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1 Introduction

We introduce a novel logic, called Transaction Logic (abbreviated 7R), that accounts in a clean,
declarative fashion for the phenomenon of updating arbitrary logical theories, most notably, databases
and logic programs. Unlike most logics of action, 7R is a declarative formalism for specifying and
executing procedures (if the user will permit the use of that oxymoron), procedures that update and
permanently change a database, a logic program or, more generally, a logical theory. As a special case,
transactions can be defined as logic programs. This is possible because, like classical logic, 7R has a
“Horn” version that has both a procedural and a declarative semantics, as well as an efficient SLD-style
proof procedure. This paper presents the model theory and proof theory of 7R, and develops many
of its applications.

Overview

TR was designed with several application in mind, especially in databases, logic programming, and
Al It was therefore developed as a general logic, so that it could solve a wide range of update-
related problems. Individual applications were then carved out of different fragments of the logic.
These applications, both practical and theoretical, are discussed throughout the paper, especially in
Section 7, where many are developed in detail. We outline several of them here.

1. TR provides a logical account for many update-related phenomena. For instance, in logic
programming, 7R provides a logical treatment of the assert and retract operators in Prolog.
This treatment effectively extends the theory of logic programming to include updates as well
as queries. In object-oriented databases, 7R can be combined with object-oriented logics, such
as F-logic [52], to provide a logical account of methods—procedures hidden inside objects that
manipulate these objects’ internal states. Thus, while F-logic covers the structural aspect of
object-oriented databases, its combination with 7R would account for the behavioral aspect as
well. Applications of 7R to so called active databases are described in [22]. In AI, 7R suggests
a logical account of planning and design. STRIPS-like actions,! for instance, as well as many
aspects of hierarchical and non-linear planning are easily expressed in 7R. Although there have
been previous attempts to give these phenomena declarative semantics, until now there has been
no unifying logical framework that accounts for them all.

2. Since 7R is a full-fledged logic, it is more flexible and expressive than procedural systems in
specifying transactions. Like procedural languages, 7R is a language for combining simple
actions into complex ones; but in 7R, actions can be combined in a greater variety of ways. In
procedural languages, sequential composition is the only combinator, whereas in 7R, each logical
operator combines actions in its own way. The result is that in 7R, one can specify transactions
at many levels of detail, from the procedural to the declarative. At one extreme, the user may
spell out an exact sequence of operations in excruciating detail. At the other extreme, he may
specify loose constraints that the transaction must satisfy. In general, sequences and constraints
can be arbitrarily mixed, and in this way, procedural and declarative knowledge are seamlessly
integrated.

! STRIPS was an early Al planning system that simulated the actions of a robot arm [33].
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3. Because of its generality, 7R supports a wide range of functionality in several areas. This
functionality includes database queries and views; unification and rule-base inference; transac-
tion and subroutine definition; deterministic and non-deterministic actions; static and dynamic
constraints; hypothetical and retrospective transactions; and a wide class of tests and conditions
on actions, including pre-conditions, post-conditions, and intermediate conditions. Furthermore,
many problems related to the updating of incomplete information can be dealt with efficiently.
Perhaps most important, these diverse capabilities are not built into 7R separately. Instead,
they all derive from a small number of basic ideas embodied in a single logic.

4. Commercial database systems are poor at specifying transactions. For example, in standard
SQL, one can only define relatively simple updates, and even then, one must often abandon
relational algebra and resort to relatively awkward subqueries. More seriously, one cannot
define transaction procedures in SQL. The main reason for this is that there is no way to
combine simple transactions into more complex ones. This limitation should be contrasted with
SQL’s elegant view mechanism, in which views can easily be combined to produce other views.
The result is that to define transactions, a user must go outside of SQL and embed it within a
procedural language, such as Cobol. A problem with this approach is that embedded SQL is an
order of magnitude more difficult to use than pure SQL. In addition, embedded SQL is much
less amenable to type checking and query optimization that SQL. It should not be surprising
that difficult problems arise in trying to define database transactions, since relational databases
are founded on relational algebra (or, equivalently, first-order logic), which is a language for
expressing queries, not transactions. 7R shows a way out of this quandary, as it provides
foundation for queries and transactions alike.

5. For a wide class of problems, the so-called frame problem is not an issue for 7R. The frame
problem arises because, to reason about updates, one must specify what does not change, as well
as what does. Many ingenious solutions have been proposed to deal with the frame problem,
but most of them have addressed the very general case of arbitrary reasoning about updates
to arbitrary logical theories. As such, the proposed solutions have been conceptually complex
and computationally intractable, even for simple updates. Fortunately, many interesting and
important problems do not require a completely general solution to the frame problem. 7R,
for example, was designed so that the frame problem is not an issue when actions are executed
or planned. This is possible for two reasons. First, transactions in 7R are specified in terms
of a small set of basic updates. Once the frame problem is solved for these updates, the solu-
tion propagates automatically to complex actions. Thus, 7R programmers do not experience
the frame problem, just as conventional programmers do not. In addition, the proof theory
for TR actually updates the database during inference, just as procedural systems update the
database during execution. This contrasts sharply with other logical formalisms, like the sit-
uation calculus, which reason about updates, but never actually change the database. In this
way, 7R provides simple, efficient handling of the frame problem, for both the specification and
execution of transactions.

Detailed development of a number of applications appears in Section 7.
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Other Logics

On the surface, there would appear to be many other candidates for a logic of transactions, since many
logics reason about updates or about the related phenomena of time and action. However, despite a
plethora of action logics, researchers continue to complain that there is no clear declarative semantics
for updates either in databases or in logic programming [11, 9, 3, 76]. In fact, no action logic has ever
been adopted by a database or logic programming system, and none has become a core of database
or logic-programming theory. This is in stark contrast to classical logic, which is the foundation of
database queries and logic programming, both in theory and in practice.

There appear to be a few simple reasons for this unsuitability of existing action logics.

One major problem is that most logics of time or action are hypothetical, that is, they do not
permanently change the database. Instead, these logics reason about what would happen if certain
sequences of actions took place. For instance, they might infer that i¢f the pawn took the knight,
then the rook would be threatened. Such systems are useful for reasoning about alternatives, but
they do not actually accomplish state transitions. Hence, these logics do not provide executable
specifications. In contrast, 7R is a logic that supports both real and hypothetical updates. Procedures
in 7R may commit their updates (and thus permanently change the database), reason about these
updates without committing them, or they may do any combination thereof.

Another major problem is that most logics of time or action were not designed for programming.
Instead, they were intended for specifying properties of programs and for reasoning about them. In
such systems, one might say that action A precedes action B, and that B precedes C, from which the
system would infer that A precedes C. Thus, these formalisms are useful for reasoning about actions,
but are not that useful for specifying what the actions A, B, and C actually do, and even less so for
executing them.

A related problem is that many logics of action cannot assign names to composite transactions. In
their intended context (of reasoning about sequences of actions), this is not a shortcoming. However,
this renders such logics inappropriate for programming transactions, since specifying transactions
without a naming facility is like programming without subroutines. From a programming standpoint,
the lack of a straightforward naming facility defeats the purpose of using logic in the first place, which
is to free the user from the drudgery of low-level details.

Another problem is that many logics insist on strict separation between non-updating queries and
actions with side effects. However, this distinction is blurred in object-oriented systems, where both
queries and updates are special cases of a single idea: method invocation (or message passing). In such
systems, an update can be thought of as a query with side effects. Every method is simply a program
that operates on the data. In fact, the ODMG-93 object database standard explicitly states that it
does not distinguish a subcategory of method that is side-effect free [25, Section 2.5]. 7R models
this uniformity naturally, treating all methods equally, thereby providing a logical foundation for
object-oriented databases.

The important point here is that, unlike most formalisms of action, 7R is not forced to distinguish
between transactions that do updates and queries; but the distinction always exists as an option. This
is possible because an application can introduce logical sorts, one for queries, and one for updates.
This is comparable to the distinction in deductive databases between two sorts of predicates, base and
derived. Even when an application makes such distinctions, 7R treats all predicates uniformly, just
as classical logic does. Most other logics are not capable of this uniform treatment, since for them,
queries are propositions, but updates (or actions) are entities of a different and incompatible nature.
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For instance, in situation calculus [67], actions are function terms, while in Dynamic and Process
Logics [46, 47], actions are modal operators.

It is worth noting that relational databases already attempt to treat queries and updates uniformly.
Typically, the two are lumped together under the rubric “Data Manipulation Language,” or DML.
Indeed, SQL updates are often referred to as queries. However, queries and updates are not well-
integrated in SQL. One way to better integrate them is to extend SQL to include transactions. As a
logic of transactions, 7R may offer a formal basis for such an extension.

Although 7R is different from logics of action, it is comparable to declarative query languages,
like Prolog and SQL. In Prolog, for instance, one does not reason about logic programs. Instead, one
specifies and executes them. Thus, given a logic program and a database of atomic facts, one can
ask, “Can p(a) be inferred from the current database?”, but one cannot ask, “Can p(a) always be
inferred, i.e., from every database?” Logics of action are aimed at the latter kind of question (applied
to actions). 7R is aimed at the former, but it can also handle the latter as efficiently as most logics
can.

The system that comes closest in spirit to 7R is Prolog. Although Prolog is not a logic of action
or time per se, transactions can be defined in Prolog by using the operators assert and retract. Prolog
transactions have some of the properties that we want to model: () updates are real, not hypothetical;
(47) named procedures can be composed from simpler procedures; (¢4¢) all predicates can have both a
truth value and a side effect on the database; and (iv) the frame problem is not an issue. Unfortunately,
updates in Prolog are non-logical operations. Thus, each time a programmer uses “assert” or “retract”
operators, he moves further away from declarative programming. In addition, Prolog has the opposite
problem vis a vis most action logics: updates are always committed and cannot be rolled back. It is
therefore not possible for a Prolog update to have post-conditions. For instance, one cannot perform
an update tentatively, test its outcome, and then commit the update only if some condition is met.
Due to these drawbacks, transactions are often the most awkward of Prolog programs, and the most
difficult to understand, debug, and maintain.

In addition, updates in Prolog are not integrated into a complete logical system. It is there-
fore not clear how assert and retract should interact with other logical operators such as disjunc-
tion and negation. For instance, what does assert(X)V assert(Y) mean? or —assert(X)? or
assert(X) « retract(Y')? Also, how does one logically account for the fact that the order of up-
dates is important? Finally, what does it mean to update a database that contains arbitrary logical
formulas? None of these questions is addressed by Prolog’s classical semantics or its update operators.

Transaction Logic

TR provides a general solution to the aforementioned limitations, both of Prolog and of action logics.
It provides a syntax and a semantics in which elementary updates can be combined logically to build
complex transactions.

The emphasis in 7R is not on the specification of elementary updates, but on their logical combi-
nation into programs. This approach is in accordance with programming practice. In databases and
logic programming (as in Pascal and C), application programmers spend little if any time specifying
elementary updates, and a lot of time combining them into complex transactions and programs. For
them, specifying elementary updates is not an issue, but combining them is.

Nevertheless, the set of elementary updates is an important feature of a language, and can deter-
mine its domain of application. Examples of elementary updates include Prolog’s assert and retract



1 INTRODUCTION 5

operators, as well as SQL-style bulk updates. In scientific databases, elementary updates might include
complex numerical calculations, such as the fast Fourier transform and matrix inversion. Unfortu-
nately, there is probably no small fixed set of elementary updates that is best for all applications, and
future applications will demand new ones.

For this reason, 7R was designed to be orthogonal to the choice of elementary updates. The
semantics of 7R can thus accommodate any set of elementary updates. In effect, 7R treats a
database as a collection of abstract datatypes, each with its own special-purpose access methods. These
methods are provided to 7R as elementary operations, and they are combined by 7R programs into
complex transactions. This approach separates the specification of elementary operations from the
logic of combining them. As we shall see, this separation has two main benefits: (z) it allows us
to develop a logic for combining and programming transactions without committing to a particular
theory of elementary updates; and (4¢) it allows 7R to accommodate a wide variety of database
semantics, from classical to non-monotonic to various other non-standard logics.

To combine actions, 7R extends the syntax of first-order logic with a single binary operator, ®,
which we call serial conjunction. Intuitively, the formula ¥ ® ¢ means, “First execute transaction 1,
and then execute transaction ¢.” Serial conjunction may be combined arbitrarily with the standard
logical operators, such as A, V and —, to build a wide variety of formulas. Thus, each logical proposition
in 7R represents an action, and each logical operator can be interpreted as an action constructor.
The idea of interpreting logical propositions as actions has also been considered by van Bentham [91],
although his semantics is very different, and was not intended for programming database transactions.
Further comparison is provided in Section 11.

Semantically, 7R is related to Process Logic [47], but is different from it in several important
respects. As in Process Logic, a model in 7R consists of a set of states, and actions cause transitions
from one state to another. In fact, an action may cause a sequence of transitions, passing from an
initial state, through intermediate states, to a final state. Like Process Logic, formulas in 7R are
not evaluated at states. Instead, they are evaluated on paths, which are sequences of states. This
property enables 7R to express a wide range of constraints on transaction execution. Unlike Process
Logic, however, 7R does not distinguish between programs and propositions: In 7R, every formula
is both a proposition and a program. This is a natural way to model database transactions, since a
transaction can both change the database and—as a query—return an answer. Thus, pure queries and
pure updates are merely two extremes on a spectrum of possible transactions. In fact, in 7R, a single
notion of truth subsumes two ideas: (%) the classical concept of a truth value, and (i¢) the hitherto
non-logical concept of a “side effect” on the database. This uniformity renders 7R suitable for a
number of diverse applications in object-oriented databases and logic programming. More discussion
of the relationship between 7R and process logics appears in Section 11, where several other related
formalisms are also discussed.

Like classical logic, 7R has a “Horn” version that is of particular interest for logic programming.
In Horn 7R, a transaction is defined by Prolog-style rules in which the premise specifies a sequence
of queries and updates. Furthermore, just as 7R is an extension of classical first-order logic, Horn
TR is an extension of classical Horn-clause logic. Because of its importance, much of this paper
focuses on Horn 7R.

Horn 7R has a clean and simple proof theory that is sound and complete with respect to the
model theory of Section 5. This proof theory is described in detail in Section 6. Two versions of the
proof theory are presented, one suitable for bottom-up inference and another for top-down inference.
Section 8 extends the proof theory to hypothetical updates. The proof theory for Horn 7R is much
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simpler than the proof theory for full 7R, which involves encoding 7R in a more general logic of
state transitions. The latter will be discussed in a forthcoming report [21]. Proofs of soundness and
completeness of the inference system for 7R are given in the appendices.

Other aspects of programming in 7R, such as negation-as-failure and updates to the rule-base of
the program are discussed in Sections 9 and 10.

2 Overview and Introductory Examples

From the user’s point of view, using 7R is similar to using Prolog or using a relational database
system. That is, the user may specify rules, and he may pose queries and request updates. In 7R,
the user sees no obvious or immediate difference between queries and updates. An update is just a
query with side effects (which can be detected only by issuing subsequent queries). In general, the
user issues transactions, and the system responds by displaying answers and updating the database.
This section provides simple examples of how this behavior appears to the user and how it is described
formally. The examples also illustrate several dimensions of 7R’s capabilities.

One of these capabilities should be mentioned at the outset: non-deterministic transactions. Non-
determinism has applications in many areas, but it is especially well-suited for advanced applications,
such as those found in Artificial Intelligence. For instance, the user of a robot simulator might instruct
the robot to build a stack of three blocks, but he may not tell (or care) which three blocks to use.
Likewise, the user of a CAD system might request the system to run an electrical line from one point
to another, without fixing the exact route, except in the form of loose constraints (e.g., do not run
the line too close to wet or exposed areas). These are the kinds of non-deterministic transactions that
TR can specify. In such transactions, the final state of the database is indeterminate, i.e., it cannot
be predicted at the outset, as it depends on choices made by the system at run time. 7R enables
users to specify what choices are allowed. When a user issues a non-deterministic transaction, the
system makes particular choices (which may be implementation-dependent), putting the database into
one of the allowed new states.

For all but the most elementary applications, a transaction execution will be characterized not just
by an initial and a final state, but rather by a sequence of intermediate states that it passes through.
For example, as a robot simulator piles block upon block upon block, the transaction execution will
pass from state to state to state. Like the final state, intermediate states may not be uniquely
determined at the start of the execution. For example, the robot may have some (non-deterministic)
choice as to which block to grasp next. We call such a sequence of database states the execution path
of the transaction. 7R represents execution paths explicitly. By doing so, it can express a wide range
of constraints on transaction execution. For example, a user may require every intermediate state to
satisfy some condition, or he may forbid certain sequences of states.

To describe the execution of transactions formally, we use statements of the following form, which
express a form of logical entailment in 7R, called ezecutional entailment:

P,Dy,...,D, ¢ (1)

Here, P and each D; is a logical formula, as is 1. Intuitively, P is a set of transaction definitions, 1
is a transaction invocation, and Dy, ..., D, is a sequence of databases, representing all the states of
transaction execution. Statement (1) means that Dy, ..., D, is an execution path of transaction .
That is, if the current database state is Dg, and if the user issues the transaction ¢ (by typing ?— %,
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as in Prolog), then the database may go from state Dy to state D1, to state Dy, etc., until it finally
reaches state D,,, after which the transaction terminates. We emphasize the word “may” because
may be a non-deterministic transaction. As such, it may have many execution paths beginning at Dy,
possibly of different length. The proof theory for 7R can derive each of these paths, but only one of
them will be (non-deterministically) selected as the actual execution path; the final state, D,,, of that
path then becomes the new database.

Unlike other formalisms, 7R does not draw a thick line between transactions and queries. In fact,
any transaction that does not cause a state change can be viewed as a query. This state of affairs is
formally expressed by the statement P, Dy |= v, a special case of statement (1) in which n = 0. In this
case, Dy is a sequence of databases of length 1. This uniform treatment of transactions and queries
is crucial for successful adaptation of 7R to the object-oriented domain, because object-oriented
systems do not syntactically distinguish between state-changing methods and information-retrieving
methods.

Several other aspects of statement (1) should be mentioned at this point. First, the transaction
base P can be any formula in 7R. In practice, though, it will often be a conjunction of Prolog-like
rules, which we will represent as a finite set of formulas. In any case, regardless of its form, we call P
a transaction base. As the name suggests, transaction bases define transactions and, as a special case,
queries. The databases Dy, ..., D,, are also represented as finite sets of formulas; however, they are
classical first-order formulas. These formulas are not restricted to be ground atomic facts, though,
and it is entirely possible for each D; to contain Prolog-like rules. The difference between a database
and a transaction base is that formulas in a transaction base may use the full syntax of 7R, while
formulas in a database are limited to the syntax of first-order logic, a subset of 7R.

Statements of the form (1) provide a formal view of all that is possible in the transaction sys-
tem. However, this formal view is somewhat different from the user’s view of the system. From the
user’s perspective, a 7R logic program has two parts: a transaction base, P, which the programmer
provides,? and a single current database, D, which he wishes to access and possibly modify. The
transaction base is immutable; that is, it cannot be changed by other transactions. In contrast, the
database constantly changes—it is updated when the user executes transactions defined in P. In
particular, if D contains Prolog-style rules, they also can be modified.

The rest of this section illustrates our notation and the capabilities of 7R through a number of
simple examples. The examples illustrate how 7R uses logical operators to combine simple actions
into complex ones. These operators include the standard connectives, such as A, V and -, and a
new connective of sequential composition, ®. For the purpose of illustration, our example databases
are sets of ground atomic formulas, and insertion and deletion of atomic formulas are elementary
update operators. However, 7R is restricted neither to this type of databases, nor to these particular
elementary update operators.

2.1 Queries, Updates and Sequential Composition

This subsection introduces some of the basic ideas of 7R. Starting with purely declarative queries,
we show how 7R extends classical logic to represent procedural phenomena, such as updates and
action-sequences. We then show how these ideas can be combined to form more complex transactions.

2The term “programmer” should be taken here in a broad sense. For instance, parts of the transaction base may
be provided by the knowledge-base engineer, by the database administrator, or by any number of system or application
programimners.
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The examples of this subsection focus on simple, deterministic transactions, ones that a user might
issue directly to a 7R interpreter. Subsequent subsections illustrate more sophisticated transactions.

Since 7R queries are a special kind of transaction, they are defined in the transaction base, P,
just as other transactions are. Typically, these definitions are constructed from formulas that are akin
to the Horn rules of classical logic programming. We call these formulas serial-Horn rules. These
rules draw inferences from base facts just as logic programs and deductive databases do. In fact, if the
transaction base consists entirely of first-order formulas, then inference in 7R reduces to first-order
inference. That is, if P and ¢ are both first-order formulas, then

P,D | ¢ iff PAD E°

where |=° denotes classical entailment. In this way, classical logic—the medium in which queries are
traditionally expressed—is the starting point for 7R. Logic programs, deductive databases, and first-
order knowledge-bases can thus be adapted for use in 7R with minimal (if any) change. That is,
they are upward-compatible with 7R.

FEzample 2.1 (Classical Inference) Suppose that the database, D, contains the atom lucky, and that
the transaction base, P, contains the rule happy « lucky. By typing ?— happy, the user is posing
a query, asking the 7R interpreter if happy is true. In this case, happy can be inferred from the
contents of the database and the transaction base, so the interpreter returns “true.” Likewise, the
interpreter returns “true” if the user types ?— lucky or ?— lucky A happy. Note that in each case, the
database remains unchanged. We represent this behavior formally by the following three statements:

P,D | lucky P,D = happy P,D | lucky A happy
O

In 7R, all transactions are a combination of queries and updates. Queries do not change the
database, and can be expressed in classical logic, as Example 2.1 shows. In contrast, updates do
change the database, and are expressed in an extension of classical logic. We call the simplest kind
of updates elementary updates or elementary state transitions. In principle, there are no restrictions
on the changes that an elementary update can make to a database, though in practice, we expect
them to be simple and efficient. In this paper, we use the insertion and deletion of atomic formulas as
canonical examples of elementary updates. Sections 7.5 and 7.6 illustrate other kinds of elementary
update—bulk updates and non-deterministic sampling.

Elementary updates are atomic in that they cannot be decomposed into simpler updates. We
therefore represent them by atomic formulas. Like all formulas, elementary updates can have both
a truth value and a side effect on the database. We represent this idea formally by executional
entailments of the following form:

P,D;,D, |: u

This statement says that the atomic formula u is (the name of) an update that changes the database
from state D; to state D,. Although any atomic formula can be an update, it is a good programming
practice to reserve a special set of predicate symbols for this purpose. For example, in this paper,
for each predicate symbol p, we use another predicate symbol, p.ins, to represent insertions into p.
Likewise, we use the predicate symbol p.del to represent deletions from p.



2 OVERVIEW AND INTRODUCTORY EXAMPLES 9

Ezample 2.2 (Elementary Updates) Suppose in is a binary predicate symbol. Then the atoms
in.ins(pie, sky) and in.del(pie, sky) are elementary updates. Intuitively, in.ins(pie, sky) means, “in-
sert the atom in(pie, sky) into the database.” Likewise, the atom in.del(pie, sky) means, “delete
in(pie, sky) from the database.” From the user’s perspective, typing ?— in.ins(pie, sky) to the inter-
preter changes the database from D to D+ {in(pie, sky)}. Likewise, typing ?— in.del(pie, sky) changes
the database from D to D — {in(pie, sky)}. We express this behaviour formally by the following two

statements, which are true for any transaction base P:

P,D, D + {in(pie, sky)} = in.ins(pie, sky)
P,D, D — {in(pie, sky)} | in.del(pie, sky)

O

Here we use the operators “+” and “—” to denote set union and difference when they are applied to
databases that are sets of atomic facts. This is possible because in most of our examples, a database
is a set of ground atomic formulas. Thus, the expression {p,q} + {r,s} denotes the set {p,gq,r,s},
which in turn stands for the formula p A ¢ A r A s. Similarly, {p,q,r,s}— {q, s} denotes {p,r}, which
stands for p A r. It is hoped that this notation will not mislead the reader into thinking that, say,
D + {p(a,b)} above represents a model—it does not. In general, D can be an arbitrary first-order
formula, say, a logic program.

We emphasize here that insertions and deletions are not built into the semantics of 7R. Thus,
there is no intrinsic connection between the names p, p.ins and p.del. Our use of these names is
merely a convention for purposes of illustration. In fact, p, p.ins, and p.del are ordinary predicates
of 7R and the connection between them is established outside the logic, via the concept of state
transition oracle, as explained in Section 4.2.

TR is not committed to any particular set of elementary updates. Indeed, we expect that each
database system will want its own repertoire of elementary updates, tuned to the applications at hand.
Within each database system, though, we expect this repertoire of updates to be relatively stable.
Thus, for most users of a given system, it will appear as though there is a fixed set of elementary
updates. The user’s job is to combine elementary updates into complex transactions using facilities
provided in 7R.

A basic way of combining transactions is to sequence them, i.e., to execute them one after another.
For example, one might take money out of one account and then, if the withdrawal succeeds, deposit
the money into another account. To combine transactions sequentially, we extend classical logic
with a new binary connective, ®, which we call serial conjunction. The formula ¥ ® ¢ denotes the
composite transaction consisting of transaction i followed by transaction ¢.2 Unlike elementary
updates, sequential transactions often have intermediate states, as well as initial and final states. We
express this behavior formally by statements like the following:

P,Do,D;, D |: '¢® ¢

This statement says that the transaction ¥ ® ¢ changes the database from Dg to D; to Ds. Here, D4
is an intermediate state.

3Logics of action sometimes use a semicolon to denote serial conjunction. We have avoided this notation for two
reasons: (¢) in Prolog, a semicolon means disjunction, and (i¢) there is no natural symbol to stand for the dual of the
semicolon (as we shall see, this dual is a useful operator in its own right). In contrast, @ naturally stands for the dual

of ®. We can therefore rewrite —(¢ ® ¢) as 9 @ —¢.
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FEzample 2.3 (Serial Conjunction) The expression poor.ins® sad.ins, where poor and sad are ground
atomic formulas, denotes a sequence of two insertions. This transaction means, “First insert poor
into the database, and then insert sad.” Thus, if the initial database is D, and if the user issues a
transaction by typing ?— poor.ins ® sad.ins, then during execution, the database will change from
D to D + {poor} to D + {poor, sad}. We express this behaviour formally by the following statement,
which is true for any transaction base P:

P,D, D + {poor}, D + {poor,sad} |= poor.ins® sad.ins

2.2 Tests and Conditions

Serial conjunction applies not only to updates, but to any transaction, including queries. We can
therefore place queries that act as tests anywhere in a sequence of updates. This allows us to monitor
the progress of a transaction, and force it to abort if certain conditions are not met.

In the simplest case, we can define pre-conditions by placing a query at the beginning of a transac-
tion. For instance, before withdrawing money from an account, we should check that enough money
is available. If there is, then the transaction can continue, and the database can be updated; if not,
then the transaction should abort, and the database should remain in its original state.

Ezample 2.4 (Pre-Conditions) If the atom short is a query (i.e., has no side effects), then the ex-
pression short ® sweet.ins denotes a test followed by an update. Intuitively, it means, “check that
short is true, and if so, insert sweet into the database.” In other words, if short is true in the initial
database state, then the transaction succeeds and the database is changed from D to D + {sweet};
otherwise, the transaction fails and the database remains in the initial state, D. Formally,

if P,.D = short
then P,D,D + {sweet} |= short® sweet.ins
O

By placing tests at other points in a transaction, sophisticated behavior can be specified in a simple
and natural way. For instance, tests at the end of a transaction act as post-conditions that query the
final state of the database. If these tests succeed, then the transaction commits and the database is
permanently changed. Otherwise, if the tests fail, then the transaction aborts and the database is
rolled back to its original state. Post-conditions are particularly useful for eliminating transactions
that have forbidden side effects. For instance, a move in chess is forbidden if it puts you into check.
Likewise, changes to a circuit design may be forbidden if the new design violates certain conditions
(e.g., limits on cost, size, or power consumption). It is worth noting that post-conditions can be
awkward, if not impossible to express in other formalism of action, such as the situation calculus
(67, 81].

FEzample 2.5 (Post-Conditions) If the atom happy is a query (i.e., has no side effects), then the ex-
pression won.ins® happy denotes an update followed by a test. Intuitively, it means, “insert won into
the database, and then check that happy is true.” In other words, the database state is first changed
from D to D+ {won}. If happy is true in the final state, then the transaction succeeds and the change
is committed; otherwise, the transaction fails and the database is rolled back to the initial state, D.
Formally,
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if P,D + {won} = happy
then P,D,D + {won} |= won.ins® happy

2.3 Non-Deterministic Transactions

In addition to sequencing, transactions in 7R can be combined using any of the classical connec-
tives. Two of these connectives, disjunction and existential quantification, can be used to build non-
deterministic transactions. For instance, the formula ¢V ¢ means, “do transaction % or do transaction
¢.” Likewise, the formula 3X ¢(X) means, “do transaction ¢(c) for some value ¢.”

FEzample 2.6 (Classical Disjunction) Suppose the transaction is ? — won.ins V lost.ins. Then, after
execution, the final database will be either D + {won} or D + {lost}. In effect, this states that the
user does not care (or has no control over) which update will be made, so the system chooses one of
them and executes it. Formally, both of the following statements are true, for any transaction base

P:
P,D, D + {won} |= won.insV lost.ins

P,D, D + {lost} |= won.insV lost.ins

O

In addition to defining non-deterministic transactions, it is worth noting that classical disjunction
is also needed (in combination with negation) to define implication, exactly as in classical logic.
Implication is illustrated later in this section.

When classical disjunction is used to define transactions, the non-deterministic alternatives are
fixed and independent of the database. However, when existential quantification is used, the number
of alternatives can be infinite and data-dependent.

Ezample 2.7 (Ezistential Quantification) Suppose the user issues the transaction ?— has.ins(X) (or,
equivalently, ?— JX has.ins(X)). The database system will then insert a tuple, (c), into relation
has for some non-deterministically chosen value ¢. That is, after execution, the database state will be
D + {has(c)}. Formally, the following statement is true for every value ¢:

P,D, D + {has(c)} E 3X has.ins(X)
O

FEzample 2.8 (Non-Deterministic Copy) Consider ?— 3X [handsome(X) ® hired.ins(X)], a transac-
tion that requests the system to copy a tuple from handsome to hired non-deterministically. That is,
the system will first choose some arbitrary tuple, (mary), from relation handsome, and then insert
the tuple into relation hired. Formally, for every value c,

if P,D |= handsome(c)
then P,D, D + {hired(c)} | 31X [handsome(X)® hired.ins(X)]
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For instance, suppose the database D contains the atoms handsome(mary), handsome(bill) and
handsome(kate). Then there are three choices for X: mary, bill, and kate. Each choice results
in a different update, since either hired(mary), hired(bill), or hired(kate) will be inserted into D.
Formally, the following three statements are all true:

P,D, D + {hired(mary)} | 3X [handsome(X)® hired.ins(X)]
P,D, D + {hired(bill)} = 3X [handsome(X ) ® hired.ins(X)]
P,D, D + {hired(kate)} |= dX [handsome(X)® hired.ins(X)]

Note that even though the above transaction can be executed in several ways (with different values
for X'), only one value will be chosen in any concrete execution, and so only one person will be hired.
O

2.4 Rules

Rules are formulas of the form p «+— ¢, where p is an atomic formula and ¢ is any 7R formula. As
in classical logic, this formula is just a convenient abbreviation for the formula p V —¢. This is the
formal, declarative interpretation of rules. In addition, rules in 7R have a procedural interpretation.
Intuitively, the formula p <+ ¢ means, “to execute p, it is sufficient to execute ¢.” This procedural
interpretation is important because it provides 7R with a subroutine facility and makes logic pro-
gramming possible. For instance, in the rule p(X) « ¢, the predicate symbol p acts as the name of a
procedure, the variable X acts as a parameter, and the formula ¢ acts as the procedure body or defini-
tion (exactly as in Horn-clause logic programming). Although the rule-body may be any 7R formula,
it will frequently be a serial goal of sorts. In this case, the rule has the form ag « a1 ® a2 ® ... ® a,,
where each a; is an atomic formula. With such rules, users can define transaction subroutines and
write transaction logic programs. Note that this facility is possible because transactions are repre-
sented by predicates. This property distinguishes 7R from other logics of action, especially those
in which actions are modal operators. In such logics, subroutines are awkward, if not impossible, to
express. Finally, for notational convenience, we assume that all free variables in a rule are universally
quantified outside the rule. Thus, the rule p(X) « ¢ is simply an abbreviation for VX [p(X) « ¢].

FEzample 2.9 (A Stmple Rule) The rule win « divided.ins ® conquered.ins defines a transaction
called win. Intuitively, this rule says, “to do win, first insert divided into the database, and then
insert conquered.” Thus, if the user invokes transaction ?— win, then the database changes from D
to D + {divided} to D + {divided, conquered}. Formally, if transaction base P contains this rule, then
the following statement is true:

P,D, D + {divided}, D + {divided, conquered} = win

The simplicity of our examples may have blurred an important point made earlier, namely, that
the database itself may be a full-fledged deductive database. For instance, D may contain the rule
unhappy <— divided A conquered. In this case, the query ?— unhappy will be answered affirmatively
if asked after the transaction win has been executed. That is, the following statement is true:

P,D, D + {divided}, D + {divided, conquered} |= win ® unhappy

In addition, as explained in Section 10, transactions can modify the rules found in the database. For
instance, a transaction may be programmed to delete the formula unhappy <— divided A conquered
from the database. O
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The rule in Example 2.9 defines a deterministic transaction. However, rules can also define non-
deterministic transactions. To take a simple example, the rule ¢ «— ¢ V ¢ defines ¢ to be the non-
deterministic transaction ¢ V 1. More generally, rules can define non-deterministic transactions even
without mentioning disjunctions explicitly. This is possible because, as in classical logic, a rule like
¢ — (¢ V ) is equivalent to a conjunction of the two rules, (¢ — ¢) A (¢ — ).

Ezample 2.10 (Flipping Coins) Suppose the transaction base P contains the following two rules, which
define the action of flipping a coin:

flip(X) « heads.ins(X) flip(X) « tails.ins(X)

These rules say that, to flip a coin, say dime, either insert heads(dime) into the database or insert
tails(dime). Thus, ?— flip(dime) is a non-deterministic transaction. Formally, the result of flipping
a dime can be represented by the following two statements:

P,D, D + {heads(dime)} | flip(dime) P,D, D + {tails(dime)} | flip(dime)
This means that we cannot know in advance what the exact outcome of a flipping action will be.

However, if the two rules above are the only rules defining flip, then we can make the following
statement, which is true for any pair of databases D; and D,:

if P,D,,D, [ flip(dime)
then P,D, |= heads(dime)V tails(dime)
In other words, regardless of the outcome, the coin will always land on one of its two sides. O

Even a single rule can give rise to non-determinism. This is possible because, as in classical logic,
a rule like VX [p — ¢(X)] is equivalent to the rule p «— 3X ¢(X), if X does not occur in p, and the
body of the latter rule is a non-deterministic transaction. Another way to see this is to think of the
former rule as a conjunction of its instances, p <— ¢(a), for all a. Each of these instances provides an
alternate way of executing p, thereby introducing non-determinism.

Ezample 2.11 (Non-Deterministic Copy, Continued) In Example 2.8 we showed that it is possible to
non-deterministically copy a tuple from one relation to another. We can give this transaction a name
by adding the following rule to the transaction base, P:

hire — handsome(X) ® hired.ins(X)

Formally, this rule is equivalent to the formula hire — 3X [handsome(X) ® hired.ins(X)]. Note that
the body of this rule is exactly the formula used in Example 2.8. Intuitively, this rule says, “to execute
hire, first choose a tuple from relation handsome non-deterministically, and then insert this tuple into
relation hired.” Note that the set of non-deterministic alternatives is data-dependent. Formally, for
every handsome-value c,

if P,D |= handsome(c)
then P,D,D + {hired(c)} | hire
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This means that we cannot know in advance what the exact outcome of the hiring action will be.
However, if the rule above is the only rule defining hire, then we can make the following statement,
which is true for any pair of databases, D; and D,:

’Lf P,Dl,D2 |I hire
then P,D, = handsome(c)
and P,D, = hired(c)
for some value c. O

2.5 Transaction Bases

This section gives simple but realistic examples of transaction bases comprised of finite sets of rules.
The examples show how updates can be combined with queries to define complex transactions, and
they show how 7R improves upon Prolog’s update operators.

FEzample 2.12 (Financial Transactions) Suppose the balance of a bank account is given by the relation
balance( Acct, Amt). To modify this relation, we are provided with a pair of elementary update op-
erations: balance.del( Acct, Amt), to delete a tuple from the relation; and balance.ins(Acct, Amt),
which inserts a tuple into the relation. Using these two updates, we define four transactions:
change_balance( Acct, Ball, Bal2), to change the balance of an account from one amount to another;
withdraw(Amt, Acct), to withdraw an amount from an account; deposit(Amt, Acct), to deposit an
amount into an account; and transfer(Amt, Acctl, Acct2), to transfer an amount from one account
to another. In the fransfer transaction, we also require that the debited account should not to be
overdrawn. These transactions are defined by the following four rules:

transfer( Amt, Acctl, Acct2) — withdraw(Amt, Acctl) @ deposit(Amt, Acct2)

withdraw(Amt, Acct) «— balance(Acct, Bal) @ Bal > Amit
® change_balance( Acct, Bal, Bal — Amt)

deposit(Amt, Acct) — balance(Acct, Bal) ® change_balance(Acct, Bal, Bal + Amt)
change_balance( Acct, Ball, Bal2) < balance.del( Acct, Ball) ® balance.ins(Acct, Bal2)

Note that, in these rules, the atom balance(Acct, Bal) is a query that retrieves the balance of the
specified account, while Bal > Amt is a test. All other atoms are updates. |

Observe that the rules in Example 2.12 can easily be rewritten in Prolog, by replacing “®” with
“” and replacing the elementary transitions, balance.ins and balance.del, with assert and retract,
respectively. However, the resulting, apparently innocuous, Prolog program will not execute correctly!
The problem is that Prolog does not undo updates during backtracking. As an example, consider a
transaction involving two transfers, defined as follows:

?— transfer( fee, client, broker) ® transfer(cost, client, seller)

That is, a fee is transferred from a client to a broker, and then a cost is transferred from the client to a
seller. Because this is intended to be a transaction, it must behave atomically; that is, it must execute
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entirely or not at all. Thus, if the second transfer fails, then the first one must be rolled back. In this
respect, 7R behaves correctly. Prolog, however, does not, since it commits updates immediately and
does not undo partially executed transactions. Thus, if the second transfer above were to fail (say,
because the client’s account would be overdrawn by the transaction), then Prolog would not undo the
first one, thus leaving the database in an inconsistent state.

