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Mathematical Formalization 
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Why formalize?
 to remove ambiguity
 to represent facts on a computer and use it for 

proving, proof-checking, etc.
 to detect unsound reasoning in arguments

All people are mortal. 

Socrates is a person. Socrates is mortal.

∀x P(x) → M(x) P(S) → M(S) M(S)
P(S) P(S)



Logic
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Mathematical logic is a tool for dealing with 
formal reasoning
formalization of natural language and reasoning 

methods
Logic does:
Assess if an argument is valid or invalid

Logic does not directly:
Assess the truth of atomic statements



Propositional Logic
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 Propositional logic is the study of:
 the structure/form (syntax) and
 the meaning (semantics) of (simple and complex) 

propositions.

 The key questions are:
How is the truth value of a complex proposition 

obtained from the truth value of its simpler 
components?

Which propositions represent correct reasoning 
arguments?
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 A proposition is a sentence that is either true or false, but not 
both.                                                          and no quantified variables 

 Examples of simple propositions:
 John is a student
 5+1 = 6
 426 > 1721
 It is 52 degrees outside right now.

 Example of a complex proposition:
 Tom is five and Mary is six

 Sentences that are not propositions:
 Did Steve get an A on the 215 exam?
 Go away!

Proposition
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 In studying properties of propositions, we represent them by expressions 
called proposition forms or formulas built from propositional 
variables (atoms), which represent simple propositions and symbols 
representing logical connectives.
 Proposition or propositional variables: p, q,…

each can be true or false
Examples: p=“Socrates is mortal”

q=“Plato is mortal”

 Connectives: ∧, ∨, →, ↔, ~
Connect propositions: p ∨ q

 Example: “I passed the exam or I did not pass it.”       p ∨ ~p

 The formula expresses the logical structure of the proposition, where p
is an abbreviation for the simple proposition “I passed the exam.”

Proposition formula



Connectives
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~ not
 and
 or  (non-exclusive!)
→ implies (if … then …)
↔ if and only if
next two are not in propositional logic

 for all
 there exists



Formulas
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Atomic: p, q, x, y, …

Unit Formula: p, ~p, (formula), …

Conjunctive: p q, p ~q, …

Disjunctive: p q, p (q x),…

Conditional: p → q

Biconditional: p ↔ q



Negation (~ or ¬ or !)
 We use symbol ~ to denote negation (same as the textbook)

 Form (syntax): If p is a formula, then ~p is also a formula. 

We say that the second formula is the negation of the first.
 Examples: p, ~p, and ~~p are all formulas.

 Meaning (semantics): 

If a proposition is true, then its negation is false;

if it is false, then its negation is true.
 The structure of a formula and its negation reflects a 

relationship between the meaning of propositions.

9



Examples:
John went to the store yesterday (p).
John did not go to the store yesterday (~p).

At the formula level we express the connection 
via what is called a truth table:
If p is true, then ~p is false
If p is false, then ~p is true

10

Negation (~ or ¬ or !)



Note: ~~p ≡ p
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Negation (~ or ¬ or !)



Conjunction ( or & or •)
 We use symbol to denote conjunction (same as the 

textbook)

 Syntax: If p and q are formulas, then p ∧ q is also a formula.

 Semantics: If p is true and q is true, then p ∧ q is true; in all 
other cases, p ∧ q is false.

12



 Example:
1. Bill went to the store.
2. Mary ate cantaloupe.
3. Bill went to the store and Mary ate cantaloupe.

 If p and q abbreviate the first and second sentence, then the 
third is represented by the conjunction p q.

13

Conjunction ( or & or •)



Disjunction ( or | or +)
 We use symbol ∨ to denote (inclusive) disjunction.

 Syntax: If p and q are formulas, then p ∨ q is also a formula.

 Semantics: If p is true or q is true or both are true, then p ∨ q is 
true; if p and q are both false, then p ∨ q is false.

14



 Example:

 John works hard (p).
 Mary is happy (q).

 John works hard or Mary is happy (p ∨ q).

15

Disjunction ( or | or +)



Exclusive Or ( , XOR)
 We use symbol ⊕ to denote exclusive or.

 Syntax: If p and q are formulas, then p ⊕ q is also a formula.

 Semantics: An exclusive or p ⊕ q is true if, and only if, one of 
p or q is true, but not both.

