X and C €Y, then
f(A)={y €Y | y=1{(x)for some xinA}
is the image of A
£1(C) = {x EX | f(x) EC}
is the inverse image of C

Example: X = {1,2,3,4}, Y= {a,b,c,d, e}, f: X oY
A~ s

IlI_."' l .__\‘-.," o -"17. il l\"..
& W - o
I s - L

- |

| J e [ |
3 - |
] = i .'T’f'i —>ed |I
|II ___.-",'l--'. I'. |
\ 40/ \ ee€ /
1 Fi \ Iy
N ,«’f \.___f /

g S

f({1,4}) = {b} f'({ab})={1,2,4}
@ f(X)={a,b,d} fl({c,e})=0
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Functions acting on sets:

an example proof

® Let Xand Y be sets, let F : X —Y be a function, A & X, and B € X,
then F(A U B) € F(A) U F(B)
Proof:
Suppose y € F(A U B).
By definition of function, y = F(x) for some x €A U B.
By definition of union, x € A or x € B.
Case 1,x EA:F(x) =y, soy € F(A).
By definition of union: y € F(A) U F(B)
Case 2,x € B: F(x) = y,soy € F(B).
@ By definition of union: y € F(A) U F(B) H
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One-to-one, onto, inverse functions

°* F: X — Y is one-to-one (or injective) (often written 1-1) &
for all x, € X and x, € X, F(x,) = F(x,) =2 x, = x,
or, equivalently (by contraposition), x, # x, "® F(x,) # F(x,)

X =domain of F F Y = co-domain of F

/ \ - /"‘_‘\
> e F(x,) "'. Any two distinct elements

of X are sent to two

\\ Xse / \ ® FUC/ distinct elements of Y.

® F:X— Y is not one-to-one &

d x, € X and x, € X, such that x, # x, and F(x,) = F(x,).

X = domain of F F Y = co-domain of F
—_— P
/ Xjo—\—— ij \  Two distinct elements
| | ioJF(vc]} F(x,) | of X are sent to

\ 20 —/‘— —_— f / the same element of Y.
\\ /

— L
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One-to-one functions on finite sets

© Example 1:

F: {a,b,c,d} —{u,v,w,x,y} defined by the following arrow diagram
1s one-to-one:

Domain of F Co-domain of F

X Y

- F
Saa_— > o
IIF he ———— [» oU |

Vx, EXandx, EX, x,#x, P F(x,)#F(x,)
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One-to-one functions on finite sets

* Example 2:
G: {a,b,c,d} —{u,v,w,x,y} defined by the following arrow diagram
1s not one-to-one:

Domain of G Co-domain of GG

X Y

N SN
[ ae— ®u \
be-— T _l'f oU |
| Ce | r# & 1 |
de- J | eX
oy /

\. /’f \5_}/

G(a) = G(c) =w

J elements x, € X and x, € X, such that x, #x, and G(x,) = G(x,)
@ that is, a € X and ¢ € X, such that a # c and G(a) = G(c)

/
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One-to-one functions on finite sets

* Example 3:
H:{l, 2, 3} —>{a, b, c, d}, H(1) =c, H(2) =a, HQ3) =d
H is one-to-one:

V x, € Xand x, € X, x, #x, =2 H(x,) # H(x,)

* Example 4:
K:{1, 2,3} —{a,b,c,d}, K(1)=d, K(2) =b, K(3) =d
K is not one-to-one:
K(1) =K@3)=d
That is, 4 x; € X and x, € X, such that x, # x, and K(x,)= K(x,)

o
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One-to-one functions on infinite sets

* Copied definition:
fis one-to-one & Vx,,x, € X if f(x,) = {(x,) then x, = x,

® 'To show f is one-to-one, generally use direct proof:
® suppose X, and x, are elements of X such that f(x,)=f(x,)

® show that x, = x,.

® 'To show f is not one-to-one, generally use counterexample:

® find elements x, and x, in X so that f(x,)=f(x,) but x,# x,.

© y
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One-to-one functions on infinite sets

copied: t is one-to-one & Vx,,x, € X, if {(x,) = f(x,) then x, = x,
°* Example 1: f:R—R,
f(x) =4x — 1 torallx ER istone-to-one?
Suppose x, and x, are any real numbers such that 4x,—1=4x,—1.
Adding 1 to both sides and and dividing by 4 both sides gives x,=x,
Yes, f'is one-to-one n
°* Example2: ¢:Z—7Z,
g(n) =n’foralln €Z is g one-to-one?
Start by trying to show that g is one-to-one

Suppose n;, and n, are integers such that 1112:n22 and try to show
n,=n, but 12:(—1)2:1 .

