Functions

CSE 215, Foundations of Computer Science
Stony Brook University
http://www.cs.stonybrook.edu/liu/~cse215
Functions defined on general sets

- A function \(f \) from a set \(X \) to a set \(Y \)
 \[
 f : X \rightarrow Y
 \]
 \(X \) is the domain, \(Y \) is the co-domain

 1. every element in \(X \) is related to some element in \(Y \)
 2. no element in \(X \) is related to more than one element in \(Y \)

- Thus, **for any** element \(x \in X \), there is a **unique** element \(y \in Y \) such that \(f(x) = y \)

- **range of** \(f = \text{image of } X \text{ under } f = \{y \in Y \mid y = f(x), x \in X\} \)
- **inverse image of** \(y = \{x \in X \mid f(x) = y\} \)
Arrow diagrams

- An arrow diagram, with elements in X and Y, and an arrow from each x in X to corresponding y in Y.

- It defines a function because:
 1. Every element of X has an arrow coming out of it
 2. No element of X has two arrows coming out of it that point to two different elements of Y
Arrow diagrams: example 1

- \(X = \{a, b, c\} \), \(Y = \{1, 2, 3, 4\} \)

Which one defines a function?

This one!
Arrow diagrams: example 2

- $X = \{a, b, c\}$, \hspace{1cm} $Y = \{1, 2, 3, 4\}$

- Domain of $f = \{a, b, c\}$, \hspace{1cm} Co-domain of $f = \{1, 2, 3, 4\}$

- Range of $f = \{2, 4\}$

- Inverse image of 2 = \{a, c\}

- Inverse image of 4 = \{b\}

- Inverse image of 1 = \emptyset

- Function representation as a set of pairs: $\{(a,2), (b,4), (c,2)\}$
Function equality

Note the set notation for a function: \(F(x) = y \iff (x, y) \in F \)

- If \(F: X \rightarrow Y \) and \(G: X \rightarrow Y \) are functions, then \(F = G \) if, and only if, \(F(x) = G(x) \) for all \(x \in X \).

Proof:

\[
F \subseteq X \times Y \quad \quad \quad \quad \quad \quad G \subseteq X \times Y
\]

\[
F(x) = y \iff (x, y) \in F \quad \quad \quad \quad \quad \quad G(x) = y \iff (x, y) \in G
\]

(\(\Rightarrow \)) Suppose \(F = G \). Then for all \(x \in X \),

\[
y = F(x) \iff (x, y) \in F \iff (x, y) \in G \iff y = G(x)
\]

\[
F(x) = y = G(x)
\]

(\(\Leftarrow \)) Suppose \(F(x) = G(x) \) for all \(x \in X \). Then for any \(x \in X \):

\[
(x, y) \in F \iff y = F(x) \iff y = G(x) \iff (x, y) \in G
\]

F and G consist of exactly the same elements, hence \(F = G \).
Function equality: example 1

- \(J_3 = \{0, 1, 2\} \)

\[
\begin{align*}
 f &: J_3 \to J_3 \\
 f(x) &= (x^2 + x + 1) \mod 3 \\
 g &: J_3 \to J_3 \\
 g(x) &= (x + 2)^2 \mod 3 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x^2 + x + 1)</th>
<th>(f(x) = (x^2 + x + 1) \mod 3)</th>
<th>((x + 2)^2)</th>
<th>(g(x) = (x + 2)^2 \mod 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1 \mod 3 = 1)</td>
<td>4</td>
<td>(4 \mod 3 = 1)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>(3 \mod 3 = 0)</td>
<td>9</td>
<td>(9 \mod 3 = 0)</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>(7 \mod 3 = 1)</td>
<td>16</td>
<td>(16 \mod 3 = 1)</td>
</tr>
</tbody>
</table>

- \(f(0) = g(0) = 1 \)
- \(f(1) = g(1) = 0 \)
- \(f(2) = g(2) = 1 \)

Hence, \(f = g \)
Function equality: example 2

- \(F: \mathbb{R} \rightarrow \mathbb{R} \) and \(G: \mathbb{R} \rightarrow \mathbb{R} \)

 \(F + G: \mathbb{R} \rightarrow \mathbb{R} \) and \(G + F: \mathbb{R} \rightarrow \mathbb{R} \)

 \((F + G)(x) = F(x) + G(x) \)

 \((G + F)(x) = G(x) + F(x) \), for all \(x \in \mathbb{R} \)

For all real numbers \(x \):

\[
(F + G)(x) = F(x) + G(x) \\
= G(x) + F(x) \\
= (G + F)(x)
\]

by definition of \(F + G \)

by commutative law for addition of real numbers

by definition of \(G + F \)

Hence, \(F + G = G + F \)
Example functions (I)

• **Identity function on a set:**
 Given a set X, define identity function $I_X : X \to X$ by
 $$I_X(x) = x, \text{ for all } x \in X$$

• **Function for a sequence:**
 $1, -1/2, 1/3, -1/4, 1/5, \ldots, (-1)^n/(n + 1), \ldots$
 $0 \to 1, \ 1 \to -1/2, \ 2 \to 1/3, \ 3 \to -1/4, \ 4 \to 1/5$
 $$n \to (-1)^n/(n + 1)$$
 $f : \mathbb{N} \to \mathbb{R}, \text{ for each integer } n \geq 0, \ f(n) = (-1)^n/(n + 1)$
 where $(\mathbb{N} = \mathbb{Z}_{\text{nonneg}})$ OR
 $g : \mathbb{Z}^+ \to \mathbb{R}, \text{ for each integer } n \geq 1, \ g(n) = (-1)^{n+1}/n$
 where $(\mathbb{Z}^+ = \mathbb{Z}_{\text{nonneg}} - \{0\})$
Example functions (II)