 Example: 
 Either John works hard or Mary is happy (p ⊕ q)

16



Implication, conditional
 Example proposition: 

If I do not pass the exam I will fail the course.

 Corresponding formula: ~p → q

17



Determining Truth of a Formula

18

 Atomic formulae: given

 Compound formulae: via meaning of the connectives
 The semantics of logical connectives determines how propositional 

formulas are evaluated using the truth values assigned to propositional 
variables.

 Each possible truth assignment or valuation for the propositional 
variables of a formula yields a truth value of the formula. 
The different possibilities can be summarized in a truth table.
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 Example 1:             p ∧ ~q (read “p and not q”)

p q ~q p ∧ ~q

T T F F

T F T T

F T F F

F F T F

Determining Truth of a Formula
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 Example 2: p ∧ (q ∨ r ) (read “p and, in addition, q or r”)

 Note: It is usually necessary to evaluate all subformulas.

p q r q ∨ r p ∧ (q ∨ r ) 

T T T T T

T T F T T

T F T T T

T F F F F

F T T T F

F T F T F

F F T T F

F F F F F

Determining Truth of a Formula



Evaluation of formulas - Truth tables

 A truth table for a formula lists all possible “situations” of 
truth or falsity, depending on the values assigned to the 
propositional variables of the formula.

21



Truth Tables
 Example: If p, q, and r are the propositions “Peter [Quincy, 

Richard] will lend Sam money,” then Sam can deduce logically 
correctly, that he will be able to borrow money whenever one 
of his three friends is willing to lend him some (p ∨ q ∨ r)

 Each row in the truth table corresponds to one possible 
situation of assigning truth values to p, q, and r

22

p q r p ∨ q ∨ r

T T T T

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F F



 How many rows are there in a truth table with n 
propositional variables?
 For n = 1, there are two rows,
 for n = 2, there are four rows,
 for n = 3, there are eight rows, and so on.

 Do you see a pattern?

23

Truth Tables



Constructing Truth Tables
 There are two choices (true or false) for each of n variables, 

so in general there are 2x2x2x...x2 = 2n rows for n 
variables.

 A systematic procedure (an algorithm) is necessary to make 
sure you construct all rows without duplicates.
 construct the rows systematically: 
 count in binary: 000, 001, 010, 011,100, . . .

 the rightmost column must be computed as a function of all the truth 
values in the row.

24



 Because it is clumsy and time-consuming to build large 
explicit truth tables, we will be interested in more efficient 
logical evaluation procedures.

25

Constructing Truth Tables



Syntax of Formulas
 The formal language of propositional logic can be 

specified by grammar rules

 The syntactic structure of a complex logical expression 
(i.e., its parse tree) must be unambiguous

proposition ::= variable
| (~proposition)
| (proposition proposition)
| (proposition proposition)
...

variable ::= p | q | r | ...

26



Ambiguities in Syntax of Formulas
 For example, the expression p q r can be interpreted in 

two different ways:

 Parentheses are needed to avoid ambiguities.
 Without parentheses the meaning of the formula is not clear!

 The same problem arises in arithmetic: does 5+2 x 4 mean 
(5+2) x 4 or 5+(2 x 4)?
 order/precedence of operators

27

p q r p ∧ q (p ∧ q) ∨ r q ∨ r p ∧ (q ∨ r)

F F T F T T F



Simplified Syntax
 In arithmetic, one often species a precedence among 

operators (say, times ahead of plus) to eliminate the need for 
some parentheses; same in certain programming languages.

 The same can be done for the logical connectives, though 
deleting parentheses may cause confusion.

 Example: If is ahead of in the precedence, there is no 
ambiguity in p q r

28
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Precedence
 ~ highest



 ∨
 →, ↔ lowest

 Note, the textbook gives and the same precedence.

 Avoid confusion - use ‘(‘ and ‘)’:
 (p ∧ q) ∨ x

 In general, don’t want too few levels, or too many levels. 