@ No, g is not one-to-one u
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Application: hash functions

e Hash functions are functions defined from larger to smaller sets

of integers used in identitying documents.
* Example: Hash: SSN —{0,1,2,3,4,5,6}
SSN = set of all social security numbers (ignoring hyphens)

Hash(n) = nmod 7 for all social security numbers n

c.g., Hash(328343419) = 328343419 — (7-46906202) = 5

® Hash is not one-to one: called a collision for hash functions.
e.g., Hash(328343412) = 328343412 — (7- 46906201) = 5

Collision resolution:

if position Hash(n) is already occupied, then start from that position

e and search downward to place the record in the first empty position.

/
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Onto functions

* F: X — Y is onto (surjective) <
Vy €Y, dx € X such that F(x) = .

For arrow diagrams, a function is onto if each element in the co-

domain has an arrow to it from some element in the domain.

°* F: X — Y is not onto (surjective) <
dy €Y such that Vx € X, F(x) # .
There is some element in Y that is not the image of any element in X.

For arrow diagrams, a function is not onto if at least one element in

its co-domain does not have an arrow pointing to it.

© y
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Onto functions with arrow diagrams

® [is onto:

X = domain of F Y = co-domain of F

Each element y in
Y equals F(x) for
at least one x in X.
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Onto functions: example 1

° G:{1,2,3,4,5} — {a,b,c,d}

_ﬁ_p
\7 =

u.-l-:'l'*-}

(3 is onto

because Vy €Y, dx € X, such that G(x) =y

-
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Not onto functions

® [ is not onto

X = domain of F F Y = co-domain of F

— —
F——: N\ f/ \ At least one element in Y
I—

| does not equal F(x)

®— J | L - H
K _______\Q / for any x in X.
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Onto functions: example 2

° F: {1,2,3,4,5} — {a,b,c,d}

Y

/,. £\
':’. —'ﬁ__ . ",I
3e- h \’}-c |

l N

X

F is not onto
because b # F(x) for any x in X
that is, dy €Y such that Vx € X, F(x) #y

©
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Onto functions: more examples
° H: {1,2,3,4} — {a,b,c}
H(1)=c, H@)=a, H(@3)=c,and H#)=b
H is onto because Vy €Y, dx € X such that H(x) = y:
a = H(2)
b = H(4)
¢ = H(1) = H(3)

° K: {1,2,3,4} — {a,b,c}
K()=c, K@)=b, K3)=band K#)=-c
H is not onto because a # K(x) for any x €{1, 2, 3, 4}.
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Onto functions on infinite sets

* Copied definition:
F is onto & Vy €Y, dx € X such that F(x) = y.

* 'To prove F is onto, generally use direct prootf:
® suppose y is any element of Y,

® show there is an element x of X with F(x)=y.

* To prove F is not onto, use counterexample:

® find an element y of Y such that y # F(x) for any x in X.

o
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Onto functions on infinite sets: examples

® Prove that a function is onto or give counterexample

e f:R—R
f(x) =4x — 1 forallx ER

Suppose y € R. Show there is a real number x such that y =4x — 1.
4x — 1=y & x=(y+ 1)/4 E€R. So, tis onto u

*h:Z—Z
h(n)=4n — 1 foralln € Z
0OEZ, hn)=0 & 4n—1=0 & n=1/4&7Z
h(n) # 0 for any integer n. So h is not onto u

© y
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Exponential functions

® The exponential function with base b: exp, : R — R
exp,(x) = b*
exp,(0) = b’ =1
exp,(-x) = b* = 1/b*
® The exponential function is one-to-one and onto:

for any positive real number b#1, b" = b" 2u=v, VuvER

* Laws of exponents: V b,c € R" and u,v ER

bubv — bu+v
b"/b¥ = b*
(bu)v — buv

@ (bc)" = bUc"
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Logarithmic functions

® The logarithmic function with base b: log, : R*— R
logy(x) =y & b¥=x
® The logarithmic function is one-to-one and onto:
for any positive real number b#1,

logiu = log,v 2 u=v, Vu,v€ER"'

® Properties of logarithms: V' b, c, x € R* withb# 1 and c# 1

logy,(xy) = log,x + log,y
log,,(x/y) = log,x = log,y
log, (x*) = alog,x

log x = log,x / log,c

o
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Logarithmic functions: example proofs

® Vb,c,x ERY, withb# 1 and c# 1: log x = log,x / log,c

Proof:

Suppose positive real numbers b, ¢, and x are given, s.t.

