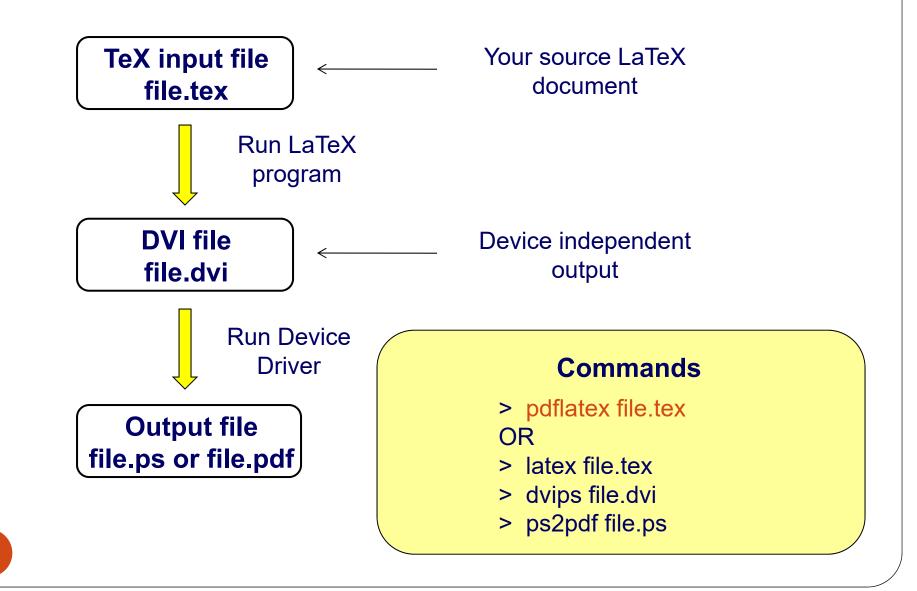
Introduction to LaTeX

For CSE215 Section 2, Spring 2020

Stony Brook University

http://www.cs.stonybrook.edu/~liu/cse215

- TeX is essentially a Markup Language (like HTML, CSS, and RTF)
- TeX was written by Donald Knuth in 70's
 - •A revolution in typesetting
- Latex is an extension of TeX, and was originally written by Leslie Lamport in 80's
 Macro packages to make TeX easier to use


- High typeset quality
- Easy to include math formulas

• Free

- Source file format is not bounded to a particular OS or platform
 - •Latex implementations exists for all platforms (Windows *MikTex*, Mac OsX, Linux)

•Online, e.g., <u>https://www.overleaf.com</u>

Process to Create a Document Using LaTeX

Using LaTeX

- Install your own: MikTeX, TeXworks,...
- Or, use the best online:
 - •Make a free account at Overleaf.com
 - •It also lets you save your latex sources in your Google Drive or Dropbox
 - •It is also growing online help document: start by clicking "Help".

• Start with a skeleton document:

- \documentclass{article}
 \begin{document}
 First document. This is a simple example, with no extra parameters
 or packages included.
 \end{document}
- The first line of code declares the type of document, in this case is a *article*.
- Then enclosed in the \begin {document} \end {document} tags you must write the text of your document.

• The preamble of a document lets you define the type of document you are writing, the language, the size of font, etc.

\documentclass {article} \title {Simple Example} \author {Annie Liu} \date {January 2020}

\begin {document}
\maketitle
Hello world!
\end {document}

• Basic formatting: abstract, paragraphs, and newlines:

 $\begin{abstract}$

This is a simple paragraph at the beginning of the document. $\end{abstract}$

Two newlines start another paragraph.

And I can brake\\ the lines \\and continue in a new line.

Comments: sometimes it's necessary to add comments to your LATEX code for readability
put a % before the comment and LATEX will ignore that text \documentclass{article}
% HW document

\begin{document} % Here begins the body of the document

LaTeX reserved characters

• The following symbol characters are reserved by LATEX because they have a special meaning

Character	Function	How to print it
#	Macro parameter	\#
\$	Math mode	\\$
%	Comment	\%
^	Superscript (in math mode)	\^{} or \$\textasciicircum\$
&	Separate column entries in tables	\&
_	Subscript (in math mode)	_
{ }	Processing block	$\setminus \{ \setminus \}$
~	Unbreakable space, use it whenever you want to leave a space which is unbreakable	\textasciitilde or $\ \$
λ.	Starting commands, which extend until the first non- alphanumerical character	<pre>\$\textbackslash\$ or \$\backslash\$</pre>

LATEX allows two writing modes for mathematical expressions:

the inline mode: \$\$, \(\), or \begin{math} \end{math}
 In physics, the mass-energy equivalence is stated by the equation
 \$E=mc^2\$, discovered in 1905 by Albert Einstein.

In physics, the mass-energy equivalence is stated by the equation $E = mc^2$, discovered in 1905 by Albert Einstein.

 the displayed mode: \[\], \$\$ \$\$, \begin {displaymath} \end {displaymath} or \begin {equation} \end {equation}
 The mass-energy equivalence is described by the famous equation \$\$E=mc^2\$\$

discovered in 1905 by Albert Einstein.

The mass-energy equivalence is described by the famous equation

$$E = mc^2$$

discovered in 1905 by Albert Einstein.