Getting around this problem takes much out of the simplicity of Prolog programming. In fact,
the non-logical behavior of Prolog updates is notorious for making Prolog programs cumbersome and
heavily dependent on Prolog’s backtracking strategy. 7R fixes this problem by providing a simple
logical semantics for database updates.

The next example uses robot actions to illustrate non-deterministic rules. Planning of robot actions
is discussed in detail in Section 7.9.

FEzample 2.13 (Non-Deterministic Robot Actions) The rules, below, define actions that simulate the
movements of a robot arm in the blocks world [75]. States of this world are defined in terms of four
database predicates: on(z,y), which says that block z is on top of block y; wider(z,y), which says
that  is wider than y; isclear(z), which says that nothing is on top of block z; and color(z, c), which
says that ¢ is the color of block z. The rules below define six actions that change the state of the
world. Each action evaluates its premises in the order given, and the action fails if any of its premises
fails (in which case the database is left in its original state).

stackSameColor(Z) « color(Z,C)Q® stackTwoColors(C,C,Z).
stackTwoColors(C1,C2,Z) «— color(X,C1)® color(Y,Cs) ® stackTwoBlocks(X,Y, Z)
stackTwoBlocks(X,Y,Z) — move(Y,Z)® move(X,Y)

move(X,Y) « pickup(X)® putdown(X,Y)

pickup(X) « isclear(X)® on(X,Y) @ on.del(X,Y) ® isclear.ins(Y")

putdown(X,Y) « X #Y ® wider(Y, X)® isclear(Y) ® on.ins(X,Y) ® isclear.del(Y)

The basic actions are pickup(X) and putdown(X,Y), meaning, “pick up block X,” and “put down
block X on top of block Y,” respectively. Both are defined in terms of elementary inserts and deletes
to database relations. The remaining rules combine simple actions into more complex ones. For
instance, move(X,Y) means, “move block X to the top of block Y,” and stackTwoBlocks(X,Y, Z)
means, “stack blocks X and Y on top of block Z.” Similarly, putdown(X,Y) means that block X
is to be stacked on top of Y, provided that X and Y are not the same and that Y is a wider block.
These actions are deterministic: Each set of argument bindings specifies only one robot action.

In contrast, the two actions stackTwoColors and stackSameColor are non-deterministic. For
instance, stackTwoColors(C1,C2,Z) means, “stack two blocks, of colors C; and Cj, on top of block
Z.” The action does not say which two blocks to use, only their colors. To perform the action, the
inference system searches the database for blocks of the appropriate color that can be stacked. If several
such blocks are available, the system chooses any two arbitrarily. The action stackSameColor(Z)
means, “stack two blocks on top of Z that are of the same color as Z.” Again, the inference system
searches the database for appropriate blocks. In this way, by defining non-deterministic actions, a
user can specify what to do (declarative knowledge) and how to do it (procedural knowledge). O

It is worth noting that the rules in Example 2.13 involve queries as well as updates. In the last
rule, for instance, the atom ¢sclear(Y) (which itself may be defined by other deductive rules) is a
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Boolean test that must return true in order for the transaction to succeed. In the first rule, the atom
color(Z,C) is a query that retrieves the color C of the block Z. The second rule is, perhaps, the
most interesting. Here, the atoms color(X, C7) and color(Y, C,) are non-deterministic queries. They
retrieve two blocks X and Y of colors C; and C,, respectively. The particular blocks retrieved by
these queries then determine the course of action taken in the rest of the transaction.

Just as in Example 2.12, the above 7R program can be straightforwardly converted into a Prolog
program and, just as before, this program will not work as intended. Indeed, suppose the robot had
picked up a block that is wider than any clear block currently on the table. Because putdown checks
that a wider block does not go on top of a smaller one, it will fail. Once again, in 7R, the putdown
action will fail and the changes to the underlying database will be undone. But not so in Prolog,
which will leave the robot stranded in an inconsistent internal state.

Ezample 2.14 (Recursive, Non-Deterministic Actions) Suppose the transaction base of Example 2.13
is augmented by the two rules below. Then the transaction stack(N, X) tries to stack N blocks on
top of X. If it succeeds, the database is updated and the transaction returns true; if it fails (perhaps
because N blocks are not available), then the database remains in its original state, and the transaction
returns false.

stack(N,X) « N >0 ® move(Y,X)Q stack(N —1,Y)
stack(0,X) «

In order to stack N blocks on X, the first rule moves a single block, Y, onto X, and then recursively
tries to stack N — 1 blocks on Y. Since the second rule has an empty premise, it terminates the
recursion by doing nothing, thereby stacking no blocks on top of X. |

2.6 Constraints

Section 2.3 showed how classical disjunction creates non-determinism. This section shows how classical
conjunction constrains it.

In general, the transaction 1 A ¢ is more deterministic than either ¢ or ) by themselves. This is
because any execution of ¥ A ¢ must be an allowed execution of ¥ and an allowed execution of ¢. We
illustrate this idea in two ways: first, through an informal example of robot navigation (i.e., a routing
problem), and then through two formal examples. More elaborate and formal examples are given in
Section 7.7.

Consider the following conjunction of two robot actions:
“Go to the kitchen” A “Don’t pass through the bedroom”

Note that each conjunct is a non-deterministic action, since there are many ways in which it can be
carried out. In 7R, this conjunction would be equivalent to the following:

“Go to the kitchen without passing through the bedroom.”

This action is more constrained than either of the two original conjuncts alone. In this way, conjunction
reduces non-determinism and can specify what is not to be done.

Two points about classical conjunction are worth noting. First, it does not cause the conjuncts
to be executed as two separate transactions. Instead, it combines them into a single, more tightly
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constrained transaction. Second, classical conjunction constrains the entire execution of a transaction
(i.e., the way in which it is carried out), not just the final state of the transaction. It can therefore
express dynamic integrity constraints. We elaborate on these points in Section 7.7.

In general, classical conjunction constrains transactions in two ways: () by causing transactions
to fail, and (42) by forcing non-deterministic transactions to execute in certain ways. The following
examples illustrate these points.

FEzample 2.15 (Transaction Failure: I) If a user issued the transaction ?— hired.insA hired.del, then
the transaction would fail,* leaving the database unchanged. The transaction fails because it is not
possible to simultaneously insert and delete one and the same atom into a database. Formally, the
following statements are both true:

P,D, D + {hired} |= hired.ins P,D, D — {hired} |= hired.del
but the following statement is false, for every database D':
P,D,D' |= hired.insA hired.del
O

The above transaction fails because its two conjuncts, hired.ins and hired.del, terminate at dif-
ferent database states. However, a conjunction ¥ A ¢ may fail even if the component-transactions,
and ¢, terminate at the same state. This is possible because the execution path of ¥ and ¢ may pass
through different intermediate states and there is no execution path common to ¢ and .

FEzample 2.16 (Transaction Failure: II) Consider a pair of transactions ? — bought.ins ® wanted.ins
and ?— wanted.ins ® bought.ins. They both transform a database state, D, into the state D +
{bought,wanted}. However, they pass through different intermediate states. The former goes through
the state D + {bought}, while the latter passes through the state D + {wanted}. The conjunction
(bought.ins® wanted.ins) A (wanted.ins® bought.ins) therefore fails, since there is no single sequence
of states that is a valid execution path of both conjuncts. Formally, the following two statements are
both true:

P,D, D + {bought}, D + {bought,wanted} |= bought.ins® wanted.ins
P,D, D + {wanted}, D + {bought, wanted} |= wanted.ins® bought.ins

but the following statement is false for any sequence of databases D, Dy, ..., D,:®
P,D,Dq,...,D, [ (bought.ins® wanted.ins) A (wanted.ins ® bought.ins)
O

FEzample 2.17 (Reducing Non-Determinism) Consider the two transactions ?— lost.insV found.ins
and ?— lost.insV won.ins. They are both non-deterministic. Furthermore, starting from database
D, they can both follow the same path to terminate at D + {lost}. In fact, this is the only
database that can be reached by both transactions.® Hence, if the user issued the transaction
?— (lost.insV found.ins) A (lost.insV won.ins) then, after execution, the final database would be
D + {lost}. Formally, the following statement is true:®

*We use the term “failure” in the same sense as it is used in Prolog, which is not quite the same as in transaction
management theory.

® Assuming bought and wanted are not in D.

6 Assuming found and won are not in D.
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P,D,D' = (lost.insV found.ins) A (lost.insV won.ins) iff D' =D + {lost}

In this way, classical conjunction reduces non-determinism and, in this particular example, yields a
completely deterministic transaction. |

In Section 7.7, we show that 7R is a rich language for expressing constraints. Much of this
richness comes from serial conjunction, especially when combined with negation. For example, each
of the following formulas has a natural meaning as a constraint:

e <(a®b®c) means that the sequence a ® b ® ¢ is not allowed.
e ¢ ® 1) means that transaction ¥ must not immediately follow transaction ¢.
e (¢ ® —9) means that transaction ¢ must follow transaction ¢.

These formulas can often be simplified by using the dual operator @, which we call serial disjunction.
For example, the last formula can be rewritten as —¢® 1. We elaborate on these points in Section 7.7.

Finally, it is worth noting that in addition to specifying constraints, classical conjunction has other
important functions. For instance, as in classical logic, it is needed to specify conjunctive queries.
Likewise, as in deductive databases, it is needed to construct rule-bases, which are just conjunctions
of rules. Of course, unlike deductive databases, rules in 7R define transactions as well as queries.
Examples of such rules are given in the next section and in Section 7.

3 Syntax

We define the alphabet of a language of 7R to consist of the following symbols:

o A set of function symbols F. Each function symbol has a non-negative number, its arity,
indicating the number of arguments the symbol can take. Constants are viewed as 0-ary function
symbols.

e A countably-infinite set of variables V.

e A countable set P of predicate symbols. Like functions, predicate symbols have arity. 0-ary
predicate symbols are viewed as propositional constants.

e Logical connectives V, A (classical disjunction and conjunction), @, ® (serial disjunction and
conjunction), — (classical negation). Additional connectives will be defined in terms of these
later.

e Quantifiers V, 4.
e Auxiliary symbols, such as “(”, “)”, and “,”.

Terms are defined as usual in first-order logic: A variable is a term; if f is an n-ary function symbol
and t, ..., t, are terms, then f(¢1, ..., %,)is a term. When n = 0, we write f instead of f().
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Transaction Formulas

TR extends the syntax of first-order predicate logic with two new binary connectives, ® and @,
called serial conjunction and serial disjunction, respectively. The resulting logical formulas are called
transaction formulas.

Formally, transaction formulas are defined recursively as follows. First, an atomic transaction
formula is an expression of the form p(¢1,...,%,), where p € P is a predicate symbol, and ¢1,...,%,
are terms. Second, if ¢ and 9 are transaction formulas, then so are the following expressions:

* VY, OAY, 0B Y, ¢® P, and —¢.
o (VX)¢p and (3X)¢, where X is a variable.

The following are examples of transaction formulas:
e H(X)®c(X,Y)
e a(X)V [b(X)®c(X,Y)]
o VX[a(X)V -b(X)® —¢(X,Y)]

Intuitively, the formula ¥ ® ¢ means, “Do ¢ and then do ¢,” and the formula ¢ @ ¢ (very roughly)
means, “Do ¢ now or do ¢ later.” Formally, ® and ® are defined to be dual, so that ~(¢ & ¢) is
equivalent to —¢ ® —¢. Note that the classical first-order formulas are transaction formulas that do
not use ® and @. As in classical logic, we introduce convenient abbreviations for complex formulas.
For instance, ¥ < ¢ is an abbreviation for ¥ V —¢, for any transaction formulas ¥ and ¢.

4 Elementary Operations

Classical logic theories always come with a parameter: a language for constructing well-formed for-
mulas. This language is not fixed, since almost any set of constants, variables and predicate symbols
can be “plugged into” it. Likewise, 7R theories are also parameterized by language. In addition,
they have another parameter: a pair of oracles, called the data oracle and the transition oracle, which
specify elementary database operations. The data oracle specifies a set of primitive database gqueries,
i.e., the static semantics of states; and the transition oracle specifies a set of primitive database
updates, i.e., the dynamic semantics of states. These two oracles encapsulate elementary database
operations. They also separate the specification of elementary operations from the logic of combining
them. As we shall soon see, this separation has two main benefits: (¢) it allows us to develop a logic
for combining and programming transactions without committing to a particular theory of elementary
updates; and (%) it allows 7R to accommodate a wide variety of database semantics, from classical
to non-monotonic to various other non-standard logics. Like the language of the logic, the oracles are
not fixed, since almost any pair of oracles can be “plugged into” a 7R theory.

4.1 State Data Oracles

One of the goals underlying the design of 7R is to make it general enough to deal with any kind
of database state, including relational databases and more general deductive databases. One may
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therefore be tempted to define a state as an arbitrary first-order formula and close the issue. However,
things turn out to be more involved. For one thing, stating that a database state is a first-order
formula does not determine the set of truths about that state. This is because in databases and
logic programming, one usually assigns a non-standard semantics to such databases, such as Clark’s
completion, a perfect-model or a well-founded model semantics [63, 92, 37]. Because of this, it is
wise to insulate the dynamic aspects of transaction execution from the static aspects pertaining the
truth at database states. Not only will this allow Transaction Logic to work with different database
semantics, but it will also enable us to study the dynamics in separation from those static aspects.

Another problem is that logically equivalent first-order formulas may represent different database
states. For instance, {p «— —¢} is usually viewed as a different database than {q «— —p}, even though
the two formulas are classically equivalent. In the first database, p is considered as true and ¢ as false;
in the second database, it is just the opposite.

To achieve the needed generality, the semantics of states is specified by a state data oracle. This
oracle comes with a set of state identifiers. The oracle itself is a mapping, O?, from state identifiers
to sets of first-order formulas. Intuitively, if ¢ is a state identifier, then Od(i) is the set of formulas
considered to be all and only the truths about the state. Since the state id uniquely identifies a state,
we shall use the terms “state” and “state id” interchangeably. To connote the right intuition, all
examples in this paper use first-order formulas (or sets of first-order formulas) as state identifiers. This
is appropriate because many useful oracles can be conveniently described in terms of such formulas.
However, our results and definitions do not depend on this representation and, in general, any construct
can be a state identifier. For example, a state identifier could be a set of non-logical objects, such as
flat files, documents or disk pages.

To get a better grasp of the idea of an oracle-as-database-state, Section 4.3 provides a number of
examples, which are used frequently in this paper.

4.2 State Transition Oracles

We need a way to specify elementary changes to the database. One way to define such transitions is
to build them into the semantics as in [65, 73, 16, 28, 5, 68]. The problem with this approach is that
adding new kinds of elementary transitions requires redefining the very notion of a model and, hence,
entails a revamping of the entire theory, including the need to reprove soundness and completeness
results. In other words, such theories are not extensible. This is a serious problem, since the ability to
add new transitions is by no means an esoteric whim. In Sections 7.5 and 7.6, for instance, we shall use
a new kind of transition called relational assignment to perform bulk updates and non-deterministic
sampling. In scientific databases, an elementary transition may be a sophisticated numerical operation,
such as a Fourier transform.

The problem is aggravated by the fact that, for arbitrary logical databases, the semantics of
elementary updates is not clear, not even for relatively simple updates like insert and delete. For
example, what does it mean to insert an atom b into a database that entails —b, especially if —b itself
is not explicitly present in the database? Or, is insertion of {q} into {p «— —¢} the same as the
insertion into {g <— -p}? There is no simple answer to this question, and many solutions have been
proposed (see [51] for a comprehensive discussion). Furthermore, Katsuno and Mendelzon [51] pointed
out that, generally, state transitions belong to two major categories—updates and revisions—and, even
within each category, several different flavours of such transitions are worth looking at. Thus, there
appears to be no small, single set of elementary state transitions that is best for all purposes.
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For this reason, rather than committing 7R to a fixed set of elementary transitions, we have chosen
to treat elementary state transitions as a parameter of 7R. Each set of elementary transitions thus
gives rise to a different version of the logic. To achieve this, elementary state transitions are specified
outside 7R, using the notion of a state transition oracle. In this way, elementary transitions are
separated from the issue of specifying complex transactions. 7R can thus work with any algorithmic
or declarative language for specifying elementary transitions.

Formally, we assume that there is a state transition oracle, O!, a function that maps pairs of
database states into sets of ground (¢.e., variable-free) atomic formulas. We will often refer to these
ground atoms as elementary transitions. (Groundness of elementary transitions is required for sim-
plicity. We could have allowed arbitrary closed formulas, but it is not yet clear whether this generality
has interesting applications.)

The names of elementary transitions, such as b.ins and b.del, have no special status in 7R. That
is, they are ordinary atomic formulas that just happen to be mentioned by the oracle. In principle,
nothing prevents the user from putting rules for b.ins into the transaction base.” Even the fancy
names of these predicates is nothing but a convention adopted for this paper.

4.3 Examples

This section gives examples of data and transition oracles. In each example, a database state is a
set of data items, as in the theory of transaction management [12]. Intuitively, a data item can be
any persistent object, such as a tuple, a disk page, a file, or a logical formula. Formally, however,
a database state has no structure, and our only access to it is through the two oracles. Some of
the oracles below can be combined to yield more powerful oracles. Typically, such combinations are
possible when oracles operate on disjoint domains of data items.

Relational Oracles: A state D is a set of ground atomic formulas. The data oracle simply returns
all these formulas. Thus, O¢(D) = D. Moreover, for each predicate symbol p in D, the transition
oracle defines two new predicates, p.ins and p.del, representing the insertion and deletion of single
atoms, respectively. Formally, p.ins(z) € O'(D;,D,) iff Dy, = D; U {p(Z)}. Likewise, p.del(z) €
0O{D;,D,) iff Dy = D; — {p(z)}. SQL-style bulk updates can also be defined by the transition
oracle (Section 7.5), as can primitives for creating new constant symbols.

Scientific Oracles: A state is a set of square matrices. For each matrix, B, in a state, the data oracle
defines three ternary relations, b, b.inv and b.dft, representing the matrix itself, its inverse, B~!, and
its two-dimensional discrete Fourier transform, dft(B), respectively. Formally, b(s,j,v) € O4D) iff
B(i,7) = v in D. Likewise, b.inv(i,j,v) € O4D) if B~1(i,j) = v; and b.dft(s,j,v) € O¢D) iff
dft(B)(i,7) = v. In this way, the data oracle provides three built-in views of each matrix.® The
transition oracle also defines three predicates, b.set, b.rswap and b.cswap, which update matrix b.
The first predicate sets the value of an element of the matrix. Formally, b.set(s,j,v) € OY(Dq,D,) iff
D; = D, except that B(4¢,7) = v in state D,. Likewise, b.rswap(i,j) swaps rows ¢ and j of the
matrix, while b.cswap swaps columns ¢ and j. Note that for main-memory systems, these updates

"However, preventing the user from tinkering with the definitions of elementary transitions may be a good practice.
8Matrix inversion and discrete Fourier transforms are typically provided as built-in operations by scientific software
packages.
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can be implemented with an efficiency comparable to that of variable assignment, i.e., much more
efficiently than assert and retract in Prolog.

Classical Oracles: A state D is a set of classical first-order formulas. The data oracle defines all
the logical implications of these formulas. Thus O%(D) = {¢ | D |=° ¢}, where =° denotes
classical entailment. The transition oracle defines primitives for adding and removing formulas from
the database, resolving any conflicts between the new formulas and existing formulas. Such conflicts
can be resolved in numerous ways, as shown by Katsuno and Mendelzon [51]. For instance, for each
first-order formula, y, the transition oracle could define four predicates, u.update, p.erase, u.revise
and p.contract. Using the notation of [51], these predicates would be defined as follows:

p.update € OY(Dq, D,
Dla D2
Dla D2

D17D2

iff Dy=Djopu
ff Dy=Diep
iff Dy=Djop
iff Do=Djep

p.erase € O

p.revise € Of

o~~~ —

)
)
)
p.contract € Ot )

Well-Founded Oracle: A state D is a set of generalized-Horn rules® and O%(D) is the set of literals
in the well-founded model of D [92]. Such oracles can represent any rule-base with well-founded
semantics, which includes Horn rule-bases, stratified rule-bases, and locally-stratified rule-bases. For
sophisticated applications, one may want to augment ©%(D) with the rules in D.

Generalized-Horn Oracles: A state D is a set of generalized-Horn rules and O%(D) is a classical
Herbrand model of D. Such oracles can represent Horn rule-bases, stratified rule-bases, locally-
stratified rule-bases, rule-bases with stable-model semantics [37], and any rule-base whose meaning is
given by a classical Herbrand model. Again, one may want to augment ©%(D) with the rules in D.

4.4 TImplementing Oracles

Unlike the formulas in a transaction base, P, we do not expect the oracles to be coded by casual users.
Although the oracles allow for many different semantics for states and state changes, we envision that
any logic programming system based on 7R will likely have a carefully selected repertoire of built-in
database semantics, and a tightly controlled mechanism for adding new ones. This latter mechanism
would not be available to ordinary programmers. For this reason, we assume in this paper that the
data and transition oracles are fixed.

Unfortunately, there is no general solution to the practical problem of how oracles can best be
implemented. For the classical oracle described above, the problem has been partly solved by Grahne,
Mendelzon, and Winslett [42, 93]. Winslett showed that, in general, the problem of updating proposi-
tional formulas is NP-hard. Subsequently, though, Grahne and Mendelzon proved that updating sets
of ground atoms with arbitrary propositional formulas can be done in polynomial time. More impor-
tantly, this result carries over to deductive databases, in which only the extensional part is updated.
In this case, as with relational databases, updates are fast and straightforward.

For scientific databases, the oracles may involve complex calculations and simulations, such as
matrix inversion or numerical integration. Good algorithms for carrying out these operations have been

®Generalized-Horn are rules with possibly negated premises.
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carefully developed by scientists and numerical analysts. These algorithms should be incorporated into
the oracles. It is completely impractical to expect a user to specify declaratively a complex numerical
operation, and expect an optimizer to find the best way of implementing it. This would require the
optimizer to automatically reproduce years of research in combinatorial optimization. Instead, oracles
allow us to exploit what combinatorialists have discovered, without having to rediscover it.

By design, the issue of specifying and implementing elementary operations is orthogonal to our
work. In 7R, the data and transition oracles are external parameters, and all that matters is the
existence of an algorithm to compute the outcome of an operation, or to enumerate the possible
outcomes if the operation is non-deterministic. Such computations are not unusual in logic—they are
implicit in most logical inference systems, since they are normally based on infinite sets of axioms.!°
Moreover, as shown in Section 6, the enumeration can be carried out by using built-in procedures to
perform elementary updates. The resulting inference system has an efficiency comparable to that of
procedural programming languages. Finally, we note that transaction definitions are independent of
the transition oracle and of the specifics of the enumeration algorithm. This latter point contributes

to making 7R a lucid and flexible language for defining transactions.

In closing this section, we note a limitation of oracles: Although they may be viewed as efficient
black boxes for executing elementary operations, they provide only limited help with reasoning about
them. In databases and logic programming, however, execution is by far the more important issue.
Reasoning can still be performed in 7R—it is just that 7R does not offer specific advantages in
this sphere. However, many reasoning problems can often be reduced to execution. This is shown
in Section 7.7, which illustrates constraints, and in Section 7.9, which illustrates planning. In such
cases, 7R does offer decided advantages over other reasoning systems. For instance, as discussed in
Section 7.8, the infamous frame problem is not an issue in 7R.

5 Model Theory

The model theory of 7R is based on a few simple ideas. We discuss these ideas, and then develop
the model theory in detail.

States. As in modal logic, a semantic structure in 7R is based on a set of states. Beyond this
similarity, however, the two logics are very different. For instance, in modal logic, the set of states is
not fixed, but can vary from one semantic structure to another. In Transaction Logic, the set of states
is the same for all semantic structures: it is the set of states that comes with the data and transition
oracles. Changing the oracles can change the set of states, and thus the set of semantic structures.
This is one way in which different oracles give rise to different versions of 7R.

Transaction Ezecution Paths. When a transaction is executed, the database may change, going from
an initial state, D4, to a final state, D,,. Asshown in Section 2, the database may also pass through any
number of intermediate states, Dj,...,D,_1, along the way. The sequence (D;,D,,...,D,_1,D,)
is the ezecution path of the transaction. It is said to have length n. The semantics of Transaction
Logic is based on execution paths, or paths for short. As illustrated in Sections 2.6 and 7.7, paths
allow us to model a wide range of constraints on transaction execution. For example, we may require

1%Consider common “axioms” such as ¢ V —¢, [¢ A (¢ — ¥)] — ¢, and De Morgan’s Laws. These are actually axiom
schemata representing an infinite number of axioms, since they apply to all formulas ¢ and 3.
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that every intermediate state satisfy some condition, or we may forbid certain sequences of states.
Because of the emphasis on paths, semantic structures in 7R are called path structures.

Unlike modal structures, truth in path structures is defined on paths, not states. For exam-
ple, we would say that the path (D, D+ {a}, D + {a,b}) satisfies the formula a.ins ® b.ins,
since it represents an insertion of a followed by an insertion of 5. On the other hand, the path
(D, D+ {b}, D+ {a,b}) does not satisfy this formula; instead, it satisfies the formula b.ins® a.ins.
This simple example illustrates a general idea in 7R: the truth of a formula on a path corresponds to
the common-sense notion of transaction execution. If the path has length 1, then the transaction is a
query in the traditional sense; if the path has length 2, then the transaction (usually) is an elementary
update; and if the path has length greater than 2, then the transaction is a composite update. In this
way, queries, updates, and transactions are all treated uniformly.

To define truth on paths in a completely general way, we assign a first-order semantic structure
to each path, w. This structure specifies those atomic formulas that are true on w. The satisfaction
of complex formulas on 7 is determined by the semantic structures assigned to = and its subpaths.
Intuitively, all formulas, atomic or complex, that are true on a path represent actions that take place
along the path. This reliance on paths is reminiscent of a version of Process Logic defined in [47].
However, there is a vast difference in how truth is defined and in what formulas actually denote.
Further comparison is provided in Section 11.

Stored Facts vs. Derived Facts. In classical database systems, a subtle distinction is made between
stored facts and derived facts. Typically, update procedures distinguish between these two types of
facts, but query processors do not. For example, a deductive database has a set of base facts D, called
the extensional database, and a set of rules P, called the intensional database. The query processor,
however, sees only the logical consequences of D U P. In this way, a user cannot tell whether a fact
is stored or derived. In contrast, update-procedures act only on the stored facts D. Even if a user
requests an update to a derived fact (a view update), the request is translated into an equivalent set
of updates to the stored facts. The reason, of course, is that derived facts cannot be changed without
changing the base facts that support them.

To reflect this distinction, the path structures of 7R carefully distinguish between a state D and
the path (D) of length 1. Intuitively, the state D represents the formulas stored in the database, and
the path (D) represents formulas derived by combining the database and the transaction base. That
is, in database terminology, (D) is a view of D.1! Only the state D (the stored data) is updated,
and only the path (D) (the view) is queried. The user, therefore, sees the state indirectly, through
the view. To capture this idea formally, formulas are never evaluated at states (unlike modal logic).
Thus, one cannot ask for the value of a formula, v, at a state, D, since this would be tantamount to
querying stored facts directly. However, ¢ can be evaluated on the path (D), which is tantamount to
querying the view over D, as in the classical theory of deductive databases.

5.1 Path Structures

This section makes the preceding discussion precise. In the definitions below, each path structure
has a domain of objects and an interpretation for all function symbols, which are used to interpret
formulas on every path in the structure.

1 Of course, the state D also represents derived information, but only information that is derivable from the formulas
in the database.
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In the formal definition of path structures, we rely on the notion of classical semantic structures.
For our purposes, it is convenient to augment the class of all classical semantic structures with an
additional, special, structure, denoted by T. It has the property that it satisfies every first-order
formula. Even though T is not a classical structure, here we shall call it “classical” because adding
it to classical logic does not change the logic in any essential way—it simply adds one more model to
every formula. The use of T lets us localize possible inconsistency between database states (specified
by oracles) and views over these states (specified by transactions). This issue is discussed further in
Section 5.7.

Recall that 7R includes a state transition oracle, ©@¢, and a state data oracle, @?. The domain of
these oracles determines the set of database state identifiers (or states). A path of length k (or k-path)
is a finite sequence of these state identifiers, (D, ..., D), where k& > 1.

Definition 5.1 (Path Structures) Let L be a language of 7R with the set of function symbols F. A
path structure, M, over L is a triple (U, Iz, L,qtn), Where:

e U is a set, called the domain of M.

e [r is an interpretation of function symbols in £. It assigns a function U™ —— U to every n-ary
function symbol in F.

Given U and Ir, let Struct(U, Ir) denote the set of all classical first-order semantic structures
over £ of the form (U, Iz, Ip), where U is the domain of the structure, I'» is a mapping that
interprets predicate symbols in P by relations on U of appropriate arity, and U and Iz are the
same as in M. In accordance with an earlier remark, we also assume that Struct(U, Ir) contains
the special “classical” structure T.

o I,qp is a mapping that assigns to every path in Paths(L), a semantic structure in Struct(U, Ir)
(which may be T as well). Finally, we subject the mapping I, to two restrictions:

— Compliance with the data oracle: Iqn((D)) ¢ ¢, for every ¢ € O¢(D), which means that
the view over any database state must be a model of whatever the oracle considers to be
true of that state.!? (As before |=° denotes classical satisfaction in first-order models.)

— Compliance with the transition oracle: L,qun((D1,D2)) E¢ b whenever b € O*(D1,D3). O

The mapping I, specifies what atoms are true on what paths. These atoms denote actions that
take place along various paths. In arbitrary path structures, these actions are independent of one
another. In particular, the semantic structure assigned to path 7 is independent of the subpaths of 7.
Intuitively, this means that we know nothing about the relationship between transactions and their
subtransactions. Such knowledge, when it exists, is encoded as transaction formulas, as described in
Section 5.3. These formulas constrain the mapping I,,p, forcing the atoms on one path to be related
in precise ways to atoms on other paths.

Path structures are also constrained by the data and transition oracles. The oracles specify ele-
mentary database operations which all path structures must model. Definition 5.1 formalizes this idea
by imposing two restrictions on path structures. Intuitively,

120bserve that unlike the previous versions of 7R[19, 20], Iya:n({D)) is not required to be a model of D. It will be a
model, however, if the oracle is such that D is logically implied by (’)d(D), such as in the case of the Generalized Horn
Oracle.
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e restriction 1 says that the data oracle is modeled by 1-paths in a path structure; <.e., the semantic
structure assigned to path (D) is a classical model of the formulas stored at D;

e restriction 2 says that the transition oracle is modeled by 2-paths in a path structure; i.e., the
semantic structure assigned to path (Dq,D,) is a classical model of the elementary transitions
from D, to Ds,.

One more point about Definition 5.1 is worth noting. In a path structure, M, the mapping Ir is
shared by all classical first-order structures mentioned in M. In modal logics, such semantics is said
to be based on the assumption of “rigid designators.” If this assumption is not made, the number of
models of a formula may increase and so certain valid formulas (with respect to rigid designators) may
become non-valid. As in modal logics, the decision to use rigid designators has a profound effect on
TR. For instance, when equality is allowed, non-rigid designators would lead to unintuitive semantics
in the context of 7R.

As a simple exercise, the reader can verify the following after reading through the rest of this
section. Suppose that Ir is allowed to vary from state to state within a path structure. Suppose also
that the transaction base contains a single rule, p(X) — (X = ¢) ® ¢.ins(b) ® (X = ¢). Intuitively,
executing the transaction ?— p(c) on an empty database should cause the insertion of ¢(b) into the
database. However, this is not the case with non-rigid designators. Indeed, the interpretation of ¢
in the state corresponding to the empty database may differ from the interpretation of ¢ in the state
corresponding to the database {¢(b)}. In this case, the transaction would fail, and the database would
remain empty!

5.2 Satisfaction on Paths

Transaction formulas are evaluated on paths. That is, they are true or false on paths in a structure.
This subsection makes this idea precise.

Given a path, 7 = (D, ..., D,,), it is convenient to define a split of 7 to be any pair of subpaths,
w1 and 7, such that m; = (D4,...,D;) and 72 = (D;,...,D,) for some 7 (1 < ¢ < n). In this case, we
shall write # = 7, o w5. In other words, # = w1 o w4 if and only if 7, is a prefix of 7, 73 is a suffix of
m, and the last state in m; is the first state in 5.

As in classical logic, in order to define the truth value of quantified formulas and of open formulas,
it is convenient to introduce variable assignments. A wvariable assignment, v, is a mapping V —— U,
which takes a variable as input, and returns a domain element as output. We extend the mapping
from variables to terms in the usual way, i.e., v(f(t1, ..., tn)) = Iz (f)(v(t1), - .., ¥(tn))-

Definition 5.2 (Satisfaction) Let M = (U, Ir,Ipe:n) be a path structure, let 7 be an arbitrary path,
and let v be a variable assignment. Then:

1. Base Case:
M, =, p(t1,...,t,) if and only if L n(7) =5 p(t1, ..., t, for any atomic formula
’ p ’ ’ y P v P ) ) ) y
p(t1, ..., tn), where “|=27 denotes classical satisfaction in first-order predicate calculus.

2. Negation:
M, 7 |=, —¢ if and only if it is not the case that M, |=, ¢.

3. Classical Conjunction:

M,7 =, ¢ A9 if and only if M, 7 |=, ¢ and M, 7 |=, 9.
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4. Classical Disjunction:
M,7 =, ¢V ifand only if M,7 =, ¢ or M, 7 |=, 9.

5. Serial Conjunction:
M,7 =, ¢® ¢ if and only if M,7; =, ¢ and M, w, |=, ¢ for some split 71 o 75 of path =.

6. Serial Disjunction:
M,7 =, ¢® ¢ if and only if M,7; =, ¢ or M, w3 |=, ¢ for every split m; o my of path 7.

7. Universal Quantification:
M,n =, (VX)¢ if and only if M, n |=, ¢ for every variable assignment p that agrees with v
everywhere except on X.

8. Existential Quantification:
M,n |=, (3X)¢ if and only if M, =, ¢ for some variable assignment p that agrees with v
everywhere except on X.

O

As in classical logic, the mention of variable assignment can be omitted for sentences, i.e., for formulas
with no free variables. From now on, we will deal only with sentences, unless explicitly stated otherwise.
If M, 7 |= ¢, then we say that ¢ is satisfied (or is true) on path =7 in structure M.

Several points about Definition 5.2 are worth mentioning:

e The base case captures the intuition behind transaction execution along a path: the truth of
an atom p(t1, ..., t,) on a path # means that transaction p can execute along = when invoked
with arguments ¢, ..., t,.

e The semantics of all “classical” connectives (A, -, etc.) is defined in a classical fashion. For these
connectives, truth on a path depends only on the classical structure assigned to the path. The
classical nature of these connectives is made precise by Lemma 5.3 below.

e For the non-classical connective ®, truth on a path depends not just on the path, but on
its subpaths as well. In this way, actions on different paths can be made to depend on each
other. Intuitively, the semantics of ® says that a serial transaction succeeds if and only if its
subtransactions all succeed. This idea is illustrated in Sections 2.5, 5.3 and 6.3.

e The conjunction ¢Aw does not specify the concurrent execution of transactions ¢ and . Instead,
it corresponds to their constrained execution. Both these transactions may be non-deterministic
actions that can be executed in many possible ways. “Classical” conjunction constrains their
non-determinism. Intuitively, ¢ A ¢ means, “Execute action ¢ in such a way that ) is satisfied.”
Sections 2.6 and 7.7 illustrate this further.

e For paths of length 1, the connectives ® and A are equivalent, as shown in Lemma 5.4 below.
It follows that on 1-paths, every occurrence of ® in a transaction formula can be replaced by A
to give an equivalent first-order formula. By Lemma 5.3, this formula has a classical semantics.
Thus, on paths of length 1, ® and A reduce to ordinary conjunction in classical predicate logic.
On longer paths, these two connectives extend the classical semantics of conjunction in two
different ways.
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Lemma 5.3 If ¢ is a first-order formula, then M, 7 |= ¢ if and only if Ipun(7) [=° ¢, for any path
structure M and any path 7, where |=° denotes classical entailment.

Proof: Follows by a straightforward induction on the structure of ¢. O

Lemma 5.4 If o and 8 are two transaction formulas, then M,(D)E=a®p if and only if
M, (D) = a A B, for any path structure M and any state D.

Proof: Follows from the observation that (D) o (D) is the only split of path (D). O

Abbreviations

Before continuing, we define a few useful abbreviations. As usual in first-order logic, we define ¢ «— ¢
and ¢ — 1 tomean ¢V ¢, and ¢ <> ¢ tomean (¢ — @)A(¢ — ¢). By replacing V and A with ® and
@ we obtain another interesting pair of connectives: the left serial implication, ¢ < ¢, standing for
¥ @ —¢, and the right serial implication, ¢ = 1, standing for ~¢ @ 1. As follows from Definition 5.2,
in plain English these formulas say the following: “action ¢ must be immediately preceded (resp.,
followed) by action #.” Note that unlike “—” and “—”, the connectives “<” and “=-" are not just
syntactic variations of each other, i.e., ¥ <= ¢ is not equivalent to ¢ = 1; rather, ¢» <= ¢ is equivalent
to 1) = —¢. Section 7.7 discusses applications of these connectives. Finally, we introduce two more
abbreviations, for iterating the operators ® and &:
CACRERNGRY

QR"p = P®---QY O™
—_——— —_———

n n

In addition to these abbreviations, we assume that our language contains a predefined propositional
constant, state, which is true only on paths of length 1, that is, on database states. Formally, for any
path structure M and path =, it is the case that M, 7 |= state if and only if 7 is a path of length
1. Thus, state is false on every path having more than one state, even on loops like (D, D). (Such
loops can arise if, for instance, a transaction inserts an atom into a database when the atom is already
there. In such cases, the initial and final states of the database are the same.) Another useful constant
is path, defined as state V —state, which is true on every path in M. In fact, path is equivalent
to ¢ V —¢ for any formula ¢, and thus path does not increase the expressive power of the logic. In
contrast, state cannot be independently defined in 7R, and so it does increase the expressive power
of the logic.