Simplified Syntax
 The properties of logical connectives can also be exploited to 

simplify the notation.
 Example: Disjunction is commutative

30

p q p ∨ q q ∨ p

T T T T

T F T T

F T T T

F F F F



Simplified Syntax
 Disjunction is also associative

 We will therefore ambiguously write p ∨ q ∨ r to denote either (p ∨
q) ∨ r or p ∨ (q ∨ r). The ambiguity is usually of no consequence, as 
both formulas have the same meaning.
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p q r (p ∨ q) ∨ r p ∨ (q ∨ r) 

T T T T T

T T F T T

T F T T T

T F F T T

F T T T T

F T F T T

F F T T T

F F F F F



Logical Equivalence
 If two formulas evaluate to the same truth value in all 

situations, so that their truth tables are the same, they are 
said to be logically equivalent.

 We write p ≡ q to indicate that two formulas p and q are 
logically equivalent.

 If two formulas are logically equivalent, their syntax may be 
different, but their semantics is the same. The logical 
equivalence of two formulas can be established by inspecting 
the associated truth tables.

 Substituting logically inequivalent formulas is the source of 
most real-world reasoning errors.

32



 Example 1:
 Is ~(p ∧ q) logically equivalent to ~p ∧ ~q?

 Lines 2 and 3 prove that this is not the case.
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p q p ∧ q ~(p ∧ q) ~p ~q ~p ∧ ~q

T T T F F F F

T F F T F T F

F T F T T F F

F F F T T T T

Logical Equivalence



 Example 2:
 Is ~(p ∧ q) logically equivalent to ~p ∨ ~q?

 Yes.
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p q p ∧ q ~(p ∧ q) ~p ~q ~p ∨ ~q

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Logical Equivalence



De Morgan's Laws
 There are a number of important equivalences, including the 

following De Morgan's Laws:
 ~(p ∧ q) ≡ ~p ∨ ~q

 ~(p ∨ q) ≡ ~p ∧ ~q

 These equivalences can be used to transform a formula into a 
logically equivalent one of a certain syntactic form, called a 
"normal form“

 Another useful logical equivalence is double negation:
 ~~ p ≡ p 

35



 Example: 
 ~(~p ∧ ~q) ≡ ~ ~ (p ∨ q) ≡ p ∨ q

 The first equivalence is by De Morgan's Law, the second by 
double negation.

 We have just derived a new equivalence: p ∨ q ≡ ~(~p ∧ ~q) 
(as equivalence can be used in both directions) which shows that 
disjunction can be expressed in terms of conjunction and 
negation!

36

De Morgan's Laws



Some Logical Equivalences
 You should be able to convince yourself of (i.e., prove) each 

of these:
 Commutativity of ∧ : p ∧ q ≡ q ∧ p

 Commutativity of ∨ : p ∨ q ≡ q ∨ p

 Associativity of ∧ : p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

 Associativity of ∨ : p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

 Idempotence: p ≡ p ∧ p ≡ p ∨ p

 Absorption: p ≡ p ∧ (p ∨ q) ≡ p ∨ (p ∧ q) 

37



 You should be able to convince yourself of (i.e., prove) each 
of these:
 Distributivity of ∧ : p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 
 Distributivity of ∨ : p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 
 Contradictions: p ∧ F ≡ F ≡ p ∧ ~p

 Identities: p ∧T ≡ p ≡ p ∨ F
 Tautologies: p ∨T ≡ T ≡ p ∨ ~p

38

Some Logical Equivalences



Tautologies
 A tautology is a formula that is always true, no matter which 

truth values we assign to its variables.

 Consider the proposition "I passed the exam or I did not pass 
the exam," the logical form of which is represented by the 
formula p ~p

 This is a tautology, as we get T in every row of its truth table.

39

p ~p p ∨ ~p

T F T

F T T



Contradictions
 A contradiction is a formula that is always false.

 The logical form of the proposition "I passed the exam and I 
did not pass the exam" is represented by p ~p

 This is a contradiction, as we get F in every row of its truth table.

40

p ~p p ∧ ~p

T F F

F T F



Tautologies and contradictions
 Tautologies and contradictions are related

Theorem: If p is a tautology (contradiction) then ~p is 
a contradiction (tautology).

~(p ~p) ≡ ~p ~~p ≡ ~p p ≡ p ~p

41



Implication (→), condl stmt
 Syntax: If p and q are formulas, then p → q (read “p 

implies q") is also a formula.

 We call p the hypothesis and q the conclusion of the 
implication.

 Semantics: If p is true and q is false, then p → q is false. 
In all other cases, p → q is true.