- Function defined on a power set:
 \[F : P(\{a, b, c\}) \rightarrow \mathbb{Z}^{\text{nonneg}} \]

 For each \(X \in P(\{a, b, c\}) \),

 \[F(X) = \text{the number of elements in } X \text{ (i.e., the cardinality of } X) \]
Example functions (III)

- Functions defined on a Cartesian product:
 \[M : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \quad \text{and} \quad R : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \]

 The multiplication function: \(M(a, b) = a \times b \)
 We omit parenthesis for tuples: \(M((a, b)) = M(a, b) \)
 \[M(1, 1) = 1, \quad M(2, 2) = 4 \]

 The reflection function: \(R(a, b) = (-a, b) \)
 \(R \) sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis
 \[R(1, 1) = (-1, 1), \quad R(2, 5) = (-2, 5), \quad R(-2, 5) = (2, 5) \]
Example functions (IV)

- **Logarithms and logarithmic functions:**
 - The base of a logarithm, b, is a positive real number with $b \neq 1$
 - The logarithm with base b of x: $\log_b x = y \iff b^y = x$
 - The **logarithmic function with base b**:
 \[
 \log_b x : \mathbb{R}^+ \rightarrow \mathbb{R}
 \]

Examples:

- $\log_3 9 = 2$
 because $3^2 = 9$
- $\log_{10}(1) = 0$
 because $10^0 = 1$
- $\log_2 \frac{1}{2} = -1$
 because $2^{-1} = \frac{1}{2}$
- $\log_2 (2^m) = m$
More example functions (I)

- **Encoding and decoding functions** on sequences of 0’s and 1’s also called bit strings

 Encoding function E: For each string s,
 \[
 E(s) = \text{the string obtained from } s \text{ by replacing each bit of } s \text{ by the same bit written 3 times}
 \]

 Decoding function D: For each string t in the range of E,
 \[
 D(t) = \text{the string obtained from } t \text{ by replacing each consecutive 3 identical bits of } t \text{ by a single copy of that bit}
 \]

Redundancy helps with error detection and fix.
More example functions (II)

- **The Hamming distance function**

Let S_n be the set of all strings of 0’s and 1’s of length n.

$H: S_n \times S_n \rightarrow \mathbb{Z}^{\text{nonneg}}$

For each pair of strings $(s, t) \in S_n \times S_n$

$H(s, t) =$ number of positions in which s and t differ

Examples: For $n = 5$, $H(11111, 00000) = 5$

$H(10101, 00000) = 3$

$H(01010, 00000) = 2$

It is important in coding theory: gives a measure of “difference”.
More example functions (III)

- **Boolean functions: (n-place) Boolean function**

 \[f : \{0, 1\}^n \rightarrow \{0, 1\} \]

 Cartesian product

 domain = set of all ordered n-tuples of 0’s and 1’s

 co-domain = \{0, 1\}

 The input/output tables correspond to some circuits.
More example functions (IV)

- **Boolean functions example:**

 \[
 f : \{0, 1\}^3 \rightarrow \{0, 1\}
 \]

 \[
 f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \mod 2
 \]

 - \(f(0, 0, 0) = (0 + 0 + 0) \mod 2 = 0 \mod 2 = 0\)
 - \(f(0, 0, 1) = (0 + 0 + 1) \mod 2 = 1 \mod 2 = 1\)
 - \(f(0, 1, 0) = (0 + 1 + 0) \mod 2 = 1 \mod 2 = 1\)
 - \(f(0, 1, 1) = (0 + 1 + 1) \mod 2 = 2 \mod 2 = 0\)
 - \(f(1, 0, 0) = (1 + 0 + 0) \mod 2 = 1 \mod 2 = 1\)
 - \(f(1, 0, 1) = (1 + 0 + 1) \mod 2 = 2 \mod 2 = 0\)
 - \(f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0\)
 - \(f(1, 1, 1) = (1 + 1 + 1) \mod 2 = 3 \mod 2 = 1\)
Checking well-definedness

• A “function” \(f \) is not well defined if:

 (1) there is no element \(y \) in the co-domain that satisfies \(f(x) = y \) for some element \(x \) in the domain, or

 (2) there are two different values of \(y \) that satisfy \(f(x) = y \)

• Example:

 \(f : \mathbb{R} \rightarrow \mathbb{R} \), \(f(x) \) is the real number \(y \) such that \(x^2 + y^2 = 1 \)

 \(f \) is not well defined:

 (1) \(x = 2 \), there is no real number \(y \) such that \(2^2 + y^2 = 1 \)

 (2) \(x = 0 \), there are 2 real numbers \(y=1 \) and \(y=-1 \) such that \(0^2 + y^2 = 1 \)
Checking well-definedness: example 2

- \(f : \mathbb{Q} \to \mathbb{Z} \),

 \(f(m/n) = m \), for all integers \(m \) and \(n \) with \(n \neq 0 \)

\(f \) is not well defined:

\(1/2 = 2/4 \ \Rightarrow \ f(1/2) = f(2/4) \)

but

\(f(1/2) = 1 \neq 2 = f(2/4) \)

That is, there are two different values of \(y \) that satisfy \(f(x) = y \)
Functions acting on sets