(In Section 8.1 we shall see that state can be expressed using path and the hypothetical operators.
To see that state cannot be expressed using the part of 7R introduced so far, suppose there is a
formula ¢ such that ¢ = state. Let M be a path structure, and let D be a state in M. Choose Ip.
so that Lup((D, D)) = Lyain((D)). It is easy to verify by structural induction that M, (D, D) = ¢
if and only if M, (D) = ¢, for any formula ¢. But M, (D) |= ¢, since ¢ is true on all states, and
thus M, (D, D) |= ¢. But this contradicts the assumption that ¢ is true only on states.)

It might seem that state gives a special status to paths of length 1, since 7R can now distinguish
them from all other paths. We shall soon see, however, that one can use state to specify paths of
any given length. Thus, no particular path length is special.
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Observations

Armed with the above definitions, it is easy to verify that the following formulas analogous to De
Morgan’s laws are tautologies, i.e., they are true on every path in every path structure.

(oY) < ¢
~(¢®Y) < -¢®-9
(ev)en < (6@n)V(v®n) (2)
(prg)en o (p0n)A(YpOn)
(pAg)en — (4@ A(YQn)
(pvey)en — (s0n)V(vOn)

The first pair of laws establishes duality between the serial connectives ® and @. The standard duality
between V and A also holds. The last pair of implications is unidirectional, which means that ®, ®
do not fully distribute through A and V, respectively. Likewise, @ and ® do not distribute through
each other and Vv, A do not distribute through @ and ®. The standard De Morgan’s laws involving Vv,
A, -, and quantifiers do hold, however. In particular, this implies that every 7 R-formula has prenex
normal form, but not necessarily conjunctive or disjunctive normal forms.

Here are tautologies involving the propositional constant state, which is true only on paths of
length 1:

¢
¢
¢
¢

¢ ® state)
state ® ¢)
¢ < state)
state = ¢)

o~ —

Another interesting observation is that state enables the construction of formulas that are true
on paths of any given length. To do this, we first observe that the formula —state is true on paths
of length greater than 1, that is, on paths with at least one arc. The formula —state ® —state is
therefore true on paths with at least two arcs. More generally, the formula ®"—state is true on paths
with at least n arcs. Finally, we observe that the negation of this formula has a particularly simple
form:

- ®" -state = @"state

This formula is true on paths with fewer than n arcs, i.e., fewer than n + 1 states. Thus, their length
is at most n. We can now define the proposition n-path, which is true on paths of length ezactly n:

n-path = @"state A - & ! state
As a special case, we define the proposition arc to be equivalent to 2-path. That is,
arc = (state® state) A —state

This proposition, which is true on arcs, is analogous to the familiar temporal operator next. By
iterating arc, we obtain an alternate definition of n-path, namely, n-path = ®" larc.
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5.3 Models

Path structures assign a first-order semantic structure, I,q¢p(7), to each path, 7. For arbitrary path
structures, this assignment is completely arbitrary. Intuitively, this represents a situation in which
we have no knowledge about actions: each ground atom represents an action, but we do not know on
which paths this action takes place. When it exists, knowledge about actions is expressed as logical
formulas. In this case, we are not interested in arbitrary path structures, but in models of the logical
formulas. In these models, the semantic structures assigned by I,.:s are not arbitrary, but satisfy
constraints and dependencies that are implicit in transaction formulas, which constrain the semantic
structures on all paths, and can create dependencies between the semantic structures on a path and
its subpaths.

Note that the definition of path structures guarantees that they come with certain amount of struc-
ture. For example, if u,v are elementary transitions such that u € O*(D;,D,) and v € O%(D,, D3),
where O is the state transition oracle, then the atom u is true on the path (D, D;), and the atom v is
true on the path (D,, D3). This bare-bones structure has certain logical consequences. For instance,
by Item 5 of Definition 5.2, the formula v ® v is true on the path (D;,D,, D3). However, since each
elementary transition refers to a specific arc, a transition oracle cannot impose constraints on arbitrary
paths or between paths. This is the job of the transaction base, which is a set of arbitrary transaction
formulas.

Definition 5.5 (Models of Transaction Formulas) A path structure, M, is a path-model (or simply
a model) of a TR-formula ¢, written M |= ¢, if and only if M, 7 |= ¢ for every path m. A path
structure is a model of a set of formulas if and only if it is a model of every formula in the set. O

In the models of a transaction formula, dependencies may exist between the classical semantic
structures assigned to a path and its subpaths. To see this, consider a simple transaction formula
p < q® r, where p, ¢, and r are ground atomic formulas. Let (U,Ir,Iyq:n) be a model of this
formula, and let = be any path. If 7; o w5 is a split of w, then I,4 exhibits a dependency between
three different semantic structures on three different paths, =, 71, and 7,:

if Ipatn(m1) =€q  and  Lygn(we) ESr then  Ipgn(m) =Cp

That is, if ¢ is true on 7, and 7 is true on 7, then ¢ ® r is true on 7 (by Definition 5.2), so p must
also be true on 7. Informally, if ¢ ® 7 can execute along path 7, then so can p. In a logic-programming
setting, this means that p is a name of the procedure ¢ ® r.

5.4 Execution as Entailment

We are now ready to define ezecutional entailment, a concept that provides a logical account of
transaction execution. Intuitively, execution corresponds to truth on a path. A simplified form of this
notion was used in Section 2.

A TR logic program consists of two distinct parts: the transaction base P, and the initial database
state D. Each of these parts plays a distinct role in defining executional entailment. Of these two
parts, only the database state is updatable. The state (or, more precisely, what the data oracle
reveals about it) consists entirely of classical first-order formulas, which represent a view of the actual
contents of the state. In practice, certain kinds of database states will arise more frequently than
others. The most common databases will be sets of ground atoms (relational databases), function-
free Horn clauses (deductive databases), general Horn clauses (logic programs), and disjunctive and
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existentially quantified formulas (indefinite databases). In contrast, the transaction base contains
transaction formulas that define procedures that update the database. As such, it will normally be
composed of formulas containing the serial connectives ® or @, though classical first-order formulas
are also allowed.

Definition 5.6 (Ezecutional Entailment) Let P be a transaction base. Let ¢ be a transaction formula,
and Dy, D4, ..., D,, be a sequence of database state identifiers. Then, the statement

P7D07D1""7Dn |: ¢ (3)

is true if and only if M, (Do, D4, ..., D,) = ¢ for every model M of P.

Related to this are the following statements:

P,Do-- = ¢ (4)

P,Do-—-D, = ¢ (5)

P,--D, = ¢ (6)

which are true if and only if there is a sequence of databases Do, D1, ..., D, such that Statement (3)

a

is true.

Intuitively, Statement (3) says that a successful execution of transaction ¢ can change the database
from state Do to D; ... to D,,. Formally, it means that every model of P has a path corresponding
to Dy, D4,...,D, that satisfies formula ¢. The statement is read as follows: “Under the transaction
base P, transaction ¢ may transform database Dy into database D,, by passing through intermediate
states Dy, ..., D,_1.”

Normally, users issuing transactions know only the initial database state, Dg, so defining transac-
tion execution via (3) is not always appropriate. To account for this situation, the version of entailment
in (4) allows us to omit the intermediate and the final database states. Informally, Statement (4) says
that transaction ¢ can execute successfully starting from database Dg. Formally, this statement is
read as follows: “Under the transaction base P, the transaction ¢ succeeds from database D.” When
the context is clear, we simply say that transaction ¢ succeeds. Likewise, when statement (4) is not
true, we say that transaction ¢ fails. In Section 6, we present an inference system that allows us
to actually find a database sequence Dy, ..., D, (in fact, to enumerate all sequences) that satisfy
Statement (3) whenever a transaction succeeds.

Statement (6) is the dual of (4). Intuitively, it says that ¢ can execute successfully, terminating
at state D,,. It is discussed more fully in Section 6.4. Statement (5) is also a useful abbreviation that
will be used throughout the paper. Informally, it says that ¢ can execute successfully starting at state
Dy and ending at state D,,.

The following lemma lists some straightforward consequences of Definition 5.6.

Lemma 5.7 (Basic Properties of Executional Entailment) For any transaction base P, any
sequence of database states Dy, ..., D,, and any closed transaction formulas a and 3, the following
statements are all true:

1. If P,Dg,...,D,EFa and P,Dgy,...,D, =8 then P,Dy,...,D,EaApB.

2. If P,Do,...,D;Fa and P,D;,...,D, =3 then P,Dy,...,D,EFa®p.
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3. If a—fBisinP and P,Dg,...,D, B then P,Dy,...,D, [ c.
4. If 0YDg,D;)=*a then P,DgyD;a.
5. If OYDy)=a then P,Dgf a.

In the last two items, a is a first-order formula and |=° denotes classical entailment.

Note that assertions in Lemma 5.7 deal with inference of two kinds of true statements. On the one
hand, items 4 and 5 infer truth directly from the transition oracle and the data oracle. Specifically,
item 4 deals with elementary updates, and item 5 handles database queries. On the other hand,
items 1, 2, and 3 combine existing entailments to infer new truths. Specifically, item 1 infers classical
conjunctions; item 2 infers serial conjunctions; and item 3 infers defined transactions. Items 2-5
anticipate the proof procedures given in Section 6, and indeed, they form the model-theoretic basis
of these procedures. Item 1 is the basis for a wide class of dynamic constraints, such as those in
Section 7.7.

In Lemma 5.7, the case n = 0 corresponds to transactions that do not affect the database, i.e.,
that act as queries. In this case, classical and serial conjunction are identical, as shown earlier in
Lemma 5.4. This is reflected in items 1 and 2 above, which collapse to the same form when n = 0:

ib. If P.DI=a and P,D =3 then P,D | aAp.
2b. If PDEa and P,D|=3 then P,D | a®p.

Intuitively, this means that the result of evaluating a conjunctive query is the same whether the
conjuncts are evaluated sequentially or concurrently.

5.5 Examples

This section gives several examples of entailment in 7R. Each entailment is derived using Lemma 5.7.
The examples themselves are based on Example 2.13, in which a robot simulator moves blocks around
a table-top. In fact, we assume that the transaction base P contains the following four rules, adapted
from that example:

stackTwoBlocks(X,Y,Z) — move(Y,Z)® move(X,Y)

move(X,Y) « pickup(X)® putdown(X,Y)

pickup(X) « isclear(X)® on(X,Y) @ on.del(X,Y) ® isclear.ins(Y")
putdown(X,Y) « X #Y ®isclear(Y) ® on.ins(X,Y) ® isclear.del(Y)

For simplicity, our databases are relational, i.e., sets of ground atoms (which is the case for the
majority of applications, including most “blocks-world” examples), and the oracle is also relational
(defined in Section 5. We also assume that the transition oracle, O, gives the intended meaning
to atoms like p.ins and p.del. That is, for any ground atom p, p.ins € OYD,D’) if and only if
D’ = D + {p}; and similarly for p.del. In particular,
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on.del(a,b) € O{on(a,b),on(b,c),isclear(a)}, {on(b,c),isclear(a)})
isclear.ins(b) € O ({on(b,c),isclear(a)}, {on(b,c),isclear(a),isclear(b)})
isclear.del(a) € O{on(b,c),isclear(a),isclear(b)}, {on(b,c),isclear(b)}

for any blocks a, b, and c.

Finally, all actions in this section start from the following initial database, representing an ar-
rangement of three blocks where blkA is on top of blkC, which in turn is on blkD, and blkB stands
by itself:

Do = {isclear(blkA),isclear(blkB),on(blkA,blkC),on(blkC,blkD)}

FEzample 5.8 (Picking up a block) Starting from the initial database, Do, we infer that the robot can
pick up blkA. During the pickup action, the database passes through an intermediate state, D, and
ends up at state Dy, where

D, = {isclear(blkA),isclear(blkB),on(blkC,blkD)}
D, = {isclear(blkA),isclear(blkB),isclear(blkC),on(blkC,blkD)}

Here is the sequence of inferences. The final inference, line 8, states that the action pickup(blkA)
successfully takes the database from state Dg to state D, via state D;.

1. P,Dg = isclear(blkA), Dby item 5 of Lemma 5.7.

2. P,Dg |= on(blkA,blkC), by item 5 of Lemma 5.7.

3. P,Dg,D; = on.del(blkA,blkC), by item 4 of Lemma 5.7.

4. P,D1,D, = isclear.ins(blkC), by item 4 of Lemma 5.7.

5. P,Dg |= isclear(blkA) ® on(blkA,blkC), by lines 1 and 2, and item 2 of Lemma 5.7.

6. P,Dg,D; = isclear(blkA)® on(blkA,blkC)Q on.del(blkA,blkC),
by lines 5 and 3, and item 2 of Lemma 5.7.

7. P,Dg,D1,Dy |= isclear(blkA) ® on(blkA,blkC)® on.del(blkA,blkC) ® isclear.ins(blkC),
by lines 6 and 4, and item 2 of Lemma 5.7.

8. P,Dg,D,,D, = pickup(blkA), by line 7, the rule for pickup, and item 3 of Lemma 5.7.
O

Ezample 5.9 (Moving a block) Starting from the initial state Do, we infer that the robot can move
blkA from blkC to blkB. In the process, the database passes through three intermediate states, D1,
D, and D3, and ends up at state D,. Here,

D; = {isclear(blkA),isclear(blkB),isclear(blkC),on(blkA,blkB), on(blkC,blkD)}
D, = {isclear(blkA),isclear(blkC),on(blkA,blkB),on(blkC,blkD)}
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and states Do, D4, and D, are as before. First, from Example 5.8, we have the following:

P,Dy,D.,D, | pickup(blkA)
In a similar fashion, it is not hard to show that

P,D,;,D3, D4 | putdown(blkA,blkB)
Thus, by item 2 of Lemma 5.7, we get:
P,Dy,D;,D,,D;5,D4 = pickup(blkA) ® putdown(blkA,blkB)
Finally, by the rule for move and by item 2 of Lemma 5.7, we get:
P,Dg,D;,D,,D3,D, = move(blkA,blkB)

and thus also P, Dq--- |= move(blkA,blkB) and P, Dg--- D4 |= move(blk A, blkB). ]

FEzample 5.10 (Stacking blocks) By following the method of the previous two examples, we can build
a stack of three blocks, blkC, blkA and blkB. In particular, we can infer the following statement:

P, D(), Dl, Dz, D3, D4, D5, D6, D7, Dg |I stackTwoBlocks(blkC, blkA, blkB)
where Dy, ..., D4 are as before, the state Dg is
{isclear(blkC),on(blkC,blkA), on(blkA, blkB), on(blkC,blkD)}

and Ds...D7; are left to the reader. As in Example 5.9, each move operation causes four state
transitions. Thus, during the stacking operation, the database passes through seven intermediate
states, D;— D+, to end at state Dsg. O

The last example suggests that inference may require keeping track of a long history of database
states. Fortunately, for a large and important class of transactions, this is not necessary. In fact, the
proof procedures presented in Section 6 record only the current database state, D;, advancing it from
Dg to Dy ... to D,, as inference proceeds.

5.6 Transaction Answers

So far, we have defined what it means for a formula to be true, which allows us to perform transactions
that return yes/no answers. In databases, however, we often want queries and transactions to return
a set of answers (e.g., all employees who earn more than $100,000).

For queries, the solution is straightforward: As in classical logic, we can define a query to be a
first-order formula ¢(Xo, ..., Xt) with free variables Xg, ..., X. The answer to this query is the
set of variable bindings that makes the formula true. That is, the answer is the following set of tuples:

{<61,...,Ck> | P7D|: ¢(Cla""ck)}

where each ¢; is a ground term.

For transactions, the situation is more complex. Because transactions are non-deterministic, the
answer can depend on non-deterministic choices made during transaction execution. For instance,
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continuing Example 2.13, suppose we want our robot to build stacks of blocks, and to return (as an
answer) the names of all blocks whose tops are clear after the stacks are built. We do not care what
blocks are used to build the stacks, so long as these stacks satisfy certain criteria (such as height and
color). In this case, the particular blocks affected by the stacking operation is non-deterministic (and is
determined by the system at run time), so the answer returned by the transaction is non-deterministic,
too.

To make this example concrete, we define a specific stacking operation by adding the following
rule to the transaction base:

stack(X) «— move(Y, X)® move(Z,Y)

The procedure stack(X) stacks two blocks on top of block X. First, it chooses a block, Y, and puts
it on X; then it chooses another block, Z, and puts it on top of Y. The final state of the database is
non-deterministic since the choices for the two blocks, Y and Z, are non-deterministic.

Having defined this stacking operation, we ask the robot to stack two blocks on top of blkA, and
to return the set of blocks that are clear after the operation is complete. This transaction is expressed

by the following formula:
stack(blkA) @ isclear(X) (7

That is, first execute stack(blkA), and then retrieve those values of X that make isclear(X) true.
Note that the retrieved values depend on the final database state, which is non-deterministic.

The answer to a transaction may depend on the initial state of the database as well as the final
state. For example, we might ask for those blocks X that are clear both before and after the stacking
operation. This transaction is expressed by the formula

isclear(X) ® stack(blkA) ® isclear(X)

that retrieves the values of X that make isclear(X) true in both the initial and the final states.

More generally, the answer to a transaction may depend on the intermediate database states. For
example, we might ask the robot to build two stacks, one after the other, and to return those blocks
that are clear in between the two stacking operations. This transaction is expressed by the following
formula:

stack(blkA) ® isclear(X) ® stack(blkB)

This formula commands the robot to stack two blocks on blkA, then to retrieve those blocks X that
are clear, and then to stack two blocks on blkB. Note that here the answers may be different for
different execution paths, even if the initial and the final states of these paths are the same.

Thus, unlike database queries, the answer returned by a transaction is not determined by the
current database alone. Instead, it may depend on the entire execution path of the transaction.
Definition 5.11, below, captures this idea. This simple definition is sufficient for our present pur-
poses. However, as with database queries [26], this definition could be augmented with additional
requirements, such as computability and genericity.

Definition 5.11 (Abstract Transactions) An abstract transaction is a total mapping from sequences of
database states to sets of tuples of ground terms. |

Note that database queries are captured by a special case of this definition, the case of sequences
of length 1. This is appropriate since queries are a special kind of transaction.
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In 7R, transactions are specified by a transaction base P and a transaction formula ¢( X1, ..., Xi)
with free variables X1, ..., Xj. Specifically, these three elements define an abstract transaction ¥,
where

¥ (Do, ..., D,) = {{c1y...,¢ck) | P,Dg,..., D, E ¥(c1,...,¢ck)} (8)

where each ¢; is a ground term, and each D; is a database (a first-order formula).

It follows immediately from Definition 5.11 that when applied to an initial database, Dg, the
answer returned by a transaction is non-deterministic. Indeed, from Dy, the transaction may execute
along any one of many possible paths, each returning a different answer. This idea is captured by the
following definition.

Definition 5.12 (Transaction Answers) Let ¥ be an abstract transaction, and let Do, ..., D, be a
sequence of databases. Then ¥(Dy, ..., D,,) is a possible answer to ¥ at state Dy. O

Of course, for many sequences of databases, the set (8) will be empty. The transaction does not
execute along these paths. It only executes along a path that returns a non-empty answer. If the
answer set is empty for every path, then the transaction fails.

5.7 Discussion

Entailment in 7R has certain subtle properties that may not be readily seen from the examples so
far. Those examples focus on the special case in which the Relational Oracle is used and rule-bodies of
program rules are sequences of atomic actions. More generally, database states may be more complex,
involving arbitrary kinds of oracles, and the transaction base may be an arbitrary transaction formula.
Furthermore, the transition oracle may mention only a fraction of all possible database states. In these
cases, entailment in 7R can display subtle and important properties. This section discusses some of
them.

Classical Conjunction

In Definition 5.6, there may be more than one sequence Dy, D4, ..., D,, that starts at Dg. In this
case, transactions can succeed in many different ways. This property has two consequences worth
mentioning, both concerning classical conjunction.

First, although two transactions ¢ and ¥ may succeed individually, their conjunction ¢ A ¢ may
fail, as illustrated in Example 2.16. This is possible because a conjunction requires all its conjuncts
to execute along the same path.

The second consequence is closely related to the first: It is possible that transactions ¢ and —¢
may both succeed from the same database. Again, the reason is that ¢ may succeed along one path,
while =7 will succeed along another path. The resolution of this apparent inconsistency is that the
transaction ¥ A -t always fails, since it is false on every path.

FEzample 5.13 (Apparent Inconsistency) Consider a transition oracle that satisfies the following:
ac Ot(Dl, D2) b € Ot(Dl, D3)

where D, # D3, and suppose that the transaction base, P, contains the two rules ¢ «— a and —c¢ « b.
Then both the following statements are true:

P,D;— E c P,D;— | -c
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But the following statement is false: P,D;--- = ¢ A —e. O

Inconsistency

The previous example discussed apparent inconsistencies in 7R. This section discusses real inconsis-
tencies. There are three possible sources of inconsistency in 7R: the transaction base, the state data
oracle, and the interaction between the two. We shall discuss each one in turn.

The first, and simplest, source of inconsistency is the transaction base P. It may contain an incon-
sistent combination of formulas, such as {b, ¢, —=bV —c}. There is only one path-structure that satisfies
such a transaction base—one that assigns the special classical structure, T, to every path. Essentially,
it is the user’s responsibility to avoid this kind of inconsistency, by writing consistent transaction
bases. This is easily accomplished in practice, since modern database and logic programming systems
infer only positive facts. They are therefore guaranteed to be consistent. Even the advanced examples
considered later in this paper, which go well beyond current technology, do not infer negative facts,
and so do not lead to inconsistency.

The second source of inconsistency is the transition oracle, Of, which determines all possible state
transitions in the system. In principle, such an oracle may define transitions to inconsistent databases
(i.e., states where Od(s) is classically unsatisfiable), in which case, transactions may enter such states
during execution. If D is such a state, the only possible view over it is T, i.e., Ipgn(s) = T in Definition
5.1. Since T satisfies all formulas,any transaction entering an inconsistent state (or launched from
such a state) immediately succeeds. In this sense, inconsistent states act as “black holes” in the state
space of 7R. The important point here is that inconsistency is “localized;” that is, inconsistency in
just one possible database state does not spread to all possible database states, and, thus, inconsistent
states do not render the entire logic useless.

Even if the transaction base P, the data oracle, and the transition oracle are consistent by them-
selves, they may not be consistent together. This is the third, and most subtle, source of inconsistency.
Suppose, for instance, that the transaction base contains the formula ¢ « b, and that the current
database state, s, contains the atom b (assuming the Classical Oracle). Now suppose that we insert
the atom —c into the database, making a transition to a state where both b and —c is true. From here,
both ¢ and —¢ are derived. In this case, the database (i.e., the stored formula) is consistent, but the
view is not. Again, if D is such a state, the only possible view over it is T, and it will thus act as a

black hole.

For a vast majority of practical applications, however, the above situations do not arise because
modern systems normally deal with positive facts only. For instance, for the situation just described,
the transition oracle would have to have elementary transitions that insert negative literals into the
database. That is, it would have to have entries of the form:

—c.ins € OY(D, D + {-¢})

Such updates simply do not occur in modern relational database systems or in classical logic program-
ming systems.!® Furthermore, as discussed above, logic programming systems do not infer negative
facts. Thus, there is no way to insert or to derive a negative fact, so inconsistency is impossible. Even

130f course, one may want to delete c, but this is radically different from inserting —c. The operation of deletion was
called erasure in [51]. For instance, erasure (deletion) of ¢ from D yields D V D', where D' is the result of inserting —c
into D. If D is a set of Horn clauses and ¢ is an atom whose predicate does not occur in the rule heads, then erasure of

c yields D — {c}.
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the advanced examples considered later in this paper will not lead to inconsistent views, since they
do not infer negative facts.

In other applications, however, especially those in Artificial Intelligence, the derivation of both
positive and negative facts may be important. In such cases, inconsistency is possible, so users must
be careful not to build inconsistent knowledge-bases. This is as true for systems based on first-order
logic and modal logic, as it is for systems based on 7R. Still, if inconsistency is expected to arise,
it would be important to “localize” its effects, so that it will not render the entire knowledge-base
useless. Our use of T addresses this issue. Inconsistency has been addressed in more sophisticated
ways in work on para-consistent logics. We mention, in particular, the works [13, 53, 54], since their
ideas can be applied to 7R without much difficulty.

6 Proof Theory

Full 7R has a sound and complete proof procedure. Unfortunately, this procedure is not easy to
formulate within 7R itself. Indeed, all our attempts to do so resulted in sets of axioms and inference
rules that were large, unwieldy, and incomplete. It turns out, however, that 7R (and some other
interesting transaction logics) are instances of a more general logic of state change [21], a logic that
has a simple and elegant proof theory. We can use this proof theory to prove formulas in 7R. The
main problem is to translate statements of 7R into statements of the general logic of state change. A
complete development of this logic, its proof theory, and the translation of 7R statements is beyond
the scope of this paper. The interested reader is referred to a forthcoming work [21] for details.

6.1 Serial Horn Programs

Tt turns out that it is not always necessary to encode 7R in a more general logic. In certain important
situations, 7R has an elegant, top-down, SLD-style proof procedure that can be expressed within
TR itself. These situations are characterized by the conditions listed below, in Definition 6.2. When
a TR program satisfies these conditions, we say that it is a serial- Horn program. Like classical Horn
programs, serial-Horn programs have both a procedural and a declarative semantics. It is this property
that allows a user to program transactions within the logic.

Definition 6.1 (Serial-Horn Formulas)

e A serial goal is a transaction formula of the form b; ® b5 ® ... ® b,,, where each b; is an atomic
formula, and n > 0.

o An ezistential serial goal is a transaction formula of the form (3X)¢, where ¢ is a serial goal,
and X is a list of all free variables in ¢.

o A serial-Horn rule is a transaction formula of the form b «— ¢, where b is an atomic formula,
and ¢ is a serial goal.

o A serial-Horn transaction base is a finite set of serial-Horn rules.
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The following rules are all serial-Horn:
a(Y) < b(Y) a(X,Y) < b(X,Y)®c(X,Y) a(X) =X, Y)®c(Y,Z)®a(Z)

A few comments on Definition 6.1 are in order. First note that if the atomic formulas a, ,..., a, do
not update the database, then the expression a; ® ... ® a,, is equivalent to a; A... A a,. Thus, classical
Horn rules are a special case of serial-Horn rules. Second, because every serial goal, a, is equivalent to
o @ state, the empty serial goal, (), can be identified with state. Finally, it is important to keep in
mind that an empty-bodied rule, a <— (), is equivalent to a <— state, and not to the atomic formula
a. The former rule means that a is true in every state, while the latter atom means that a is true on
every path—mnot a very useful axiom, since we already have path, a proposition that is characterized
precisely by this property. For that reason, it is meaningless to include atoms-as-such in transaction
bases; their absence also leads to a more uniform proof theory.

To avoid the need to treat atoms state, arc, and path specially in our proof theory, we shall
assume that they are defined by the oracles and the transition base. This assumption does not limit
the generality, but it simplifies the presentation significantly. Specifically, we assume that state is
defined by the data oracle so that state € Od(D) for every state identifier D, and state does not
appear in the head of any rule in the transaction base (and it is not modified by the transition oracle).
Similarly, we can assume that arc € O'(Dy, D) for every pair of state identifiers, and that arc is
defined exclusively by the transition oracle. Finally, path can be implemented by the transaction base
via the following rules:

path «— state path < arc ® path

Definition 6.2 (Serial-Horn Conditions) A transaction base, P, a data oracle, 04, and a transaction
formula (or query), Q, satisfy the serial-Horn conditions if:

(i) P is a set of serial-Horn rules;
(ii) O?is a Generalized Horn Oracle;
(iii) @ is an existential serial goal; and
)

(iv) 0% is independent of P, i.e., for every database state, D, no predicate symbol occurs both
in a rule-head in P and in a rule-body in O%(D).

O

In this definition, Condition (iv) intuitively says that database views cannot be defined in terms
of transactions. For instance, if the rule b « ¢ is in the transaction base, then the rule a « b
cannot be in the database; although the rule b «— a can be in the database. Condition (iv) arises
naturally in two situations: (a) when the database is relational (a set of ground atomic formulas),
and (b) when a conceptual distinction is desired between updating actions and non-updating queries.
In the former case, we can use the Relational Oracle, which is a special case of a Generalized Horn
Oracle. In the latter case, the logic would have two sorts of predicates, query predicates and action
predicates. Action predicates would be defined only in the transaction base, and query predicates
would be defined only in the database. In this case, the independence condition is satisfied with any
Generalized Horn Oracle.
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At this point, it is worth noting that if we were interested only in the serial-Horn case, then the
model theory of 7R could be simplified. In particular, we would only need to consider the satisfaction
of formulas on arcs (pairs of states) instead of on paths (sequences of states). Such a semantics, and
the proof theory presented in this section, is powerful enough to deal with the examples in Sections 2.4
and 2.5, which all satisfy the serial-Horn conditions. In general, however, an arc-based semantics has
severe limitations. For instance, it does not provide a useful interpretation for the conjunction and the
negation of transactions. Furthermore, it does not permit the expression of constraints on transaction
execution (since intermediate states are not represented). Consequently, the proof theory developed
in this section is not powerful enough to solve path constraints, which require a more general proof
theory [21].

The rest of this section develops the proof theory for the serial Horn case.

6.2 Two Inference Systems

Section 5.5 gave detailed examples of inference in 7R in the serial Horn case. These examples were
all based on Lemma 5.7, and on items 2-5 in particular. Each of these items is, in effect, an inference
rule; and taken together, they form an inference system. In fact, the system based on Lemma 5.7 is
sound and complete for the serial-Horn case.!* We call this simple system the naive inference system.
Conceptually, the naive system is simple and elegant, but it is not very practical. There are three
reasons for this: (2) it is a bottom-up system, which does not take the query (transaction) into account,
(47) it is a ground inference system, one not based on unification, and (¢:¢) it records and accesses the
history of the database, not just the current database state. The first two points mean that the
naive proof theory is not an SLD-style inference system, like Prolog; and the third point implies that
enormous amounts of storage and disk access may be required, as suggested by Example 5.10.

Fortunately, one can develop more practical inference systems. This section presents two such
systems for the serial-Horn case. These systems are dual to each other and have many similarities.
For instance, both systems are based on unification, both return most general unifiers (mgu’s) as
answers to queries, both record only the current database state, and both can be operated in either
a top-down or a bottom-up mode. Both systems also have exactly three inference rules, which is the
minimum number possible, since separate rules are needed to deal with elementary transitions, the
transaction base, and the database state. The main difference between the two systems is the kind of
inferences they make. In terms of Definition 5.6, one system makes inferences of the form P, D --- -,
while the other makes inferences of the form P, --- D | 4.

In both systems, inference can be carried out in two natural ways: top-down (starting at the
goal) and bottom-up (starting at the axioms). These two modes of deduction correspond naturally
to two kinds of execution: forward execution of transactions (the normal kind), and reverse execution
(i.e., starting from the current state, and computing subsequent states by executing all updates in
reverse). Furthermore, there is an interesting duality that connects the two inference systems and the
two modes of deduction: what one system does bottom-up, the other does top-down. This duality
has important consequences for implementation. A logic-programming system, for instance, is most
naturally implemented as a top-down system, where the query (or transaction) guides the inferences
and updates. A database system, however, is most naturally implemented as a bottom-up system,
in order to minimize disk accesses. The choice of inference system may thus depend on the kind of

Ttem 1 of Lemma 5.7 is not needed here, since it deals with classical conjunction and thus goes beyond the serial-Horn
case. It is needed for constraints and is treated in more detail in [21].
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software system being built.

6.3 Inference System &7

This section develops an inference system for verifying that P, Dg--- |= . Informally, this statement
says that transaction 1 can successfully execute starting from state Dg. The inference succeeds if and
only if it finds an execution path for the transaction %, that is, a sequence of databases D4, ..., D,
such that P,Dg,Dy,...,D, |= 9. As we shall see, certain inference strategies generate the execution
path in a way that corresponds to the intuitive notion of transaction execution. In particular, top-down
inference corresponds to normal execution, and bottom-up inference corresponds to reverse execution.
We refer to the inference system of this section as $Z.

Because we are dealing with the serial-Horn case, the transaction 1) is an existential serial goal, i.e.,
a formula of the form (3X)(a;®as ®...® a,,), where each a; is an atom. Since all free variables in
1) are assumed to be existentially quantified, we shall often omit the X. However, lest the existential
nature of transactions slip our mind, we often leave (3) in front of a transaction. Note that this
existential quantification is consistent with the traditions of logic programming and databases. The
inference rules below all focus on the left end of such transactions. To highlight this focus, we write the
rule-bodies as ¢ ® rest, where ¢ is the piece of the conjunction that the inference system is currently
focussed on, and rest is the rest of the conjunction.

Recall that a 7R theory comes with a data oracle, ©%, and a transition oracle, O, which provide

the semantics of databases and elementary transitions, respectively (as described in Sections 3 and 5).
ST invokes these oracles to read and update the database.

Definition 6.3 (Inference System ') If P is a transaction base, then S is the following system of
axioms and inference rules, where D and D; are any database state identifiers.

Axioms: P,D--- I ().

Inference Rules: In Rules 1-3 below, o is a substitution, ¢ and b are atomic formulas, and ¢ and
rest are serial goals.

1. Applying transaction definitions:
Suppose a « ¢ is a rule in P whose variables have been renamed so that the rule shares
no variables with b ® rest. If @ and b unify with mgu o, then

P,D--- F (3) (¢ ® rest)o
P,D--- F (3)(b® rest)

2. Querying the database:
If bo and resto share no variables, and O%(D) |=¢ (3) bo, then
P,D--- - (J)resto
P,D--- F (3)(b® rest)

3. Performing elementary updates:
If bo and resto share no variables, and O*(D;,D;) ¢ (3) bo, then
P,Dy--- () resto
P,D;--- F (3)(b® rest)
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O

This system manipulates expressions of the form P,D---  (3)¢, called sequents. The informal
meaning of such a sequent is that the transaction (3) ¢ can succeed from D, i.e., it can be executed
on a path emanating from the database D, i.e., a path whose initial state is D. Each inference
rule consists of two sequents, one above the other, and has the following interpretation: If the upper
sequent can be inferred, then the lower sequent can also be inferred. Based on the axiom-sequents,
the system uses the inference rules to infer more-and-more sequents.

In &7, the axioms describe the empty transaction, “()”. By definition, this transaction does
nothing and always succeeds. That is, if the user issues the command ?— (), then the database
simply remains in its current state.!®> The axioms formalize this behavior.

The three inference rules describe more complex transactions. They capture the roles of the
transaction base, the data oracle, and the transition oracle, respectively. To understand these rules,
it is convenient to temporarily ignore the unifier, o, and to assume that a is identical to b. With this
in mind, we can interpret the rules as follows:

1. Inference rule 1 deals with defined transactions. It says that if b is defined by ¢, and if ¢ ® rest
succeeds from D, then b ® rest also succeeds from D. Intuitively, the rule replaces a subroutine
definition, ¢, by its calling sequence, b. This rule is a serial version of modus ponens.

2. Inference rule 2 deals with tests (¢.e., queries), which do not cause state changes. It says that if
b is true at D, and if rest succeeds from D, then b ® rest also succeeds from D. Intuitively, b is
a pre-condition that is satisfied by D, and so it can be attached to the front of the transaction
rest.

3. Inference rule 3 deals with elementary updates. It says that if b changes database D; into D,
and if rest succeeds from Ds, then b ® rest succeeds from D;. Intuitively, b is attached to the
front of rest, so that the resulting transaction starts from D; instead of Ds.

Without the unifier o, $ would be sound and complete for ground inference, that is, for the special
case in which all queries and transactions are ground. Unification “lifts” inference from ground trans-
actions to transactions with free-variables, converting the system into a more-practical, SLD-style
system, one that returns most-general-unifiers as answers, as Prolog does. As in classical resolution,
any instance of an answer-substitution is a valid answer to a query. Our use of unification exploits the
assumption that transactions are existential. In particular, for any substitution o, if P, D ---+(3) ¢o
can be inferred, then P,D----(3) ¢ can also be inferred. This idea is implicit in each inference rule.

For future reference, we remind the reader of the general notion of deduction in an inference system:

Definition 6.4 (General Deduction) Given an inference system, a deduction (or proof) of a sequent,
seqn, is a series of sequents, seqq, seqi, ..., s€q,_1, s€q,, where each seg; is either an axiom-sequent
or is derived from earlier sequents by an inference rule. |

In !, as in most inference systems, the main purpose of the proof theory is to find deductions for a
given sequent. To reduce the search space, many proof theories employ specialized inference strategies.
Two well-known strategies are bottom-up and top-down inference (also known as forward-chaining and

15 Model theoretically, “()” corresponds to the special atom state, which is true on every path of length 1. In particular,
it is true on the 1-path corresponding to any database D.
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backward-chaining, respectively). In the bottom-up mode, a deduction is constructed by starting with
the first sequent, seqp, which is an axiom, then applying an inference rule to derive the second sequent,
seqi, then applying another inference rule to derive the third sequent, seqy, etc. Bottom-up inference
is typical of database query processing. In the top-down mode, a deduction is constructed by starting
with the last sequent, seq,, then applying an inference rule in reverse to derive the second-last sequent,
seqn_1, then the third-last, etc, until an axiom sequent is reached. Top-down inference is typical of
logic-programming systems, like Prolog. In &7, top-down and bottom-up inference have a special
importance, since they correspond closely to transaction execution, as we shall see.

Theorem 6.5 (Soundness and Completeness of $') Under the serial Horn conditions, the ex-

ecutional entailment P,D--- |= (3)¢ holds if and only if there is a deduction in ! of the sequent
P,D--- + (3)¢.

Proof: See Appendices A and B. O

Theorem 6.5 characterizes the inference in &7 model-theoretically. It assures that whatever is
inferred is independent of how the system is applied, be it top-down, bottom-up, or some combination

of both.

The examples below illustrate the inference system. In these examples, and in the rest of this
paper, all deductions are drawn vertically with the final sequent, seq, at the top, and the initial
sequent, seqp, at the bottom. With this convention, top-down inference corresponds to building a
deduction vertically from the top, down; and bottom-up inference corresponds to building a deduction
vertically from the bottom, up. To emphasize the direction of inference, we often insert the word if
into a deduction. Here and in other examples, we assume the Relational Oracle.