 Truth table:

42



 Example:
 p: You get A's on all exams.
 q: You get an A in this course.

 p → q: If you get A's on all exams, then you get an A in this 
course.

43

Implication (→)



 The semantics of implication is trickier than for the other 
connectives
 if p and q are both true, clearly the implication p → q is true
 if p is true but q is false, clearly the implication p → q is false
 If hypothesis p is false, no conclusion can be drawn, but both q 

being true and being false are consistent, so that the implication 
p → q is true in both cases

 Implication can also be expressed by other connectives, for 
example, p → q is logically equivalent to ~(p ∧ ~q),

or ~p q.

44

Implication (→)



Example: Bad Defense Attorney
 Prosecutor: 
 "If the defendant is guilty, then he had an accomplice.“

 Defense Attorney: 
 "That's not true!!“

 What did the defense attorney just claim??
 ~(p → q) ≡ ~~(p ∧ ~q) ≡ p ∧ ~q

45



Biconditional
 Syntax: If p and q are formulas, then p ↔ q (read “p if and only 

if (iff) q") is also a formula.

 Semantics: If p and q are either both true or both false, then 
p↔q is true. Otherwise, p ↔ q is false.

 Truth table:

46



 Example:
 p: Bill will get an A.

 q: Bill studies hard.

 p ↔ q : Bill will get an A if and only if Bill studies hard.

 The biconditional may be viewed as a shorthand for a 
conjunction of two implications, as p ↔ q is logically 
equivalent to (p → q) (q → p) 

47

Biconditional



Necessary and Sufficient Conditions
 The phrase "necessary and sufficient conditions" appears 

often in mathematics.

 A proposition p is necessary for q means: q cannot be true 
without p, that is, ~p → ~q (equivalent to q → p).
 Example: It is necessary for a student to have a 3.0 GPA in the 

core courses to be admitted to become a CSE major.

 A proposition p is sufficient for q means: p → q.
 Example: It is sufficient for a student to get A's in CSE114, 

CSE215, CSE214, and CSE220 in order to be admitted to 
become a CSE major.

48



Only if
 It p and q are statements,

p only if q means “if not q then not p,”

or, equivalently,

“if p then q.”

 John will break the world’s record for the mile run only if 
he will run the mile in under four minutes.
 Solution Version 1: If John will not run the mile in under four 

minutes, then he will not break the world’s record.
 Solution Version 2: If John will break the world’s record, then he 

will have run the mile in under four minutes.

49



Theorem: If a proposition p is both necessary and sufficient for 
q, then p and q are logically equivalent (and vice versa).

50

Necessary and Sufficient Conditions



Tautologies and Logical Equivalence
Theorem: A propositional formula p is logically equivalent to q

if and only if p ↔ q is a tautology.

 Proof:
 (a) If p ↔ q is a tautology, then p is logically equivalent to q
Why? If p ↔ q is a tautology, then it is true for all truth 

assignments. By the semantics of the biconditional, this means 
that p and q agree on every row of the truth table. Hence the 
two formulas are logically equivalent.

 (b) If p is logically equivalent to q, then p ↔ q is a tautology
Why? If p and q logically equivalent, then they evaluate to the 

same truth value for each truth assignment. By the semantics of 
the biconditional, the formula p ↔ q is true in all situations.   

51



Related Implications
 Implication: p → q
 If you got A's on all exams, you got an A in the course.

 Contrapositive: ~q → ~p
 If you didn't get an A in the course, then you didn't get A's on all 

exams.

 Implication is logically equivalent to the contrapositive.

52

p q p → q ~q ~p ~q → ~p

T T T F F T

T F F T F F

F T T F T T

F F T T T T



Related Implications
 Converse: q → p
 If you got an A in the course, then you got A's on all exams.

 Inverse: ~p → ~q
 If you didn't get A's on all exams, then you didn't get an A in the 

course. 

