CSE215: Foundations of Computer Science

Spring 2020
Stony Brook University
Instructor: Y. Annie Liu

http://www.cs.stonybrook.edu/~liu/cse215
Course Description

• “Introduction to the logical and mathematical foundations of computer science. Topics include functions, relations, and sets; recursion; elementary logic; and mathematical induction and other proof techniques.”

• This is NOT a course in computer programming, BUT on fundamental concepts of computing.

• We will stress mathematical problem solving skills and the use of formal concepts as tools for computer science.

• Prerequisites: AMS 151 or MAT 125 or MAT 131.
General Information

- Meeting information:
 - Lecture section 2: Mondays and Fridays 1 - 2:20 PM, Engineering 145.
 - Recitation section 7: Mon 11-11:53 AM, CS 2129.
 - Recitation section 10: Fri 10-10:53 AM, CS 2114.

- During recitations, the TA will reinforce lecture materials and guide problem solving sessions.
General Information

- Course Web page: http://www.cs.stonybrook.edu/~liu/cse215
- Google Classroom will be used for assignments, grades, and course materials, including recitation sections and Q&A forum.
- Q&A forum should be used for all questions related to this course except for personal issues.
Instructor Information

• Annie Liu
 New Computer Science Building, Room 237
• Office hours: TBD, an online poll in a day
• I am also available by appointment
• Email: liu@cs.stonybrook.edu
 • Please include “CSE 215” in the email subject and your name in your email correspondence
Discrete Mathematics:
Introduction to Mathematical Reasoning
Author: Susanna S. Epp
Publisher: Brooks/Cole Cengage Learning
ISBN-10: 0495826170
What is Computer Science?

• Why do we study mathematics and problem solving in a major course in Computer Science?
 • Computer Science is NOT computer programming - although programming is part of it.
 • Computer Science is a **mathematical science** - we study the capabilities and limitations of computers and how people can use them effectively.

• Computer programming requires that the exact specifications to perform a task be specified completely and precisely
 • difficult and requires careful reasoning about **abstract entities**

• **Mathematics has developed over thousands of years as a method of abstract reasoning.**
Why Isn't CS “Just Programming”?

- Programs of only a few hundred lines are easy for one person to build with little training.

- BUT:
 - Real-world software systems are **large**
 - Developing and understanding such complicated objects requires mental and mathematical discipline.
 - Real-world software systems must be **reliable**
 - They control economies, airplanes, nuclear weapons, and your car.
 - **Systematic** discipline is necessary to avoid errors
 - Mathematics provides the disciplined and systematic language to reason about such systems.
Important dates

- Final exam: Monday, May 18, 2020, 2:15 - 5 PM, Room TBD.
- The exams will be like what we solve in the class!
Course work

- **Grading**
 - Lecture critique: 2%
 - In-class exercises: 8%
 - Homework assignments: 20%
 - Midterm exams: 40% (20% each)
 - Final exam: 30%
Lecture critique

- Each student critiques one lecture
 - It is worth 2% of course grade.
 - A short list (a few bullet items) of what you liked and you disliked about the lecture.
 - You volunteer for a class, and must submit within 24 hours to get credits.
Re-grading

• Please meet with the TA or the instructor who was responsible for the work and arrange for regrading.

• You have one week from the day grades are posted or mailed or announced.

• Late requests will not be entertained.
Academic integrity

- You can discuss general assignment concepts with other students: explaining how to use systems or tools and helping others with high-level design issues.
- You **MAY NOT share** assignments or other answers by copying, retyping, looking at, or supplying a file.
 - Assignments are subject to manual and automated similarity checking (We do check! and our tools for doing this are much better than cheaters think).
- If you cheat, you will be brought up on academic dishonesty charges - we follow the university policy:
 - http://www.stonybrook.edu/commcms/academic_integrity
Disability

- If you have a physical, psychological, medical or learning disability, contact the DSS office at Room 128 ECC. Phone 632-6748/TDD.

- If you are planning to take an exam at DSS office, you need to tell me ahead of time for every exam.

- All documentation of disability is confidential.
Catastrophic events

• Major illness, death in family, …

• Formulate a plan (with your CEAS academic advisor) to get back on track

• Advice
 • Once you start running late, it’s really hard to catch up
What do you need to get started?

• Go to Google Classroom
 https://classroom.google.com/u/2/w/NjAxOTcwNjMzMDda/t/all
 Or follow the link on course Web page.

• One of today’s homework: fill out the questionnaire

• Get the textbook.
Mathematically Speaking

Variables

• Is there a number with the following property: doubling it and adding 3 gives the same result as squaring it?

• In this sentence you can introduce a variable to replace the potentially ambiguous word “it”: Is there a number x with the property that $2x + 3 = x^2$?

• A variable is a temporary name until we can find the possible value(s).

• No matter what number might be chosen, if it is greater than 2, then its square is greater than 4.

• A variable is a temporary name to the (arbitrary) number you might choose enables you to maintain the generality of the statement: No matter what number n might be chosen, if n is greater than 2, then n^2 is greater than 4.
Some Important Kinds of Mathematical Statements:

- Universal conditional statement: *For all animals* *a*, *if a is a dog, then a is a mammal.*

- Universal existential statement: *Every real number has an additive inverse.*

- Existential universal statement: *There is a positive integer that is less than or equal to every positive integer.*
Sets

• Introduced in 1879 by Georg Cantor (1845–1918).
• A set is, intuitively, a collection of elements.
• Set-Roster Notation:
 • Let $A = \{1, 2, 3\}$, $B = \{3, 1, 2\}$, and $C = \{1, 1, 2, 3, 3, 3\}$.
 • What are the elements of A, B, and C?
 • How are A, B, and C related?
• Set-Builder Notation:
 \[
 \{x \in \mathbb{R} \mid -2 < x < 5\}
 \]
• Subset: is a basic relation between sets: $\{2\} \subseteq \{1, 2, 3\}$
Cartesian product

• Example: \(\mathbb{R} \times \mathbb{R} \) is the set of all ordered pairs \((x, y)\) where both \(x\) and \(y\) are real numbers

• Cartesian plane:
Relations

- The notation $x R y$ as a shorthand for the sentence “x is related to y”, for example: $1 < 2$
- From relations to sets: $x R y$ means that $(x, y) \in R$, for example: set\{(2,1),(2,5)\}
- Arrow diagrams of relations:

![Arrow diagrams of relations](image)
Functions

Definition

A function F from a set A to a set B is a relation with domain A and co-domain B that satisfies the following two properties:

1. For every element x in A, there is an element y in B such that $(x, y) \in F$.
2. For all elements x in A and y and z in B,
 \[
 \text{if } (x, y) \in F \text{ and } (x, z) \in F, \text{ then } y = z.
 \]

Example: The **successor function** g from \mathbb{Z} to \mathbb{Z} is defined by the formula $g(n) = n + 1$

A function as a machine: taking each input to a unique output.
Please

• Please be on time
• Please show respect for your classmates
• Please turn off (or use vibrate for) your cellphones

...

• On-topic questions are welcome
Welcome and Enjoy!