- If \(f : X \rightarrow Y \) is a function and \(A \subseteq X \) and \(C \subseteq Y \), then
 \[
 f(A) = \{ y \in Y \mid y = f(x) \text{ for some } x \in A \}
 \]
 is the **image** of \(A \)
 \[
 f^{-1}(C) = \{ x \in X \mid f(x) \in C \}
 \]
 is the **inverse image** of \(C \)

Example: \(X = \{1, 2, 3, 4\} \), \(Y = \{a, b, c, d, e\} \), \(f : X \rightarrow Y \)

\[
\begin{align*}
 f(\{1,4\}) &= \{b\} & f^{-1}(\{a,b\}) &= \{1, 2, 4\} \\
 f(X) &= \{a, b, d\} & f^{-1}(\{c,e\}) &= \emptyset
\end{align*}
\]
Functions acting on sets: an example proof

- Let X and Y be sets, let $F : X \rightarrow Y$ be a function, $A \subseteq X$, and $B \subseteq X$, then $F(A \cup B) \subseteq F(A) \cup F(B)$

Proof:

Suppose $y \in F(A \cup B)$.

By definition of function, $y = F(x)$ for some $x \in A \cup B$.

By definition of union, $x \in A$ or $x \in B$.

Case 1, $x \in A$: $F(x) = y$, so $y \in F(A)$.

By definition of union: $y \in F(A) \cup F(B)$

Case 2, $x \in B$: $F(x) = y$, so $y \in F(B)$.

By definition of union: $y \in F(A) \cup F(B)$
One-to-one, onto, inverse functions

- $F : X \rightarrow Y$ is **one-to-one** (or **injective**) (often written 1-1) \iff

 For all $x_1 \in X$ and $x_2 \in X$, $F(x_1) = F(x_2) \implies x_1 = x_2$

 Or, equivalently (by contraposition), $x_1 \neq x_2 \implies F(x_1) \neq F(x_2)$

- $F : X \rightarrow Y$ is **not one-to-one** \iff

 $\exists x_1 \in X$ and $x_2 \in X$, such that $x_1 \neq x_2$ and $F(x_1) = F(x_2)$.

Notes on one-to-one functions:

- **One-to-one** functions map each element of the domain to a unique element of the codomain.
- **Injective** functions are a specific type of one-to-one function.

Notes on not one-to-one functions:

- **Not one-to-one** functions map at least one pair of domain elements to the same codomain element. This violates the uniqueness property of one-to-one functions.
- Examples of not one-to-one functions can be visualized where two or more elements in the domain map to the same element in the codomain.
One-to-one functions on finite sets

- **Example 1:**

 $F: \{a, b, c, d\} \rightarrow \{u, v, w, x, y\}$ defined by the following arrow diagram is one-to-one:

\[
\forall x_1 \in X \text{ and } x_2 \in X, \quad x_1 \neq x_2 \implies F(x_1) \neq F(x_2)
\]
One-to-one functions on finite sets

- **Example 2:**

 \(G: \{a, b, c, d\} \rightarrow \{u, v, w, x, y\} \) defined by the following arrow diagram is not one-to-one:

 \[G(a) = G(c) = w \]

 \(\exists \) elements \(x_1 \in X \) and \(x_2 \in X \), such that \(x_1 \neq x_2 \) and \(G(x_1) = G(x_2) \)

 that is, \(a \in X \) and \(c \in X \), such that \(a \neq c \) and \(G(a) = G(c) \)
One-to-one functions on finite sets

• **Example 3:**

 \[H: \{1, 2, 3\} \to \{a, b, c, d\}, \ H(1) = c, \ H(2) = a, \ H(3) = d \]

 \[H \text{ is one-to-one:} \]

 \[\forall x_1 \in X \text{ and } x_2 \in X, \ x_1 \neq x_2 \implies H(x_1) \neq H(x_2) \]

• **Example 4:**

 \[K: \{1, 2, 3\} \to \{a, b, c, d\}, \ K(1) = d, \ K(2) = b, \ K(3) = d \]

 \[K \text{ is not one-to-one:} \]

 \[K(1) = K(3) = d \]

 That is, \(\exists \ x_1 \in X \text{ and } x_2 \in X, \text{ such that } x_1 \neq x_2 \text{ and } K(x_1) = K(x_2) \)
One-to-one functions on infinite sets

- Copied definition:
 \[f \text{ is one-to-one} \iff \forall x_1, x_2 \in X, \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2 \]

- To show f is one-to-one, generally use direct proof:
 - suppose \(x_1 \) and \(x_2 \) are elements of \(X \) such that \(f(x_1) = f(x_2) \)
 - show that \(x_1 = x_2 \).

- To show f is not one-to-one, generally use counterexample:
 - find elements \(x_1 \) and \(x_2 \) in \(X \) so that \(f(x_1) = f(x_2) \) but \(x_1 \neq x_2 \).
One-to-one functions on infinite sets

copied: \(f \text{ is one-to-one } \iff \forall x_1, x_2 \in X, \text{ if } f(x_1) = f(x_2) \text{ then } x_1 = x_2 \)

- **Example 1:** \(f : \mathbb{R} \rightarrow \mathbb{R} \), \[f(x) = 4x - 1 \text{ for all } x \in \mathbb{R} \]
 is \(f \) one-to-one?
 Suppose \(x_1 \) and \(x_2 \) are any real numbers such that \(4x_1 - 1 = 4x_2 - 1 \).
 Adding 1 to both sides and dividing by 4 both sides gives \(x_1 = x_2 \).
 Yes, \(f \) is one-to-one

- **Example 2:** \(g : \mathbb{Z} \rightarrow \mathbb{Z} \), \[g(n) = n^2 \text{ for all } n \in \mathbb{Z} \]
 is \(g \) one-to-one?
 Start by trying to show that \(g \) is one-to-one
 Suppose \(n_1 \) and \(n_2 \) are integers such that \(n_1^2 = n_2^2 \) and try to show \(n_1 = n_2 \).
 But \(1^2 = (-1)^2 = 1 \).
 No, \(g \) is not one-to-one
Application: hash functions

- **Hash functions** are functions defined from larger to smaller sets of integers used in identifying documents.