 Converse is logically equivalent to the inverse.
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p q q → p ~p ~q ~p → ~q

T T T F F T

T F T F T T

F T F T F F

F F T T T T



Deriving Logical Equivalences
 We can establish logical equivalence either via truth tables 

OR symbolically

 Example: p ↔ q is logically equivalent to (p → q) (q → p)

 Symbolic proofs are much like the simplifications you did in 
high school algebra: trial-and-error leads to experience and 
finally cunning
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p q q ↔ p p→ q q → p (p → q) ∧ (q → p)

T T T T T T

T F F F T F

F T F T F F

F F T T T T



Symbolic proofs
 Example: p ∧ q ≡ (p ∨ ~q) ∧ q
 Proof:

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) 
≡ (q ∧ p) ∨ (q ∧ ~q) (2)
≡ (q ∧ p) ∨ F (3)
≡ (q ∧ p) (4)
≡ p ∧ q (5)
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q
 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) 
≡ (q ∧ p) ∨ (q ∧ ~q) (2)
≡ (q ∧ p) ∨ F (3)
≡ (q ∧ p) (4)
≡ p ∧ q (5)

56

Symbolic proofs



 Example: p ∧ q ≡ (p ∨ ~q) ∧ q
 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧
≡ (q ∧ p) ∨ (q ∧ ~q) (2)
≡ (q ∧ p) ∨ F (3)
≡ (q ∧ p) (4)
≡ p ∧ q (5)
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Symbolic proofs



 Example: p ∧ q ≡ (p ∨ ~q) ∧ q
 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧
≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧
≡ (q ∧ p) ∨ F (3)
≡ (q ∧ p) (4)
≡ p ∧ q (5)

58

Symbolic proofs



 Example: p ∧ q ≡ (p ∨ ~q) ∧ q
 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧
≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧
≡ (q ∧ p) ∨ F (3) Contradiction
≡ (q ∧ p) (4)
≡ p ∧ q (5)

59

Symbolic proofs



 Example: p ∧ q ∧ r ≡ (p ∨ ~q) ∧ q
 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧
≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧
≡ (q ∧ p) ∨ F (3) Contradiction
≡ (q ∧ p) (4) Identity
≡ p ∧ q (5)

60

Symbolic proofs



 Example: p ∧ q ≡ (p ∨ ~q) ∧ q
 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧
≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧
≡ (q ∧ p) ∨ F (3) Contradiction
≡ (q ∧ p) (4) Identity
≡ p ∧ q (5) Commutativity of ∧

61

Symbolic proofs



Logical Consequence
 We say that p logically implies q, or that q is a logical 

consequence of p, if q is true whenever p is true.

 Example: p logically implies p q

 Logical consequence is a weaker condition than logical 
equivalence.

62

p q p ∨ q

T T T

T F T

F T T

F F F



Theorem: A formula p logically implies q if and only if 

p → q is a tautology.
 This gives us a tool to infer truths!

 A rule of inference is a rule of the form: 

“From hypotheses p1, p2, ..., pn infer conclusion q”
 A rule of inference is sound or valid if the conclusion q is a 

logical consequence of the conjunction p1∧p2∧... ∧pn of all 
hypotheses

 A rule of inference is unsound or bogus if it isn't! 

63

Logical Consequence



Logical Arguments
 An argument (form) is a (finite) sequence of statements 

(forms), usually written as follows:
p1

...
pn

q

 We call p1,..., pn the premises (or assumptions or 
hypotheses) and q the conclusion, of the argument.

 We read:  “p1, p2, ..., pn, therefore q”

64



Logical Arguments

 Argument forms are also called inference rules.

 An inference rule is said to be valid, or (logically) sound, if it is 
the case that, for each truth valuation, if all the premises 
true, then the conclusion is also true!

Theorem: An inference rule is valid if, and only if, the 
conditional p1 p2 ... pn→ q is a tautology.

 An argument form consisting of two premises and a 
conclusion is called a syllogism.

65



Determining Validity or Invalidity

 Testing an Argument Form for Validity
1. Identify the premises and conclusion of the argument form.
2. Construct a truth table showing the truth values of all the 

premises and the conclusion.
3. A row of the truth table in which all the premises are 

true is called a critical row. If there is a critical row in 
which the conclusion is false, then the argument form is 
invalid. If the conclusion in every critical row is true, then the 
argument form is valid.

66



Determining Validity or Invalidity

p → q ∨ ∼ r
q → p ∧ r 
∴ p →r

67



Modus Ponens

 Modus Ponens: p →q
“method of affirming” p

Latin q

68



Modus Ponens

The following argument is valid:
If Socrates is a man, then Socrates is mortal.
Socrates is a man.

Socrates is mortal.