Ezample 6.6 (Query Processing) Suppose that the transaction base P contains the following three
rules:
P—q®r q—s®t r—u®uv

Then the formula p represents a yes/no query, one that is true when the database contains the atoms
s,t,u,v. This can be seen from the following deduction (where “(3)” has been omitted from the
queries, since they are variable-free):

Pa {57 t’ U, v}"' = p

if  P,{s,t,u,v}---Fq®r by inference rule 1,
if  P,{s,t,u,v}--- F s®t®r by inference rule 1,
if  P,{s,t,u,v}--- Ft®r by inference rule 2,
if  P,{s,t,u,v}--- Fr by inference rule 2,
if  P,{s,t,u,v}---Fuwv by inference rule 1,
if  P,{s,t,u,v}--- Fo by inference rule 2,
if  P,{s,t,u,v}--- F () by inference rule 2.
This deduction succeeds because the bottom-most sequent is an axiom. |

Example 6.6 illustrates a similarity between inference system S’ and Prolog: operating top-down,
both systems process rule-premises from left to right. Our inference system thus provides a formal
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basis for the left-to-right aspect of Prolog’s proof strategy. Of course, &' does not even attempt to
mimic certain aspects of Prolog’s operational semantics, such as the rule selection strategy, for fear of
becoming incomplete.

In the deduction of Example 6.6, the database does not change from one sequent to the next,
because only inference rules 1 and 2 are used. In the next example, however, the database does
change, because inference rule 3 is used.

FEzample 6.7 (Sequential Updates) Suppose that the database is propositional and that the transition
oracle, O!, defines inserts and deletes of single atoms. Thus, for every database state, D, and every
atom, d, the transition oracle satisfies the following:

d.ins € O'(D, D + {d}) d.del € O'(D,D — {d})

Then the formula b.ins ® c.ins ® d.ins represents an updating transaction, one that inserts b into
the database, then ¢, and then d. For instance, if the current database state is {a}, then when the
transaction executes, the database changes from {a} to {a, b} to {a,b,c} to {a,b, c,d}. This behavior
is recorded in the following deduction:

P,{a}--- I b.ins® c.ins ® d.ins

if P,{a,b}--- F c.ins® d.ins by inference rule 3,
if  P,{a,b,c}--- F d.ins by inference rule 3,
if  P,{a,b,c,d}-- F () by inference rule 3.
This deduction succeeds because the bottom-most sequent is an axiom. |

6.3.1 Execution as Deduction

Having developed the inference system we must remind ourselves that our original goal was not so
much proving statements of the form P,D--- |= (3) ¢, but rather of the form

P,Do,..., Dy = (El)¢

where Dy is the database state at the time the user issues the transaction ?— (3)¢. Note that the
intermediate database states, Dy, ..., D,_1, and the final state, D,,, are unknown by the user at this
time. So, an important task for the inference system is to compute these unknown states.

The general notion of deduction is not tight enough to do this conveniently. The problem is
that a general deduction may record the execution of many unrelated transactions. Furthermore,
this information may be mixed up in a haphazard way, and the various transactions may start from
different database states.

FEzample 6.8 (General Deduction) The deductions from Examples 6.6 and 6.7 can be interleaved to
produce perfectly-valid general deductions. The following deduction interleaves the entire deduction
from Example 6.7 with the bottom four lines of the deduction from Example 6.6:
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8. P,{st,u,v}--Fr by sequent 7.
7. P{stu,v}--Fu®v by sequent 4.
6. P,{a}-- I b.ins®c.ins®d.ins by sequent 5.
5. P,{a,b}--- I c.ins® d.ins by sequent 2.
4. P,{s,t,u,v}--- Fo by sequent 3.
3. P,{s,t,u,v}--- F () an axiom.

2. P,{a,b,c}--- I d.ins by sequent 1.
1. P,{a,b,c,d}-—- () an axiom.

This deduction interleaves the execution records of two transactions, r and b.ins ® c.ins ® d.ins.
Moreover, these two executions start from different database states: r starts from state {s,t,u,v},
while b.ins® c.ins ® d.ins starts from state {a}. O

Since we are interested in the execution of a particular transaction, it is convenient to introduce a
more specialized notion of deduction, which we call ezecutional deduction. This notion defines a nar-
rower range of deductions than does Definition 6.4, but without sacrificing completeness. Intuitively,
an executional deduction has no extraneous sequents: Each sequent contributes toward proving the
final sequent. An executional deduction thus proceeds directly from an axiom sequent, seqy, to a
goal sequent, seq,, without digressing toward other goals. One of the main characteristics of such
deductions is that they record the execution of a single transaction. In particular, the database
states mentioned in the sequents correspond exactly to the states the database passes through during
transaction execution.

Definition 6.9 (Ezecutional Deduction) Let P be a transaction base. An ezecutional deduction of a
transaction, (3) ¢, is any deduction, seqq, ..., seg,, that satisfies the following conditions:

1. The initial sequent, seqg, has the form P,D’ --- |- (), for some database D’.
2. The final sequent, seg,, has the form P,D --- I (3) ¢, for some database D.

3. Each sequent, seg; (for 7 > 0), is obtained from the previous sequent, seg;_1, by one of the
inference rules of system &7 (¢.e., seqg;—1 is the numerator of the rule and seg; is the denominator).

O

The deductions in Examples 6.6 and 6.7 are both executional. Note how they record the execution of
the transactions, keeping track of any changes (or lack thereof) to the database state.

Theorem 6.5 (soundness and completeness) remains valid even if deductions are required to be
executional. However, because we now have a stronger form of deduction, we can prove stronger
results about it. Theorem 6.5, for instance, does not specify the execution path of the transaction.
With executional deduction, we can be specific about the path itself.

Intuitively, the execution path of a transaction is the sequence of states that the database passes
through during transaction execution. Each state change is caused by an elementary state transition
invoked by the transaction during execution. The execution path is not difficult to extract from an
executional deduction. The key observation is that system ! applies elementary transitions exactly
when inference rule 3 is invoked. Invoking this rule during inference is the proof-theoretic analogue
of executing an elementary transition. Thus, to extract the execution path from an executional
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P,Dg-—- F(3) ¢

P’ DO - F (El) ¢0
if P,Di-—-F(I) by inference rule 3,

P’ Dl - F (El) ¢1
if P,Dy---F(3) ¢ by inference rule 3,

P’ Dn—l T l_ (El) ¢n—1
if P,D,---F(3)dn by inference rule 3,

P,D,-—- ()
Figure 1: An Executional Deduction in &f

deduction, we need only pick out those points in the deduction where inference rule 3 was applied, as
in Figure 1. Given the arbitrary executional deduction in Figure 1, we define its ezecution path to be
the sequence Dy, D, Dy,...,D,,. Thus, in Example 6.7, the execution path is {a}, {a, b}, {a,b,c},
{a,b,¢c,d}, and in Example 6.6, it is {s,t,u,v}, a path of length 1. The next theorem provides a
model-theoretic meaning for execution paths. It also connects the idea of executional deduction with
that of executional entailment, given in Definition 5.6.

Theorem 6.10 (Executional Soundness and Completeness of S!)  Under the serial Horn
conditions, the following statements are equivalent:

1. P,Dg,Dyq, ..., D, E (3.
2. There is an ezecutional deduction of (3) ¢ whose ezecution path is Dg,Dq,...,D,.

Proof: See Appendix C. O

Using Theorem 6.10, the following two statements can be added to Examples 6.6 and 6.7, respec-
tively:
P, {57 t,u, ’U} |: p
P,{a},{a,b},{a,b,c},{a,b,c,d} = b.ins® c.insQ d.ins
Notice that these statements make the entire history of the database explicit, yet they are inferred

by an inference system that makes only a single database explicit. Notice, too, that any executional
deduction can be constructed either top-down or bottom-up.

6.3.2 Executing Transactions

This section defines what it means to ezecute a transaction formula in 7R, thus making precise a
notion that we have used informally until now. In fact, we shall define two notions of execution,
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which we call normal and reverse execution. They correspond naturally to two forms of executional
deduction: top-down and bottom-up, respectively.

As mentioned earlier, given a database Do and a transaction formula (3) ¢, we wish to prove the
statement

P’DO’DI""aDn |: (El)¢ (9)

for some sequence of databases, Di,...,D,. The important point is that these latter databases are
unknown at the outset and must be computed during the proof. The process of constructing such
a proof is called a normal ezecution of (3) ¢ with respect to P. Thus, given the state Dy, normal
execution determines whether the transaction (3) ¢ can start from state Dg, and if so, it computes
the successor states, Dy,...,D,. Intuitively, this computation corresponds to updating the user’s
database from Dg to Dy ... to D,,.

Figure 1 suggests a natural approach to normal execution: Use top-down inference to prove the
sequent P,Dg--- I (3) ¢. Note that this sequent, which is the starting point for top-down inference,
contains only known quantities. Furthermore, as the figure shows, by reasoning top-down, the successor
states are computed in order, from D; to D, ... to D,,, thus carrying out a normal execution of
the transaction (3)¢. This can also be seen in Example 6.7, since by constructing the deduction
in a top-down fashion, a sequence of databases is computed, from the initial state, {a}, through
the intermediate states, to the final state, {a,b,¢c,d}, thus carrying out a normal execution of the
transaction b.ins ® c.ins ® d.ins. As these examples show, top-down inference computes databases in
the order Dy, D, ... D,. The reason for this behavior can be found in inference rule 3: When this
rule is applied in reverse, the database is changed from D; to Ds, i.e., from an earlier state to a later
state. This is why top-down inference is well-suited to normal execution.

There are other ways of using system &/ to perform normal execution. However, none is as natural
as top-down inference, and many are impractical and involve huge amounts of unguided search. Large
search spaces are often a problem in logic programming, but with updates, a new dimension of search
comes into play. To illustrate, consider bottom-up inference. As Figure 1 shows, it begins with the
axiom-sequent P,D, --- () and ends with the goal-sequent P,Dg--- F(3) ¢. The axiom sequent
involves an unknown quantity, the final database state, D,,. Bottom-up inference cannot begin without
a value for this state. To get around this problem, we could choose a value for D,, at random, and
then try to verify the sequent P, Dg--- I (3) ¢ using bottom-up inference. If the verification fails, we
would choose another value for D,, and try again, repeating the process until we stumbled upon the
correct value of D,, by chance. This approach is obviously impractical. It is clearly more practical to
compute the new database states directly from the initial state, as top-down inference does.

Not all top-down systems avoid the problem of having to know (or randomly choose) the final
database state. For instance, although [65, 64] develop a logical language for transactions, the inference
system there requires that both the initial and final database states be known before inference can
begin. This restriction makes the inference system impractical in any mode, be it top-down or bottom-
up.16

6.3.3 Reverse Execution

So far, we have described how to execute transactions “normally.” However, it is also possible to

execute them in reverse. This possibility leads to a strong duality between top-down and bottom-up

16Being aware of this problem, [65, 64] develop an interpreter that does not need to know the final state. However,
this interpreter is not based on a proof theory and is incomplete, too.
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inference.

In reverse execution of (3) %, the current database is D, and we wish to prove Statement (9)
for some sequence of databases, Dg,...,D,_1. The important point is that these latter databases
are unknown at the outset and must be computed during the proof. The process of constructing
such a proof is called a reverse ezecution of (3) ¢ with respect to P. Thus, given the state D,,
reverse execution determines whether the transaction (3) ¢ can terminate at the state D,,, and if so, it
computes the predecessor states, D,,_1, ..., Dg. Intuitively, this computation corresponds to updating
the user’s database in reverse, from D,, to D,,_; ... to Dyg.

Bottom-up inference carries out reverse-execution just as naturally as top-down inference carries
out normal execution. This duality can be seen in Example 6.7. The deduction in this example is
correct no matter how it is constructed, top-down or bottom-up. By constructing it top-down, we
start with the initial database, {a}, and compute its successor states. By constructing it bottom-up,
we start with the database {a,b, c,d} and compute states in reverse order.

Figure 1 illustrates the general case. In this figure, bottom-up inference starts with the axiom
sequent P, D,,--- - () and works toward the goal-sequent P, Dq--- - (3) ¢. Inference thus starts with
a known quantity, the state D,,, from which it computes other states in reverse order, from D,,_; to
D, _5 ... to Dg. The reason for this behavior can be found in inference rule 3: When this rule is
applied, the database is changed from D, to D, i.e., from a later state to an earlier state. This is
why bottom-up inference is well-suited to reverse execution. Bottom-up inference thus has the same
advantage with reverse execution that top-down inference has with normal execution: it starts with
a known database state. Likewise, top-down inference now has the disadvantage of starting with an
unknown state, Dg. It is thus impractical as a method of reverse execution.

Examples 6.6 and 6.7 illustrate other aspects of top-down and bottom-up inference. For instance,
when operated top-down, the inference system decomposes transactions from left to right, that is, in
the order of normal execution. But, when operated bottom-up, the system builds transactions up
from right to left, that is, in the order of reverse execution. These observations further illustrate the
duality between the two modes of inference and the two modes of execution.

6.3.4 Example: Non-Deterministic Updates

Having developed the proof theory, we can now apply it to more complex examples. This section
examines the proof theory in the context of non-deterministic transactions, that is, transactions that
have more than one possible outcome.

Using the same transition oracle as in Example 6.7, we consider a transaction base, P, consisting
of the following two rules:

p «— a@®c.del (10)
p «— b®d.del (11)

Here, the atoms @ and b act as pre-conditions. That is, ¢ is deleted only if a is true in the initial
database state; and d is deleted only if b is true in the initial state. The behavior of transaction p
thus depends on which pre-conditions are true. If neither pre-condition is true, then neither rule can
execute, so the transaction fails. If only one pre-condition is true, then only one rule can execute, so
the transaction is deterministic. If both pre-conditions are true, then both rules can execute, so the
transaction is non-deterministic. Formally, the latter possibility means that there can be two proofs of
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p, each resulting in a different final state of the database. Here is a proof of P,{a,b,¢,d},{a,b,d} = p,
a proof that uses Rule (10):

P,{a,b,c,d}-- Fp
if P,{a,b,c,d}-- F a®c.del by inference rule 1,
if  P,{a,b,c,d}-—- F c.del by inference rule 2,
if  P,{a,b,d}-—- F () by inference rule 3.

Likewise, here is a proof of P, {a,b,c,d},{a,b,c} = p, a proof that uses Rule (11):

P,{a,b,c,d}-- Fp
if P,{a,b,c,d}--- F b® d.del by inference rule 1,
if  P,{a,b,c,d}--- F d.del by inference rule 2,
if  P,{a,b,c}-—- F () by inference rule 3.

This example shows that by generating all possible executional deductions, we can enumerate all
possible outcomes of a transaction. Alternatively, by arbitrarily selecting a single deduction, we can
execute transactions non-deterministically.

6.3.5 Example: Inference with Unification

In the previous examples of this section, all the formulas were propositional. Being conceptually
simple, these examples are a good illustration of the basic ideas behind the proof theory. However,
propositional formulas are not typical of either database queries or logic programs. This section
shows how inference works in the presence of variables. In this case, the inference system returns
a substitution, as Prolog does. The substitution specifies values of the free variables for which the
transaction succeeds. The example itself is similar to those in Section 5.5, in which a robot simulator
moves blocks around a table top. That section illustrated naive inference, in which inferences are made
blindly and inefficiently, with no regard for the transaction actually requested by the user. In contrast,
this section is concerned with the efficient execution of a particular, user-specified transaction. For
comparison purposes, we rework Example 5.8.

We consider a transaction base, P, containing the following rule, which describes the effect of
picking up a block, X:

pickup(X) « isclear(X) ® on(X,Y) ® on.del(X,Y) ® isclear.ins(Y')

Suppose the user orders the robot to pick up a block, by typing ?— pickup(X). Since the block is
left unspecified, the transaction is non-deterministic. The inference system attempts to find a value
for X that enables the transaction to succeed, updating the database in the process. To illustrate,
suppose the initial database represents an arrangement of three blocks where blkA is on top of blkC,
and blkB stands alone. As shown in Example 5.8, if the robot picks up blk A, then the database should
be updated from state Dg to D; to D3, where

Do = {isclear(blkA), isclear(blkB), on(blkA,blkC)}
D, = {isclear(blkA), isclear(blkB)}
D, = {isclear(blkA), isclear(blkB), isclear(blkC)}
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An executional deduction in which the robot picks up blkA is shown in the table below. In
this table, each sequent is derived from the sequent immediately below by an inference rule. Each
inference involves unifying the leftmost atom in the transaction against an atom in the database
state, the transaction base, or against an elementary transition. For example, in deriving sequent
5 from sequent 4, the inference system unifies the atom isclear(X) in the transaction against the
atom isclear(blkA) in the database, Dg. It is in this way that the system chooses to pick up blkA.
Likewise, in deriving sequent 4 from sequent 3, the inference system unifies the atom on(blkA4,Y) in the
transaction against the atom on(blkA, blkC) in the database. In this way, the system retrieves blkC,
the block on which blkA is resting. Note that each line in the table shows three items: a numbered
sequent, the inference rule used in deriving it from the sequent below, and the unifying substitution.
The answer substitution is obtained by composing all the unifiers, which yields { X /blk A, Y /blkC}, and
then projecting onto the substitution for X, which yields {X/blkA}. The operational interpretation
of this proof is that the robot has picked up blkA.

Rule | Unifier Sequent
1 6. P,Dg---  (3)pickup(X)
2 {} 5. P,Dg--- F (3)[isclear(X) ® on(X,Y) ® on.del(X,Y) ® isclear.ins(Y)]
2 | {X/blkA} | 4. P,Do--- F (3)[on(blkA,Y) ® on.del(blkA,Y) ® isclear.ins(Y)]
3 | {Y/blkC} | 3. P,Do--- F (3)[on.del(blkA,blkC) ® isclear.ins(blkC)]
3 {} 2. P,D;--- I isclear.ins(blkC)
{} 1. P,Dy-—- ()

6.3.6 The Role of the Oracles—Observations

Two aspects of the proof theory—both related to the data and transition oracles—are worth mention-
ing.

Since the transition oracle is an infinite relation, any implementation of inference rule 3 would
include an algorithm for enumerating the oracle. Such implementation of an infinite axiom base by an
algorithm is akin to algorithmic implementations of inference rules, such as the resolution rule, which
have no finite representation in classical logic.

In !, the enumeration algorithm would take an update b and a database state D as input, and
then it would enumerate all possible successor states, ¢.e., states, D', such that b € O%(D, D’). For
instance, given d.ins and {a, b, ¢} as input, the algorithm would return {a, b, ¢, d} as output (assuming
the Relational Oracle). Thus, procedures that perform elementary updates are treated as black boxes
that can be “plugged into” the inference system.

Non-enumerable transition oracles are easy to conceive, and they are sometimes useful in practical
programming languages, especially in the case of data oracles. For instance, testing the emptiness
of a predicate is a frequent operation in logic programming, but, unfortunately, it is not recursively
enumerable. To make use of such an operation in 7R, we could introduce a predicate, p.empty, for
each predicate p, where p.empty € Od(D), if, and only if p has an empty extension in D. Since D can
be an arbitrary logic program, this data oracle cannot be recursively enumerated. Nevertheless, relying
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on the oracle, Rule 3 of system S/ will effectively test for an empty relation whenever an elementary
update of the form p.empty is encountered. Notice that this is done in a completely monotonic way,
without invoking negation-as-failure, which is otherwise the standard logic-programming solution.
Of course, in practice, transition oracles that are non-r.e. cannot be implemented. In such cases, the
algorithms that attempt to enumerate the oracle would not always terminate, or they would be defined
only for a practical subset of databases (such as relational or deductive databases), or approximation
algorithms could be used. All of these approaches are easy to encode as oracles, but are awkward or
impossible to encode by other declarative means.

6.4 Inference System S/

We now develop an inference system, called &7, that is dual to system $. In $I, reverse execution
is achieved via top-down deduction, while normal transaction execution is obtained via bottom-up
deduction. The new system manipulates sequents of the form P, --- D F . Intuitively, such a sequent
says that transaction ¢ can execute in the normal direction along a path terminating at database
state D, or equivalently, that ¢ can execute in reverse starting from state D. As with system !, the
ultimate goal of S/ is to prove statements of the form (9). As before, different kinds of deduction
correspond to different kinds of execution, normal or reverse.

As in Section 6.3, we assume that the serial-Horn conditions are satisfied. Transaction v is thus
an existential serial goal, 7.e., a formula of the form (3) (a1 ® @2 ® ... ® @), where each a; is an atom.
Unlike &7, though, 7 focuses on the right end of a transaction. We therefore represent transactions
as (3) (rest® ¢), where ¢ is the piece of the transaction that the inference system is currently focussed
on, and rest is the part of the rule-body preceding ¢.

Recall that a 7R theory comes with a data oracle, ©%, and a transition oracle, O, which provide

the semantics of databases and elementary transitions, respectively (as described in Sections 3 and 5).
S invokes these oracles to read and update the database.

Definition 6.11 (Inference System %II) If P is a transaction base, then $7 is the following system of
axioms and inference rules, where D and D; are any database state identifiers.

Axioms: P,---DF ().

Inference Rules: In Rules 1'-3' below, ¢ is a substitution, @ and b are atomic formulas, and ¢ and
rest are serial goals.

1'. Applying transaction definitions:
Suppose that @ « ¢ is a rule in P whose variables have been renamed so that the rule
shares no variables with b ® rest. If a and b unify with mgu o, then:

P,---D F (3)(rest ® ¢)o
P,---D F (3)(rest ® b)

2'.  Querying the database:
If bo and resto share no variables, and O%(D) |=° (3) bo, then

P,--DF (J)resto
P,--D F (3)(rest ® b)
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3'. Performing elementary updates:
If bo and resto share no variables, and O*(D;,D;) ¢ (3) bo, then
P,---D; F (3 resto
P,---Dy - (3)(rest® b)

O

As before, each inference rule consists of two sequents, one above the other, and each means that if
the upper sequent can be inferred, then the lower sequent can also be inferred. As with all logical
inference systems, S can be operated in a top-down or a bottom-up mode.

These axioms and inference rules correspond closely to those of $!. In both systems, the axioms
describe the empty transaction, (), a transaction that does nothing. Likewise, Rules 1 and 1’ abstract
a transaction by replacing a sequence of atoms by a single atom; Rules 2 and 2’ extend a transaction by
appending a test (or query) to it; and Rules 3 and 3’ extend a transaction by appending an elementary
update to it. An important difference between the two systems is in the way updates are applied in
Rule 3': In going from the upper sequent to the lower sequent, Rule 3’ moves the database from state
D; to state D,, that is, from the current state to a later state. In contrast, in ${, Rule 3 moves
the database from the current state to an earlier state. Thus, when operated in a bottom-up mode,
S executes transactions in a forward direction, whereas $! executes them in a reverse direction.

This is another way in which the two inference systems are dual.

S as for L. The definitions of normal and reverse

execution need further adjustments, though, as do the theorems of soundness and completeness.

The notion of deduction is the same for

Theorem 6.12 (Soundness and Completeness of $!) Under the serial Horn conditions, the
ezecutional entailment P, ---D |= (3)¢ holds if and only if there is a (general) deduction in ST of
the sequent P, ---D F (3) ¢.

Proof: Parallel to the proof of Theorem 6.5 presented in Appendices A and B. O

The examples below illustrate the new inference system. They correspond to the examples of
Section 6.3 and use the same transition oracle. As in that section, we draw deductions vertically with
the final sequent, seq,, at the top, and the initial sequent, seqq, at the bottom. Thus, top-down and
bottom-up inference still correspond to building a deduction from top to bottom and from bottom to
top, respectively.

FEzample 6.13 (Query Processing) As in Example 6.6, suppose that the transaction base P contains
the following three rules:
P—q®r q—s®t r—u®v

Then p represents a yes/no query; it is true when the database contains the atoms s, ¢, u,v. This can
be seen from the following deduction (where “(3)” has been omitted from the queries, since they are
variable-free):



6 PROOF THEORY 53

Pa T {57 ta u, v} - p
if P,---{s,t,u,v}Fq®r by inference rule 1’,
if P,---{s,t,u,v}F ¢®@u®v by inference rule 1,

if P,---{s,t,u,v}Fq¢@u by inference rule 2/,
if  P,---{st,u,v}t g by inference rule 2/,
if P,--—-{s,t,u,v}Fs®t by inference rule 1/,
if  P,---{s,t,u,v}F s by inference rule 2/,
if  P,--—-{s,t,u,v}F () by inference rule 2/,
This deduction succeeds because the bottom-most sequent is an axiom. |

Notice that in Example 6.13, the inference system focuses on the right side of the query, whereas
in Example 6.6, it focuses on the left side. Thus, when operating in a top-down mode, S processes
queries from right to left, whereas &/ processes them from left to right.

Since the deduction in Example 6.13 uses inference rules 1’ and 2’ only, the databases does not
change during inference. In the next example, however, the deduction uses inference rule 3, so the
database does change. Notice that the direction of update is opposite to that of system ${. This is
due to inference rules 3 and 3’, which update the database in opposite directions.

FEzample 6.14 (Sequential Updates) As in Example 6.7, the formula b.ins® c.ins® d.ins represents an
updating transaction, one that inserts b into the database, then ¢, and then d. Thus, if the current
database state is {a}, then when the transaction executes, the database changes from {a} to {a, b} to
{a,b,c} to {a,b,c,d}. This behavior can be seen in the deduction below by reading it from bottom to
top. Alternatively, by reading it from top to bottom, a reverse execution can be seen.

P, ---{a,b,c,d} I b.ins® c.ins® d.ins

if P,---{a,b,c}F b.ins® c.ins by inference rule 3’,
if P,---{a,b} F b.ins by inference rule 3’,
if P,-—-{a} () by inference rule 3.
This deduction succeeds because the bottom-most sequent is an axiom. |

As with system S/, general deductions are not always as simple as those in Examples 6.13 and 6.14.
In general, a deduction may record the execution of many transactions, interleaved in a haphazard
way. Since we are interested in the execution of single transactions, we again introduce the stronger
notion of ezecutional deduction. The deductions in Examples 6.13 and 6.14 are both executional.

Definition 6.15 (Ezecutional Deduction in ') Let P be a transaction base. An ezecutional de-
duction of a transaction, (1) ¢, is any deduction, seqo, ..., seq,, in S that satisfies the following
conditions:

1. The initial sequent, seqq, has the form P, ---D'F (), for some database D’.
2. The final sequent, seg,, has the form P, ---D F (3) ¢, for some database D.

3. Each sequent seg;, (for 2 > 0), is obtained from the previous sequent, seg;_1, by one of the infer-
ence rules of system S (i.e., seg;_1 is the numerator of the rule and seg; is the denominator).
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P,--D,F(3)¢

P,--D,F(3) ¢,
if P,--D,_1F(3)dnp_1 by inference rule 3',

Pa T D2 n (El) ¢2
if P,—-DiF(3)é by inference rule 3/,

P’ T Dl - (El) ¢1
if P,---Dok(3) o by inference rule 3.

P, --DotF ()
Figure 2: An Executional Deduction in &7

O

Given an executional deduction for system /!, Example 6.14 suggests a notion of execution path
that is similar to the corresponding notion for &!. Once again, the key observation is that system
S applies elementary transitions exactly when inference rule 3’ is invoked. This time, however, we
define the execution path to go from the bottom to top of a deduction, instead of the other way around.
To be more precise, consider an arbitrary executional deduction in $/, as shown in Figure 2. We define
the execution path of this deduction to be the sequence Dy, D1, D,...,D,. Thus, in Example 6.14,
the execution path is {a}, {a, b}, {a,b,¢c}, {a,b,c,d}, and in Example 6.13, it is {s, ¢, u, v}, a path of
length 1.

The common point in the notions of execution path for &7 and $! is that, in both cases, the
existence of an executional deduction, with a corresponding execution path, Do, Dy, ..., D,, is tan-
tamount to the existence of the executional entailment P,Dg,Dq, ..., D, = (3)¢. Theorem 6.10,
above, establishes this for $!, and Theorem 6.16, below, establishes it for $!{. These theorems thus
provide a model-theoretic meaning for execution paths. They also connect the idea of executional
deduction with that of executional entailment, given in Definition 5.6.

Theorem 6.16 (Executional Soundness and Completeness of S'I)  Under the serial Horn

conditions, the following statements are equivalent:
1. P,Dg,Dyq, ..., D, E (3.
2. There is an ezecutional deduction of (3) ¢ in S whose execution path is Dg, D1, ..., D,.

Proof: Parallel to the proof of Theorem 6.10 presented in Appendix C. O

When applied to Examples 6.13 and 6.14, Theorem 6.16 says that the deductions in those examples
prove the following executional entailments, respectively:

P,{s,t,u,v} |: p
P,{a},{a,b},{a,b,c},{a,b,¢c,d} = b.ins® c.insQ d.ins
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As with system S, we can execute transactions by constructing executional deductions. As
Figure 2 shows, by constructing the deduction from bottom to top, the database is systematically
updated from Dg to D, ... to D,. This is normal execution. Likewise, by constructing the deduction
from top to bottom, the database is systematically updated from D,, to D,,_; ... to Dg. This is
reverse execution. Example 6.14 illustrates why transactions can be executed in both forward and
reverse directions. When operated bottom-up, system S!! processes transactions from right to left,
that is, in the order of normal execution. When operated top-down, however, it processes transactions
from left to right, the order of reverse execution.

7 Applications

A wide variety of interesting and useful formulas can be constructed in 7R, formulas that capture
many of the novel and important features of database and knowledge-base systems. These features
include transaction definition and execution, ad hoc queries, view updates, consistency maintenance,
bulk updates, non-determinism, sampling, static and dynamic integrity-constraints, and more. This
section describes some of these applications. As part of the discussion, we shall see how 7R handles
the so-called frame problem in planning [67]. We shall also see, in Section 8, that the semantics and the
proof theory of 7R can easily accommodate a modal necessity operator, O, which captures a whole
new range of applications. These applications include hypothetical reasoning, subjunctive queries and
counterfactuals, imperative programming constructs, active databases, software verification, and more.
TR thus provides a wide range of features whose amalgamation in a single declarative formalism has
proved elusive in the past. Furthermore, these features all follow naturally from 7R’s path-based
semantics.

Except for the examples of constraints presented in Section 7.7, all examples in this section satisfy
the serial-Horn conditions, so they can be dealt with using the inference systems of Section 6.

7.1 Consistency Maintenance

Often, updating one relation entails making additional updates to other relations in order to maintain
the semantic consistency of the database. In such cases, updates to a relation can be done through
special procedures that handle the details of consistency maintenance. Such procedures are easily

defined in 7R.

For example, suppose a university has a database of students, courses, and professors. This
database includes the following four base relations:

o takes(Stud,Crs,Sec), which records the students enrolled in each section of each course.

enrolled(Crs,N), which records the total number of students, NV, enrolled in a course.

instructs(Prof,Crs,Sec), which records the professors who teach each section of each course.

load(Prof,N), which records each professor’s course load, N, i.e., the total number of classes
that he teaches.

Per the convention adopted in this paper, we assume that for each base relation, p, the transition
oracle underlying the database system defines two elementary update predicates, p.ins and p.del, for
inserting and deleting tuples from relation p.
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Using these elementary updates, we define two update-procedures by which students drop courses
and professors are relieved from teaching sections of a course. These procedures ensure database
consistency by decrementing the enrollment total when a student drops a course, and by decrementing
a professor’s course load when he is relieved from teaching a course.

drop(Stud, Crs, Sec
relieve(Prof , Crs, Sec

— takes(Stud, Crs, Sec) ® takes.del(Stud, Crs,Sec) ® decr_enrolled(Crs)

— instructs(Prof, Crs, Sec) ® instructs.del(Prof, Crs, Sec) ® decr_load(Prof)
— enrolled(Crs, N) ® enrolled.del(Crs, N) ® enrolled.ins(Crs, N —1)

— load(Prof, N) ® load.del(Prof, N) ® load.ins(Prof, N —1)

decr_enrolled( Crs

decr_load(Prof

~— e e e

The last two rules define procedures for decrementing the enrollment of a course and the teaching load
of a professor, respectively.

7.2 View Updates

Updating a view is often an ill-defined or non-deterministic process, since changes to a view may not
uniquely determine the corresponding changes to the underlying stored database. To illustrate the
problems and some solutions, consider the university database of Section 7.1 to which we add the
following view definition that indicates which professors teach which courses to which students:

teaches(Prof, Stud, Crs) «— takes(Stud, Crs,Sec) ® instructs(Prof,Crs,Sec)

Since teaches is not a base predicate, the transition oracle does not provide update-procedures for it.
The problem is that such updates are underspecified, since an update to teaches must be carried out
in terms of updates to the base predicates takes and instructs. For instance, a deletion from teaches
requires either a deletion from takes or a deletion from instructs. Since there are two choices, this
view update is non-deterministic.

TR offers two solutions to this problem. The first one is to define a distinct procedure for
each allowed way of deleting a tuple from a view. The second solution is based on defining a non-
deterministic transaction for removing tuples from a view.

To illustrate the first approach, we define a procedure called rem_student that allows a user of the
view to remove a student from a course. Likewise, we define a procedure called rem_prof that allows
a user to remove a professor from a course. These two procedures are defined as follows:

rem_student( Prof , Stud, Crs) « takes(Stud, Crs,Sec) ® drop(Stud, Crs, Sec)
rem_prof ( Prof, Stud, Crs) « takes(Stud, Crs,Sec) ® relieve(Prof,Crs,Sec)

In this way, a user can do view deletions without knowing what section of a course a student takes or a
prof teaches, and without being given direct access to the transactions drop and relieve. This approach
to view updates is similar to that advocated for object-oriented databases, in which a different update
method is programmed for each allowed view update [2, 10].

The second approach to the above problem is to define a non-deterministic update-procedure,
rem_teaches, by combining the above definitions of rem_student and rem_prof:

rem_teaches( Prof, Stud, Crs) « takes(Stud, Crs,Sec) ® drop(Stud, Crs,Sec)
rem_teaches( Prof, Stud, Crs) « takes(Stud, Crs,Sec) ® relieve( Prof, Crs,Sec)
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To delete the fact that a professor teaches a course to a certain student, the system can perform one
of two actions: (¢) it can drop the student from the course, or (4¢) it can relieve the professor from the
course. This choice is non-deterministic and is made by the system at run time.

Of course, a user will not usually want to leave such choices entirely to the database system. In
such cases, the user can constrain the system’s choice, to ensure, for instance, that a deletion from the
teaches relation does not relieve a professor from a course. To do this, he could specify the following
transaction:

?— load(alberto, N) ® rem_teaches(alberto, mariano,cs100) ® load(alberto, N)

This transaction removes teaches(alberto, mariano, cs100) from the view, but only if Alberto’s course-
load remains the same after the update. Thus, the path in which Mariano drops ¢s100 will be chosen.
Alternatively, the user might want to ensure that the transaction does not drop Mariano from the
course. In this case, he would write:

?— enrollment(cs100, N) ® rem_teaches(alberto, mariano,cs100) ® enrollment(cs100,N)

This transaction succeeds only if the enrollment in the course remains the same after the transaction
execution. Thus, the path in which Alberto is relieved from teaching ¢s100 will be chosen. By such
means, we can constrain the way in which view updates are carried out. More generally, we can
constrain the way in which any transaction is carried out, and without having to reprogram the
transaction. Section 7.7 considers more sophisticated kinds of constraints.

7.3 Heterogeneous Databases

The ability to specify the way view updates are to be carried out has important applications in the
area of heterogeneous databases.

A heterogeneous database is a collection of databases that store similar information in different
ways. Such databases often arise when companies merge, or when an institution wants centralized
access to a plethora of departmental databases. In such cases, the member databases often retain a
large degree of autonomy; so it is not possible to simply merge their data into one large centralized
database once and for all. For instance, in a consortium, each company may have its own database,
which it controls, as well as access to the data of the other companies. Providing convenient access to
the information stored in the disparate member databases is an important issue.

To illustrate some of the problems, consider three databases, D;, Dy and D3, with the following
schema, which record the same data, but in different ways:

D,: emp(EmpNum, EmpName, Salary)
child( EmpNum, ChildN ame)

D,: employee(EmpName, EmpNum, Salary)
dependent(C hildN ame, EmpNum)

D;s;: person(EmpNum, EmpName)
salary(EmpNum, Salary)
children( EmpNum, ChildN ame)
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To express such situations in 7R, we use the predicate symbol d;.p to denote predicate p in database
D;. Thus, d;.p and d;.p denote predicates of the same name stored in different databases. Of course,
d;.p and dy.p both appear in a single 7R database. In this way, a single logical database can represent
a number of heterogeneous databases.

One of the central problems of heterogeneous databases is to present the data in several databases
in a way that will allow users and application programs to access and manipulate data without precise
knowledge of how this data is distributed, stored or represented in the member databases. They need
not even be aware that these databases exists. One common solution to this problem is to let users
access data via views that span one or more member databases. If each member database stores the
same information, but in a different format, then such a view is easily specified with ezisting database
or logic-programming languages. In our example, one could create a view showing each employee and
his children, as follows:

child(EmpNum, EmpName,ChildName) « di.emp(EmpNum, EmpName, Salary) A
dy.child(EmpNum, ChildN ame)

child( EmpNum, EmpName, ChildName) « dy.employee(EmpName, EmpNum, Salary) A
dy.dependent(C hildN ame, EmpNum)

child(EmpNum, EmpName,ChildName) «— ds.person(EmpNum, EmpName) A
ds.children( EmpNum, ChildName)

Likewise, we can create a unified view of the three databases that shows each employee and his salary,
as follows:

salary( Empnum, EmpName, Salary) « d;.emp(EmpNum, EmpName, Salary)
salary( Empnum, EmpName, Salary) — dy.employee( EmpName, EmpNum, Salary)

— ds.person( EmpNum, EmpN ame) A
ds.salary( EmpNum, Salary)

salary( Empnum, EmpN ame, Salary)

Although views like these allow users and application programs to see data in a uniform way,
they provide no help in updating the data. The two views above are particularly tricky, since they
represent union views and most of the rules represent relational joins. Suppose, for instance, that
an employee has a new child and that we wish to insert this fact into the view. We do not know
about the three underlying databases, Dy, Dy and D3. We merely want to insert an atom such as
child(1234, alberto,tommy) into the view. The database system should handle the details of how to
store this information. That is, it should figure out which database to store the information in, and in
what format. Physically, however, the database is distributed over three different sites, and we only
have the ability to store records at each site. Thus, we cannot store the following disjunction (even if
this were acceptable from the user’s point of view):

dy.child(1234,tommy) V da.dependent(tommy,1234) V ds.children(1234,tommy)

There are other, related complications too. For instance, if there is no employee called alberto
with employee number 1234, then the insert should fail. In particular, we cannot succeed by
storing the following formula, which describes different database states that give rise to the atom
child(1234, alberto, tommy) in the view:
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[3Salary dy.emp(1234, alberto, Salary) A di.child(1234,tommy)]
[Salary dy.employee(alberto, 1234, Salary) A dp.dependent(tommy,1234)]

\%
vV  [ds.person(1234,alberto) A ds.children(1234,tommy) |

If alberto does exist, then the correct solution depends on where the information about alberto is
stored. If it is stored in database D;, then we must insert the atom child(1234,tommy) into database
D,; if it is stored at Dy, then we must insert the atom dependent(tommy,1234) into database Dy;
and similarly for D3. It is also possible that information about alberto is stored redundantly, at more
than one site. In this case, we may need to insert more than one atom. For instance, we might have
to insert child(1234,tommy) into D1, and dependent(tommy,1234) into Ds.