- **Example**: Hash: \(\text{SSN} \rightarrow \{0, 1, 2, 3, 4, 5, 6\} \)

 \[\text{SSN} = \text{set of all social security numbers (ignoring hyphens)} \]

 \[\text{Hash}(n) = n \mod 7 \quad \text{for all social security numbers } n \]

 e.g., \(\text{Hash}(328343419) = 328343419 - (7 \cdot 46906202) = 5 \)

- Hash is not one-to one: called a **collision** for hash functions.

 e.g., \(\text{Hash}(328343412) = 328343412 - (7 \cdot 46906201) = 5 \)

 Collision resolution:

 if position \(\text{Hash}(n) \) is already occupied, then start from that position and search downward to place the record in the first empty position.
Onto functions

- **F: X → Y is onto (surjective) ⇔**
 \[\forall y \in Y, \; \exists x \in X \text{ such that } F(x) = y. \]
 For arrow diagrams, a function is onto if each element in the co-domain has an arrow to it from some element in the domain.

- **F: X → Y is not onto (surjective) ⇔**
 \[\exists y \in Y \text{ such that } \forall x \in X, \; F(x) \neq y. \]
 There is some element in Y that is not the image of any element in X.
 For arrow diagrams, a function is not onto if at least one element in its co-domain does not have an arrow pointing to it.
Onto functions with arrow diagrams

- F is onto:

Given the diagram:

- $X =$ domain of F
- $Y =$ co-domain of F

Each element y in Y equals $F(x)$ for at least one x in X.
Onto functions: example 1

- $G: \{1,2,3,4,5\} \rightarrow \{a,b,c,d\}$

G is onto because $\forall y \in Y, \exists x \in X$, such that $G(x) = y$
Not onto functions

- \(F \) is not onto

At least one element in \(Y \) does not equal \(F(x) \) for any \(x \) in \(X \).
Onto functions: example 2

- $F: \{1,2,3,4,5\} \rightarrow \{a,b,c,d\}$

F is not onto

because $b \neq F(x)$ for any x in X

that is, $\exists y \in Y$ such that $\forall x \in X$, $F(x) \neq y$
Onto functions: more examples

- **H**: \(\{1,2,3,4\} \rightarrow \{a,b,c\}\)

 \[
 H(1) = c, \quad H(2) = a, \quad H(3) = c, \quad \text{and} \quad H(4) = b
 \]

 H is onto because \(\forall y \in Y, \exists x \in X\) such that \(H(x) = y:\)

 \[
 a = H(2) \\
 b = H(4) \\
 c = H(1) = H(3)
 \]

- **K**: \(\{1,2,3,4\} \rightarrow \{a,b,c\}\)

 \[
 K(1) = c, \quad K(2) = b, \quad K(3) = b, \quad \text{and} \quad K(4) = c
 \]

 H is not onto because \(a \neq K(x)\) for any \(x \in \{1, 2, 3, 4\}\).
Onto functions on infinite sets

-Copied definition:
 \(F \text{ is onto } \iff \forall y \in Y, \exists x \in X \text{ such that } F(x) = y \).

- To prove \(F \) is onto, generally use direct proof:
 - suppose \(y \) is any element of \(Y \),
 - show there is an element \(x \) of \(X \) with \(F(x) = y \).

- To prove \(F \) is \textbf{not} onto, use counterexample:
 - find an element \(y \) of \(Y \) such that \(y \neq F(x) \) for any \(x \) in \(X \).
Onto functions on infinite sets: examples

• Prove that a function is onto or give counterexample

• \(f : \mathbb{R} \to \mathbb{R} \)

\[
f(x) = 4x - 1 \text{ for all } x \in \mathbb{R}
\]

Suppose \(y \in \mathbb{R} \). Show there is a real number \(x \) such that \(y = 4x - 1 \).

\[
4x - 1 = y \iff x = (y + 1)/4 \in \mathbb{R}
\]

So, \(f \) is onto \(\blacksquare \)

• \(h : \mathbb{Z} \to \mathbb{Z} \)

\[
h(n) = 4n - 1 \text{ for all } n \in \mathbb{Z}
\]

\(0 \in \mathbb{Z} \), \(h(n) = 0 \iff 4n - 1 = 0 \iff n = 1/4 \notin \mathbb{Z} \)

\(h(n) \neq 0 \) for any integer \(n \). So \(h \) is not onto \(\blacksquare \)
Exponential functions

- The exponential function with base b: $\exp_b : \mathbb{R} \rightarrow \mathbb{R}^+$
 $$\exp_b(x) = b^x$$
 $$\exp_b(0) = b^0 = 1$$
 $$\exp_b(-x) = b^{-x} = 1/b^x$$

- The exponential function is one-to-one and onto:
 for any positive real number $b \neq 1$, $b^v = b^u \Rightarrow u = v$, $\forall \, u, v \in \mathbb{R}$