(I)u = log,c (2) v =log_ x (3) w = log, x
By definition of logarithm: ¢ = b", x = ¢" and x = b"

x = ¢’ = (b")" =b", by laws of exponents

Sox =bY=b" souv=w

That is, (log,c)(log.x) = log, x, by (1), (2), and (3)

By dividing both sides by log, c: log x = log,x / log, c |
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Logarithmic functions: notations

® Logarithms with base 10 are called common logarithms

and are denoted by simply log.

® Logarithms with base e are called natural logarithms

and are denoted by In.

° Example:

log25 :logS /logZ = In5/In?2

o
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One-to-one correspondences

* A one-to-one correspondence (or bijection)
from a set X to a set Y is a function F: X —Y

that is both one-to-one and onto.

© Example:

X = domain of F F = co-domain of F

/ — \
e

| ce '}-1 |
\ de L}-I—l;

w xe3/
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If aisin A, write a 1 in the 1** position of the string h(A).

If ais notin A, write a O in the 1** position of the string h(A).

Ifbis in A, write a 1 in the 2™ position of the string h(A).

If b is not in A, write a 0 in the 2" position of the string h(A).

h

Subset of {a, b} Status of a Status of b String in S
/) not in not in 00
{a} in not in 10
{b} not in in 01

{a, b}

in

in

11

A ({a, b})

D\ Lo

i e

{a]o—'—|—)-! 10 "
{b‘]._l—'_’.{]] |

QW/

h S

~

One-to-one correspondences: example 2

e A function from a power set to a set of strings

h: P({a, b}) — {00, 01, 10, 11}
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So, F is one-to-one.
@ y

\
One-to-one correspondences: example 3

°* Example: F: R X R — R XR
F(x,y) = (xty,x—y),forall(x,y) ER X R

Proof that F is one-to-one:

Suppose that (x,,y,) and (x,,y,) are any ordered pairs in R X R such
that F(x,,y,) = F(x,,y,).

S ty,x —y) = (x,ty, x,y,), bydefinition of F

S () x, ty, =x, Ty,and (2) x; =y, =x, —y,, by pair equalty
() +(2) 2 2x, = 2x, 2 3) x, = x,

Substituting (3) in (2) 2>x Ty, =xty, 2y, =y,

50, (X1, ¥1) = (X3, Y2)
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One-to-one correspondences: example 3

°* Example: F: R X R — R XR
F(x,y) = (xty,x—y),forall(x,y) ER X R

Proof that F is onto:

Let (u,v) be any ordered pair in R X R

Suppose that we found (r, s) ER X R such that F(r, s) = (u, v).
S(rts,r—s)=(u,v)&Sr+s=u and r—s=v
S2r=utv and 2s=u-—v

Sr=(utv)/2 and s=(u-—v)/2

We found (r, s) € R X R such that F(r, s) = (u,v)

So, F is onto.

@ Thus, Fisa One-to-One correspondence. u

~
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Inverse functions

® [f F: X —Y is a one-to-one correspondence, then there is an
inverse function for F, F7':Y — X | such that for any element
y €Y,

F~!(y) = that unique element x € X such that F(x) =y

F_l(y) =x @ y=FXx)

X = domain of F Y = co-domain of F

N

':I v’C:F_lf}’l'{ff TRe Fix)=y |

~
/!
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Inverse functions: example 1

[ ] 1 .
Function h: Slaby .

—
M
[ {aje4+—F>9010

TSP Rt

The inverse function for his h!:

P{a.b)) S
e

/M f/_ﬂm

[ {a}e e10 | AYW00)=0 A'(10)={a)

|\ {b}e \-Dl - rlol) = (b} A1) = {a, b)
la.b}e \-]y
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Inverse functions: example 2

® Functionf: R — R

f(x) = 4x — 1 tor all real numbers x.

The inverse function for fis f ' : R — R,

for any y in R,

f~!(y) is that unique real number x such that f(x) =y.
fx)=y @ 4x—1=y & x=(yt1)/4

Hence, f 7'(y) = (y + 1)/4.
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Inverse functions: one-to-one, onto

e I[f X and Y are sets and F : X —Y is one-to-one and onto,

then F ! : Y — X is also one-to-one and onto.