These requirements pose no problem for 7R, since view updates can be specified directly,
as 7TR-rules. For instance, one can write a transaction that allows a user of the view to
add a new tuple whenever an employee has a new child. This transaction queries the member
databases to find out where the information about that employee is stored, and then it inserts
the information into the correct database in the appropriate format. The rules, below, define a
transaction called addChild(EmpNum, EmpName,ChildName) that effectively inserts the tuple
child( EmpNum, EmpName, ChildName) into the view. The user must provide the child’s name
and the employee’s number. If the employee’s name is left unspecified, then it is returned as an an-
swer. If the user provides the employee name, then it acts as a consistency check. That is, if there is
no employee with both the given name and number, then the insertion is not carried out.

addChild(EmpNum, EmpName, ChildName) — dy.emp(EmpNum, EmpN ame, Salary)®
dy.child.ins(EmpNum, ChildN ame)

addChild(EmpNum, EmpName, ChildName) — dj.employee(EmpName, EmpNum, Salary)®
dy.dependent.ins(ChildN ame, EmpNum)

addChild(EmpNum, EmpName, ChildName) «— ds.person(EmpNum, EmpName)®
ds.children.ins( EmpNum, ChildName)

The algorithms implementing the transition oracle would execute an expression of the form
dy.child.ins(empnum, childname) as a physical insertion of the atom child(empnum, childname) into
database D;. The important point is that the above rule-base provides the oracle with exactly the
right information for deciding which atom to insert and where.

7.4 Simulating Systems with State

Horn logic is a natural language for simulating certain physical systems. Digital circuits are one
example, as long as they have no internal state. Such digital circuits are said to be combinational, and
their output is a function only of their input. For such circuits, the database can record the input to
the circuit, and a logic program can compute the output of the circuit.

Systems with internal state are another matter. Circuits such as counters, shift registers, flip-
flops, and computer memories are examples of this. For such systems, the output depends not only
on the input, but also on the internal state of the system. A natural way to model internal states is
by means of a database, since the persistence of system state is then guaranteed by the persistence
of the database state. Moreover, the system state can then be interrogated via database queries,
and changed via database updates. Besides its obvious convenience, this approach can be efficiently
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implemented using existing database technology and indexing methods, which is especially important
for large systems. However, this approach to simulation requires that the database be updated as
the system is simulated. Unfortunately, since classical logic programming or deductive databases do
not embody a clean theory of updates, this natural representation has not been available to logic
programmers.

TR changes this situation. Since it is a logic for updating databases, it is a natural simulation
language. 7R has one more advantage in this respect, since it provides not just a specification
language, but also a practical proof theory. From a simulation point of view, the important point is
that in updating a database, 7R accesses only those parts of the database that change. This property
allows 7R to provide incremental simulations. These are especially important when simulating
large systems. The idea is to simulate only the changes to a system’s internal state. Little, if any,
computational resources should be spent on things that do not change. For instance, in simulating a
1MB VLSI memory chip (22° bytes), if an input instruction causes just one byte of memory to change,
then the simulation should not spend any time considering the other 22° — 1 bytes that do not change.
To illustrate these claims, we provide 7R rules for simulating digital circuits with state, and we use
them to simulate a flip-flop.

We represent a digital circuit as a collection of devices (e.g., logic gates) connected by electrical
lines (e.g., wires). Each device has a set of input and output ports. Each port is attached to one
electrical line, and each electrical line may connect two ports. A device called a “split box” divides
an electrical line in two, so that the output of one device can be fed to the input of several others. In
our representation, each electrical line has a name, denoted by a constant symbol, as well as a value
of 0 or 1. The atom val(L, V) means that line L has value V.

To represent a circuit of logic gates, we use the predicate gate. There are actually several versions
of this predicate, each with a different arity, to represent gates with different numbers of ports. For
gates with two inputs and one output, we use the scheme gate(Type, Ini, Iny, Out), where Type is
the type of the logic gate (and, or, etc.), In; and In, are the names of the two input lines, and Out
is the name of the output line. Thus, the atom gate(and,b,c,d) denotes an and-gate whose input
lines are b and ¢, and whose output line is d. Likewise, the atom gate(inv,d,e) denotes an inverter
gate whose input line is d, and whose output line is e. To handle the multiple arities of gate, we use
the Prolog convention that predicates of the same name but different arity are deemed to be distinct
predicate symbols. To represent split-boxes, we use the predicate split(In, Out;, Outy). The structure
of a circuit and the values of all its lines are stored in the database, as shown in Example 7.1.

inz

_>. —_— t
1= nand ou ! ,| nand o.u —
| (initially: 0) (initially: 1)

FEzample 7.1 (Flip-Flops) The following database encodes two nand-gates configured as a simple flip-
flop:

gate(nand, iny, outs, out;) gate(nand, in,, outy, outs)

val(ing,1) wal(ing,1) wval(out;,0) wval(outs,1)

This circuit has two input lines, in; and ¢n,, and two output lines, out; and out,. Note that the
output of each gate is connected to the input of the other. This feedback gives the circuit an internal
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state, so that its output is not just a function of its input, but also of its history. The database records
the current state of the circuit, in which both input lines are high, one output line is low, and the
other is high. As the behavior of the circuit is simulated in 7R, the state is updated. A description
of such a simulation is given at the end of the section. O

The first step in simulating such circuits is to represent the truth table of each gate. We do this
with a predicate called table. Like gate, there are several versions of table, with different arities, to
represent gates with different numbers of ports. For gates with two inputs and one output, we use the
scheme table(Type, Iny, Iny, Out), where Type is the type of the logic gate, In; and Iny are the two
input values, and Out is the output value. Thus, the atom table(and,0,1,0) says that an and-gate
with inputs 0 and 1 has an output of 0. Likewise, the atom table(inv,1,0) says that an inverter gate
with an input of 1 has an output of 0. The truth tables for three types of logic gate are represented

by the following rules, which we add to the transaction base.!”
table(nand,0,0,1 table(nor,0,0,1 table(inv,0,1)
table(nand,0,1,1 table(nor,0,1,0 table(inv,1,0)

) ( )
) ( )
) table(nor,1,0,0)
) ( )

(

(
table(nand, 1,0,1

( table(nor,1,1,0

table(nand,1,1,0

To capture the behavior of logic circuits, one needs more than just the truth tables for logic gates.
For instance, if one input to a gate changes, then the output may change, but the other input does not
change. The truth tables do not provide this kind of dynamic information, since they provide only a
static picture. It is convenient to describe the dynamics of logic gates in terms of simple events. The
basic event in our description is the change in value of a line. To initiate such an event, a user (or
an application program) uses the predicate set(Line,Val), which sets a given line to a given value.
Thus, if a user issues the command ?— set(b,1), then the system sets the value of line b to 1. This
event, like all events, may have ramifications. For instance, setting an input line of an or-gate to 1
causes the output line to be set to 1 as well. In this way, one event may trigger other events, which
in turn, may trigger still others, etc. Eventually, this cascade of events may settle down, so that the
circuit achieves a stable state. In other cases, the circuit may oscillate forever. Such behavior, which
is typical of dynamic systems, is captured by the following rules:

set(Line, NewVal) « wval(Line, NewVal) (12)
set(Line, NewVal) « wal(Line,OldVal) ® (NewVal # OldVal) ® (13)
val.del( Line, OldVal) ® val.ins(Line, NewVal) ®
propagate(Line)
propagate(Line) « dangling(Line) (14)
propagate(In) «— split(In,Out;,Outy) ® val(In,Val) ® (15)
set(Outy,Val) @ set(Outy,Val)
propagate(In) « gate(inv,In,Out) @ val(In,Val,) ® (16)

table(inv, Valy,Valy) @ set(Out,Valy)

"We could equally well store the truth tables as atoms in the database, but then they would not be protected from
updates by the user.
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propagate(In) « |[gate(type,In,In',Out)V gate(type,In’,In,Out)] ® (17)
val(In,Val) ® val(In',Val') ®
table(type, Val,Val',Val") ® set(Out,Val")

These rules define two mutually recursive predicates, set and propagate. The command ? —
set(Line, NewVal) sets the value of a line, and the command ? — propagate(Line) propagates the
effect of a change in line value to the output(s) of any gate that the line is connected to. The recursion
gives rise to a cascade of events. Rule (12) terminates the recursion. This rule represents situations
in which the new value of a line is the same as the old value. In this case, there is nothing to do, and
no further cascading of events. Rule (13) represents situations in which the new and old line values
are different. The rule changes the line value, and then invokes the predicate propagate, to propagate
the effects of the change.

Propagate is defined by several rules. Rule (14) terminates the recursive cascading of events. It
represents situations in which an output line leads nowhere (is dangling) and thus requires no further
propagation. Rule (15) encodes the behavior of split boxes, which divide a line in two. The rule sets
the two outputs of the split box to the same value as the input. Rule (16) encodes the behavior of
inverters, setting the output of an inverter to the inverse of its input. The last rule, (17), represents
the behavior of logic gates with two inputs.

Simulating A Flip-Flop

We illustrate the behavior of these rules on the flip-flop of Example 7.1. As given in the example,
both input lines are high, one output line is low, and the other is high. Thus, the initial state of the
circuit is represented by the following database entries:

val(ing,1) wal(ing,1) wval(out:,0) wval(outs,1) (18)

At this point, if the user issues the command ?— set(ini, 1), then nothing should happen, since
input line in, is already 1. The simulation reflects this behavior. The command causes Rule (12) to
execute successfully. The rule checks that the line value has not changed, and then returns.

The behavior is more interesting if the user issues the command ?— set(in,0), which changes the
value of line in;. The first effect of this command is to invoke Rule (13), which changes the line value,
and then issues the command ?— propagate(in,) as a subtransaction. This subtransaction propagates
the effect of the change in line in; through the nand-gate to its output line, out;. Specifically, rule (17)
is invoked, which computes the new value of the output line, and then sets it by issuing the command
?— set(outy,1). This behavior is summarized by the following series of subgoals, which reflects inference
system $! operated in top-down mode. (A more detailed trace is given in the next subsection):

?— set(ing,0)
?— propagate(in,)

?— set(outy,1)

Notice that the first and last subgoals in this series both involve the predicate set. In this way,
the first event, setting line én; to 0, has triggered a second event, setting line out; to 1. The latter
event is carried out and propagated, which triggers a third event, setting line out, to 1, which is the
last event in the simulation. The entire simulation is summarized by the following series of subgoals:
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?— set(ing,0)

?— propagate(in,)
?— set(out;,1

?— propagate(out;)
?— set(outs,0)

?— propagate(outs)
?— set(outy,1)

-0

The simulation terminates because the last event has no further effect on the circuit. This is because
the line that was changed, out;, is already high due to an earlier set-action. Note that termination
of the inference process is indicated by the empty subgoal, (). At the end of this simulation, the new
state of the circuit is recorded in the database by the following entries:

val(ing,0) wal(ing,1) wval(outi,1) wval(outs,0) (19)

Thus, we have lowered one of the inputs to the flip-flop, and the output has change state, i.e.,
both output lines have changed their value. If we now return the input to its original state, by issuing
the command ?— set(ini,1), then the output does not change back. In this way, 7R simulates the
dependence of the output on history as well as on input. The second simulation is summarized by the
following series of subgoals:

?— set(ing, 1)
?— propagate(in,)
?— set(outy,1)

-0

The simulation terminates with the attempt to set the value of line out; to 1. Since its value is
already 1, no further propagation is necessary. In terms of inference, the subgoal ?— set(out;,1)
invokes rule (12), which simply returns. At the end of this simulation, the new state of the circuit is
recorded in the database by the following entries:

val(ing,1) wal(ing,1) wval(outi,1) wval(outs,0) (20)

Notice that in databases (18) and (20), the input lines have the same values, but the output lines do
not.

The Simulation in Detail

A detailed trace of part of the above simulation is as follows. The circuit is initially in state (18),
and the user issues the command ?— set(in;,0), which changes the value of line ¢n;. The first effect
of the command is to invoke Rule (13), which changes the line value, and then issues the command
?— propagate(in,) as a subtransaction. This behavior is summarized by the following series of subgoals,
which reflects inference system S operated in top-down mode (Section 6.3). Recall that atoms within
a serial goal are resolved from left to right. As each atom is resolved, the database is queried and/or
updated.
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?— set(ing,0)

?— wal(ing, OldVal) ® (0 # OldVal) ® val.del(in,,0ldVal) ® val.ins(iny,0) ® propagate(in;)
?7— (0 #£1) ® val.del(iny,1) ® val.ins(iny,0) ® propagate(in;)

?— wal.del(in1,1) ® val.ins(ing,0) ® propagate(in,)

?— wval.ins(in1,0) ® propagate(in,)

?— propagate(in,)

The last subgoal in this series propagates the effect of the change in line in; through the nand-gate to
its output line, out;. This takes place in several steps. First, the rules defining propagate are invoked.
Because in, is the first input line of a nand-gate, these rules all fail immediately, except for Rule (17).
This latter rule retrieves both input values of the nand-gate, Val; = 0 and Val, = 1, computes the
new output value, Valz = 1, and finally issues the subtransaction ?— set(out;,1) to set the output
line to its new value. This behavior is summarized by the following series of subgoals:

?— propagate(in,)

?— gate(Type,iny, Ing, Out) ® val(iny, Valy) ® val(Ing, Valz) ®
table(Type,Vali,Valy,Vals) ® set(Out,Vals)

?— wal(ing, Valy) ® val(outs, Valy) ® table(nand,Valy,Valy,Vals) @ set(out,,Vals)

?— wval(outy, Valy) ® table(nand,0,Valy,Vals) ® set(out;,Vals)

?— table(nand,0,1,Vals) ® set(out,,Vals)

?— set(outy,1)

The last subgoal in this series sets the value of line out; to 1. In this way, the first event, setting
line én; to 0, has triggered another event, setting line out; to 1. This latter event is carried out and
propagated further, which triggers the third event that sets the line outs to 1. After this, the line out;
is set to 1, which terminates the simulation, as this line is already high.

7.5 Bulk Updates

The ability to perform bulk updates is one of the cornerstones of database languages. It is routine in
such database lingua franca as SQL or QUEL. For example, inserting a set of tuples into a relation is
a basic SQL operation, as is deleting a set of tuples from a relation. Yet, bulk updates like these are
conspicuously absent from most logic-based proposals for updating logic programs. The few exceptions
are [23, 28, 73, 5], which are discussed in Section 11. The unusual difficulty with this kind of update
seems to arise because most logical formulations of updates are based on the insertion and deletion of
single tuples. This is not how SQL works, however. SQL first computes a query and then inserts the
resulting set of tuples into a relation. Deletion is handled in a similar fashion.

To capture such behaviour, it appears that we need an elementary state transition that accom-
plishes bulk updates at the lowest level. In this section, we consider relational assignment, which
copies the contents of one relation into another relation. Just as variable assignment is a basic oper-
ation of procedural programming languages, relational assignment can be used as a basic operation
of procedural database languages [26, 27]. The rest of this section shows how to express and use
relational assignment in 7R.



7 APPLICATIONS 65

Unlike [65, 73, 28], specific elementary transitions are not built into the semantics of 7R. Re-
lational assignment can therefore be added to 7R by simply expanding transition oracle. To see
how, consider a 7R language, £. For every pair of predicate symbols, » and ¢, of the same arity,
let £ contain a propositional constant, denoted [r := ¢|. For simplicity, we restrict our attention to
deductive databases in which r is an extensional (i.e., non-derived) predicate. If D is such a database,
then let D’ be the database derived from D by deleting all r-facts and replacing them by the set
{r(t1, ..., tn) | D = q(t1, ..., tn)} (i.e., first delete the contents of relation », and then copy the
contents of relation ¢ into r.) Finally, let the transition oracle specify a transition [r := ¢] € O%(D, D’)
for every such pair of databases. Thus, the transition oracle specifies the following:

[r:=q] € O*({q(a), q(b)}, {q(a),q(b),(a),r(b)})
[r:= q] € 0'({g(a), 4(b),r(c)}, {a(a),q(b);7(a),r()})
[r == q] € 0*({q(a), q(b),7(c),r(d)}, {a(a),q(b),(a),r(B)})

Note that, by definition, the extent of r after executing the elementary state transition [r := ¢] is
determined entirely by D, the current database state. This has the following important implication:
if ¢ is defined by a set of rules where some of the rules are in the database, D, and some are in the
transaction base, P, then only the tuples contributed by the rules in D are assigned to r.

Having defined relational assignment, we can easily define bulk inserts and deletes. Suppose we
wanted to add to r all tuples satisfying some condition ¢ and delete from D all tuples satisfying /.
To do so, for each of these operations, we first define two derived relations, ¢1 for the insertion into »,
and ¢2 for the deletion from D, as follows:

q1(X) < r(X)
q1(X) < ¢(X) (21)
q2(X) < s(X) A =(X)

Note that the extension of gl is » U ¢, and the extension of ¢2 is s — ®. To actually perform the
updates, we use the elementary transitions [r := ¢1] and [s := ¢2], which effectively insert the tuples
satisfying ¢ into r, and delete the tuples satisfying ¢ from D. In this way, relational assignment
captures the update behaviour of SQL, including the use of existential subqueries to perform bulk
deletion. It should be clear from an earlier remark that the above rules must all be in D for the
relational assignment to work as intended.

More-complex transactions are also easy to express. For example, consider the transaction, “Raise
the salary of all managers by 7%, and then retrieve all employees whose salary is greater than 100K.”
This transaction can be expressed as follows:

empl2(E, Salx 1.07, mngr) <— empl(E, Sal,mngr)
empl2(E, Sal, Rank) <— empl(E, Sal, Rank) A Rank # mngr (22)
result(E) <— [empl := empl2] @ empl(E, Sal, Rank) ® Sal > 100K

The new contents of the employee relation is computed by the first two rules and is held temporarily in
the relation empl2. As explained above, both these rules must be in the database, D, in order for the
assignment [empl := empl2] in the third rule to work as intended. Note that the query ?— result(E)
changes the database state and returns all suitable employees as the answer. Observe also that this
query simultaneously involves deletion of some tuples with old salaries and insertion of tuples with new
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salaries. Of course, this combined transaction could have been expressed following the methodology
for deletions and insertions described earlier, in (21). However, this would have required two relational
assignments instead of one. In the above example, we defined the temporary relation empl2 in such a
way that only one relational assignment is needed.

We should also note that when the auxiliary predicates (such as g1, g2, empl2 above) are non-
recursive, it is possible to do away with these predicates and their defining rules. To this end, we can
define the following, more general, form of relational assignment: [q := (X).¢]. Here ¢ is a first-order
formula all of whose predicates are in D and (X) is a list of all free variables in ¢ (with possible
repetitions). We assume that the length of X equals the arity of ¢. This elementary state transition
has the effect of assigning ¢ the relation {Z | #[Z] is true } — the set of all tuples that when substituted
for X makes ¢ true.!® We can now rewrite (22) as follows:

result(E) <— [empl := (E, Sal, Rank).¢] ® empl(E, Sal, Rank) @ Sal > 100K
where ¢ is the following first-order formula:

3S[empl(E, S,mngr) A Sal =1.07x% 5]
V[empl(E, Sal, Rank) A Rank # mngr|

These generalized bulk updates have all the power of bulk updates in SQL, including subqueries.
This is because a generalized bulk update computes an arbitrary first-order query, ¢, and assigns its
output to a base relation, ¢q. As a special case, a bulk update can change the value of ¢ to ¢ U ¢,
thereby expressing arbitrary SQL insertions. Likewise, a bulk update can change the value of ¢ to
q — ¢, thereby expressing arbitrary SQL deletions.

Finally, it is worth noting that the use of generalized bulk updates in 7R closely parallels the
embedding of SQL in procedural programming languages. In both cases, bulk updates are elementary
operations invoked from a host language. And in both cases, these bulk updates can have free variables
(parameters) that are bound at run time. Furthermore, in an update like [¢ := (X )@], the base relation
¢ can play the role of a cursor. Using the methods introduced in Section 8.4.2, one can iterate over
the relation ¢ one tuple at a time, just like an SQL cursor. 7R can thus be seen as a formal basis for

embedded SQL.

7.6 Non-Deterministic Sampling

In [57], Krishnamurthy and Naqvi proposed the so-called choice-operator to extend LDL, so that
one can express non-deterministic queries such as this: “Produce a sample of one employee from
each department.” The idea was to add a special predicate, choice((X),(Y)), that selects those
instantiations of the variables X and Y that satisfy the functional dependency (abbr., FD) X — Y.

The meaning of a program, P, with occurrences of the choice-operator was originally given in
[57, 74] as follows: first, P is rewritten into a regular Datalog program, P’ in which each occurrence
of the choice-operator is replaced by a normal predicate called, say, choices;. choice; is uniquely
associated with a particular occurrence of the choice operator in the original program, P, (where the
subscript identifies the occurrence). Models of P are then defined in terms of Herbrand models of P’.

131f ¢ is a disjunction of existentially quantified conjuncts of positive literals then “truth” can be taken to mean truth
in all models of ¢. Otherwise, if literals can be negative, truth should be viewed with respect to a canonic model of ¢,
such as the one described in Section 9.
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In particular, for each classical (minimal) Herbrand model, M, of P’, consider those subsets of M in
which the relation assigned to choices; satisfies the appropriate FD’s. A maximal subset of this kind
is said to be a model of P.

Later, Sacca and Zaniolo [85] proposed a somewhat simpler rewriting for the choice operator,
one in which the semantics can be given as a stable model of the rewritten program. The rewritten
program uses negation even if the original program was Horn, which is where stable models come in.
The use of stable models is essential, since choice does not get a correct interpretation under, say,
the well-founded semantics. In other words, incorporating the choice operator commits a user to the
stable model semantics of negation.

There is a sense, however, in which both accounts are unsatisfactory, since, in these proposals,
the choice predicate has no status in the logic itself. That is, choice cannot be thought of as a
normal predicate that is true on some tuples and false on others. To understand the meaning of such
a program, the user has to perform a non-local mental transformation of the original program into
another, textually more complex, program, and then to try and determine the meaning of that latter
program. In our opinion, incorporating new and conceptually-simple functionality via a serious of
non-trivial transformations will not win new converts to declarative programming.

In contrast to these approaches, the choice construct in 7R can be understood directly in terms of
TR’s basic logical concepts. In 7R, the choice-operator is represented as another kind of elementary
bulk update, one closely related to the relational assignment operator of the previous section. For
example, consider the following query:

For each department with over 100 employees, choose an employee earning less than $20K.

With the choice operator, this query could be written as follows:

answer(D,E) «— dept(E,D) A size(D,N) A choice((D),(E)) A

23
N > 100 A salary(E,S) A S < 20K (23)
We can represent this query in 7R using a pair of rules, as follows:
eligible(D,E) «<— dept(E,D) A size(D,N) A N > 100 A salary(E,S) A § < 20K (20)
24

answer(D, E) «<— [sample 122 eligible] ® sample(D, E)

The first rule produces a set of candidate answers, by selecting all eligible employees from the appro-
priate departments. The second rule then samples the set of candidates, selecting one eligible employee

per department. The heart of this rule is a new type of elementary update, [sample 122 eligible], that
sets the extent of relation sample to be a subset of relation eligible. Any subset will do as long as it
has the following two properties:

e it satisfies the specified FD, 1 — 2; and

o sample[l] = eligible[l], i.e., the projections of sample and eligible on the first attribute are
equal (and thus every department is represented in the sample).

In general, we introduce an elementary update, called sampling assignment, denoted [p f 4 q|, where
fdis an FD, and p and q are predicate symbols of the same arity (where p is an extensional predicate).
Given a database, D, the assignment updates relation p non-deterministically. In particular, it sets
the extent of p to be some subset, rel, of the relation {Z | D |= ¢(Z) } that satisfies the following two
properties:
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1. rel satisfies the functional dependency fd; and

2. rel is a mazimal subrelation of {Z | D = ¢(Z)} having property 1.

Note that, as with bulk updates, only that part of the extent of ¢ that is determined by D plays a role
in sampling. Thus, for (24) to work correctly, the rule that defines eligible must be in the database,
D, not in the transaction base, P.

As with bulk updates, sampling assignments are defined in the transition oracle. For instance, to

define Lpl:_:)2 q|, we add the following entries to the transition oracle (among many others):

1—2

[p:= q] € O*({q(a,b),q(a,c),q(a,d)}, {q(a,b),q(a,c),q(a,d),p(a,b)})
=" q] € O'({4(a,b), q(a,c), q(a,d)}, {q(a,b),q(a,c),q(a,d),p(a,c)})

1—2

[p:="q] € 0'({¢(a,b),q(a,c),q(a,d)}, {q(a,b),q(a,c),q(a,d),p(a,d)})

As in the previous section, we can generalize the sampling assignment by allowing first-order
formulas on the right-hand side (rather than just predicates symbols ). This would allow us to write
(24) more succinctly, as follows:

answer(D, E) «<— [sample 22 (D, E).¢|® sample(D, E)
where ¢ is the following first-order formula:

IN3S dept(E,D) A size(D,N) A N >100 A salary(E,S) A § < 20K

The advantage of this new form is that here the choice-assignment, [sample 122 (D, E).¢], directly
corresponds to the choice-operator in (23). It can therefore be said that the choice-operator has
finally been given a declarative semantics within a full-fledged logic.

In sum, Transaction Logic incorporates the choice-operator via its transition oracle. The model
theory of Section 5 provides a declarative account of choice, and the proof theory of Section 6 generates
choice-relations automatically, as it processes transactions and queries. The model theory of choice
in 7R is close to its procedural semantics, which happens to be much simpler than the “declarative”
semantics presented in [57, 85].

7.7 Dynamic Constraints on Transaction Execution

Because transactions are defined on paths, it is possible to express a large variety of constraints on
the way they execute. For instance, we can place conditions on the state of the database during
transaction execution, or we may forbid certain sequences of states. We refer to such conditions as
path constraints, or dynamic constraints. Such constraints are particularly well suited to areas such as
planning and design, where it is common to place constraints on the way things are done. This section
illustrates a variety of dynamic constraints expressible in 7R. These include temporal constraints in
the style of James Allen [7], such as, “immediately after,” “some time after,” “during,” “at the start
of,” or “at the end of.”

There are several important problems related to constraints. One such problem, and the main
subject of this section, is constraint satisfaction. That is, given a transaction and a constraint, we
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want to execute the transaction in such a way that it satisfies the constraint. For example, we might
ask a robot to carry out a task while not entering restricted areas and not executing certain (dangerous)
sequences of action. Likewise, we might ask a CAD system to run an electrical line from one point to
another while avoiding wet or exposed areas. In general, starting from the current database, we want
to find some way of executing a transaction while satisfying constraints.

A complementary problem is that of constraint verification. That is, given a transaction and
a constraint, we ask whether every execution of the transaction will satisfy the constraint (for any
initial database). For example, we might ask whether X = 1 whenever a transaction terminates.
Note that such questions are hypothetical and that the transaction is not actually executed. Instead,
we are asking about what would happen if the transaction were executed. For this reason, we must
postpone a discussion of the verification problem until after Section 8, where 7R is augmented with
hypothetical operators. The present section thus focuses on constraint satisfaction.

Constraint satisfaction problems are particularly easy to express in 7R because they correspond to
classical conjunction. That is, if v and ¢ are transaction formulas, then the formula 1) A ¢ means, “Do
transaction % in such a way that ¢ is satisfied on the execution path.” The formula ¢ thus constrains
the way in which 1 executes. Intuitively, if ¢ is a non-deterministic transaction, then ¢ acts as a
filter, removing unwanted execution paths, and reducing the non-determinism of the transaction. If
1 is deterministic, then ¢ acts as a guard, forbidding execution unless the constraints are satisfied.
Note that in either case, it is execution paths that are constrained.

Two types of path constraint naturally arise in 7R: those based on serial conjunction, and those
based on serial implication. The former specify that something must be true somewhere on a path,
and the latter specify that something must be true everywhere on a path. These two types of path
constraint correspond roughly to two types of database integrity constraint: those based on existential
quantification, and those based on universal quantification, respectively. We give examples of both.

The examples center around a planning system for robot navigation. The system is composed of
rules defining an action, goto(Y), that instructs the robot to go to location Y. This action is highly
non-deterministic since, in general, there will be many ways in which it can be carried out, i.e., many
routes that the robot can take. By using dynamic constraints, we can force the planning system to
reject certain routes or to focus its attention on others.

It should be noted that since constraints involve classical conjunction, they do not satisfy the
serial-Horn conditions of Definition 6.2. Thus, they cannot be solved by the specialized proof theory
developed in Section 6. Instead, constraints require the general proof theory developed in [21].

7.7.1 Constraints Based on Serial Conjunction

A simple constraint might require the robot to do something while en route to some location, such
as passing certain check points. There are two natural cases to this problem. In the first case, the
constraint imposes an order on the way the robot does things. The constrained transaction can then
be expressed as a sequence of goals. For instance, suppose we request the robot to go to room A in a
building and to pass through room B along the way. This request can be expressed as the serial goal
goto(roomB) ® goto(roomA), i.e., “go to room B and then go to room A.”

In the second, and more interesting case, the constraint does not imply an order on the way things
are done. For instance, suppose we request the robot to go to room A and to pass through rooms
A;, Ay and Ajs along the way. This request does not commit the robot to visiting the rooms in a
particular order, and so it cannot be expressed as a single, serial goal. Instead, it is properly expressed
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as a conjunction of serial goals, where each conjunct constrains the robot to pass through a particular
room.

To express such constraints, we need the propositional constant path, introduced in Section 5.2.
Recall that path is true on every path. The formula path ® at(X) thus specifies a path in which
the robot ends up at location X. Likewise, the formula a?(X) ® path specifies a path in which the
robot starts off at location X. Finally, the formula path ® at(X ) ® path specifies a path in which the
robot passes through location X. For convenience, we abbreviate this latter formula as go_thru(X)
by adding the following rule to the transaction base:

go_thru(X) « path® at(X) ® path

It is now easy to specify paths in which the robot must pass through any number of locations, without
specifying an order. For instance, the following formula specifies that the robot go to room A, passing
through rooms A4;, A, and A3 along the way:

goto(roomA) A go_thru(roomA;) A go_thru(roomA,) A go_thru(roomAs)

The use of classical conjunction ensures that this formula is true only on paths in which all four
conjuncts are true. In this way, the formulas go_thru(X) constrain the way in which the transaction
goto(roomA) may execute.

We can build up more complex constraints by combining classical and serial conjunction. For
instance, the following formula requests that the robot go to room A and that along the way it pass
first through rooms B; and B,, in any order, and then through rooms C; and Cj, in any order:

goto(roomA) A [go_thru(roomB;) A go_thru(roomB3)| ® [go_thru(roomC1) A go_thru(roomCy)]

We can also express the dual of this constraint, requesting the robot to pass through rooms B; and

B, in that order, and to pass through rooms C; and C, in that order, but with no constraints between
the B; and the C;:

goto(roomA) A [go_thru(roomBi) ® go_thru(roomB,)] A [go_thru(roomC1) ® go_thru(roomC})]

These constraints all request that the robot do something at some point en route to its final
destination. Such constraints are existential in nature and are easily and naturally combined with
existential quantification. For example, the following formula specifies that the robot go to room A,
passing through a red room and a blue room along the way:

goto(roomA) N IX[room(X)® red(X)® go-thru(X)] A IX[room(X)® blue(X) ® go_thru(X)]
The examples of this section all fit a certain abstract pattern: A transaction % is executed so that

certain other actions ¢, ¢, ..., ¢, are carried out at some time during the execution. This pattern
can be roughly expressed by the following formula:

P A [A]_; path® ¢; ® path]

The next section considers constraints that fit a very different pattern.
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7.7.2 Constraints Based on Serial Implication

In this section, we consider constraints based on the binary connectives “<” and “=-” introduced
in Section 5.2. Recall that ¥ < ¢ is defined to be ¥ & —¢, and ¢ = v is defined to be —¢ @ .
Intuitively, the formula ¢ = ¢ means that transaction ¥ must come immediately after transaction ¢;
or more precisely, whenever ¢ occurs, then ¥ occurs just after it. The formula v < ¢ is a kind of dual.
It says that, in any valid scenario, transaction ¥ must be executed immediately before transaction ¢;
or, whenever ¢ occurs, then 1 must have occurred just before it.

Constraints based on serial implication can constrain a transaction during every moment of its
execution. For instance, we can request a robot to remain inside a particular region while executing
a task. We can also put constraints on specific actions that the robot might take. For instance, we
might request a plan for a sequence of robot actions subject to the following constraints:

(i

) Open doors before passing through them.
(ii) Shut doors after passing through them.
)

(iii) Before leaving a room, turn off all the lights.

(iv) After entering a room, turn on all the lights.
(v) Unlock the rifle before firing it.

(vi) Lock and reload the rifle after firing it.

In these examples, “before” and “after” mean “immediately before” and “immediately after,” respec-
tively. Serial implication expresses these two relations. For example, constraints (v) and (vi) are
expressed by the following two formulas, respectively:1°

unlock < shoot shoot = lock ® load

Actually, we need a little more, since the constraints above are not only temporal, they are also
universally quantified. For example, constraint (vi) means, “ Whenever you shoot the rifle, you must
lock and reload it.” The problem is that serial implication by itself does not fully capture the universal
quantification expressed in the word “whenever.” To see this, suppose that 1 is a transaction that plans
a series of robot movements and rifle shots. Then the formula ¢ A (shoot = lock ® load) effectively
breaks v into two halves: If the first half is a shooting action, then the second half must be a locking
action followed by loading. In other words, if the robot fires the rifle at the beginning of the transaction,
then it must immediately lock the rifle and terminate the transaction. This is not what we had in
mind.

To rectify the problem, we use the proposition path. Since it is true on eny path, it effectively
achieves universal quantification over subpaths. For instance, the formula path ® shoot specifies any
path that ends in a shooting action. Likewise, the formula lock ® load ® path specifies any path that
begins with a locking and loading action. The following formula thus expresses constraint (vi), above:

¥ A [path ® shoot = lock ® load ® path] (25)

19 As our examples become more and more complex, correct parenthesizing becomes crucial. We adopt the convention
that negation has the strongest binding. Then come the serial connectives ® and @, followed by < and =-. The classical
connectives A and V come next, and « comes last.
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Observe that the formula path ® shoot allows the constraint to apply to any shot, not just to shots
that occur at the beginning of the transaction ¢. Likewise, the formula lock ® load ® path allows the
transaction to continue after the rifle is locked and loaded. This is exactly what we had in mind.

Equation (25) has a number of equivalent forms. The next formula below is one of them. By using
this form of the constraint, we separate the temporal relation (shoot = lock ® load) from the use of
the symbol path, thus encapsulating it within a single subformula.

P A [path = (shoot = lock ® load) ® path]

Note the use of “path =" (which is also “~path®”) in the constraint. It ensures that the rest of the
constraint holds on every suffiz of the execution path of action . Likewise, in the constraints below,
the use of “« path” forces the rest of the constraint to hold on every prefiz of the execution path.

As another example, we express constraint (v) using the opposite serial implication, “<”. The
following, equivalent formulas both ask the robot to perform a series of rifle shots 1) and to unlock the
rifle just before each shot:

¥ A [path ® unlock < shoot ® path]
¥ A [path ® (unlock < shoot) < path]

These ideas also apply to some apparently non-temporal constraints. For instance, we might ask
the robot to stay in room A while executing task 1. This constraint can be viewed as a temporal
relation at(roomA) that has no pre-condition (i.e., it must always be true). It can therefore be
expressed by either of the following formulas:

% A [path = at(roomA) Q path]
¥ A [path® at(roomA) < path]

Finally, we give formulas expressing the first four constraints listed above. Each constraint has
the form path = ¢ ® path or path ® ¢ < path. All variables are universally quantified at the top
level, and the predicates involved should be self-explanatory:

(i) path® VD [open(D) < go_thru(D) ® door(D)] < path

(ii) path = VD [door(D)® go_thru(D) = shut(D)] ® path

(iii) path® VR, L [turn_off (L) < leave(R) ® room(R) ® light(L) ® in(L, R)] < path
)

(iv) path = VR, L [room(R)® light(L) ® in(L, R) ® enter(R) = turn_on(L)] ® path
So far, this section has focussed on the temporal relations “immediately before” and “immediately
after.” However, 7R can express many other temporal relations in the style of James Allen’s theory

? “some time after,” “during,” “at

of time intervals [7]. These relations include “some time before,
the start of,” “at the end of,” etc. The table below lists a variety of temporal relations and the
transaction formulas used to express them. Each of these formulas is an implication stating that if
an action satisfying a occurs, another action, satisfying 3, must occur in a certain relationship to it.
These constraints can be applied to a particular path or to all its subpaths. As written, each formula,
1, constrains a single path. By using the formula path = ¢ < path, however, the constraint

applies to all the subpaths.
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Formula Constraint
B <« 3 occurs immediately before a
a=pf 3 occurs immediately after a
(B ® path) < B occurs some time before a
o = (path® j) B occurs some time after a
o — (path ® S ® path) [ occurs on some interval during o
o — (path = 3 < path) | 3 occurs on every interval during o
o — (B @ path) B occurs on some initial segment of o
o — (path® f) B occurs on some final segment of a
o — (B < path) 3 occurs on every initial segment of a
o — (path = ) 3 occurs on every final segment of a
a— 3 [ starts and ends at the same time as «
(a ® path) — (3 ® path) | § starts at the same time as o
(path® o) — (path ® ) | B ends at the same time as o

There is a subtlety concerning constraints that involve implication, whether serial or classical. For
instance, if a path Dg...D,, is constrained by the formula o — 3, we do not mean that the formula
must be logically entailed on the the path. That is, we do not require the following statement to be
true:

P,Dy...D, F a—p

This is too strong a requirement. Instead, we interpret the constraint at the meta-level. That is, we
require the following statement to be true:

if P,Dy...D, F « then P,Dy...D,, =

This is a weaker requirement. Likewise, constraints involving serial implication are also interpreted at
the meta level. Thus, the constraint path ® shoot = load ® path is satisfied on the path Dy...D,
if and only if the following statement is true:

if P,D;...D; I shoot for some i and j,
then P,D;...DyF load  for some k.