- Laws of exponents: $\forall \, b, c \in \mathbb{R}^+$ and $u, v \in \mathbb{R}$
 $$b^u b^v = b^{u+v}$$
 $$b^u / b^v = b^{u-v}$$
 $$(b^u)^v = b^{uv}$$
 $$(bc)^u = b^u c^u$$
Logarithmic functions

- The logarithmic function with base b: \(\log_b : \mathbb{R^+} \rightarrow \mathbb{R} \)
 \[\log_b(x) = y \iff b^y = x \]
- The logarithmic function is one-to-one and onto:
 for any positive real number \(b \neq 1 \),
 \[\log_b u = \log_b v \implies u = v, \quad \forall u, v \in \mathbb{R^+} \]
- Properties of logarithms: \(\forall \ b, c, x \in \mathbb{R^+} \), with \(b \neq 1 \) and \(c \neq 1 \)
 \[\log_b(xy) = \log_b x + \log_b y \]
 \[\log_b(x/y) = \log_b x - \log_b y \]
 \[\log_b(x^a) = a \log_b x \]
 \[\log_c x = \log_b x / \log_b c \]
Logarithmic functions: example proofs

\[\forall b, c, x \in \mathbb{R}^+, \text{ with } b \neq 1 \text{ and } c \neq 1: \log_c x = \log_b x / \log_b c \]

Proof:

Suppose positive real numbers b, c, and x are given, s.t.

(1) \(u = \log_b c \)
(2) \(v = \log_c x \)
(3) \(w = \log_b x \)

By definition of logarithm: \(c = b^u, x = c^v \) and \(x = b^w \)

\(x = c^v = (b^u)^v = b^{uv} \), \ by laws of exponents

So \(x = b^w = b^{uv} \), so \(uv = w \)

That is, \((\log_b c)(\log_c x) = \log_b x \), \ by (1), (2), and (3)

By dividing both sides by \(\log_b c \): \(\log_c x = \log_b x / \log_b c \quad \blacksquare \)
Logarithmic functions: notations

- Logarithms with base 10 are called **common logarithms** and are denoted by simply log.

- Logarithms with base e are called **natural logarithms** and are denoted by ln.

Example:

$$\log_2 5 = \log 5 / \log 2 = \ln 5 / \ln 2$$
One-to-one correspondences

• A one-to-one correspondence (or bijection) from a set X to a set Y is a function $F: X \rightarrow Y$ that is both one-to-one and onto.

• Example:
One-to-one correspondences: example 2

- A function from a power set to a set of strings
 \[h : P(\{a, b\}) \rightarrow \{00, 01, 10, 11\} \]

If \(a \) is in \(A \), write a 1 in the 1\(^{st}\) position of the string \(h(A) \).
If \(a \) is not in \(A \), write a 0 in the 1\(^{st}\) position of the string \(h(A) \).
If \(b \) is in \(A \), write a 1 in the 2\(^{nd}\) position of the string \(h(A) \).
If \(b \) is not in \(A \), write a 0 in the 2\(^{nd}\) position of the string \(h(A) \).

<table>
<thead>
<tr>
<th>Subset of ({a, b})</th>
<th>Status of (a)</th>
<th>Status of (b)</th>
<th>String in (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>not in</td>
<td>not in</td>
<td>00</td>
</tr>
<tr>
<td>({a})</td>
<td>in</td>
<td>not in</td>
<td>10</td>
</tr>
<tr>
<td>({b})</td>
<td>not in</td>
<td>in</td>
<td>01</td>
</tr>
<tr>
<td>({a, b})</td>
<td>in</td>
<td>in</td>
<td>11</td>
</tr>
</tbody>
</table>
One-to-one correspondences: example 3

- **Example:** $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$

 \[F(x, y) = (x + y, x - y), \text{ for all } (x, y) \in \mathbb{R} \times \mathbb{R} \]

Proof that F is one-to-one:

Suppose that (x_1, y_1) and (x_2, y_2) are any ordered pairs in $\mathbb{R} \times \mathbb{R}$ such that $F(x_1, y_1) = F(x_2, y_2)$.

\[(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2), \text{ by definition of } F \]

\[(1) \ x_1 + y_1 = x_2 + y_2 \quad \text{and} \quad (2) \ x_1 - y_1 = x_2 - y_2, \text{ by pair equalty} \]

\[(1) + (2) \Rightarrow 2x_1 = 2x_2 \Rightarrow (3) \ x_1 = x_2 \]

Substituting (3) in (2) \[x_1 + y_1 = x_1 + y_2 \Rightarrow y_1 = y_2 \]

So, $(x_1, y_1) = (x_2, y_2)$

So, F is one-to-one.
Example: \(F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \)

\[F(x, y) = (x + y, x - y), \text{ for all } (x, y) \in \mathbb{R} \times \mathbb{R} \]

Proof that \(F \) is onto:

Let \((u,v)\) be any ordered pair in \(\mathbb{R} \times \mathbb{R}\)

Suppose that we found \((r, s) \in \mathbb{R} \times \mathbb{R}\) such that \(F(r, s) = (u, v)\).

\[(r + s, r - s) = (u, v) \iff r + s = u \quad \text{and} \quad r - s = v \]

\[2r = u + v \quad \text{and} \quad 2s = u - v \]

\[r = \frac{u + v}{2} \quad \text{and} \quad s = \frac{u - v}{2} \]

We found \((r, s) \in \mathbb{R} \times \mathbb{R}\) such that \(F(r, s) = (u, v)\)

So, \(F \) is onto.