LaTeX Common math symbols

description	code	examples
Greek letters	\alpha \beta \gamma \rho \sigma \delta \epsilon	$\alpha\;\beta\;\gamma\;\rho\;\sigma\;\delta\;\epsilon$
Binary operators	\times \otimes \oplus \cup \cap	$X \otimes \oplus U \cap $
Relation operators	< > \subset \supset \subseteq \supseteq	$<>\subset \supset \subseteq \supseteq$
Others	\int \oint \sum \prod	$\int \oint \Sigma \Pi$

 $\int x^2 + y^2 \, dx$

 $a_1^2 + a_2^2 = a_2^2$

 $\sum_{i=1}^{\infty} \frac{1}{n^s} = \prod_{n=1}^{\infty} \frac{1}{1 - p^{-s}}$

$$\[\int \limits_0^1 x^2 + y^2 \ dx \] \\ [a_1^2 + a_2^2 = a_3^2 \] \\ [sum_{i=1}^{(i=1)} \ infty} \ frac_{1} \{n^s\} = \ prod_p \ frac_{1} \{1 - p^{-s}\} \]$$

LaTeX	LAT _E X markup	Renders as
	a_{n_i}	a_{n_i}
More examples:	\int_{i=1}^n	$\int_{i=1}^{n}$
	\sum_{i=1}^{\infty}	$\sum_{i=1}^{\infty}$
	\prod_{i=1}^n	$\prod_{i=1}^{n}$
	\cup_{i=1}^n	$\cup_{i=1}^n$
	\cap_{i=1}^n	$\cap_{i=1}^{n}$
	\oint_{i=1}^n	$\oint_{i=1}^{n}$
13	\coprod_{i=1}^n	$\coprod_{i=1}^{n}$

LaTeX font size

 $\tiny \scriptsize \footnotesize$

\small \normalsize

\large \Large \LARGE \huge

\Huge

LaTeX tabular

- Columns
 - \begin{tabular} { | ... | ... | }

Two Columns

- \end{tabular}
- Rows
 - & Split text into columns
 - $\ \$ End a row
 - \hline Draw line under row
 - e.g. 123123 & 34.00\\ \hline

1 = automatically adjust size, left justify r = automatically adjust size, right justify p = set size e.g p{4.7cm} c = centre text

LaTeX tablular example

\begin{tabular}{|||r|c|} \hline
Date & Price & Size \\ \hline
Yesterday & 5 & big \\ \hline
Today & 3 & small \\ \hline
\end{tabular}

Date	Price	Size
Yesterday	5	Big
Today	3	Small

LaTex standard environments

\begin{env_name}
 stuff
\end{enc_name}

Environment name (env_name) can be document, itemize, enumerate, tabular, etc.

\begin{itemize}
 \item The first item
 \item The second item
 \end{itemize}

- The first item
- The second item

\begin{enumerate}
 \item The first item
 \item The second item
 \end{enumerate}

) The first item) The second item

LaTeX figures

You can insert figures in pdf, jpg, eps, and other formats into your document.

\begin{figure}
 \centering
 \includegraphics {name of the figure file}
 \caption{Put the caption here}
 \end{figure}

Multiple figures can be inserted using \subfigure

LaTeX cross referencing

LaTeX generates numbers for Section, Figure, Theorem, Equation, and other environments automatically. You can access them with \label and \ref

\section{Introduction} \label{sec-intro}

In Section \ref{sec-intro}, we

LaTeX reference and citation

The \thebibliography environment produces a bibliography or reference list. In the article style, this reference list is labeled "References". In the report style, it is labeled "Bibliography".

\begin{thebibliography} {widest-label}

\bibitem[label]{cite_key}

. . .

\end{thebibliography}

widest-label: Text that, when printed, is approximately as wide as the widest item label produces by the \bibitem commands.

LaTeX bibliography by hand \begin{thebibliography} {} \bibitem[Come95]{Come95} Comer, D. E., {\it Internetworking with TCP/IP: Principles, Protocols and Architecture}, volume 1, 3rd edition. Prentice-Hall, 1995. \end{thebibliography}

LaTeX bibliography using Bibtex

- Bibliography information is stored in a *.bib file, in Bibtex format.
- Include chicago package
 - \usepackage {chicago}
- Set referencing style
 - \bibliographystyle {chicago}
 - Or use built-in bib style without needing another package: \bibliographystyle {abbrv}, ...
- Create reference section by
 - \bibliography {bibfile with no extension}

LaTeX bibliography using Bibtex

```
@book{Come95,
  author="D. E. Comer",
  title={Internetworking with TCP/IP: Principles,
        Protocols and Architecture},
  publisher="Prentice-Hall",
  year=1995,
  volume=1,
  edition="Third"
```

LaTeX bibliography using Bibtex

- Citing references in text
 - \cite{cuc98} = (Cuce 1998)
 - \citeN{cru98} = Crud (1998)
 - \shortcite{tom98} = (Tom, et. al. 1998)
 - The last two forms are not supported in "abbrv" style
- Creating Bibtex Files
 - Use Emacs with extensions.
 - or copy Bibtex entries from bibliography database.