Again, this is weaker than requiring the constraint to be logically entailed. The idea of interpreting
implications at the meta-level is well-known in deductive databases. To enforce such constraints,
deductive databases use the closed-world assumption. In Section 9, we discuss an adaptation of the
so-called perfect-model semantics [79], a widely accepted formalization of the closed-world assumption.

7.8 The Frame Problem

One of the hardest issues haunting the logical formalization of actions and planning is the so-called
frame problem [67]. A number of ingenious approaches to taming this problem have been proposed
since the mid 1970’s, but the problem always comes back and retaliates in various ways.

Most work on the frame problem has been in search of a formula to represent, preferably in

the first-order logic, what can be informally stated in English as “... and everything else remains
unchanged.” The relative merit of various solutions is then argued on the grounds of which logical
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representation seems more elegant, compact, and how well it deals with “satellite” problems, such
as the ramification problem [34]. As far as the user is concerned, one problem with such approaches
is that they provide only a methodology for solving the frame problem. The ultimate responsibility
for writing down the correct frame axioms lies with the user. The most serious drawbacks of these
proposals, however, have been their computational complexity and the fact that adding new actions
to the system entails re-coding the entire frame problem in non-incremental ways. In our opinion, this
latter drawback eliminates most such proposals from consideration as a basis for a knowledge-base
programming language. Re-coding of the frame problem, even when it can be done automatically, is
a major burden on system maintenance and is likely to take toll on performance.

Solving the frame problem is not usually an end in itself, however. Rather, the main problem is
to answer questions about actions, and it is this that leads to the frame problem. After all, until the
frame problem is solved, an action is incompletely specified, so certain questions about it must go
unanswered. A proposed solution to the frame problem is usually deemed incomplete if it cannot give
the correct answer to questions like the following, where ¢ is a first-order formula (or “fluent” [80]):

1. Action execution: Given an initial state D, what is the final state of the action?
2. Frame problem proper: Is formula ) unaffected by the action?
3. Program verification: Does the outcome of action a always satisfy formula ?

4. Reasoning about action execution: Given some knowledge of the initial state, and some knowledge
of the final state, what can be said about intermediate states?

5. Planning and design: What sequence of actions will make formula ) true?

Many ingenious solutions to the frame problem have been proposed. These proposals usually
address the very general problem of arbitrary questions about arbitrary updates to arbitrary logical
theories. Because of this generality, these solutions have been conceptually complex and computa-
tionally intractable. Worse yet, they remain complex and inefficient even for very simple actions, like
inserting or deleting a single tuple from a relational database.

Fortunately, many interesting and important problems in knowledge representation do not require
a completely general solution to the frame problem. In fact, one of the most basic questions that can
be asked of an action is question 1, above. Answering this question does not require a sophisticated
solution to the frame problem, since it can be answered by any procedural language that simply
executes (or simulates) the action. Likewise, many planning and design problems do not require a
general solution to the frame problem either, as many Al systems have shown (e.g., STRIPS, NOAH,
MOLGEN, etc.) What is needed, then, is a general way of solving a wide class of representative
problems, while offering simple and efficient solutions to situations commonly arising in practice.

Some logical and quasi-logical systems have achieved this goal to an extent. However, they all
impose artificial restrictions on the syntax of transactions and on the way they can be combined
(e.g., [82, 65]; cf. also Prolog and SQL). These systems, like procedural systems, do not offer the ex-
pressiveness and flexibility of a full-fledged logic. Often, these systems cannot express post-conditions,
intermediate conditions, non-determinism, and/or execution constraints. As a result, many interesting
problems are beyond their reach, including all of the examples in Section 7.7.

TR is the first practical logic to avoid these limitations. In fact, 7R is both more efficient
and more expressive than these logical and quasi-logical systems. Efficiency is possible because the
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proof theory for 7R materializes the current database state, thus emulating commercial database
systems. Consequently, the proof theory for 7R is simpler and more direct than the proof theory
for many other logics of action. As an example, consider the situation calculus. While, queries in
TR are evaluated directly against the current database state, queries in the situation calculus are
“regressed” through the entire history of updates to the original database state [84, 80]. Regression
thus represents a considerable expense when the update history is long, which is the norm in modern
commercial systems, which can process hundreds of transactions per second. Like queries, evaluating
action pre-conditions in 7R is also simple and direct, without the expense or complexity of goal
regression. In fact, tests with the present prototype demonstrate that 7R is comparable in efficiency
to procedural systems that update data structures destructively [48].

In addition, because its semantics is based on paths, 7R can express constraints on action exe-
cution in a way that many other logics of action cannot. More generally, because it is a full-fledged
logic, 7R can solve a wide class of problems in AI, databases and elsewhere. Nevertheless, because it
does not require a completely general solution to the frame problem, 7R provides simple and efficient
solutions to a wide and important class of AI problems, as illustrated in Sections 7.7 and 7.9.

Since 7R includes classical first-order logic as a special case (and thus the whole of the situa-
tion calculus), general solutions to the frame problem can be encoded in 7R as a transaction base.
However, for many problems, such as action execution, this approach is both inefficient and unnec-
essary. For such problems, the transition oracle encodes all the relevant information. In effect, the
oracle provides a partial solution to the frame problem at the bottom level, i.e., for elementary state
transitions. This solution then automatically propagates to complex transactions. (We say “partial
solution” because the transition oracle is needed only for executing actions, and for this, a complete
solution to the frame problem is not needed.)

The transition oracle in effect specifies pre-computed state transitions. Like the axiom sets of
most logics, the transition oracle may be infinite.? In practice, however, transition oracles will
work algorithmically. That is, given an input database, the transition oracle will compute an output
database. For example, suppose the transition oracle specifies that a first-order formula be inserted
into a database consisting of first-order formulas. As discussed in Section 4.2, difficulties arise if the
inserted formula and the database contradict each other. Algorithms of reasonable complexity for
solving this problem have been proposed by Grahne and Mendelzon [42]. These algorithms could be
used to implement the transition oracle. However, even this complexity is not usually required, since
in practice, most databases are relational, i.e., sets of ground atomic formulas. For example, most
(if not all) blocks-world problems are relational, as are most examples in this paper. Algorithms for
inserting and deleting atoms from a relational database are computationally trivial. Even when the
database is a set of Horn rules, it is a simple matter to insert and remove rules. It is for this reason
that 7R is able to execute many actions efficiently.

Blocks World

To illustrate, consider the examples of Section 5.5, in which a robot simulator moves blocks around a
table-top. Example 5.8 shows the exact sequence of inferences and state transitions needed to answer
the following query:

?— pickup(blkA)

20T ike the examples in this paper, however, the oracle may be specified by a finite axiom schema.
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Note that here we are not trying to generate a plan for picking up blkA; instead, we are asking the
inference system to ezecute the action pickup(blkA). If, say, the top of blkA is not clear, this action
will fail. To generate a plan, the user would have to ask a different query, as explained in Section 7.9.

Note that although there are two state changes in Example 5.8, none of the inferences deal with
the frame problem, i.e., there is no attempt to infer what does not change. Instead, each entry in
the transition oracle specifies the exact effect of each elementary update on each database. For easy
reference, we reproduce two of these entries here:

on.del(a,b) € O%({on(a,bd), on(b,c),isclear(a)}, {on(b,c),isclear(a)})
isclear.ins(b) € ({on(b, ¢),isclear(a)}, {on(b,c),isclear(a),isclear(b)})

where a, b, and ¢ are arbitrary blocks. Notice that both entries specify what does not change, as
well as what does. The first entry, for instance, specifies that the atom on(a, b) is deleted from the
database, and that the other two atoms, on(b, ¢) and isclear(a), remain intact. It is in this sense that
the transition oracle solves the frame problem for elementary state transitions.

Once the transition oracle is specified, elementary transitions can be combined to form complex
transactions without giving any more thought to the frame problem. For example, from the two entries
above, it follows that the transaction on.del(a, b) ® isclear.ins(b) causes the database to pass through
the following sequence of states:

{on(a,b), on(b,c), isclear(a)}
{on(b,c), isclear(a)}
{on(b,c), isclear(a), isclear(b)}
We can see now how the solution to the frame problem automatically propagates from elemen-

tary state transitions to complex transactions. For example, if D = {on(blk A, blkB), on(blkB, blkC),
isclear(blkA)} is the initial database state, the following statements are all true:

P,D--- |= on.del(blkA,blkB) ® isclear.ins(blkB) ® tsclear(blkB)
P,D--- |= on.del(blkA,blkB) ® isclear.ins(blkB) ® isclear(blkA)
P,D--- |= on.del(blkA,blkB) ® isclear.ins(blkB) ® on(blkB, blkC')

The first statement says that isclear(blkB) is true after transaction execution (isclear(blkB) was not
true in the initial state). The second and third statements say that isclear(blkA) and on(blkB, blkC)
are also true after transaction execution. Note that these latter two atoms were true in the initial
state. In most other logical systems, the latter two inferences would be handled by general, complex
machinery for dealing with the frame problem. Even if this machinery could be optimized for the
simple cases at hand, still the atoms isclear(blkB) and on(blkB,blkC) need to be inferred after
on.del(blkA,blkB) and isclear.ins(blkB) have been executed. In many logics, this is a relatively
complex matter. The situation calculus, for example, resorts to goal regression [84], as described
above. In contrast, the 7R proof procedure simply examines the final database state, an inference
that is computationally trivial.

In conclusion of this discussion we note that specifying frame axioms for non-deterministic actions
is one of the harder problems in formalisms based on the situation-calculus. In 7R, as long as we
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stick to questions 1 and 5 above (action execution and planning), handling non-deterministic actions
is no more difficult than handling their deterministic brethren. For instance, consider the action
stackSameColor(blkZ) of Example 2.13. This action is non-deterministic because the two blocks
to be stacked on top of blkZ (and their color) can be chosen in several different ways. In 7R, the
transaction ?— stackSameColor(blkZ) would be executed by choosing an appropriate pair of blocks of
the same color and then putting them on top of blkZ. The model theory and proof theory of 7R are
insensitive to whether this transaction is deterministic or not. In effect, non-determinism falls out of
TR’s semantics for free.

Yale Shootout

At this point it is worth touching upon the subject of a Yale shooting incident reported in [45]. In
1985, an unknown individual loaded a gun and, after a brief pause, discharged it into Fred (last name
unknown). The frame problem comes into picture here in several places; most notably, where it is
necessary to conclude that the loaded gun does not get discharged during the pause. The problem is
to infer that Fred is dead. It is typical of a class of problems requiring temporal reasoning.

There are several known solutions to this problem, but they are usually either too limited or too
general (and complex). The general solutions are typically based on a non-monotonic logic, which, we
contend, is too strong a medicine for the problem at hand. The result is that, even for simple problems,
the solutions are relatively complex and the proof theory (when it exists) is inefficient compared to
7R (e.g., [59, 60, 89]). On the other hand, the more limited, monotonic solutions each have difficulties
of their own, ranging from complex encodings of the frame problem, to inefficient proof theories, to
ad-hoc syntactic restrictions, to limited expressiveness (e.g., [82], Prolog, SQL).

TR offers a new type of solution, one based on a monotonic logic, with no syntactic restric-
tions, and with an efficient SLD-style proof theory. For instance, because 7R provides a logical
account of STRIPS-like actions, we can determine the fate of Fred by simulating the sequence of
events at Yale, as simply and directly as a procedural system would do. What 7R offers, then, is
a logic-programming solution not based on negation-as-failure (with all its attendant complexities,
controversies, and limitations).

To simulate the events at Yale, we provide the five rules below. It should be noted how much more
straightforward this representation is compared to other solutions. For better readability, we define a
few extra actions, in addition to the original load, wait, and shoot reported to the police:

load <— loaded.ins

wait <— no-op

shoot «— loaded ® unload ® die
unload <— loaded.del ® unloaded.ins
die < alive.del ® dead.ins

where no-op is an elementary state transition such that no-op € O*(D, D), for every database D. It
is not hard to see that execution of the transaction ?— load ® wait ® shoot on any database will
result in death of the subject. Formally, the following statement is true:

if P,D--D' | load ® wait ® shoot then P,D’|= dead.

We thus see that the frame problem is handled correctly when the gunman?® takes a pause; that is,

21 :
By some accounts, this was a woman, Mary.
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the gun does not get miraculously unloaded.

Ramification Problem

To conclude the discussion of the frame problem, we illustrate how 7R alleviates the so-called ram-
ification problem [34]. This problem arises because actions can have both direct and indirect effects.
For example, the direct effect of pulling a sink’s drain plug is that the drain pipe is no longer covered.
This would be encoded explicitly in the definition of the action. In addition, however, the action has
the indirect effect of emptying the sink (if it was full). The latter effect is called a ramification of
the action, since it is not part of the action’s definition. Ramifications have been difficult to treat
logically since they fly in the face of the frame problem. Indeed, most solutions to frame problem
forbid changes that are not ezplicitly specified as part of an action’s definition. Unfortunately, these
forbidden changes often include ramifications, which occur ¢mplicitly, as a consequence of an action.

Ramifications are particularly important in database systems, where data is both stored and
derived. Derived data (views) is generated automatically from the stored data. When the stored data
is changed, the derived data changes too, without any explicit say so from the user. This behavior
is well-known to even naive users of database systems, since updates to a stored relation often cause
updates to derived relations (views) as a side effect.

A number of attempts have been made to address the ramification problem logically (e.g., [81]).
As with the frame problem, many of these attempts have addressed the very general problem of asking
arbitrary questions about arbitrary updates to arbitrary logical theories. Because of their generality,
these proposals are conceptually complex and computationally intractable. Perhaps their most serious
drawback is that views and actions cannot be defined incrementally and independently of each other.
For instance, adding a new action can require redefining every view. Likewise, defining a new view
can require taking every action into account. In addition, many of these proposals cannot deal with
recursively defined views at all. Worse yet, these general solutions remain complex, inefficient and
non-incremental even in very simple situations, such as inserting or deleting a single tuple from a
relational database.

Fortunately, many interesting and important problems do not require a completely general solution
to the ramification problem. Database systems, for instance, have provided views for a long time. To
do this, they forgo the ability to ask arbitrary queries about updates. Typically, queries are posed
only to the result of an update, not to its definition. Thus, after updating the current database, one
can ask, “is p(a) true?” However, one cannot ask, “Will p(a) always be true after this update, i.e.,
for every initial database?”

To achieve their limited (but important) functionality, database systems employ two ideas: (%)
they distinguish between stored and derived data, and (%¢) they use both procedural and declarative
knowledge. Typically, procedures update the stored data, after which, logical rules recompute the
derived data. Unfortunately, no database system has integrated these ideas into a unified logical
system. Thus, while database systems solve a narrow range of problems very well, their flexibility and
expressiveness is limited. For instance, they cannot deal with any of the examples in Section 7.7.

TR ameliorates this problem by integrating the two ideas above into a single logic. Unlike other
attempts to do this (e.g., [65, 60]), 7R does not distinguish between base predicates and derived
predicates, since every predicate can be both base and derived. In this way, 7R is comparable to
Prolog, in which updates and derived data are possible, and yet there is no explicit declaration of
what must be derived and what must be stored. This comparison is actually quite close, since both



7 APPLICATIONS 79

in 7R and in Prolog, the direct effects of actions are specified procedurally, as changes to stored
knowledge, while the indirect effects (ramifications) are specified declaratively, as logical inference
rules.

Of course, there is no formal distinction in 7R between procedural and declarative knowledge,
since both are encoded in the transaction base as transaction formulas. For instance, to encode the
drain-plug problem, we use the following two rules:

unplug Sink «— drainCovered.del ® drainUncovered.ins

sink Empty « drainUncovered

The first rule encodes the direct effects of the action unplugSink, which is to uncover the drain plug.
The second rule encodes the indirect effects of the action, which is to empty the sink. Formally, if the
transaction base P contains these two rules, then the following statement is true, for any database D:

if P,D---D' | unplugSink then P,D’ | sinkEmpty

That is, after unplugging the sink, the sink becomes empty.

Of course, classifying the effects of an action as direct or indirect can be a subjective process. In
principle, every indirect effect could be made into a direct effect by encoding it explicitly in action’s
definition. In practice, however, this approach is awkward, impractical, and leads to a loss of mod-
ularity and encapsulation. For instance, many actions have similar indirect effects, which should be
specified only once. Furthermore, indirect effects are often the result of physical constraints, which
are most naturally encoded separately. In addition, in database systems, updates to stored relations
have indirect effects on views, and it is extremely impractical to require that every update specify its
effect on every view. For these reasons, it is crucial to be able to combine procedural knowledge with
declarative knowledge, as in the example above.

To make this possible, 7R carefully distinguishes between the updatable database and the non-
updatable transaction base, something that other logics do not do. Unlike deductive databases, this
distinction is semantic as well as syntactic. In particular, 7R does not create an artificial distinction
between base and derived predicates. Instead, there is only one kind of predicate (as in classical logic),
and any predicate can contain both stored and derived data. To capture the distinction semantically,
path structures distinguish between a state D and a path (D) of length 1. The state represents
stored data (at least, when the database is relational), and the path represents derived data (the
view). Thus, as updates change the stored data from state D; to D2, the view changes automatically
from (D7) to (D2). Syntactically, in expressions like P,D--- = ¢, the database D represents the
updatable data, and the query ¢ represents derived data. Note that the transaction base P contains
both procedural and declarative knowledge, through which the database is updated and queries are
answered, respectively. Intuitively, each formula in the transaction base represents a procedure along
with its calling sequence. These procedures operate on the underlying database, either to change it,
or to compute answers.

A More Involved Ramification Example

To further illustrate 7R’s approach to the ramification problem, we consider another example, a
variation of Example 2.13. Here, we modify the robot so that it can pick up not just a single block,
but an entire stack of blocks. In Example 2.13, a block had to be clear before the robot could pick
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it up (i.e., nothing could be on top of the block). We now remove this restriction. That is, given a
stack of blocks, the robot can lift the entire stack by (carefully) grasping and lifting the bottom-most
block. More generally, the robot can split a stack in two by grasping and lifting a block in the middle
of the stack. This ability leads to an instance of the ramification problem, since the direct effect of
lifting one block has an indirect effect on the blocks on top of it (i.e., they get lifted too). The logical
problem is to infer the correct state of the world after the robot picks up a block. For the purpose of
this example, we assume, as in most blocks-world examples, that the database is relational.

To describe the direct effects of picking up and putting down a block, we define the following two
rules for updating the stored data:

pickup(X) < on(X,Y)Qon.del(X,Y) ® isclear.ins(Y) ® lifted.ins(X) (26)
putdown(X,Y) « isclear(Y)® on.ins(X,Y) ® isclear.del(Y) ® lifted.del( X) (27)

These rules should be compared to the corresponding rules in Example 2.13. Here, we have removed
the requirement that a block be clear before it is picked up. We have also added the predicate lifted(X),
since we are now interested in knowing what blocks have been lifted.

Physically, when a block is lifted, all blocks on top of it are also lifted. However, these changes are
not encoded into the pickup-action above: They are ramifications of the action. They can be derived
from the stored data by the following Horn rule:

lifted(X) « on(X,Y) A lifted(Y) (28)

which we add to the transaction base. This rule says that any block on top of a lifted block is itself
lifted. Note that this rule is recursive, so that when a block is lifted, every block above it is also lifted,
even when other blocks intervene. This is precisely the kind of rule that other logical approaches to
the ramification problem have trouble dealing with. Also note that data in the lifted relation is partly
stored and partly derived, reflecting the direct and indirect effects of the pickup-action.

As an example, suppose we have a stack of three blocks, where block A is on top of block B
is on top of block C. When the robot picks up block C, the atom lifted(blkC) is inserted into the
database by Rule (26). The atoms lifted(blkB) and lifted(blkA) are then automatically inferred by
Rule (28). These two atoms are the ramifications. Likewise, when the robot puts down block C, the
atom lifted(blkC) is deleted from the database by Rule (27). The atoms lifted(blkB) and lifted(blkA)
then automatically disappear, since they can no longer be inferred. In this way, we correctly represent
the state of the world as the robot picks up and puts down the entire 3-block stack. Formally, let P be
any transaction base containing Rules (26)—(28). If D is the database just before the pickup-action,
then the following statement is true:

if P,D---D’t pickup(blkC) then P,D’ |= Ulfted(blkA) A lifted(blkB)

In other words, querying the database after the execution of pickup(blkC') will establish that blocks
A and B have both been lifted—a ramification of the pickup-action.

7.9 Planning

In this section we show how to do planning of robot actions by encoding various planning regimes
as formulas in 7R. Planning is possible because 7 R-transaction bases can be used to represent
two types of knowledge about actions: action-definitions, which describe how to execute actions; and
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planning strategies, which describe how and when to execute actions. Unlike many planning systems,
TR does not need special mechanisms or special syntax to deal with these two types of knowledge.
In 7R, both types of knowledge can be represented as serial Horn rules. Planning itself is carried out
by the inference systems developed in Section 6.

This section considers three planning regimes. In the first, naive planning, the inference system
searches blindly for any sequence of actions that achieves the planning goal. The naive system is
simple to formulate, but is very inefficient and so its utility is limited to demonstrating that planning
is possible in 7R. The other two regimes improve upon the naive system by incorporating knowledge
about how goals are to be achieved. In the second regime, planning is described in terms of a hierarchy
of “scripts.” Scripts suggest ways of achieving goals, and often they summarize known methods in a
particular problem domain. This kind of planning, which is exemplified by systems such as NOAH
[87, 86] and MOLGEN (35, 90|, is natural for 7R, since each script corresponds to a high-level,
non-deterministic action. The third planning regime that we consider is exemplified by the well-
known STRIPS system [33, 61], which plans movements for a robot arm. We show that STRIPS can
be naturally represented in 7R, and that STRIPS inference rules are sound but incomplete in our
semantics. This incompleteness is responsible for certain failures of STRIPS, such as its inability to
exchange the contents of two registers [75]. Finally, we point out some additional problems with the
STRIPS planning strategy, problems that extend to many other planning systems. We then suggest
a solution in the form of an improved STRIPS planner that is firmly grounded in 7R.

Before proceeding, it is worth noting that many of the 7R-rules considered in this paper are
based on the insertion and deletion of tuples from a database. These rules, therefore, bear a conceptual
resemblance to STRIPS-actions. This is especially true of the rules in Example 2.13. Several differences
are worth noting however:

e Unlike STRIPS-actions, 7R-rules are formulas in a rigorous logical formalism. They are there-
fore declarative as well as executable.

e Rules in 7R are hierarchical and can be defined at many levels of abstraction. The six rules
in Example 2.13, for instance, represent six different levels of abstraction. In contrast, STRIPS
only allows actions to be defined at one level, directly in terms of database inserts and deletes;
i.e., it does not support intermediate-level actions (subroutines).

e Unlike STRIPS-actions, actions in 7R can be non-deterministic. As Example 2.13 shows, non-
determinism can make actions simpler and easier to formulate, reducing the amount of detail
that a user must specify.

e STRIPS-actions are relatively simple; they consist of a pre-condition (which is a series of tests),
followed by a set of deletes, followed by a set of inserts, in that order. In contrast, in 7R-rules,
inserts, deletes, and tests can be sequenced in any order. Thus, apart from pre-conditions and
post-conditions, any number of intermediate tests can also be specified. In fact, even more
general actions are possible in 7R, since in addition to sequential ordering, formulas may be
combined via classical conjunction, disjunction and negation.

7.9.1 Naive Planning

Planning is possible in 7R because actions can be defined both declaratively and procedurally. Thus,
one does not have to specify an action as an exact sequence of updates. Instead, actions can be defined
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declaratively, in terms of what they accomplish, not in terms of how they do it. This section shows
how to write rules in 7R that define a plan to be any sequence of actions that accomplish a given
task (such as building a stack, or designing a circuit). The approach illustrates in a simple way why
TR—a logic designed to execute actions—can also plan with them. However, we say that the resulting
planning system is naive, since it receives no guidance in achieving its planning goals.

This kind of planning is based on primitive planning actions (or operators). These primitive actions
differ from elementary updates in that they correspond to real-world activities, such as robot actions.
In Example 2.13, for instance, there are two primitive robot actions, pickup(X) and putdown(X,Y),
in terms of which the other robot actions are defined. These primitive actions are in turn defined in
terms of low-level database inserts and deletes, which are elementary updates that do not correspond
to robot actions.

To see how naive planning is done in 7R, consider a transaction base with n primitive actions,
a1,...,0,. We define a plan to be any sequence of these actions. Such sequences are defined by the
following 7R rules:

plan — a @ plan
plan «— a

a — aj

a < Qo

a — a,

These rules state that a can be any primitive action, and plan is any sequence of such actions. Now,
suppose we want to achieve a particular goal, such as ¢sclear(b), which states that block b must be
clear. The transaction ?— plan ® isclear(b) would then achieve this goal, and a sequence of primitive
actions that results in isclear(b) being true would be recorded in the proof. More generally, we will
want to achieve complex goals. For instance, suppose we want to stack block b on top of ¢ on top of d,
i.e., the planning goal is on(b, c) A on(c,d). The transaction ?— plan ® [on(b,c) A on(c,d)] achieves
this goal. Since the predicate on is a query, and thus does not change the database, we can replace
the classical conjunction by a serial one and write ?— plan ® on(b, c) ® on(c, d).

These ideas are easily generalized. If 1 is an arbitrary planning goal, then ?— plan ® ¥ is a
transaction that achieves the goal. This transaction therefore specifies a sequence of primitive actions
such that 1 is true in the final database state. The most common situation is when % is a conjunction
of queries, i.e., ) has the form ¢, A ... A g,,, Wwhere each g; is a query. In this case, the transaction
?7— plan® g1 ® - . . ® gm achieves the planning goal. Since this formula is a serial goal, it can be dealt
with by the inference system of Section 6. The plan itself can be extracted from the proof generated
by the inference system. Indeed, it suffices to retain only those steps in which the primitive actions,
a1, ..., ay, were used in the proof of plan ® g1 ® ... ® gm, disregarding lower-level actions used to
define the q;.

Note that this formulation of planning relies on several specific features of 7R actions:
e Serial conjunction, which allows primitive actions to be combined sequentially.
e Post-conditions, which allow planning goals to be stated.

e Recursion, which allows the inference system to generate sequences of actions of arbitrary length,
by applying the same rule(s) over and over again.
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e Non-determinism, which allows actions to be carried out in several different ways. Together with
recursion, non-determinism allows us to define a plan to be any sequence of primitive actions.

The approach to planning which we have just illustrated is conceptually simple, but is too unfocused
in its blind search for plans. The inference systems of Section 6, for instance, will simply string
actions together at random until a sequence is found that achieves the goal. This behavior is often
called forward (or bottom-up) planning. It is interesting to note that even if we operated the inference
system of Section 6.3 in a backward (or top-down) mode, it would still result in an unfocused, bottom-
up planner. The reason for this apparent paradox is that the inference system works on transactions
from left to right. Thus, in the transaction ?— plan ® 1, the planning goal % is the last thing to be
considered, and so it does not affect the way the plan is generated. If the plan does not achieve the
goal, then the inference system simply backtracks and generates another plan. This process continues
until a plan that achieves the goal is finally found.

7.9.2 Script-Based Planning

This section illustrates another approach to planning, known as “script-based planning.” Unlike naive
planning, it is highly focussed. Script-based planning augments action definitions with “scripts” or
“skeletal plans” that are known to be useful in achieving certain kinds of goals. For example, a skeletal
plan for making coffee might be as follows: grind coffee, boil water, put coffee in filter, pour water into
filter [29, Article XV.D1]. In 7R, this skeletal plan could be represented by a rule like the following:

makeCoffee «— grindCoffee ® boil Water ® fillFilter ® pour Water (29)

As this example illustrates, skeletal plans often have the form of a procedure (or recipe). For this
reason, skeletal plans are often specified in a procedural language. As the rule above illustrates,
however, skeletal plans can also be specified in a logic, TR, that integrates procedural and declarative
knowledge in a single framework.

Numerous Al systems use skeletal plans (e.g., [87, 35, 90, 88]). The rationale behind them is that
human planning relies heavily on an individual’s extensive experience in the problem domain. The
idea is to avoid reinventing general strategies, and to exploit plan outlines that have worked in the past
or that have worked on related problems. In fact, people rarely discover totally new plan outlines, and
instead, they usually instantiate existing ones [29, Article XV.E]. Script-based planning thus attempts
to produce competent plans, not wildly innovative ones. Furthermore, as we shall see in Section 7.9.4,
wild innovation has a dark side, since it can produce plans that have unacceptable and even dangerous
side effects.

We shall show how the two kinds of knowledge—action definitions and skeletal plans—are smoothly
integrated in 7R. In fact, the line dividing the two is very fuzzy. The main difference is that actions
tend to be specific and low-level, whereas skeletal plans tend to be abstract and high-level. In fact,
to some extent, we have already demonstrated this. Example 2.13, for instance, gave a hierarchy of
skeletal plans for stacking blocks. For convenience, we reproduce the transaction base of that example
here:
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stackSameColor(Z) « color(Z,C)® stackTwoColors(C,C,Z).
stackTwoColors(C1,C2,Z) «— color(X,C1)® color(Y,Cs) ® stackTwoBlocks(X,Y, Z)
stackTwoBlocks(X,Y,Z) — move(Y,Z)® move(X,Y)

move(X,Y) « pickup(X)® putdown(X,Y)

pickup(X) « isclear(X)® on(X,Y) @ on.del(X,Y) ® isclear.ins(Y")

putdown(X,Y) « wider(Y,X)® isclear(Y) ® on.ins(X,Y) ® isclear.del(Y)

These rules define a hierarchy of skeletal plans. For instance, the rule for stackTwoBlocks(X,Y, Z)
outlines how to stack blocks X on top of Y on top of Z. When the variables X, Y and Z are
instantiated, the skeletal plan becomes a concrete plan. Likewise, the action stackSameColor(Z) can
be viewed as a skeletal plan for stacking two blocks of the same color on top of Z. Here, the concrete
plan depends not only on the value of Z, but also on the initial state of the database, i.e., on what
blocks are available for stacking.

In this example, the planning problem is relatively simple, because each action can be expanded
in only one way. In general, however, each action may be defined by any number of rules, in which
case the variable bindings and the database state will determine which rules are applicable.

The example above is simple in another way, too: The rules assume that the blocks they need
are already clear (7.e., they have nothing on top of them). If blocks X, Y and Z are not clear, then
the action stackTwoBlocks(X,Y, Z) fails. This behavior is too simplistic for many AI applications.
However, it is not difficult to modify the example so that the robot will try to clear block-tops before
stacking them. To illustrate, we introduce a new predicate called achieve_isclear(X ) that tries to clear
the top of block X. Using this predicate, we define new versions of move and stackTwoBlocks, called
achieve_on(X,Y) and achieve_stack(X,Y, Z), respectively. These predicates do not fail if the blocks
X,Y and Z are not initially clear; instead, they try to correct the problem by performing a sequence
of actions that will result in the requisite blocks becoming clear. The new actions are defined by the
following rules (where move, isclear and on are as before):

achieve_stack(X,Y,Z) — achieve_on(Y, Z) ® achieve.on(X,Y)
achieve_on(X,Y) « achieve_isclear(X) ® achieve_isclear(Y) ® move(X,Y)
achieve_tsclear(X ) «— isclear(X)

achieve_isclear(X ) — on(Y, X) ® achieve_isclear(Y)® move(Y,Z2)® Z # X

As in the previous example, each of these rules specifies a skeletal plan for achieving a goal. Note
that the fourth rule specifies a recursive plan: If there is a block on top of X, then this block must
be cleared before X can be cleared. The third rule detects when X is finally clear, thus terminating
the recursion. Without the fourth rule, the predicate achieve_on would behave just like the predicate
stackTwoBlocks defined earlier (i.e., the two will succeed in exactly the same cases).

Notice that these rules distinguish two kinds of pre-condition: those that should be actively
achieved and those that should be passively tested. In the last rule, for instance, the formula on(Y, X)
is passively tested, while the formula isclear(X) is actively achieved. Without such a distinction (:.e.,
if all pre-conditions were actively achieved), the system would try to put X on top of Y, only to
remove it again! We shall return to this issue of “active” vs. “passive” pre-conditions in Section 7.9.4.



7 APPLICATIONS 85

Interacting Subgoals and Optimization

One problem with the above solution is that subgoals may interact destructively. For instance, in the
rule for achieve_on(X,Y), the subgoal achieve_isclear(Y') may undo the effects of achieve_isclear(X).
That is, in trying to clear Y, the robot may inadvertently put a block down on top of X, so that X
is no longer clear. Technically, this possibility does not matter, since if X is not clear, then the move
action will fail. In this case, the system will automatically backtrack and try to clear Y in a different
way. This process will continue until the system finds a way of clearing Y without covering X (whence
the move action will succeed).

It is possible, however, to avoid much of the backtracking, and thus increase the efficiency of
planning. To do this, we simply forbid the robot to put anything down on X once X has been cleared.
We do this by locking (i.e., protecting) the atomic formula isclear(X), so that it cannot be deleted
from the database. Because 7R integrates procedural and declarative knowledge, we can implement
locks through a simple programming methodology. First, we define an atom, b, to be locked if and
only if the atom locked b is in the database. We can then lock and unlock b by inserting and deleting
locked_b from the database. With this in mind, we modify the definition of achieve_on as follows,
where, for convenience, we have introduced special procedures for locking and unlocking the atom

isclear(X):

achieve_on(X,Y) « achieve_isclear(X)® lock_isclear(X)
Qachieve_isclear(Y) ® unlock_isclear(X) ® move(X,Y)

lock_isclear(X) « locked_isclear.ins(X)

unlock_isclear(X) « locked_isclear.del(X)

These rules ensure that isclear(X) is locked while the robot tries to clear Y. To enforce the locks,
each primitive robot action is modified to respect them, i.e., a primitive action is not allowed to delete
a locked item. We therefore modify the definitions of pickup and putdown as follows:??

pickup(X) «— isclear(X)® on(X,Y) ® [-locked_on(X,Y)]
Q on.del(X,Y) ® clear.ins(Y')

putdown(X,Y) « wider(Y,X)® isclear(Y) ® [—locked_isclear(Y)]
® on.ins(X,Y) ® clear.del(Y')

In this way, the robot cannot put a block on top of X if i¢sclear(X) is locked. Here, negation is
interpreted as failure, as described in Section 9, and a simple extension to the proof theory of Section 6
can deal with it.

Since locks affect the performance of a system but not its behavior, we shall view them as an

optimization technique. That is, we will define skeletal plans without using locks, knowing that they
can be automatically added by an optimizer.

*2In these rules, expressions of the form [¢] are an abbreviation for ¥ A state, where 1 is a first-order formula, and
state is the special proposition that is true only on states (Section 5.2). Such formulas force ¥ to query the current
database state, and are particularly useful when 4 involves negation-as-failure.
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Unordered Subgoals

In the examples given so far, the skeletal plans have been overly constrained, since each rule tries
to achieve subgoals in a particular order. Ordering subgoals is not always necessary, however. For
example, the rule defining achieve.on(X,Y) demands, unnecessarily, that X be cleared before Y is
cleared. This kind of unnecessary ordering precludes some perfectly good plans. Worse yet, it could
mean missing the most efficient plans, and it could prevent plans from satisfying dynamic integrity
constraints (Section 7.7). Such are the dangers of over-specification. Ideally, the user would specify
only what is necessary, from which the inference system would infer which plans are consistent with
constraints, and from which an optimizer would choose an efficient plan.

Fortunately, it is not hard to avoid this kind of over-specification: Instead of specifying a particular
order for subgoals, we can specify several possible orders or, indeed, any order. For example, instead of
specifying b ® ¢, we could specify (b®c)V (c®b). For convenience, we abbreviate the latter expression
to b & c. That is,

b&c = (b®c)V(c®Db)

This connective is sometimes called the shuffle operator. In general, we define the transaction
p1 &p: & ... &pi to succeed if and only if some ordering of the actions pi, ps...px succeeds. Thus,
unlike serial conjunction, this new connective is commutative. Notice that rules involving “&” can be
handled by the proof theory developed in Section 6, because they can be reduced to serial Horn rules
in a straightforward way. For example, the rule a «— b ® (c1 & ¢2) ® d is equivalent to the following
two serial Horn rules:

a<—b®c1®c2®d a<—b®62®61®d

Using the &-connective, the rules for building a stack can be written in a less constraining form,
as follows:

achieve_stack(X,Y,Z) — achieve_on(Y, Z) ® achieve.on(X,Y)
achieve_on(X,Y) «— [achieve_isclear(X ) & achieve_isclear(Y )] ® move(X,Y)
achieve_tsclear(X ) «— isclear(X)

achieve_tsclear(X ) — on(Y, X) ® achieve_isclear(Y)® move(Y,Z2)® Z # X

Here, we have used the shuffle connective in the second rule, since the order in which the two blocks
X and Y are cleared is unimportant. However, we have not used “&” in the first rule even though
we could have. In this case, the shuffle connective would only serve to needlessly increase the search
space, since to stack blocks X on top Y on top of Z, the order of the subgoals is important. One
advantage of skeletal plans is that they allow us to spell things out in this way when we want to.

7.9.3 STRIPS

The ideas above can be modified to simulate the STRIPS planning system [33, 75, 61] in 7R. It
should be clear by now that translating STRIPS-action definitions into serial Horn rules is a fairly
straightforward task (it is also spelled out below). What is not so trivial is to find a translation that
not only preserves the semantics of STRIPS-actions, but also enables one to simulate the STRIPS
planning strategy. This sections explains how to do this.

Each STRIPS-action is individually translated into a small set of serial Horn rules. One of these
rules encodes the STRIPS-action itself, and is used to execute the action. The other rules specify
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scripts that simulate the STRIPS planning strategy. The entire translation is straightforward and can
be carried out in linear time.