69



Modus Ponens

 Example:

If the sum of the digits of 371,487 is divisible by 3,
then 371,487 is divisible by 3.
The sum of the digits of 371,487 is divisible by 3.

371,487 is divisible by 3.
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Modus Tollens

 Modus Tonens: p →q
“method of denying” ~q

Latin ~p

 Modus Tollens is valid because :
 modus ponens is valid and the fact that a conditional statement 

is logically equivalent to its contrapositive, OR
 it can be established formally by using a truth table.
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Modus Tollens

 Example:
(1) If Zeus is human, then Zeus is mortal.
(2) Zeus is not mortal.

∴ Zeus is not human.

 An intuitive proof is proof by contradiction
 if Zeus were human, then by (1) he would be mortal.
 But by (2) he is not mortal.
 Hence, Zeus cannot be human.
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Recognizing Modus Ponens and Modus Tollens

If there are more pigeons than there are pigeonholes, then at 
least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

?
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Recognizing Modus Ponens and Modus Tollens

If there are more pigeons than there are pigeonholes, then at 
least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

At least two pigeons roost in the same hole. 

by modus ponens
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Recognizing Modus Ponens and Modus Tollens

If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

?
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Recognizing Modus Ponens and Modus Tollens

If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

870,232 is not divisible by 6. by modus tollens
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Other Rules of Inference

 Generalization:

p and q

p q p q

 Example:
Anton is a junior.

(more generally) Anton is a junior or Anton is a senior.
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Other Rules of Inference

 Specialization:

p q and p q

p q

 Example:
Ana knows numerical analysis and 

Ana knows graph algorithms.
(in particular) Ana knows graph algorithms.
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Other Rules of Inference

 Elimination :

p q and p q

~q ~p

p q
 If we have only two possibilities and we can rule one out, the 

other one must be the case

 Example:

x − 3 = 0 or x + 2 = 0
x + 2  0.

x − 3 = 0.
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Other Rules of Inference

 Transitivity :

p → q

q → r

p → r

 Example:

If 18,486 is divisible by 18, then 18,486 is divisible by 9.
If 18,486 is divisible by 9, then the sum of the digits of 

18,486 is divisible by 9.
If 18,486 is divisible by 18, then the sum of the digits 
of 18,486 is divisible by 9.
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Proof Techniques

 Proof by Contradiction:

~p → c, where c is a contradiction

p
 The usual way to derive a conditional ~p → c is to assume ~p 

and then derive c (i.e., a contradiction).
 Thus, if one can derive a contradiction from ~p, then one may 

conclude that p is true.
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Knights and Knaves: knights always tell the truth and knaves always lie
A says: B is a knight.
B says: A and I are of opposite type.

Suppose A is a knight.
∴What A says is true. by definition of knight
∴ B is also a knight. That’s what A said.
∴What B says is true. by definition of knight
∴A and B are of opposite types. That’s what B said.
∴We have arrived at the following contradiction: A and B are both 

knights and A and B are of opposite type.
∴The supposition is false. by the contradiction rule
∴A is not a knight. negation of supposition
∴A is a knave. since A is not a knight, A is a knave.
∴What A says is false. by definition of knave
∴ B is not a knight. ~(what A said) by definition of knave 
∴ B is also a knave. by elimination
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Proof Techniques
 Proof by Division into Cases:

p q

p → r

q → r

r
 If a disjunction p ∨ q has been derived and the goal is to prove r, 

then according to this inference rule it would be sufficient to 
derive p → r and q → r.

 Example: x is positive or x is negative.

If x is positive, then x2 > 0.

If x is negative, then x2 > 0.

∴ x2 > 0.
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Quine’s Method
 The following method can be used to determine whether a given 

propositional formula is a tautology, a contradiction, or a 
contingency.

Let p be a propositional formula.

 If p contains no variables, it can be simplified to T or F, and hence 
is either a tautology or a contradiction.

 If p contains a variable, then 
1. select a variable, say q, 
2. simplify both p[q := T] and p[q := F], denoting the simplified 

formulas by p1 and p2, respectively, and 
3. apply the method recursively to p1 and p2.

 If p1 and p2 are both tautologies, so is p. 

 If p1 and p2 are both contradictions, so is p. 

 In all other cases, p is a contingency.
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Quine’s Method Example

(p ~q → r) (r → p q) (p → ~r) (p q r) → q

We first select a variable, say q, and then consider the two 
cases, q := T and q := F.