Proof:
F~!is one-to-one:
Suppose y, and y, are elements of Y, such that F'(y,)= F '(y,)
Let x = F'(y,) = F !(y,). Then x € X.
By definition of F!, F(x) =y, and F(x) =y, ,soy, =y,
F~!is onto:
Suppose x € X. Need to find y inY, such that F ~'(y)=x
Lety = F(x). Theny €Y.
@ By definition of F~', F '(y) = x.
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The Pigeonhole principle (sec 9.4)

¢ A function from a finite set to a smaller set cannot be 1-1:

at least 2 elements in the domain have the same image in co-domain
If n pigeons fly into m pigeonholes withn > m,

then at least one hole contains two or more pigeons.

Pigeons Pigeonholes

@ at least 2 arrows point to the same element in co-domain
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The Pigeonhole principle: example 1

® In a group of 6 people, must there be at least two who were born in

the same month?

® Ina group of 13 people, must there be at least two who were born

in the same month

13 people (pigeons) 12 months (pigeonholes)

X e B E > /
/ e Jan
| X 7 ® ',I ir IlIII \

| B(x;) = birth month of x; .
|' '| |' e Feb '|

ST
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The Pigeonhole principle: example 2

o Finding the number to pick to ensure a result:
at least the cardinality of the co-domain + 1
e A drawer contains black and white socks.

What is the least number of socks you must pull out to be sure to

get a matched pair?

Socks pulled out (pigeons) Colors (pigeonholes)
VR <, RN
:_g _S‘I & .\\.\ ,-"; \.\
| ' 5o ‘ C(s;) = color of s; III,.'“ e white \H".
I| '| | I|
2 socks are not enough: | . | bk |
| : | | ¢ black I|

one white and one black

/
/

\_/ N4
3 socks are enough by the pigeonhole principle

o y




4 N
The Pigeonhole principle: example 3

* Reach a certain sum: LetA = {1,2,3,4,5,6,7,8}

* If we select 4 integers from A, must at least one pair of the integers

have a sum of 9?7
No. LetB ={1,2,3,4}
142 =3;1+3=4;1+4=5,243=5 ;244 =6;3+4 =7

* If we select 5 integers from A, must at least one pair of the integers

have a Sum Of 97 The 5 selected integers The 4 subsets in the partition of A
(pigeons) (pigeonholes)
Yes.
/a. \ P / \
ofl.
P(a;) = the subset that | ”'u,l
|' ' contains @, | {27y
dse | ‘ o |
ll | | g {‘J‘ 6} I|
\ (4.5} |




4 N
Generalized Pigeonhole principle

® For any function f from a finite set X with n elements to a finite set Y

with m elements and for any positive integer k,

it k <n/m (i.e., km < n), then there is some y €Y such that
y is the image of at least k + 1 distinct elements of X.

® Example: Pigeons

Pigeonholes

n=9 pigeons

m = 4 holes

a least one pigeonhole \

contains 3 or more pigeons.

k=2<9/4k+1=3
(-, y
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One-to-one and onto for finite sets

® [Let X andY be finite sets with the same number of elements
and f is a function from X toY. Then fis 1-1 & f1s onto

Proof: Let X = {x,,x,,...,x }and Y = {y ., v,,..., V,.}

(=») Iffis 1-1, then f (x)) fori = 1,...m are all distinct.

Let S ={y €Y |Vx € X, f(x) # y}; all{f (x;)} and S are mutually disjoint.

m = Y] = )+ O} [+t [+ S| =m+ [s

< |S| =0, no element of Y is not the image of some element of X.
That is, ' is onto.

(€) If fis onto, then | f7'(y)| 21 foralli=1,...,m.

all {f™'(y,)} are mutually disjoint by f.

m = |X| >= [{(y)| *...+ [{(y,)]|. mterms,so [{7'(y)]| = 1.