A STRIPS-action is a special kind of serial Horn rule: It has pre-conditions, but no post-conditions
or intermediate conditions, and it is defined entirely in terms of inserts and deletes of atomic formulas.
A STRIPS-action is specified by three sets of atomic formulas, called the pre-conditions, the delete-
list, and the add-list. If the pre-conditions are satisfied by the current database, then the formulas on
the delete list are deleted from the database, and those on the add list are inserted into the database.
Here is a STRIPS-action, taken from [75, Section 7.2], that describes the act of lifting a block, X,
that is on top of another block, Y:

unstack(X,Y):
Pre-conditions: handempty, isclear(X), on(X,Y)
Delete list: handempty, isclear(X), on(X,Y)
Add list: holding(X), isclear(Y)

Here, unstack(X,Y) is the name of the action. The corresponding 7 R-representation is straightfor-

ward:
unstack(X,Y) < handempty ® isclear(X) ® on(X,Y)

® tsclear.del X) ® on.del(X,Y) ® handempty.del (30)
® holding.ins(X) ® isclear.ins(Y')

This rule tells us how to ezxecute the action. However, to plan with such actions in a STRIPS-like
manner, we have to envelop them in appropriate scripts:

achieve_isclear(Y) « achieve_unstack(X,Y)
achteve_holding(X) « achieve_unstack(X,Y)

achieve_unstack(X,Y) « [achieveisclear(X) & achieve_on(X,Y) & achieve_handempty]
® unstack(X,Y)

(31)
The first two rules say that to clear Y or to hold X, try unstacking X and Y. The third rule uses
the shuffle operator, “&”, to convey information that to unstack X and Y, first try to satisfy the
pre-conditions of the unstack-action in any order, and then execute the action itself. This is exactly
what the STRIPS system does. Note that when taken together, the scripts for all the actions will
normally be mutually recursive.

The rules above describe how to convert goals into subgoals. In addition, we must describe how to
stop the planning process. This happens when the goals we are trying to achieve are satisfied by the
current database. This situation is described by the following rules, which we add to the transaction
base. These rules, one for each predicate symbol, terminate the recursion.

achieve_on(X,Y) < on(X,Y)
achieve_tsclear(Y) < isclear(Y) (32)
achteve_holding(X) « holding(Y)
achieve_handempty <« handempty

Taken together, the Rules (30-32) specify the planning process; but we must also spell out how
planning goals are expressed. To see how this is done, suppose we want to stack block b on top of ¢
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on top of d; that is, we want to find a sequence of robot actions such that on(b,c) and on(c, d) are
true in the final database state. This planning goal is specified by the following formula:

?— |[achieve_on(b,c) & achieve_on(c,d)] ® on(b,c) ® on(c,d)

The first part of this formula (in square brackets) represents a sequence of robot actions whose purpose
is to achieve on(b, ¢) and on(c,d). The rest of the formula then checks whether the planning goal was,
in fact, achieved. If it was not, then the inference system backtracks and tries to achieve the goal in
another way. The reason why it is necessary to check the planning goal is that the STRIPS planning
strategy is sensitive to possible interactions between subgoals. For instance, trying to put ¢ on d may
result in taking b off of c.

So far, we have shown how to translate a specific STRIPS-action, unstack, into serial Horn rules.
It is easy to generalize the approach to other actions. To do this, suppose we are given an arbitrary
STRIPS-action, specified as follows:

zyz_action :

Pre-conditions: pi,ps...p; (33)
Delete list: dy,dy...d;
Add list: a1,ay...0%

To specify the execution of this action in 7R, we add the following rule to the transaction base:

zyz_action «— p; APy ® ... Q p;
Qdi.del @ dy.del @ ...® d;.del (34)

®ai.ins ® as.ins ®...R a.ins
To plan with this action, we add also the following planning scripts, expressed as serial Horn clauses:

achieve_.a; <« achieve_xyz_action
achieve_as <« achieve_xyz_action

(35)
achieve_ap, <« achieve_ryz_action

achieve_zyz_action « [achieve_p; & achievepy & ... & achieve_p;] ® zyz_action
The conditions for terminating the recursion through zyz_action are similar to (32) above:
achieve_p, <— p,, foreach s=1,...,%
Finally, to pose a set of planning goals, g1, 92 - . .¢gn, We use the following transaction:
?— [achieve_g1 & achieve_gy & ... & achieve g,| ® g1 ® g2 ® ... ® gn (36)

Given this formula, the inference system tries to achieve each of the goals g; in some order. It then
checks whether each of the g; is true in the final database state. If not, the system backtracks and
tries to achieve the ¢;’s in some other order.

The transaction (36) simulates the inner workings of STRIPS quite closely, but not always. In fact,
the translation of a STRIPS-action (33) into the 7R-program (34-36) can be seen as an “ultimate
STRIPS-style planner,” which finds a plan whenever the original STRIPS does, but succeeds in more
cases. This is because the formulas (34-36) rely on the sound and complete proof theory of 7R. Thus,
they do not suffer from the idiosyncrasies, such as the inability to swap the contents of two registers
[75, Section 7.5], that arise in STRIPS due to the ad hoc nature of its planning strategy.
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7.9.4 Improved STRIPS

Many planning systems search for any sequence of actions that achieves a given goal. This is true of
naive planning, of STRIPS, of systems based on goal regression, and of many other systems. Such
systems can produce plans with unusual side effects that may look bizarre or are plainly unacceptable.

Unusual side effects arise for two specific reasons. First, many planning systems treat all outcomes
of an action as equal. In particular, they do not distinguish between an intended outcome and a side
effect. Second, many planning systems treat all pre-conditions of an action as equal. In particular,
they do not distinguish between pre-conditions whose satisfaction needs to be planned, and those
pre-conditions that are mere tests and thus should be satisfied without planning. The result in both
cases is that many planning systems often have a much larger search space than necessary, one that
includes intended plans as well as, so to speak, plan-looking non-plans. This section discusses these
two issues in more detail, and shows how to avoid them, both in STRIPS and in 7R.

Intended Action Outcomes

Often actions have multiple, generally unrelated effects. For example, shooting may have two out-
comes: hitting the target and unloading the gun. In planning, the outcomes of an action can usually
be divided into two types: intended outcomes, and side effects. For instance, unloading a gun is nor-
mally a side effect of a shooting action, not its intended effect. Nevertheless, many planning systems
do not make this distinction. Consequently, they may produce bizarre plans, such as shooting in order
to unload a gun; or launching missiles in order to achieve disarmament.

To make the problem more concrete, consider the following STRIPS action of shooting a gun at a

subject:
shoot(X):
Pre-conditions: alive(X), loaded
Delete list: alive(X), loaded
Add list: dead(X), wunloaded

In STRIPS, if the planning goal were unloaded, then shoot( fred) would be a valid plan for achieving
this goal.?2 The reason such bizarre plans may be generated is that all entries on the add-list are
treated equally by the planning system. One way around this problem is to identify the intended
effects of an action. For instance, the intended effect of shoot(X) is to achieve the goal dead(X ), not
the goal unloaded.

It should not be difficult to modify STRIPS to make such distinctions: For each STRIPS-action,
we simply mark those entries on the add list that correspond to the purpose or intent of the action.
Thus, in the case of shoot(X ), we would mark dead(X ). To achieve a goal, the planning system would
use only those actions that are intended to achieve the goal. In this way, egregious side effects can be
avoided.

We incorporate this idea in our translation (34-36) of STRIPS by modifying slightly the script
(35); other parts of the translation remain unaffected. The modification consists in omitting those
rules in (35) that try to achieve unintended outcomes of zyz_action. This includes all the rules with
achieve_a; in the head, where a; is not marked as an intended outcome.

230ne of the theories that the police developed in the aftermath of the Yale shooting incident was that this incident
was caused by a stray planner who was blind to the distinction between various outcomes of its actions.
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For instance, the 7R-definition of shoot(X) corresponding to the above STRIPS-action would be:
shoot(X) «— alive(X) ® loaded ® alive.del( X)) ® loaded.del ® dead.ins(X ) ® unloaded.ins  (37)

and its script would become:

achteve_dead(X) « achieve_shoot(X)

38
achieve_shoot(X) « [achieve_alive(X) & achieve_loaded] ® shoot(X) (38)

Unlike the script that would result from the general schema in (35), our new script does not include the
rule achieve_unloaded — achieve_shoot(X). Thus, shoot(X) cannot be used to unload the gun. Be-
sides alleviating the problem of unintended outcomes, this approach has the added benefit of reducing
the planning search space, since there are now fewer ways to achieve a goal.

Action Pre-conditions

In general, an action may have many pre-conditions. In our shooting example, the two pre-conditions
were that the gun must be loaded and that the victim must be alive. In planning, the pre-conditions
of an action can usually be divided into two types: Those pre-conditions that one can plan to satisfy,
and those that should be satisfied without planning. For instance, in (37), one should not plan to
bring the subject X to life if he is already dead. Thus, some pre-conditions should be actively achieved
(like loaded), while others should just be passively tested (like alive(X)). As with the outcomes of
actions, many planning systems do not make this distinction; and consequently, they can produce,
what we earlier called, plan-looking non-plans.

For some planning systems, distinguishing between “active” and “passive” pre-conditions, should
not require extensive modifications. In STRIPS, for example, one could mark the pre-conditions of
each action as either active or passive. Then, during planning, the active pre-conditions would become
subgoals, whereas the passive pre-conditions would simply be tested against the current database
state. However, unlike 7R, each such change would require re-examination and modification of the
planning algorithm, since STRIPS does not rely on a general-purpose proof theory that is guaranteed
to execute its specifications. In other words, unlike 7R, the STRIPS planning algorithm is built into
the semantics of STRIPS, and is not specified by logical formulas.

Incorporating this idea in 7R necessitates one additional modification to our translation (34-36)
of STRIPS. As before, we leave the action definitions untouched and simply modify the planning
scripts (to reflect the new planning strategy). The modification affects only the last rule in (35),
where body-literals of the form achieve_p, must be removed if p, is a passive pre-condition.

In the case of shoot(X), the last rule in the script (38) now becomes:
achieve_shoot(X) « achieve_loaded ® shoot(X)

Here, the pre-condition alive(X) of shoot(X) is considered passive and its satisfaction is not actively
sought. Thus, to kill X, the robot may try to shoot X, after first loading the gun. Furthermore, it
will not do anything bizarre, like trying to revive X after discovering that X has already been killed
by another robot.

In other, less dramatic situations, one still may need to distinguish between active and passive

pre-conditions. For instance, consider the following STRIPS-action, taken from [75, Section 7.2], for
picking up a block, X, from the table:
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pickup(X):
Pre-conditions: ontable(X), isclear(X), handempty
Delete list: ontable(X), isclear(X), handempty
Add list: holding(X)

and the corresponding 7 R-definition:

pickup(X) <«— ontable(X)® isclear(X)® handempty
® ontable.del( X)) ® isclear.del( X ) ® handempty.del
® holding.ins(X)

The problem here is that STRIPS can produce bizarre plans in which the robot must pick up X before
it can pick up X. To see this, notice that to pick up X, STRIPS will try to achieve the pre-condition
ontable(X ). This requires that the robot be holding X, which in turn requires that the robot pick up
X. The root of the problem here is that ontable(X) is a pre-condition that should be passively tested
for, not actively achieved. The desired behaviour is achieved by the following script:

achieve_holding(X) « achieve_pickup(X)
achieve_pickup(X) « [achieveisclear(X) & achieve_handempty| ® pickup(X)

In this way, achieving holding(X) does not call for achieving ontable(X ). Instead, after achieving
isclear(X) and handempty, the system tries to execute pickup(X) directly. If X is not on the table,
then the action simply fails to execute. In this case, the planner must look for some other way to
make holding(X) true (such as using the action unstack(X,Y) described earlier). In this way, the
system avoids plans that have senseless loops in them.

Avoiding loops is not the only reason for distinguishing between active and passive pre-conditions.
For instance, consider the following robot instructions, which raise the level of drama once again:

To move an inanimate object, carry it.

. . . . . I 39
One way to make an animate object inanimate is to kill it. (39)

Then, if we asked the robot to bring Fred to us, the robot would reason—correctly—that it could
do this by first killing Fred. In principle, we could get around this problem by asking the robot to
bring Fred to us alive; but we might not think of this at the time of sending the robot on the errand.
Furthermore, asking the robot to spare Fred’s life is no insurance that it won’t attempt to break
Fred’s bones, while trying to persuade him to come along. Who knows what qualifications would be
enough to ensure robot’s safe operation? This entire qualification problem can be avoided, though, if
we distinguish between active and passive pre-conditions. For instance, in (39), we need only mark
the pre-condition “inanimate” as passive, so that it will not be actively pursued.

8 Hypothetical Reasoning

Hypothetical queries play an important role in reasoning about knowledge. A frequently cited example
comes from the British Nationality Act, which states that, “You are eligible for citizenship if your
father would be eligible if he were alive” [36]. The reader is referred to [14, 16, 17| for numerous other
examples of hypothetical queries. Because of such queries, it is often necessary to perform hypothetical
updates as well as real ones. For instance, a game-playing program may reason as follows: After
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performing some given series of actions, «, does the opponent’s situation improve? Observe that the
actions mentioned in this query are purely hypothetical and are not committed. If the answer to the
query is “no,” then the program could perform action «, at which point the action ¢s committed.
Otherwise, the program could do further depth analysis and perform the most favourable move that
it finds. By distinguishing between real and hypothetical actions, this program combines reasoning
about action (planning, exploration of alternatives, etc) with actual execution of actions (committing
itself to a particular course of action). 7R is the only logic we are aware of that can do both these
things.

This section extends the syntax and the semantics of 7R to deal with hypotheticals. Extension of
the proof theory then follows. The last subsection discusses a number of applications of hypothetical
reasoning in 7R.

8.1 Hypothetical Formulas

To express hypotheticals, we introduce a modal operator “O” and a closely related operator “0O0”. In
modal terms, & ¢ means that execution of ¢ is possible starting at the present state, and O ¢ means
that the execution of ¢ is necessary at the present state. Intuitively, “necessity” means that ¢ is the
only transaction that can succeed from the present state. Formally, it means that ¢ is executable along
every path leaving the current state, D. Likewise, “possibility” means that ¢ is executable along some
path leaving the current state.

To define the meaning of hypotheticals formally, let M = (U, F, L,qtn) be a path structure, let D
be a state, and let v be a variable assignment. Then

e M, (D) =, O¢ if and only if there is a path, , starting at state D, such that M, 7 |=, ¢ holds.

e M, (D) =, O¢ if and only if for every path, =, starting at state D, it is the case that M, 7 |=, ¢.

Here, (D) is the path of length 1 containing state D. From these definitions, it is easy to verify that
the following formulas are tautologies, i.e., that they are true on every path of every structure:

OOCp > O O0¢ <= O¢
Olpvy) > Op v Oy O(¢Ae) <« O¢ A Oy
O(eng) — OoAOY O(¢ve) <« Dov Dy (40)
O(e®d) —  ©Od O(¢e¢) < 0O¢
C(eeY) < (68 OY)

Note that hypotheticals hold immediately, i.e., over paths of length 1 and so they do not cause
any real state transitions. This is reflected formally by the following equivalence:

state = Opath

where, as before, path is the special atom that is true on every path, and state is the special atom
that is true on every path of length 1 (i.e., at every state). To see that this equivalence holds, note
that, by definition, Opath is true only on paths of length 1. Hence, M, 7 |= Opath if and only if =
is path of length 1, i.e., if and only if M, 7 |= state. (It is shown in Section 5.2 that state cannot
be expressed in 7R without hypothetical operators.) Hypotheticals, thus, increase the expressive
power of our language, since we no longer need the special atom state. Henceforth, we shall treat
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state as an abbreviation for Opath. In fact, since path is just an abbreviation for ¢ V —¢, for any ¢,
we no longer need any predefined atoms at all.

Unlike the standard modal operators, our “$” and “0O” are not dual to each other in the normal
sense; that is, O¢ Z ~-O-¢ and O¢ Z ~O-¢. Instead, we have the following two equivalences:

O¢ = state A =g O¢ = state A —“O-¢

However, it is not hard to define new hypotheticals, ¢ and W, for which the usual duality holds. They
are based on the idea of a continuation path: a path =’ is a continuation of path = if and only if 7 is
a prefix of «'. Thus, (D1, D3, D3, Dy) is a continuation of (Dq, D).

e M, 7 |= 4¢ if and only if there is a continuation, 7', of 7 such that M, 7' |= ¢ holds.
e M, 7 = B¢ if and only if for every continuation, 7', of 7, it is the case that M, 7' |= ¢.

It is not difficult to see that ¢¢ = —-M-¢ and M¢p = —¢—¢. The previous form of hypotheticals can
now be expressed as follows: O¢ = state A ¢, and O¢p = state A M¢p. However, the proposition
state itself cannot be expressed using these new hypothetical operators, as it can with the old ones.
Therefore, the expressive power of the new hypotheticals is not the same. The operators “B” and
“4” are useful for reasoning about program execution, and are related to the operator “suff” in the
version of Process Logic described in [47]. In this paper, however, we shall consider “$” and “0O” only.

8.2 Retrospection

Before proceeding to the proof theory, we introduce another class of modal formulas related to hy-
potheticals. We call them retrospective formulas (abbr., retrospectives). Intuitively, a retrospective
formula ¢ tests whether we could have executed ¢ to reach the current state. Likewise, ¢0 tests
whether we must have executed ¢ to reach the current state.

The semantics of the retrospectives is dual to that of hypotheticals. This duality is closely related
to the duality between normal and reverse execution of transactions introduced in Section 6.3. This
connection will be seen clearly in the proof theory in the next subsection. To define the meaning of
the retrospectives formally, let M = (U, F, I,q:n) be a path structure, let D be a state, and let v be a
variable assignment. Then

e M, (D) =, ¢ if and only if there is a path 7 ending at state D such that M, 7 |=, ¢ holds.
e M, (D) =, ¢0O if and only if for every path 7 ending at state D, it is the case that M, 7 |=, ¢.

Again, (D) is the path of length 1 made from state D. The following tautologies are analogous to
(40):

POO o 9O 400 <  ¢O
(VPO o 9OV PO (pA)O > ¢O A O
(PAP)O = O A PO (pvy)d « ¢OV O
(@ Y)O — 9O (pO¥)D < 9O
(¢@¢)C <« (90090

Retrospective formulas are not dual to each other in the usual sense, just as hypothetical operators
are not. However, we can define a version of retrospectives that obeys duality, just as in the case of
hypotheticals.
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8.3 Proof Theory for Hypotheticals and Retrospectives

Hypothetical and retrospective formulas are interesting in their own right, but in addition, they bind
together the two proof theories of Section 6.2, systems ! and S/, We demonstrate this in stages.
First, we expand system S so that it infers hypotheticals. Likewise, we expand system S/ so that it
infers retrospectives. We then combine the two into a single, unified inference system.

8.3.1 <-Serial-Horn Programs

The first step is to generalize the idea of serial Horn rules to include hypotheticals and retrospectives.
The generalization allows the possibility operator, O, in rules bodies, but not the necessity operator,
O. This is analogous to allowing existential quantifiers in the bodies of classical Horn rules, but
disallowing universal quantifiers. Our extension of serial-Horn rules is thus called <-serial-Horn rules.
A $-serial-Horn rule is a formula of the form a <— ¢, where a is atomic and ¢ is a O-serial goal,
defined as follows:

Definition 8.1 (O-Serial-Horn Goals)

e an atomic formula is a O-serial goal.
o if 11 ... ¢ are O-serial-Horn goals, then so is 1 ® - - - ® .

e if 1) is a $-serial-Horn goal, then so are O and <.

The following formulas are all O-serial-Horn goals:
a(X)® b(X) a(X)® Ob(X) a(X)O® b(X) Ca(X)® b(X)O

Ofa(X) ® Ob(X) [a(X) ® O(B(X) 8 ¢(X)0) @ d(X)]OO

We define a $-serial-Horn transaction to be an existentially quantified <-serial goal, which we write
as (3) ¢, where ¢ is a O-serial goal. As a special case, any serial-Horn transaction (or rule) is also
a O-serial-Horn transaction (or rule). We define a O-serial-Horn program to be any finite set of <-
serial-Horn rules. The definition of data oracles needs no modification, though we still require them
to satisfy the conditions of Definition 6.2, such as independence from the transaction base, etc.

In the above definitions, we assume that special atoms state, arc and path are implemented
via the oracles and the transaction base, as described in Section 6.1. This simplifies the theoretical
development, but does not reduce the expressive power of <-serial-Horn rules.

8.3.2 Inference System $°

We now present a proof theory that amalgamates our earlier inference systems, $! and $Z, and that
is sound and complete for O-serial Horn programs. The new system, called $°, has ten inference rules:
the six rules of systems & and &7, plus four new rules—4, 4’ and 5, 5'—defined below. The axioms
for the new system are just the axioms for S plus the axioms for $II. Intuitively, §° combines
normal execution and reverse execution in a single inference system. This generality is needed since
hypotheticals correspond to forward execution and retrospectives correspond to reverse execution.
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Each of the four new rules is based on two ideas: (Z) combining two executions from the same
database state into a single serial execution, and (%¢) treating one of the two executions as hypothetical
or retrospective. Since there are two kinds of execution (normal and reverse), executions can be paired
in four possible ways, which is why there are four new inference rules. For clarity, we divide these
rules into two types. Rule 4 extends system S to include hypotheticals, and Rule 4’ extends system
$!7 to include retrospectives. Rules 5 and 5’ then combine these two systems into a single system for
arbitrary combinations of hypothetical and retrospective formulas.

Introduction of modalities:
Let o be a substitution, and rest and test be a {-serial goal. Then,

P,D--- F (J)testo P,D--- - (J)resto

4. P,D--- F (3)(Otest) @ rest

if testc and rest o share no variables.

P,---D F (J)resto P,---DF (J)testo

!
4 P, ---D I (3) rest ® (testd)

if testc and rest o share no variables.

Intuitively, Rule 4 combines two normal executions into a single normal execution, converting one
execution to a hypothetical. Likewise, Rule 4’ combines two reverse executions into a single reverse
execution, converting one execution to a retrospective. We can also interpret these rules from the
perspective of top-down inference. From this view, to execute test ® rest, Rule 4 separates the
hypothetical from the rest of the transaction, and executes it separately, in the background. Likewise,
to execute rest ® testO, Rule 4’ separates the retrospective from the rest of the transaction, and
executes it separately.

The requirement that testoc and resto must share no variables simplifies the proof theory. It
implies that unification will involve only one sequent at a time. In terms of top-down SLD inference,
it means that any variables common to test and rest should be bound to ground terms before test is
executed. This kind of requirement is common in logic programming systems. For example, Prolog
systems often require that variables in negative goal literal be bound to ground terms before the
negative literal is executed. Of course, unlike negation-as-failure, hypotheticals have a well-defined,

monotonic semantics, and there are no problems with recursion through hypotheticals.

By adding rules 4 and 4’ to inference systems & and $7

, respectively, we get two new inference
systems, one for hypotheticals and one for retrospectives. Taken together, Rules 1-4 are sound and
complete for O-serial-Horn transaction bases that use hypothetical operators only (where Rules 1-3
come from system $7). Likewise, inference Rules 1'~4’ are sound and complete for transaction bases

that use retrospective operators only (where Rules 1'-3' come from system %II).

Note that Rules 4 and 4’ use different kinds of sequents. One kind has the form P,D--- F ¢, as
in inference system . Here, D is the initial state in the execution of transaction 1. The other kind
of sequent has the form P, ---DF ¢, as in &/, Here, D is the final state in the execution of . So
far, these two kinds of sequents have been independent of each other, isolated in separate inference
systems. However, to execute transactions that contain both hypotheticals and retrospectives, we
need both kinds of sequents. This is because the current database state can be both the initial state
of a hypothetical execution, and the final state of a retrospective execution. The following inference
rules capture this idea, integrating the two kinds of sequents into a single inference system.

Mized introduction of modalities:
Let o be a substitution, and rest and test be a {-serial goal. Then,
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5. P, D F (3)testo P,D-- I (3)resto if test o and resto share no variables.
P,D--- I (3) (testd) @ rest

5'. P, D F (3)resto P,D- £ (3)testo if testo and resto share no variables.
P, ---D I (3) rest ® (Otest)

Intuitively, Rule 5 combines a reverse execution and a normal execution into a single normal execution,
converting the reverse execution to a retrospective. Likewise, Rule 5’ combines a reverse execution and
a normal execution into a single reverse execution, converting the normal execution to a hypothetical.
We can also interpret these rules from the perspective of top-down inference. From this view, to execute
testO @ rest, Rule 5 separates the retrospective from the rest of the transaction, and executes it in
reverse, but in the background. Likewise, to execute rest ® Otest, Rule 5’ separates the hypothetical
from the rest of the transaction, and executes it normally, but in the background.

In Definition 6.4 we stated the general notion of deduction. Since this definition is applicable

to any inference system, it is applicable to $° in particular. Using it, we can state the following
soundness and completeness result, which is analogous to Theorem 6.5.

Theorem 8.2 (Soundness and Completeness for $) If the O-serial-Horn conditions are satis-

fied, then
e P,D-—- = (3)¢ if and only if there is a deduction in S° of the sequent P,D --- - (3) ¢.
o P, D | (3)¢ if and only if there is a deduction in S of the sequent P, ---D + (3) ¢.

Proof: See Appendices D and E. O

It is worth noting that with hypotheticals it is possible to reformulate our inference systems
using only one type of sequent, P,DF ¢. These sequents correspond to statements of the form
P,Dy...D, = ¢ with n = 0, as given in Definition 5.6. The reformulation itself, which we leave as an
exercise for the reader, is made possible by the following result.

Lemma 8.3 If the O-serial-Horn conditions are satisfied, then
e PD--—- =(3)¢ ifandonlyif P,D [ (IO
e P,--D = (3¢ ifandonlyif P,D[E (3)¢

8.3.3 Example: Hypotheticals

This section gives an example of inference when real and hypothetical updates are mixed in a single
transaction. The example, which uses only one kind of sequent, also illustrates the use of inference
rule 4. Unlike the deductions of Section 6, the deduction in this section is not linear, but has a tree-like
structure.

The example centers on the transaction ?— p ® Og ® r. This transaction consists of three sub-
transactions, p, ¢ and r, where first p is executed, then ¢ is executed hypothetically, and finally » is
executed. Because ¢ executes hypothetically, all its updates are rolled back before r starts executing.
Thus, $g acts as a test, one that must be satisfied before r can execute. In contrast, updates due to
p and r are not rolled back and have a permanent affect on the database, i.e., they are committed.
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Execution of the transaction is recorded in the deduction below, which we describe from a top-
down perspective. In this deduction, the initial database is empty, and the transaction base contains
the following three rules:

p «— a.ins® b.ins qg—cins®d.ins®b® d r«—e.ins® f.ins® g.ins

Top-down deduction proceeds by first trying to execute p, just as in system $. Next, inference rule
4 is applied, which separates the hypothetical test, Og, from the rest of the transaction:

Pa{}"' l_p®<>Q®T
if P,{}--- F a.ins® b.ins® Oqg®r by inference rule 1,

if P,{a}-- Fb.ins®Oqg@®r by inference rule 3,
if P,{a,b}-- FOq¢@r by inference rule 3,
if P,{a,b}-- I ¢

and P,{a,b}-- Fr by inference rule 4.

Notice how inference rule 4 has split the sequent P, {a,b}--- F O¢® r into two sequents. Intuitively,
one sequent is for the execution of ¢, and the other is for the execution of r. The proof now splits into
two branches, each proceeding exactly as in inference system 7.

The branch for proving ¢: P,{a,b}--- F ¢
if P,{a,b}-- Fc.ins®d.ins®@ b® d by inference rule 1,
if P,{a,bc}-- Fdins@b®d by inference rule 3,
if P,{a,bc,d}-- Fb®d by inference rule 3,
if  P,{a,b,c,d}-—- Fd by inference rule 2,
if  P,{a,b,c,d}--- () by inference rule 2.
The branch for proving r: P,{a,b}-- Fr
if P,{a,b}--- I e.ins® f.ins® g.ins by inference rule 1,
if P,{a,be}--- - f.ins® g.ins by inference rule 3,
if  P,{a,b,e,f}--- F g.ins by inference rule 3,
if  P,{a,be,f,9}-—- F () by inference rule 3.

Both branches terminate with an axiom sequent, so they both succeed, and so the entire deduction
succeeds.

Notice that the two branches both begin at the same database state, {a,b}. Thus, the branch
for r ignores all the updates carried out by the branch for ¢. Intuitively, this is because ¢’s updates
are hypothetical, and are thus rolled back before r starts executing. Also note that the two branches
end at different states, {a,b,c,d} and {a,b, e, f,g}. However, only the latter state is the result of
committed updates, so it represents the new state of the database after transaction execution.

8.3.4 Example: Retrospectives

This section modifies the example of Section 8.3.3 so that it combines real and retrospective updates
in a single transaction. The example also illustrates the use of inference rule 5 to change from one
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kind of sequent to another. Again, unlike the deductions of Section 6, the deduction in this section is
not linear, but tree-like.

The example centers on the transaction p® ¢ ® r. This transaction consists of three subtransac-
tions, p, ¢ and r, where first p is executed, then ¢ is executed retrospectively, and finally r is executed.
Because g executes retrospectively, all its updates are rolled back before r starts executing. In contrast,
updates due to p and r are committed.

Execution of the transaction is recorded in the following top-down deduction. In this deduction,
the initial database is empty, and the transaction base contains the following three rules:

p «— a.ins® b.ins qg—dRb®d.del® c.del 7« e.ins® f.ins® g.ins

Top-down deduction proceeds by first trying to prove p, just as in system $. Next, inference rule 5
is applied, which separates the retrospective test, ¢&, from the rest of the transaction:

Pa{}"' |—p®q<>®7'
if P,{}--- F a.ins® b.ins® ¢O ®r by inference rule 1,

if P,{a}-- Fb.ins®qO®@r by inference rule 3,
if P,{a,b}-- Fq¢gO®r by inference rule 3,
if P, ---{a,b} I ¢

and P,{a,b}-- Fr by inference rule 5.

Notice how inference rule 5 has split the fourth sequent (involving ¢ ® r) into two, different-style
sequents: one is for the reverse execution of ¢, and the other is for the normal execution of r. The
proof now splits into two branches, one using inference system S'7, and the other using $7. In this
way, system S integrates 7 and $7 in one system.

The branch for proving ¢: P,---{a,b} ¢
if P,---{a,b}Fd®b®d.del® c.del by inference rule 1,
if P,---{a,bc}d®b®d.del by inference rule 3/,
if P,---{a,bc,d}Fd®Db by inference rule 3’,
if P,---{a,bye,d}-d by inference rule 2,
if  P,---{a,b,c,d} () by inference rule 2.
The branch for proving r: P,{a,b}-- Fr
if P,{a,b}--- I e.ins® f.ins® g.ins by inference rule 1,
if P,{a,be}--- - f.ins® g.ins by inference rule 3,
if  P,{a,b,e,f}--- F g.ins by inference rule 3,
if  P,{a,be,f,g}-—- F () by inference rule 3.

Both branches terminate with an axiom sequent, so they both succeed, and so does the entire deduc-
tion.

Asin the previous subsection, the branch for r ignores all the updates carried out by the branch that
proves ¢, as ¢’s updates are retrospective and thus are rolled back before r starts executing. Likewise,
the two branches end at different states, {a,b,c,d} and {a,b, e, f, g}, but only the latter state is the
result of committed updates, so it represents the new state of the database after transaction execution.
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8.3.5 Execution as Deduction in &°

According to Theorem 8.2, inference system $© allows us to prove statements of the form P, ---D |=
(3) ¢ and P, D--- |= (3) ¢. By themselves, these statements tell us that a transaction succeeds from
a given database state, D; but they do not tell us what the resulting database state is. For this reason,
we also want to prove statements of the form

PaDOa"'aDn |: (El)¢ (41)

In particular, given the initial state, Dy, or the final state, D,,, we want to infer the other states.

Intuitively, this corresponds to forward and reverse execution, respectively.

This problem also arose in the development of systems $! and $If

in Section 6. There, we
addressed the problem by defining the notion of ezecutional deduction. The idea was to weed out
spurious sequents so that the execution path, Dg,...,D,, could easily be extracted from a proof.
For systems ! and S, this was easy because each inference rule has exactly one premise and one
consequent. Executional deductions thus have a linear structure, in which each sequent is derived

from the one immediately preceding it.

In system S, things are more complex, because the new inference rules in this system have two
antecedents. An executional deduction is therefore structured as a binary tree. In this tree, each node is
a sequent, where leaf nodes are axioms, and internal nodes are derived from their children. Intuitively,
one branch in this tree represents the execution of the committed portion of the user’s transaction.
Tributaries of this branch represent the execution of hypothetical or retrospective subtransactions.

We now formalize these ideas, beginning with the following definition.

Definition 8.4 (Ezecutional Deduction in $°) Let P be a transaction base. An ezecutional deduction
in §° of a transaction (3) ¢ is a binary tree of sequents that satisfy the following conditions:

1. The root of the tree is a sequent of the foorm P,D--F(3)¢ or P,--DF(3)¢p, for some
database D.

2. The leaves of the tree are axiom-sequents, i.e., sequents of the form P,D’'---F() or
P,---D'F (), for some database D'.

3. Each non-leaf node can be derived from its children by applying one of the inference rules
of system $°; i.e., the node is the consequent of some rule for which the children are the
antecedents.

O

It is not hard to see that any topological sort of the sequents in an executional deduction yields
a deduction in the general sense of Definition 6.4. The example deductions given in Sections 8.3.3
and 8.3.4 are both executional.

A close examination of the inference rules of System $ reveals that in each rule, the consequent
involves a formula called rest. This is the committed part of the transaction, and in each rule, exactly
one antecedent involves this formula. We call this antecedent the committed antecedent of the rule.
For example, in inference rules 1-3 and 1’-3', there is only one antecedent, and it is committed. In
inference rules 4, 4’ and 5, 5, there are two antecedents, one is committed, and the other is hypothetical
or retrospective.
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P’{}"' |—p®q<>®7'

P,{}--- F a.ins®b.ins®@qO Q@ r

P,{a}-- F b.ins®@qO Q@ by inference rule 3,
P,{a,b}-- F¢gO®r by inference rule 3,
P,{a,b}--- Fr

P,{a,b}--- F e.ins® f.ins® g.ins

P,{a,b,e}--- F f.ins® g.ins by inference rule 3,
P,{a,b,e, f}--- I g.ins by inference rule 3,
P,{a,b,e, f,g}-- F () by inference rule 3.

Figure 3: The Committed Branch of an Executional Deduction

We can extend this idea to executional deductions. First, in deriving a node (sequent) from its
children, we apply a single inference rule. Exactly one of the children corresponds to the committed
antecedent of the rule. We call it the committed child of the node. Second, starting from the root of
the binary tree, we trace a path to a leaf by always moving from the current node to its committed
child. This defines a branch of the tree, which we call the committed branch. The leaf at the end of
this branch is called the committed leaf. Intuitively, the committed branch describes a sequence of
permanent database updates, and the committed leaf describes the final database state. In contrast,
tributaries of the committed branch describe sequences of temporary updates.

The committed path for the deduction in Section 8.3.4 is given in Figure 3. The top-most sequent
is the root, and the bottom-most sequent is the committed leaf. Reading the path from top-to-bottom,
we see an execution of p followed by an execution of q. Notice that execution of the retrospective,
¢<, is completely ignored. This path is therefore almost identical to the executional deduction for the
non-hypothetical transaction p ® r.

Examining the inference rules, it is not hard to see that every executional deduction has the
following property: all sequents on the committed branch have the same style—they are either all of
the form P,D--- I ¢, as in system $7, or all of the form P, --- D ¢, as in system $!. In Figure 3,
for instance, the sequents are all ${-style.

It is now easy to define the notion of the execution path of a deduction in $°. Consider the
committed branch of such a deduction. From the above observation, we know that all sequents on
this branch have the same style. If they are $!-style sequents, then as in ${-executional deductions,
the committed branch has the structure depicted in Figure 1 of Section 6.3.1. The execution path
of this deduction is Dg, D7, Ds,...,D,, — a sequence of states picked out each time an inference is
made via Rule 3. Likewise, if the sequents on the committed branch are $!/-style, then the branch
has the structure depicted in Figure 2 (Section 6.4). The execution path of this deduction has the
same form, Dy, D1, D,,...,D,,, but the states are picked out via Rule 3'. Thus, for the committed
branch in Figure 3, the execution path is

{}, {a}, {a,b}, {a,b,€}, {a,b,¢, [}, {a,b,¢, f, g}

The next theorem relates the notion of execution path and the notion of executional entailment
(see Definition 5.6).

Theorem 8.5 (Executional Soundness and Completeness of ) Under the <-serial-Horn
conditions, the following statements are equivalent:
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1. P,Dg,Dy, ..., D, E (3.
2. There is an ezecutional deduction in S° of (3)¢ whose execution path is Dg,Dy,...,D,.

Proof: See Appendix F. O

As an example, using the transaction base from Section 8.3.4, we can make the following statement:
P, {}, {a}a {aa b}, {a, b, e}a {aa b,e, f}, {aa b,e, f, g} |: PRI

At this point, it is instructive to look at the special case in which a transaction is purely hypo-
thetical, i.e., has the form $¢. In such cases, the committed branch consists of exactly two sequents,
and the execution path consists of a single database state. Consider, for instance, the transaction
O(b.ins® c.ins) applied to the database {a}. This defines the root of an executional deduction. Using
top-down inference, we can generate the rest of the deduction. The first step, is to apply inference
rule 4 with test = b.ins® c.ins and rest = (). This generates two children for the root. In fact, the
entire deduction consists of the following two branches:

P, {a}--- F O(b.ins® c.ins) P, {a}--- F O(b.ins® c.ins)
P,{a}--- F b.ins® c.ins P,{a}--- F ()

P,{a,b}--- I c.ins

P,{a,b,c}-- ()

The left-hand branch is hypothetical, and the right-hand branch is committed. From the committed
branch, we see that the execution path consists of the single state {a}. Thus, using Theorem 8.5, we
can make the following formal statement:

P,{a} E O(b.insQ c.ins)

Because the execution path consists of just a single state, hypothetical transactions leave the database
unchanged.

8.3.6 Normal and Reverse Execution in &°

We are now in a position to extend the ideas of section 6.3.2 to system §°. That is, we can define
what it means to execute a ¢-serial-Horn transaction, thus making precise a notion that we have been
using informally in this section.

As mentioned earlier, given a database Do and a transaction formula (3) ¢, we wish to prove the
statement

P,D,,D:,...,D, |= (3)6 (42)

for some sequence of databases, Di,...,D,. The important point is that these latter databases are
unknown at the outset and must be computed during the proof. The process of constructing such
a proof is called a normal ezecution of (3) ¢ with respect to P. Thus, given the state Do, normal
execution determines whether the transaction (3) ¢ can start from state Dg, and if so, it computes
the successor states, Dq,...,D,. Intuitively, this computation corresponds to updating the user’s
database from Dg to D; ... to D,,.
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Likewise, reverse ezecution is the process of constructing a proof of (42) when D, is known at the
outset and Dg,...,D,_; are unknown. Reverse execution thus determines whether the transaction
(3) ¢ can terminate at state D, and if so, it computes the predecessor states, Dg,...,D,_;. Intu-
itively, this computation corresponds to updating the user’s database in reverse, from D,, to D,,_; ...
to D().