1. For q := T, the formula ...→T can be simplified to T.

2. For q := F, 

(p ~F → r) (r → p F) (p → ~r) (p F r) → F

≡ (p T → r) (r → p) (p → ~r) (p r) → F

≡ (p → r) (r → p) (p → ~r) (p r) → F

≡ ~[(p → r) (r → p) (p → ~r) (p r)]
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Quine’s Method Example cont.

~[(p → r) (r → p) (p → ~r) (p r)] 

We select the variable p

1. For p := T

~[(T → r) (r → T) (T → ~r) (T r)] 

≡ ~[r T ~r T] ≡ ~[r ~r] ≡ ~F ≡ T

2. For p := F

~[(F → r) (r → F) (F→ ~r) (F r)] 

≡ ~[T ~r T r] ≡ ~[~r r] ≡ ~F ≡ T

 This completes the process. All formulas considered, 
including the original formula, are tautologies.
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Application: Digital Logic Circuits

 Analogy between the operations of switching devices and the 
operations of logical connectives
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Black Boxes and Gates

 Combinations of signal bits (1’s and 0’s) can be transformed 
into other combinations of signal bits (1’s and 0’s) by means 
of various circuits

 An efficient method for designing

complicated circuits is to build them

by connecting less complicated black 

box circuits: NOT-,AND-, and 

OR-gates.
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Combinational Circuits

 Rules for a Combinational Circuit:
 Never combine two input wires.
 A single input wire can be split partway and used as input for 

two separate gates.
 An output wire can be used as input.
 No output of a gate can eventually feed back into that gate.

 Examples:
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Determining Output for a Given Input

 Inputs: P = 0 and Q = 1
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Constructing the Input/Output Table for a Circuit

 List the four possible combinations of input signals, and find 
the output for each by tracing through the circuit.
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The Boolean Expression Corresponding to a Circuit

Trace through the circuit from left to right:

What is the result?
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The Boolean Expression Corresponding to a Circuit

The result is: exclusive OR
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Recognizer

 A recognizer is a circuit that outputs a 1 for exactly one 
particular combination of input signals and outputs 0’s for all 
other combinations.

 Example: 
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The Circuit Corresponding to a Boolean Expression

1. Write the input variables in a column on the left side of 
the diagram

2. Go from the right side of the diagram to the left, 
working from the outermost part of the expression to the 
innermost part

 Example: ( P Q) Q
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Find a Circuit That Corresponds to an 
Input/Output Table
1. Construct a Boolean expression with the same truth table

 identify each row for which the output is 1 and construct an and expression that 
produces a 1 for the exact combination of input values for that row

P ∧ Q ∧ R

P∧ ∼Q ∧ R

P∧ ∼Q ∧ ∼R

Result: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)

disjunctive normal form
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Find a Circuit That Corresponds to an 
Input/Output Table

2. Construct the circuit for: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)
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Equivalent Combinational Circuits

 Two digital logic circuits are equivalent if, and only if, their 
input/output tables are identical.
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Simplifying Combinational Circuits

1. Find the Boolean expressions for each circuit.

2. Show that these expressions are logically equivalent.

((P Q) (P Q)) Q

≡ (P ( Q Q)) Q by the distributive law

≡ (P (Q Q)) Q by the commutative law for 

≡ (P T) Q by the negation law

≡ P Q by the identity law.100



A NAND-gate is a single gate that acts like an 
AND-gate followed by a NOT-gate 
 it has the logical symbol: | 
(called Sheffer stroke)

P | Q ≡ (P Q)

A NOR-gate is a single gate that acts like an 
OR-gate followed by a NOT-gate
 it has the logical symbol: ↓
(called Peirce arrow)

P ↓ Q ≡ (P Q)

NAND and NOR Gates
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Rewriting Expressions Using the Sheffer Stroke

 Any Boolean expression is equivalent to one written entirely with 
Sheffer strokes or entirely with Peirce arrows

P ≡ (P P) by the idempotent law for 

≡ P | P by definition of |.

P Q ≡ ( (P Q))   by the double negative law

≡ ( P Q)   by De Morgan’s laws

≡ ((P | P) (Q | Q)) by the above P≡P|P

≡ (P | P) | (Q | Q) by definition of |
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