@ That is, fis 1-1. -
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Composition of functions

® [etf: X —>Y and gY =7 be functions with the property that
the range of f is a subset of the domain of g: YCY

The composition of f and g is a function gof: X — 7 :
(get)(x) =g(f(x)) forallx €EX

,, N /@\ (

rff

A /(/

-
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Composition of functions: example 1

°f{:Z—>7Zandg:Z—7Z
f (n)=n + 1, foralln € Z
g(n) =n’,foralln €EZ

(get)m) =gt (n)) =gh+1l)=(m+ 1)? ,foralln € Z
(feog)n) =t (g(n)) =f(m?) =n’+1,foralln € Z
e f)1)=(1+1)2=4

(fog)(1)=12+1=2
So,feg # gof
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Composition of functions: example 2

e f:{1,2,3} — {a,b,c,d} and g: {a,b,c,d,e} — {x,y,z}
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Composition of functions: example 3
* X=1{a,byc,d}and Y = {u,v,w}, {: X oY

Iy : X — Xis an identity function Iy : Y —Y is an identity function
L (x) = x, forallx €X Iy(y) =y, forally €Y
(ol )(x) =t (I(x)) =f(x),forallx €X  (Iyo1)(x) = (f (x)) = f(x), torall x € X

I, Y

a\ — /,,,\ - /u\

W\/

=~

‘!

e= o=

\F \r
L=

(e
N
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Composition of functions: example 4

o Composing a function with its inverse:

Letf: {a,b,c} — {x,v,z} be aone-to-one and onto function

S
7N T /N
f a-J\ _frex |
| be- Jr *‘ﬂ {_is..-y |
N _/
f is one-to-one correspondence = 7! : {x,y,z} — {a, b, c}
Y 1 X
f —
f/r -\1 - T/n a\‘u
| ye- 4___ r*-b :I
N N
(f71ef)@=f"1(f)=f""(2) =a
(f 1o f)yb)=f1(f(b)=f(x)=b =2 7 lof=1,

@(f—lof)(c):f—l(f(c)):f—l(y):c also fof =1,




4 N
Composition of functions: example 4

o Composing a function with its inverse:

Iff: X—Y is a one-to-one and onto function with inverse function

f71: Y—>X,then (1) f lef=1,and (2)fof ' =1,

Proof of (1):
Let x be any element in X: (f 7' f')(x) = 1(f (x)) = x" € X (¥)
Detfinition of inverse function:
f~I(by=a © f(a)=bforalla€ Xandb EY
=2 1f(x) =x © {(x)=f(x)
Since f is one-to-one, this implies that x’ = x.

(*) 2 (o f)(x) = x
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Composition of one-to-one functions

°If f: X —Yandg:Y — Z are both one-to-one functions,

then go f is also one-to-one.

Proof (by direct proof):

Suppose f: X —>Y and g:Y — Zare both one-to-one functions.

Suppose x;, X, € X such that: (g° f)(x;) = (g°t)(x,)
By definition of composition of functions, g(f (x,)) = g(f (x,)).
Since g is one-to-one, f (x,) = {(x,).

Since f is one-to-one, x,; = x,.




-

© Example: ¥

Composition of one-to-one functions

~
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Composition of onto functions

® It f: X—Y and g: Y—Z are both onto functions, then g ° f is onto.

Proof:

Suppose f : X —Y and g:Y — Zare both onto functions.
Let z be an element of Z.
Since g is onto, there is an element y in Y such that g(y) = z.

Since f is onto, there is an element x in X such that f (x) =y

z = g(y) = (f(X)) = (g°f) (x)=» gefisonto

Y

SN L SN S
'\/ \/J,‘\/

*—-...‘__\_h

°
.
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Composition of onto functions

© Example:
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Cardinality and sizes of infinity

® cardinal number (cardinal): describe number of elements in a set.

ordinal number (ordinal): describe order of elements in an ordered set.

* finite set: the empty set or a set that can be put into

1-1 correspondence with {1,2,... n} for some positive integer n.

infinite set: a nonempty set that cannot be put into

1-1 correspondence with {1,2,...,n} for any positive integer n.

* asetA has the same cardinality a set B if, and only if, there isa 1-1
correspondence from A to B.
® reflexivity: A has same cardinality as A
® symmetry: if A has same cardinality as B, then B has same cardinality as A

® transitivity: if A has same cardinality as B, and B has same cardinality as C,

@ then A has same cardinality as C.
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Cardinality: surprising example

® An infinite set and a proper subset can have the
same Cardinality

z 27
H_ -
* Example: =6
| l | | .2
Z, the set of integers, and | - ~
> f L .1
27., the set of even numbers | 3: et

have the same cardinality.

Proof: detine function H: Z — 27 as H(n) = 2n foralln € Z.
His 1-1:if H(n1) = H(n2) then n1 = n2, by def of H and div by 2.
H is onto : any m € 2Z, m is even, so m= 2k for some k € Z

Thus H is a 1-1 correspondence.
© P

/
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Countable sets

L Counting

z | !

le » o "First” element of A
e » ¢ “Second” element of A
ie

» @ “Third™ clement of A

* A setis countably infinite if, and only if, it has the same
cardinality as Z™, the set of positive integers.