Thus, \(F \) is a One-to-One correspondence.
Inverse functions

- If $F: X \rightarrow Y$ is a one-to-one correspondence, then there is an inverse function for F, $F^{-1}: Y \rightarrow X$, such that for any element $y \in Y$,

 $$F^{-1}(y) = \text{that unique element } x \in X \text{ such that } F(x) = y$$

 $$F^{-1}(y) = x \iff y = F(x)$$

$X = \text{domain of } F$ $Y = \text{co-domain of } F$
Inverse functions: example 1

- Function h:

\[P(\{a, b\}) \xrightarrow{h} S \]

\[
\begin{align*}
\emptyset & \rightarrow 00 \\
\{a\} & \rightarrow 10 \\
\{b\} & \rightarrow 01 \\
\{a, b\} & \rightarrow 11
\end{align*}
\]

The inverse function for h is h^{-1}:

\[P(\{a, b\}) \xleftarrow{h^{-1}} S \]

\[
\begin{align*}
\emptyset & \leftarrow 00 & h^{-1}(00) = \emptyset \\
\{a\} & \leftarrow 10 & h^{-1}(10) = \{a\} \\
\{b\} & \leftarrow 01 & h^{-1}(01) = \{b\} \\
\{a, b\} & \leftarrow 11 & h^{-1}(11) = \{a, b\}
\end{align*}
\]
Inverse functions: example 2

- Function \(f : \mathbb{R} \rightarrow \mathbb{R} \)
 \[
 f(x) = 4x - 1 \text{ for all real numbers } x.
 \]

The inverse function for \(f \) is \(f^{-1} : \mathbb{R} \rightarrow \mathbb{R} \),
for any \(y \) in \(\mathbb{R} \),
\(f^{-1}(y) \) is that unique real number \(x \) such that \(f(x) = y \).
\[
4x - 1 = y \iff x = (y + 1)/4
\]
Hence, \(f^{-1}(y) = (y + 1)/4 \).
Inverse functions: one-to-one, onto

If X and Y are sets and $F : X \rightarrow Y$ is one-to-one and onto, then $F^{-1} : Y \rightarrow X$ is also one-to-one and onto.

Proof:

F^{-1} is one-to-one:

Suppose y_1 and y_2 are elements of Y, such that $F^{-1}(y_1) = F^{-1}(y_2)$.

Let $x = F^{-1}(y_1) = F^{-1}(y_2)$. Then $x \in X$.

By definition of F^{-1}, $F(x) = y_1$ and $F(x) = y_2$, so $y_1 = y_2$.

F^{-1} is onto:

Suppose $x \in X$. Need to find y in Y, such that $F^{-1}(y) = x$.

Let $y = F(x)$. Then $y \in Y$.

By definition of F^{-1}, $F^{-1}(y) = x$.

The Pigeonhole principle (sec 9.4)

- A function from a finite set to a smaller set cannot be 1-1: at least 2 elements in the domain have the same image in co-domain.

If n pigeons fly into m pigeonholes with $n > m$, then at least one hole contains two or more pigeons.
The Pigeonhole principle: example 1

- In a group of 6 people, must there be at least two who were born in the same month?
- In a group of 13 people, must there be at least two who were born in the same month.
The Pigeonhole principle: example 2

• Finding the number to pick to ensure a result:
 at least the cardinality of the co-domain + 1

• A drawer contains black and white socks.
 What is the least number of socks you must pull out to be sure to get a matched pair?

 2 socks are not enough: one white and one black

 3 socks are enough by the pigeonhole principle
The Pigeonhole principle: example 3

- **Reach a certain sum:** Let \(A = \{1, 2, 3, 4, 5, 6, 7, 8\} \)
- If we select 4 integers from \(A \), must at least one pair of the integers have a sum of 9?
 No. Let \(B = \{1, 2, 3, 4\} \)
 \[1+2 = 3 ; 1+3 = 4 ; 1+4 = 5 ; 2+3 = 5 ; 2+4 = 6 ; 3+4 = 7 \]
- If we select 5 integers from \(A \), must at least one pair of the integers have a sum of 9?
 Yes.
Generalized Pigeonhole principle

- For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if $k < n/m$ (i.e., $km < n$), then there is some $y \in Y$ such that y is the image of at least $k + 1$ distinct elements of X.

- **Example:**

 $n = 9$ pigeons
 $m = 4$ holes

 a least one pigeonhole contains 3 or more pigeons.

 $k = 2 < 9/4$, $k+1 = 3$
One-to-one and onto for finite sets

- Let X and Y be finite sets with the **same number of elements** and f is a function from X to Y. Then **f is 1-1 \iff f is onto**

Proof: Let $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_m\}$

(\Rightarrow) If f is 1-1, then $f(x_i)$ for $i = 1, \ldots, m$ are all distinct.
Let $S = \{y \in Y \mid \forall x \in X, f(x) \neq y\}$; all $\{f(x_i)\}$ and S are mutually disjoint.

$m = |Y| = |\{f(x_1)\}| + |\{f(x_2)\}| + \ldots + |\{f(x_m)\}| + |S| = m + |S|$

$\iff |S| = 0$, no element of Y is not the image of some element of X.

That is, f is onto.

(\Leftarrow) If f is onto, then $|f^{-1}(y_i)| \geq 1$ for all $i = 1, \ldots, m$.

All $\{f^{-1}(y_i)\}$ are mutually disjoint by f.

$m = |X| = |f^{-1}(y_1)| + \ldots + |f^{-1}(y_m)|$. m terms, so $|f^{-1}(y_i)| = 1$.

That is, f is 1-1.
Composition of functions

- Let \(f : X \rightarrow Y' \) and \(g : Y \rightarrow Z \) be functions with the property that the range of \(f \) is a subset of the domain of \(g \): \(Y' \subseteq Y \)

The composition of \(f \) and \(g \) is a function \(g \circ f : X \rightarrow Z \):

\[
(g \circ f)(x) = g(f(x)) \quad \text{for all } x \in X
\]
Composition of functions: example 1

- $f : \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$
 - $f(n) = n + 1$, for all $n \in \mathbb{Z}$
 - $g(n) = n^2$, for all $n \in \mathbb{Z}$

$(g \circ f)(n) = g(f(n)) = g(n+1) = (n + 1)^2$, for all $n \in \mathbb{Z}$

$(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$, for all $n \in \mathbb{Z}$

$(g \circ f)(1) = (1 + 1)^2 = 4$
$(f \circ g)(1) = 1^2 + 1 = 2$

So, $f \circ g \neq g \circ f$
Composition of functions: example 2

- \(f : \{1,2,3\} \rightarrow \{a,b,c,d\} \) and \(g : \{a,b,c,d,e\} \rightarrow \{x,y,z\} \)

\[X \xrightarrow{f} Y \xrightarrow{g} Z \]

\[X \xrightarrow{g \circ f} Z \]
X = \{a, b, c, d\} and Y = \{u, v, w\}, f : X \rightarrow Y

I_X : X \rightarrow X is an identity function
I_X(x) = x, for all x \in X

(f \circ I_X)(x) = f(I_X(x)) = f(x), for all x \in X

I_Y : Y \rightarrow Y is an identity function
I_Y(y) = y, for all y \in Y

(I_Y \circ f)(x) = I_Y(f(x)) = f(x), for all x \in X
Composition of functions: example 4

- Composing a function with its inverse:

Let $f : \{a, b, c\} \rightarrow \{x, y, z\}$ be a one-to-one and onto function.

f is one-to-one correspondence $\Rightarrow f^{-1} : \{x, y, z\} \rightarrow \{a, b, c\}$

$\begin{align*}
(f^{-1} \circ f)(a) &= f^{-1}(f(a)) = f^{-1}(z) = a \\
(f^{-1} \circ f)(b) &= f^{-1}(f(b)) = f^{-1}(x) = b \\
(f^{-1} \circ f)(c) &= f^{-1}(f(c)) = f^{-1}(y) = c
\end{align*}$

$\Rightarrow f^{-1} \circ f = I_X$

also $f \circ f^{-1} = I_Y$
Composition of functions: example 4

- Composing a function with its inverse:

If \(f : X \rightarrow Y \) is a one-to-one and onto function with inverse function \(f^{-1} : Y \rightarrow X \), then (1) \(f^{-1} \circ f = I_X \) and (2) \(f \circ f^{-1} = I_Y \)

Proof of (1):

Let \(x \) be any element in \(X \): \((f^{-1} \circ f)(x) = f^{-1}(f(x)) = x' \in X \) (*)

Definition of inverse function:

\(f^{-1}(b) = a \iff f(a) = b \) for all \(a \in X \) and \(b \in Y \)

\(\Rightarrow f^{-1}(f(x)) = x' \iff f(x') = f(x) \)

Since \(f \) is one-to-one, this implies that \(x' = x \).

(*) \(\Rightarrow (f^{-1} \circ f)(x) = x \)
Composition of one-to-one functions

- If \(f : X \to Y \) and \(g : Y \to Z \) are both one-to-one functions, then \(g \circ f \) is also one-to-one.

Proof (by direct proof):
Suppose \(f : X \to Y \) and \(g : Y \to Z \) are both one-to-one functions.

Suppose \(x_1, x_2 \in X \) such that: \((g \circ f)(x_1) = (g \circ f)(x_2)\)

By definition of composition of functions, \(g(f(x_1)) = g(f(x_2)) \).

Since \(g \) is one-to-one, \(f(x_1) = f(x_2) \).

Since \(f \) is one-to-one, \(x_1 = x_2 \).
Composition of one-to-one functions

Example:

\[f \circ g \]
Composition of onto functions

- If \(f: X \to Y \) and \(g: Y \to Z \) are both onto functions, then \(g \circ f \) is onto.

Proof:

Suppose \(f: X \to Y \) and \(g: Y \to Z \) are both onto functions.

Let \(z \) be an element of \(Z \).

Since \(g \) is onto, there is an element \(y \) in \(Y \) such that \(g(y) = z \).

Since \(f \) is onto, there is an element \(x \) in \(X \) such that \(f(x) = y \).

\[z = g(y) = g(f(x)) = (g \circ f)(x) \implies g \circ f \text{ is onto} \]
Composition of onto functions

- Example:
Cardinality and sizes of infinity

- **cardinal number** (cardinal): describe number of elements in a set.
- **ordinal number** (ordinal): describe order of elements in an ordered set.

- **finite set**: the empty set or a set that can be put into 1-1 correspondence with \{1,2,…,n\} for some positive integer n.

- **infinite set**: a nonempty set that cannot be put into 1-1 correspondence with \{1,2,…,n\} for any positive integer n.