* A setis countable if, and only if, it is finite or countbly infinite

® A setis uncountable if and only if it is not countable.

©
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Countable sets: easy example

e The set Z of all integers 1s countable

positive integer

cee—5 -4 -3 -2 -1 0 | 2 3 4
all Hll.;__‘clﬁ
Proof: 5 4 3 2 -1 0 1 2
m 9 7 5 3 1 2 4
No n in Z is counted twice: X % N N e S
NN e gl
1-1:ninZ -- at most I min Z* e R e
All n in Z is counted: > : e
onto: eachninZ -- some min Z*

Formally, define function F: Z" — Z as

F(n) =n/2

if n is an even positive integer

@ -(n-1)/2 if nis an odd positive integer

(and so 2Z. is too)

~
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Countable sets of same cardinality

® For function f: A — B, where A and B have the same cardinality,

it A and B are finite, then fis 1-1 < fis onto (slide 53)

® If A and B are infinite, then there exist
functions that are both 1-1 and onto,
functions that are 1-1 but not onto,

functions that are onto but not 1-1.

Examples: Z" and Z have the same cardinality (previous slide)
i: Z* — 7 with i(n)=n is 1-1 but not onto

j: Z — Z7 with j(n)=|n|+1 is onto but not 1-1

©
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Larger infinities? surprising example

* The set Q" of all positive rational numbers is countable

Rational number are dense:

1 1 1 1 1 1
between any two, there is another! 172 373 /576
of o 2t Y af 2
Proof: T 2 3 A /506
Count follow kipping duplicates ¥/ ¥ ¥ 3/ 3 3
ount following arrows, skipping duplicates =" = A3 s
F()=1/1,FQ=1/2,F3)=2/ LF&)=3/1, |/ [,
skip 2/2=1/1, F(t)=1/3, ... 1 2 /3 4 5 &6
l i
5/ 5/ 5 5 2 B
F is onto: all q in Q™ will be counted /2 3 4 5 6
N ks . 6 6 6
Fis 1-1: no qin Q™ is counted twice 7 3 o

- (3} e
2| N
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Larger infinities: famous example

e The set of all real numbers between 0 and 1 1s uncountable

Proof (by contradiction): Suppose the set [0,1] is countable.

" . O.anappaiz---ayp - - -
Then decimal representations of all these L '

0.a21a2a23 - - - azy - - -
numbers can be written in a list, on right: 0.45,a3a33 - - - as, - - -

The i-th number’s j-th decimal digit is aj:

— —_— () 0_(1 (1#(1;---(1 =H s
e.g.,an=2,az=1, 02 0 1 4 8 8 02 n18n20p: nn
0.1 1 6 6 6 0 2 1
= 0.0 33 5 3 3 2 0
a3 =3, ... 0.9 6 7 7 6 8 0 9
0.0 0 0 310 0 2
Construct a decimal number ¢ = 0.dydods ---d, --- g — |1 T # 1

2 ifann — l

e.g.,di=1,d>=2,d5=1, ...sod = 0.12112...
Each n, d difters from the n-th number on list in n-th decimal digit.

@ d is not in the list, contradiction! Cantor diagonalization process y
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Larger infinities: famous example 2

between 0 and 1 have the same cardinality

Proof: v

Let S= {x€R| 0 <x<1}. Make a circle:

no 0 or 1, so top-most point of circle is omitted

11
47

ool i

Define tunction F: § — R where F(x)

is projection of x on number line. / \

Fis 1-1: different points on circle go

to distinct points on number line bscnirull \ /

® The set of all real numbers and the set of real numbers

F(x)

3 2 1 0 1 2

—

F is onto: for any point on number line, a line can be drawn

to top of circle and intersect circle at some point.

a Thus, Fisa 1-1 correspondence from S to R.

3

~




-
More countable sets and infinities

® The set of all bit strings (strings of 0’s and 1’s) is countable
(think of mapping each positive integer to its binary representation)
® The set of all computer programs in a language is countable
(finite alphabet, each symbol translated to bit string)

® The set of all functions from integers to {0,1} is uncountable

® Any subset of any countable set is countable

® Any sct with an uncountable subset is uncountable

® There is an infinite sequence of larger infinities.

Example: Z, P(Z), P(P(Z)), P(P(P(Z))), ...
-,