- A set A has the same cardinality a set B if, and only if, there is a 1-1 correspondence from A to B.
 - reflexivity: A has same cardinality as A
 - symmetry: if A has same cardinality as B, then B has same cardinality as A
 - transitivity: if A has same cardinality as B, and B has same cardinality as C, then A has same cardinality as C.
Cardinality: surprising example

- An infinite set and a proper subset can have the same cardinality

- Example:
 \(\mathbb{Z} \), the set of integers, and \(2\mathbb{Z} \), the set of even numbers have the same cardinality.

Proof: define function \(H: \mathbb{Z} \rightarrow 2\mathbb{Z} \) as \(H(n) = 2n \) for all \(n \in \mathbb{Z} \).

- \(H \) is 1-1: if \(H(n_1) = H(n_2) \) then \(n_1 = n_2 \), by def of \(H \) and div by 2.
- \(H \) is onto: any \(m \in 2\mathbb{Z} \), \(m \) is even, so \(m = 2k \) for some \(k \in \mathbb{Z} \)

Thus \(H \) is a 1-1 correspondence.
Countable sets

- Counting

A set is countably infinite if, and only if, it has the same cardinality as \mathbb{Z}^+, the set of positive integers.

- A set is countable if, and only if, it is finite or countably infinite.
- A set is uncountable if and only if it is not countable.
Countable sets: easy example

- The set \(Z \) of all integers is countable (and so \(2Z \) is too)

Proof:
No \(n \) in \(Z \) is counted twice:

1-1: \(n \) in \(Z \) -- at most 1 \(m \) in \(Z^+ \)

All \(n \) in \(Z \) is counted:
onto: each \(n \) in \(Z \) -- some \(m \) in \(Z^+ \)

Formally, define function \(F: Z^+ \rightarrow Z \) as

\[
F(n) = \begin{cases}
 n/2 & \text{if } n \text{ is an even positive integer} \\
 -(n-1)/2 & \text{if } n \text{ is an odd positive integer}
\end{cases}
\]
Countable sets of same cardinality

- For function $f: A \rightarrow B$, where A and B have the same cardinality,
 if A and B are finite, then f is 1-1 \iff f is onto (slide 53)

- If A and B are infinite, then there exist
 functions that are both 1-1 and onto,
 functions that are 1-1 but not onto,
 functions that are onto but not 1-1.

Examples: \mathbb{Z}^+ and \mathbb{Z} have the same cardinality (previous slide)

- $i: \mathbb{Z}^+ \rightarrow \mathbb{Z}$ with $i(n)=n$ is 1-1 but not onto
- $j: \mathbb{Z} \rightarrow \mathbb{Z}^+$ with $j(n)=|n|+1$ is onto but not 1-1
Larger infinities? surprising example

- The set Q^+ of all positive rational numbers is countable

Rational number are dense:
between any two, there is another!

Proof:

Count following arrows, skipping duplicates

$F(1)=1/1$, $F(2)=1/2$, $F(3)=2/1$, $F(4)=3/1$,
skip $2/2=1/1$, $F(t)=1/3$, …

F is onto: all q in Q^+ will be counted

F is 1-1: no q in Q^+ is counted twice
Larger infinities: famous example

- The set of **all real numbers** between 0 and 1 is **uncountable**

Proof (by contradiction): Suppose the set [0,1] is countable.

Then **decimal representations of all these numbers can be written in a list**, on right:

The i-th number’s j-th decimal digit is \(a_{ij} \):

\[
\begin{align*}
0. \ &a_{11}a_{12}a_{13} \ldots a_{1n} \ldots \\
0. \ &a_{21}a_{22}a_{23} \ldots a_{2n} \ldots \\
0. \ &a_{31}a_{32}a_{33} \ldots a_{3n} \ldots \\
\vdots
\end{align*}
\]

Construct a decimal number \(d = 0.d_1d_2d_3 \ldots d_n \ldots \)

\[
d_n = \begin{cases}
1 & \text{if } a_{nn} \neq 1 \\
2 & \text{if } a_{nn} = 1
\end{cases}
\]

\(e.g., \ d_1 = 1, \ d_2 = 2, \ d_3 = 1, \ldots \) so \(d = 0.12112\ldots \)

Each n, \(d \) differs from the n-th number on list in n-th decimal digit.

\(d \) is not in the list, contradiction! **Cantor diagonalization process**
Larger infinities: famous example 2

- The set of all real numbers and the set of real numbers between 0 and 1 have the same cardinality

Proof:

Let $S = \{x \in \mathbb{R} \mid 0 < x < 1\}$. Make a circle:

- no 0 or 1, so top-most point of circle is omitted

Define function $F: S \rightarrow \mathbb{R}$ where $F(x)$ is projection of x on number line.

F is 1-1: different points on circle go to distinct points on number line.

F is onto: for any point on number line, a line can be drawn to top of circle and intersect circle at some point.

Thus, F is a 1-1 correspondence from S to \mathbb{R}.

More countable sets and infinities

- The set of all bit strings (strings of 0’s and 1’s) is countable (think of mapping each positive integer to its binary representation)
- The set of all computer programs in a language is countable (finite alphabet, each symbol translated to bit string)
- The set of all functions from integers to \(\{0,1\} \) is uncountable

- Any subset of any countable set is countable
- Any set with an uncountable subset is uncountable

- There is an infinite sequence of larger infinities.
 Example: \(\mathbb{Z}, \mathcal{P}(\mathbb{Z}), \mathcal{P}(\mathcal{P}(\mathbb{Z})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{Z}))), \ldots \)