Inference system S can execute O-serial-Horn transactions normally and in reverse. All that is
needed is to construct an executional deduction of the transaction, from which the execution path
can be extracted. In practice, the direction of execution will depend on how the committed branch
is constructed, top-down or bottom-up. For instance, if the user’s current database is empty, and if
the branch in Figure 3 is constructed from the top, down, then the transaction p® Og ® r is executed
normally, updating the database from {} to {a,b,e, f,g}. On the other hand, if the user’s current
database is {a, b, e, f, g}, and if the branch in Figure 3 is constructed from the bottom, up, then the
transaction is executed in reverse, updating the database from {a,b, e, f, g} to {}. These ideas were
discussed in greater detail in Section 6.3.2.

In Figure 3, the committed branch involves sequents of the form P,D--- - ¢. However, if the
committed branch contained sequents of the other form, P, --- D | ¢, then a dual relationship would
hold between the directions of inference and execution. That is, top-down inference would naturally
correspond to reverse execution, and bottom-up inference would naturally correspond to normal exe-
cution. Thus, as in Section 6, the following properties are closely related: (%) the style of sequent on
the committed branch, (¢7) the direction of inference on the committed branch, and (#4¢) the direction
of execution. The exact relationship is summarized in the table below.

Sequent Style | Inference Direction | Execution Direction
P,D---+¢ top-down forward
P,D---+¢ bottom-up reverse
P,--Dt¢ top-down reverse
P,--DF¢ bottom-up forward

There is a subtlety about inference in §° that should be pointed out: Although the committed
branch of a deduction may be constructed in a top-down or a bottom-up manner, all tributaries of
this branch (%.e., its side branches) must be computed top-down in any practical system. The reason
for this is quite simple. In §, an executional deduction is a tree. Constructing this tree bottom-up
means starting at the leaves and building up towards the root. However, before starting this process,
we must know what sequent is at every leaf of the tree. Knowing this is a practical impossibility.
In practice, we will know only the current database state, D, and the user’s transaction, ¢. This
knowledge is enough to specify only four sequents, the goal sequents P,D--- F¢ and P,---Dt ¢,
and the axiom sequents P,D--- () and P, ---DF (). In practice, therefore, we can start at the top
of a committed branch or at its leaf, for either sequent style. However, starting inference at any other
leaf means knowing the state at which a hypothetical subtransaction terminates. This knowledge
simply is not available to us a priori. In practice, therefore, hypothetical and retrospective branches
must be constructed top-down.

For example, consider the deduction in Section 8.3.3. Whether we construct the committed branch
top-down or bottom-up, we reach eventually the sequent P, {a,b}--- F Cg® r. At this point, we can
construct the branch for ¢q. But since we are now positioned at the top of this branch, we have little
choice but to construct it in a top-down fashion. A similar observation is true for the deduction in
Section 8.3.4.



8 HYPOTHETICAL REASONING 103

In closing this section, we remark that it is possible to develop other inference systems for <-serial-
Horn programs, systems that can operate in a completely bottom-up manner. (We leave this as an
exercise.) However, such systems cannot operate top-down.

8.4 Applications of Hypotheticals

In Section 8.1, we saw that hypothetical operators endow 7R with additional expressive power. In
this subsection we explore a number of non-trivial applications of hypothetical operators, such as
subjunctive statements and imperative programming constructs. Most of the examples go beyond the
scope of the proof theory of Section 8.3, though they can be handled by the general proof-theory in
[21]. Furthermore, the examples in Section 8.4.2 rely on the closed world assumption, and thus they
cannot be adequately handled by any proof theory. However, as in Prolog, a marriage of the proof
theory in Section 8.3 with negation-as-finite-failure might be a practical solution.

8.4.1 Subjunctive Queries and Counterfactuals

An important application for hypothetical operators in 7R is in the area of, so called, subjunctive
queries [42], which are statements of the form “if ¢ were true, then ¢ would be true/possible as well.”
When ¢ is actually false in the present state (e.g., “If Fred were prudent, he would not have gotten
into this mess”), the subjunctive query is called a counterfactual [58, 40, 49].

The meaning of a subjunctive query is as follows [42]: Update the current database with ¢; if
the resulting database satisfies 1, then the subjunctive query is true; otherwise, it is false. Following
Katsuno and Mendelzon [51], it is widely accepted that “updating” a database, D, means finding a
database that is closest to D according to some metric.2*

The following are the two major classes of subjunctive queries together with their formulation in
TR. To be precise in our formulations, we use the notation of executional entailment.

1. At state D, if ¢ were true, then ¢ would be true, too: P,D |= O(¢.ins = ¢ ® path)

2. At state D, if ¢ were true, then ¢ would be possible: P,D |= O(¢.ins = Ovp ® path)

If ¢ is a query, then the first subjunctive asks whether the query would be true in the new state, after
¢ is inserted into the database. If ¢ is an action, then the second subjunctive asks whether the action
would be possible starting from the new state. Note the use of the special proposition path, which
is true on any path. It permits ¥ and Ot be evaluated at the updated state itself, not on a path
beginning at that state.

Note also the role of the necessity operator “O” in both cases. This operator ensures that the
consequent formula (¢ or Op) is true at every state obtained from D by inserting ¢. This is important
because elementary updates in 7R are not limited to the insertion of a single tuple into a relational
database. More generally, an elementary update may insert an arbitrary first-order formula, ¢, into
the database containing other arbitrary first-order formulas. Such updates may be ambiguous and
may not result in a unique successor state [32, 31]. Also note that we have used serial implication,
“=7” instead of classical implication, “—”. This requires the consequents to hold after the insertion
of ¢. (In contrast, classical implication would require them to hold during the insertion.)

24One metric suitable for updating arbitrary classical theories was proposed by Winslett [93]. Others have also been
proposed.
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8.4.2 Imperative Programming Constructs

Perhaps, one of the most interesting bonuses provided by of the hypothetical operators in 7R is
the ability to express the standard imperative constructs, such as if-then-else and while-do in a
simple, declarative way. Consider, for instance, the following clauses:

if Cabec <+ (Ca)®b

if Cabec <+ (0-a)®c (43)

The transaction ?— ¢f a b c, then, has the effect that if @ is possible in the current database state,
then b will be executed. Otherwise, if —a necessarily holds, then ¢ will be executed. The negation “—”
here is of the negation-by-failure variety. In Section 9, we shall discuss the perfect-model semantics
for such negation, which is an adaptation from [79].

In executing transaction ?— if _$a_b_c above, the subtransaction ?— a was executed hypothetically,
i.e., without states being changed. If such an execution is possible, then b is executed “for real” and
the system may end up in a different state. In this example, the sentence “O0-a” is best interpreted
as “otherwise;” that is, “otherwise do ¢” (here, ¢ is done “for real”). The use of “0” is crucial to
the proper formulation of “otherwise do c¢.” In contrast, the “0” in the first clause of (43) could be
dropped, leading to another useful form of if-then-else:

ifabc<— a®b

if abe— (0ma)®c (44)

The difference between (43) and (44) is that in the latter, the transaction a is done for real (if it
is executable), while in the former it is only tested. We call these two conditional statements the
“test-version” and the “do-version,” respectively.

We shall write if Ca then b else ¢ fi for if_Ca_b_c defined by (43), provided that if_Ca_b_c does
not occur in the head of any other rule. Likewise, we shall write if a then b else ¢ fi for :f_a bc
defined by and (44). Equivalently, these two expressions can be thought of as abbreviations for the
formulas (Ca®b)V (O-a®c) and (a®b)V (0-a ® c), respectively.

In imperative programming, it is often the case that the else-part is omitted, which corresponds
to “else do nothing.” In 7R, “do nothing” is tantamount to executing state. In this case, the
“test-version” of if Ca then b fi can be expressed as follows:

if Cab «— (Ca)® b

if Cab +— (0O-a) @ state (45)

The “do-version” of this operator—one in which a is executed for real—is obtained by dropping “<$”
from the above.

Similarly, the while-do construct has two forms. The “test-version” is

while Oab < (Ca) ® b @ while_Cab

while_Ca b <— (O-a) ® state (46)
and the “do-version” is obtained by removing “$”:
while.ab «— a ® b ® while.a b (47)

while_a_b <— (O-a) ® state
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In both cases, while_Ca b and while_a_b are new propositions. Their definitions are recursive, which
is what achieves the iterative effect. Notice, again, the role of “U-a” in the second clause of (46) and
(47). Here it says that if a cannot be executed, then do nothing, which effectively terminates the loop.
As with the if-then-else construct, it is suggestive to write

while Ca do b od

for the tail-recursive proposition while_Oa_b defined by (46), provided that while_Ca b does not occur
in the head of any other rule. Similarly,

while ¢ do b od

is a convenient notation for proposition while_a_b defined by (47).

Note that in both while-versions, if b fails (i.e., cannot be executed) during some iteration, then
the entire loop fails, so all previous iterations are undone. This is a form of automatic error recovery.
In many cases, however, it may be desirable to not undo previous iterations and to proceed with the
loop either by ignoring the failed execution of b or by invoking a designated error-handling routine.
In 7R, this can be expressed as follows:

while ¢ do
if b then state else error-handler fi

od

Here, if b fails during any iteration, (¢.e., if 0-b is true at the current state), then the error-handling
transaction is executed. If no special action is required, we would simply substitute state (i.e., “do
nothing”) for “error-handler” in the above.

As an application of our “declarative version” of procedural constructs, we express the transaction
“Raise the salary of all managers by 7%.” A variation of this transaction was dealt with in Section 7.5
using relational assignment, which can be directly translated into SQL. However, those who are more
comfortable with Prolog may prefer to formulate the transaction in the following (slightly stylized)
way:

?— empl(E, Sal,mngr), retract(empl(E, Sal,mngr)), asserta(empl(E, Sal x 1.07, mngr)), fail

At first sight, this lean-and-mean Prolog-version seems to score several points over the comparatively
bulky SQL-version of Section 7.5. The trouble, however, is that the Prolog formulation defies logic:
even though the transaction itself fails, the updates are carried out nonetheless! The standard Prolog
practice of using fail to cause looping behaviour is also logically unsound. Furthermore, the fact that
the above transaction does the job is due only to the implicit execution control strategy that relies on
backtracking. If not for this strategy, each manager’s salary could have been raised many times over.

Our goal, then, is to avoid repeating the salary-raising action for one and the same person, and

to do so in a logically sound manner. Our strategy is to move all managers to an auxiliary relation,
raising their salaries in the process, and then move the managers back to the original relation. In
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TR this can be accomplished with two while-do loops, as follows:

?— while empl(E, Sal,mngr) do
empl.del( E, Sal, mngr) ® manager.ins(E, Salx 1.07)
od
®
while manager(E, Sal) do
manager.del( E, Sal) ® empl.ins(E, Sal, mngr)
od

In the first loop, each iteration retrieves a manager from the empl relation, deletes him from the empl
relation, and inserts him into the managers relation with a new salary. Iteration continues until there
are no managers left in the empl relation. In the second loop, each iteration retrieves a record from
the manager relation, deletes it from the manager relation, and inserts it into the empl relation.
Iteration continues until there are no records left in the manager relation. The result is that each
manager has gets a raise of 7%.

Even though this 7R-version is longer than the Prolog-version, it is completely transparent and
its semantics do not depend on the peculiarities of a particular control strategy. For instance, it
does not rely on the subtle use of asserta and fail, the way the Prolog-version does. We therefore
claim that the 7R-version is more natural. In fact, to some, the 7R-version may even seem more
straightforward than the SQL-version of Section 7.5.

8.4.3 Software Verification

Another promising application for 7R is software verification. Software specification systems, such
as VDM [50], are essentially specification languages based on the usual predicate calculus or on one of
its multi-valued extensions. The general problem with these languages is that these specifications are
not executable. That is, these specifications are intended to explain what the program is supposed
to do, but since the program is usually written in a different language (say, C or ADA), the software
engineer can do no better than hope that the programmer will adhere to the given VDM (or similar)
specifications.

Although much research needs to be done to make the 7R proof theory efficient, it is clear that—
at least in theory— 7R is a medium in which programs can be specified, verified, and executed.
Indeed, suppose that a program, ¢, defined in 7R is supposed to satisfy a post-condition, post,
provided that the input satisfies a pre-condition, pre. To determine whether the rules for ¢ comply
with this specification, one can pose the following hypothetical query:

?— O(arc ® pre ® ¥ = post @ path)

If the query succeeds, then the programmer can rest assured that the transaction works as intended.
Note the role of the special proposition arc, which is true on (and only) every arc. It changes the
database from its current state to an arbitrary state. This ensures that ) behaves correctly when
executed from any state, not just from the current state. If ) needs to be verified for the current state
only, then arc can be omitted. Also, as in Section 8.4.1, the special proposition path permits post to
be evaluated at the new state resulting from v, instead of on a path beginning at that state.
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9 Perfect-Model Semantics for Negation as Failure

The theory presented so far is classical in that logical entailment is defined in terms of all models
of a set of formulas. However, in Logic Programming and in Al, it is common to treat the negation
operator as negation-as-failure rather than in the classical sense. For instance, in Section 7.7.2 we
considered constraints, such as (25), that are based on serial implication. Serial implication (like
classical implication) involves negation, and to ensure that (25) acts as a constraint, this negation
must be interpreted as failure. Likewise, in Section 8.4.2, we remarked that negation in if-then-else
and while-do statements must be interpreted as failure.

One widely accepted formalization of negation-as-failure is based on the so-called perfect-model
semantics [79]. In this section, we adapt this semantics to 7R. We use perfect-model semantics
because it is two-valued, and is therefore easy to transplant to 7R. In addition, perfect-model
semantics lies in the intersection of all major formalizations of negation as failure (for locally stratified
programs) and thus is more universally agreed upon.

The first step is to delineate the class of rules we are prepared to deal with. These rules generalize
the serial Horn rules of Section 6 and the <{-serial-Horn rules of Section 8.1, and accommodate all
applications discussed in this paper.

Definition 9.1 (Generalized-Horn Rules) A generalized-Horn rule is a formula of the form p « ¢,
where p is atomic and ¢ is a generalized goal. Generalized goals are defined recursively as follows:

e If p is an atom, then p and —p are generalized goals.
o If 1) is a generalized goal, then so are Oy and ¥ <.
o If 1)1, ..., ¢, are generalized goals, then so are 1 ® --- @ ¥, and 1 A -+ A Yy,

A generalized-Horn transaction base is a finite set of generalized-Horn rules. |

As in classical Horn logic programming, the semantics of negation-as-failure can be problematic
when recursion occurs through negation. For instance, since the informal meaning of —p is that “p
cannot be proved,” what is the meaning of the rule p «— —p? To avoid such problems, we restrict our
attention to locally-stratified transaction bases, which is an adaptation from [79].

To define local stratification, let P be a transaction base. P* then denotes the ground instantiation
of P, i.e., the set of all ground instances of rules in P. Following [79], we construct a directed graph,
D(P), whose nodes are atomic formulas in P*. The arcs in the graph are defined as follows:

e An arc goes from p to ¢ if and only if p occurs in the body of a rule in P* that has ¢ in the head.

e An arc that goes from p to ¢ is negative if and only if —p occurs in the body of a rule in P* that
has ¢ in the head.

In either case, the literal p or —p may appear inside a hypothetical operator. Thus, the following rules
each define an arc from p to ¢ that is not negative:

q—p qg— <p g —rQO(tAp)
Likewise, the following rules each define an arc from p to ¢ that ¢s native:

q—-p g —<-p g —1r®O(tAOp)
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Using this graph, we define two partial orders, = and >. We write ¢ > p if there is a directed path
from p to ¢, and we write ¢ > p if there is a negative path from p to ¢. A path is negative if it has at
least one negative arc on it. Finally, a transaction base P is locally stratified if and only if the relation
“»” is well-founded, i.e., it has no infinite sequence of atoms such that p; > ps > - -

In classical logic programming, the perfect model semantics is defined in terms of a preference
relation, which allows us to choose between alternative models. Choice arises because negation in a
rule body is classically equivalent to disjunction in the rule head. The preference relation in [79] allows
us to choose (or prefer) one disjunct over another. We extend this idea to 7R.

To motivate the development, first consider a simple example. Suppose that path = can be split
into three parts, w1, 72 and 73, so that # = 7; o w3 0o w3. Consider models of the rule a — p® b ® ¢
such that p is true only on path x; and ¢ is true only on path 73. In such models, we have a choice:
either a is true on path 7 or b is true on path m5. In this case, we prefer the former models, i.e.,
models in which a is true on « and b is false on 73. Intuitively, this preference minimizes the number
of paths on which b is true, at the expense of a.

The following definition formalizes this idea. It follows the outline of [79], except that we do not
limit ourselves to Herbrand models.

Definition 9.2 (Perfect Models) Let M = (U, Ir, Ipatn) and M' = (U,Ir, I} ,,,) be two path-models
of transaction base P. Note that they have the same domain and the same interpretation of function
symbols. We say that M is preferable to M/, written M < M/, if and only if for any atom a and any
path =,

if M,mr|=a and M',7 [£ a then M,#r'[£b and M', 7' = b

for some path 7’ and some atom b such that a = b. A perfect Herbrand model of P is any model that
is minimal with respect to <. O

As in [79], it can be verified that every locally-stratified transaction base has a perfect model. An
important special case arises when the database is relational?® and when we are interested exclusively
in the Herbrand domain.?6 In this case, our perfect-model semantics reduces to a straightforward
extension of that in [79]. In particular, every generalized-Horn transaction base has a unique perfect
Herbrand model.

Note that the preference relation in Definition 9.2 compares path-models on two different paths,
and 7'. The motivating example above shows why. In a rule like a «— p ® b ® ¢, the atoms a and b
are not generally evaluated on the same paths. In fact, b is evaluated on a subpath of whatever path a
is evaluated on. Nevertheless, in comparing models, we would expect to compare the truths of a and
b, which means comparing them on different paths.

We can now extend the notion of executional entailment to include negation-as-failure. That is,
we can define the meaning of statements like

P,D4,...,D, |:perf ¢

where ¢ is a generalized goal and P is a generalized Horn transaction base. The new definition is
identical to Definition 5.6 except that instead of looking at all models of P, we look only at their

2% .e., when the data oracle always returns a set of ground atomic formulas.
?¢J.e., when U is the set of all variable-free first-order terms, and I=(f)(t1, ..., tx) = f(t1, ..., tx), for any k-ary
function symbol f and any term ¢;.
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perfect models. In the special case where P and ¢ contain no negation signs, the two definitions are
equivalent.

Perfect-Model Semantics in the Applications

Sections 7.7.2 and 8.4.2 presented two important applications of the perfect model semantics: con-
straining transaction execution, and expressing imperative programming constructs. However, syn-
tactically, these applications are not covered by Definition 9.1 of generalized-Horn rules. We show,
below, that both of these cases can be represented as generalized-Horn rules.

To constrain transactions, Section 7.7.2 used formulas with serial implication, which represents an
implicit use of negation. For example, if p is an atom representing a series of robot shooting actions,
then the following formula constrains the robot to unlock the gun before shooting it:

p A (path @ unlock < shoot ® path) (48)

As described in Section 7.7.2, this formula is evaluated in the perfect models of the transaction base.

Formulas like (48) can also appear in rule premises. However, they must first be transformed into
generalized goals, i.e., into the syntactic form required by Definition 9.1. Fortunately, this is easily
accomplished using the equivalences presented in Section 5.2. For example,

unlock < shoot = wunlock @ -shoot = —(—unlock ® shoot)

These equivalences say that the constraint unlock < shoot is equivalent to the negation of a gener-
alized goal. We can therefore represent the constraint as an atomic formula, unlock-before-shooting,
defined by the following generalized-Horn rules:

unlock-before-shooting <— —do-not-unlock-then-shoot
do-not-unlock-then-shoot <— —unlock ® shoot

Formula (48) can now be expressed as a generalized goal:
p A (path ® unlock-before-shooting ® path)

In this way, constrained transactions can appear in the premises of generalized-Horn rules. These
rules are interpreted by our perfect model semantics.

To express imperative programming constructs, Section 8.4.2 needed a form of negation that is
very similar to the classical idea of negation-as-failure, in which -1 succeeds if and only if ¢ fails.
As discussed in Section 5.7, however, transactions do not behave this way, even with a perfect-model
semantics. The difficulty is that a transaction, v, and its negation, =%, can both succeed from the same
database, since 1) may execute along one path while -1 executes along another path. To overcome
this difficulty, Section 8.4.2 used the necessity operator, O, since for every database, exactly one of ¥
and O-1) will succeed. O-) thus corresponds closely to the idea of classical negation-as-failure.

To interpret the formula O-1 using our perfect-model semantics, we must reduce it to a gener-
alized goal. This is possible because of a near-dual relationship between necessity and possibility. In
particular, as discussed in Section 8.1,

O-b = state A =b
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where state is the special proposition that is true on paths of length 1, 7.e., on states. When b is atomic
(which is the important case for imperative programming), the right-hand side of the equivalence can
be reduced to a generalized goal, state A —i¢c, where ¢ is defined by the following generalized-Horn
rule: ¢ « <©b. In this way, imperative programming constructs can be expressed in 7R using our
perfect-model semantics.

10 Updating General Deductive Databases

As mentioned previously, the database part of a 7R logic program may contain Prolog-like rules. Tt
is natural, therefore, to let transactions manipulate database rules in the same way as database facts.
This capability has been found useful, for example, in Al programming in Prolog. Unfortunately, rule
updates in Prolog are procedural and do not have a logical or declarative semantics. Since 7R allows
a database to contain deductive rules, it provides a formal semantics for transactions that do rule
updates. The semantics of each rule insertion and deletion is specified by the transition oracle, which
may reflect any number of semantics that have been studied in the literature (e.g., [42, 93]). This
approach works well and is completely general as long as a database is a collection of first-order
formulas. However, many logic programs and deductive databases are not purely first-order, since
they interpret negation as failure. This section addresses this point. First, we elaborate on the first-
order case; then, we explain the problem that exists with non-first-order databases, after which we
show how 7R’s model theory handles this case.

In Prolog, one writes assert(a(Y) : — b(X),e(X,Y)) to insert the rule a(Y) : — b(X),e(X,Y)
into the database. Here, the argument of the assert command is treated as a first-order term that
represents an encoding of the corresponding rule. This kind of “reflection” of logical formulas into
ground terms is well-known in logic, and we shall not dwell on it here. We simply assume that some
encoding schema is given, allowing us to reflect any database rule into a first-order ground term.

Once the encoding mechanism is in place, we let the transition oracle, O, specify elementary state
transitions of the following form:

(a(Y) < b(X) A ¢(X,Y)).ins € OY(D,D’)

where the database states D and D’ are defined appropriately. For databases containing arbitrary
first-order formulas, the relationship between D and D’ can be complex, and has been partly worked
out by Grahne, Mendelzon, and Winslett [42, 93]. A simple case is rule insertion into Horn databases.
Here, we would add the following entry to the transition oracle

r'.ins € OY(D,D U {r})

for every Horn database, D, and every Horn rule, r, where »' is the reflection of .

This approach to updates works for classical first-order databases. However, logic programs that
use negation-as-failure are not purely first-order, as they rely on canonic model semantics and related
techniques. The basic problem is illustrated in the next example.

FEzample 10.1 (Updating Rule-Bases: a problem) Consider the following two databases:
Dlz{a<——|b} D2:{b<——|a}

From the viewpoint of classical logic, D; and D, are both equivalent to a V b. But not so in logic
programming, where these two databases mean quite different things. Now, suppose we are to define
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the elementary transition (a «— —b).ins. Presumably, it should take us from an empty database to
D1, but not to Dy. Thus, the semantics must distinguish D; from D5, even though they are classically
equivalent. O

In logic programming and deductive databases, the problem of discriminating between D; and D,
is solved by associating a set of canonic models to each database. This set is usually much smaller
than the set of all models and often there is only one canonic model per database. One way to define
canonic models is to use the perfect-model semantics of [79] or, more generally, the well-founded
semantics of [92]. In this section, however, we need not commit ourselves to any specific definition
of canonic models. In Example 10.1, the canonic (perfect) model of D; makes the proposition a true
and b false; whereas the canonic (perfect) model of Dy does the opposite, making b true and a false.

It turns out, however, that 7R does not need new machinery to handle general database states.
When one switches from, say, relational databases (that use classical inference) to, say, deductive
databases, all that is needed is that we switch from the Relational Oracle to an appropriate non-first-
order oracle, like the Well-founded Oracle or the Stable Oracle (Section 5, which will readily account
for the particular underlying semantics of database states.

11 Comparison with Other Work

As mentioned earlier, there would appear to be many other candidates for a logic of transactions, since
many logics reason about state changes or about the related phenomena of time and action. However,
despite the abundance of action logics, none has ever been found suitable for a database or logic
programming system, and none has become a core of database or logic-programming theory. This is
in stark contrast to classical logic, which is the foundation of database queries and logic programming,
both in theory and in practice. The introduction described a few broad reasons for this unsuitability
of existing action logics. This section looks at specific formalisms in more detail. We first discuss
declarative languages that were designed for updating databases. We then look closely at action logics
presented in the literature of Logic and Al.

As far as databases and logic programming are concerned, we are not aware of any approach to
logics for updates that is as comprehensive as 7R. In particular, none of the works discussed below
is capable of expressing constraints on the execution of complex transactions. Likewise, none of them
can seamlessly accommodate hypothetical state transitions with transitions that actually commit
and permanently change the current database state. Furthermore, most of the works are limited to
updating sets of ground atomic facts.

One feature that sharply distinguishes 7R from all other formalisms are the data and transition
oracles. The transition oracle exploits 7R’s distinction between stored and derived data. It also
provides a completely general approach to elementary updates without sacrificing efficiency. Since the
oracle is a parameter to the logic, many kinds of elementary update can be performed by specialized,
efficient algorithms that are commonly used in database systems. Furthermore, many algorithmic
features of database systems, such as bulk updates and random sampling, can be relegated to the
transition oracle without sacrificing declarativeness (see Sections 7.5 and 7.6). The same is true
of heuristic approximations to intractable problems. Indeed, localizing the ad hoc nature of such
heuristics to the transition oracle makes them invisible to the proof theory, the model theory, and the
run-time environment of the system.
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Similarly, the data oracle isolates the dynamics of the logic from the details pertaining the semantics
of states. This has an additional benefit that we can push certain non-monotonic aspects of various
problems down to the data oracle. Queries to the data oracle do not even have to be recursively
enumerable, since such queries are treated as a black box by the proof theory. Testing the emptiness
of a predicate in a logic program is one example. In logic programming and deductive databases,
such problems are typically dealt with by developing non-monotonic, second-order semantics, and by
imposing syntactic restrictions on programs (e.g., [79, 92, 37]). 7R’s data oracle factors out such
problems from the dynamics of the logic, so they can be treated separately. In this way, 7R is able
to provide a monotonic, first-order semantics for combining complex tests (even very nasty ones) into
complex transactions.

11.1 Declarative Languages for Database Updates

Winslett [93] did foundational work by supplying the first generally acceptable semantic definition
for the result of updating a logical theory. Later on, Grahne, Katsuno and Mendelzon [51, 41, 42]
axiomatized various theories of state transition and studied tractable cases of what we call “elementary
state transitions.” Qur approach to state transitions is inspired by these results.

While [93, 51] take a model-theoretic view of elementary updates, Fagin, Kuper, Ullman, and
Vardi [32, 31] approach the problem syntactically. One interesting consequence of this is that, while
in [93, 51] an elementary update is always deterministic, in [32, 31] updating a theory with a formula
may lead to several alternative states.

Several authors [24, 65, 74| base their approaches to updates on Dynamic Logic [46]. Casanova
[24] applies an adaptation of Dynamic Logic to reasoning about concurrent execution of procedural
programs that are built out of relational algebra operators plus an explicit relational assignment
operator. Updates are done in the hypothetical mode and no complete proof theory is given.

Manchanda and Warren [65] introduce Dynamic Prolog—a logic system where update transactions
“work right,” i.e., they do not leave a residue in the database when a transaction fails (the residue
left by assert and retract is the most serious problem that plagues Prolog’s update mechanism). Like
TR, their logic can be used to update views, and transactions can be nondeterministic. However,
they distinguish between update predicates and query predicates (which is a drawback if we keep an
eye on object-oriented applications, as explained in the introduction). Furthermore, bulk updates,
constraints on transaction execution, and the insertion and deletion of rules cannot be expressed, due
to the chosen semantics. In addition, the proof theory for Dynamic Prolog is impractical for carrying
out updates, since one must know the final database state before inference begins. This is because this
proof theory is a verification system: Given an initial state, a final state, and an update procedure,
the proof theory can verify that the procedure causes the transition; but, given just the initial state
and the procedure, it cannot compute the final state. In other words, it cannot execute procedures
as 7R’s proof theory does. Apparently, realizing this drawback, Manchanda and Warren developed
an interpreter whose aim was to “execute” transactions. However, this interpreter is incomplete with
respect to the model theory and, furthermore, it is not based on the proof theory. To a certain extent,
it can be said that Manchanda and Warren have managed to formalize their intuition as a program,
but not as an inference system.

Naqvi and Krishnamurthy [73] extended Datalog with update operators, which were later incorpo-
rated in the LDL language [74]. Since LDL is geared towards database applications, this extension has
bulk updates, for which an operational semantics exists. Unfortunately, the model theory presented in
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[73, T4] is somewhat limited. First, it matches the execution model of LDL only in the propositional
case, and so it does not cover bulk updates. Second, it is only defined for update-programs in which
commutativity of elementary updates can be assumed. For sequences of updates in which this does not
hold, the semantics turns out to be rather tricky and certainly does not qualify as “model theoretic.”
Third, the definition of “legal” programs in [73, 74| is highly restrictive, making it difficult to build
complex transactions out of simpler ones.

Chen has developed a calculus and an equivalent algebra for constructing transactions [28]. Like
TR, this calculus uses logical operators to construct actions from elementary updates. There are
several differences however. First, unlike 7R, Chen’s calculus is not a full-blown logic. It extends the
domain relational calculus to include updates, but there is no notion of logical inference. Second, the
calculus operates only on relational databases, and not on arbitrary logical theories. Third, the calculus
has no analogue of 7R’s transition oracle for elementary updates, so it is restricted to the insertion
and deletion of single tuples. However, the most profound difference between the two formalisms
shows in the semantics of conjunction. Whereas 7R uses A to express constraints, Chen’s calculus
uses it to express parallel actions. The main motivation here is that parallel actions make bulk updates
easy to express, which is an important database feature. However, there are several disadvantages
in the way this is achieved. First, the calculus cannot express the kind of sophisticated constraints
that 7R can. At the same time, sequential updates often achieve the same effect as parallel updates.
Second, parallel actions greatly complicate the semantics, since they require a minimality principle,
which makes the algebra non-monotonic even in the absence of negation. This complication is not
called for, since, for instance, 7R achieves the same effect in a much simpler, monotonic way, as
described in Section 7.5. Third, the syntax is not closed. For instance, negation can be applied to
some formulas but not others. In particular, if ¢ is an updating transaction, then rules like p « 1) are
not allowed, since it is equivalent to pV —1); indeed, this formula has no meaning in Chen’s calculus. It
therefore seems unlikely that this calculus can be developed into a full-blown logic in a straightforward
or satisfying way. Furthermore, the calculus itself is very limited as a programming language, since it
has no mechanism for defining recursion or subroutines.

Bry [23] takes a two-tiered approach: first, he uses ordinary queries to determine (generate) the set
of atoms to be added/deleted; then, he performs updates meta-logically. Dynamic constraints are also
meta-logical; and they involve pairs of different theories. Thus [23] can neither define nor compose
complex transactions. It is also impossible to specify constraints on transaction execution or to insert
and delete rules. In a sense, [23] provides a methodology for expressing what is to be updated rather
than a logic for performing updates.

Bonner has carried out a thorough analysis of reasoning in Hypothetical Datalog [16, 18, 17, 15, 14],
including a sophisticated complexity analysis. Like 7R, this work combines elementary updates
into complex transactions. Both works also use similar tactics to avoid the frame problem (Section
7.8.). However, Hypothetical Datalog does not commit updates, does not deal with arbitrary logical
databases, and does not combine updates with other logical connectives in arbitrary ways. Instead,
Hypothetical Datalog is a disjunction-free logic programming system for relational databases. The
semantics of Hypothetical Datalog is also based on different principles than 7R’s. In particular, it
does not embrace the concept of the execution path, which is fundamental to 7R. Consequently,
dynamic constraints of the kind discussed in Section 7.7 cannot be expressed.

Abiteboul and Vianu developed a family of declarative update languages [5, 4, 1], including impres-

sive results on complexity and expressibility. However, these languages lack several features that are
present in 7R. First, they apply only to relational databases, not to arbitrary sets of first-order for-
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mulas. Thus, it is not possible to insert or delete rules from a deductive database. Second, there is no
facility for constraining transaction execution. Indeed, transaction output is the only concern. Third,
these languages are not part of a full-blown logic: arbitrary logical formulas cannot be constructed,
and although there is an operational semantics, there is no model theory and no logical inference
system. It is therefore unlikely that these languages have the flexibility to find applications in other
domains, such as Al Finally, these languages do not support transaction subroutines, a facility that
any practical programming language must provide. That is, a transaction cannot be given a name,
and then be invoked repeatedly from within the language. This lack of subroutines is reflected in the

data complexity of some of the languages: they are in PSPACE, whereas recursive subroutines require
alternating PSPACE, that is, EXPTIME.

The works [76, 30] are related to [5] in that they all borrow much of their syntax from deductive
databases and yet their semantics is operational (although inspired by logical model theory). As such,
these languages are in a different league than 7R; they are also unsuitable for defining transactions,
constraints, and for reasoning about actions.

11.2 Logics of Action

The work described above is aimed at specifying and ezecuting database updates. In contrast, logics
of action are aimed at specifying and reasoning about actions. Updates are a special case of actions
and, in a sense, execution is a special case of reasoning where one infers the final state of the database
from the initial state. With this in mind, we examine a number of prominent action logics from the
perspective of databases and logic programming.

Generally, these action logics have far greater expressive power than the database languages dis-
cussed above. In a sense, however, they are too expressive. One lesson of database theory and practice
is that if a declarative language (like SQL) is not too expressive, then optimization and high perfor-
mance are possible. Often, database languages aim for the minimal power needed to get a job done.
Indeed, most of the languages discussed above have natural implementations that are reasonably ef-
ficient and optimizable. In contrast, most of the logics in this section provide no clues about how
to efficiently execute transactions. One problem is that they do not distinguish between stored data
and derived data. Thus, there is no obvious way to materialize an updated database without also
materializing all the logical consequences of the theory. In contrast, state materialization is a central
feature of 7R. This is, perhaps, most apparent in the proof theory of Section 6, where each new state
is explicitly materialized. There is no analogue of this in other logics.

Although logics of action can have great expressive power, it is sometimes the wrong kind of
expressiveness for databases. For instance, since most action logics were not designed as programming
languages, important programming features (such as subroutines) are often awkward, if not impossible
to express. In addition, action logics often make a sharp distinction between queries and updates. This
distinction may be important in some applications, but it is ill-suited for programming. For example,
Prolog-style languages and most object-oriented languages treat queries and updates uniformly. A
sharp distinction can also be a hindrance to application development. For instance, to debug a query,
a programmer may want to insert an update into its definition to monitor its execution or to count
the number of times it is called. More generally, as an application evolves, simple queries may develop
into more complex transactions with updates, and vice-versa. An abrupt distinction between queries
and updates makes this kind of evolution difficult, if not impossible.

TR makes no such distinction. It treats queries and updates uniformly, as two extreme points
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on a spectrum of transactions. Like ordinary programs, every formula in 7R can both update the
database and return an answer. While 7R does not distinguish between queries and updates, it does
not force the user to blur the line between the two. If an application calls for such a distinction,
it can easily be achieved by using two sorts of predicates, query predicates and update predicates.
One way to distinguish the two is to require that all update predicates be prefixed with do:. Thus,
do:enroll(student course) would be an update, while grade(student,course) would be a query. In a
similar fashion, deductive databases distinguish two kinds of predicates (base and derived), while the
underlying (classical) logic does not.

Finally, most logics of action do not actually perform database updates. Many, in fact, do not even
have a notion of database, since they were not intended for database applications. Typically, an action
logic describes relationships between different states, without describing how to get from one state to
the next. This is fine for reasoning about action; but to actually execute an action, one needs much
more information. Unfortunately, large numbers of logical formulas are often needed to completely
describe even very simple actions. Even when this is not a problem, however, an action logic is usually
just a specification language. Actually executing an action and updating the database must be done
outside of the logic. This contrasts with classical logic programming, where executing a query can be
carried out by purely logical means, i.e., by the proof theory. Unlike most logics of action, 7R is
a language for both specifying and executing actions. This is possible because 7R includes logical
mechanisms for executing an action and updating the database. This is formalized model-theoretically
by the notion of ezecutional entailment (Section 5.4). It is even more apparent in the proof theory, in
which each elementary update produces a new database state.

Process Logic

As mentioned previously, our path structures are reminiscent of the “path models” in Process Logic
[47].2" However, the meaning and intent of dynamic formulas in [47] is fundamentally different from
that of transaction formulas in 7R. The former is intended to reason about what is true during
program execution, while 7R was designed to actually ezecute declaratively specified procedures.
This difference in the intent is reflected in the syntax. For instance, Process Logic uses a separate
alphabet to represent actions, and a set of modal operators to reason about them. Thus, unlike 7R,
actions in [47] have a different status than propositions. In particular, actions are not logical formulas,
but rather are terms used to construct modal operators. One consequence is that only elementary
actions have names. Composite actions cannot be named, and thus the logic lacks a subroutine facility.
Another difference between 7R and Process Logic is in the nature of states. As discussed in Section 5,
our concept of a state immediately leads to the idea of a transition oracle—a notion thoroughly missing
from all incarnations of the process logic. Finally, although actions can be sequenced in Process Logic,
this is not done using a logical connective of serial conjunction, as in 7R. Consequently, there is no
counterpart to 7R’s dual connective of serial disjunction, nor to serial implication. Thus, there is no
obvious way to express constraints based on these connectives, like those illustrated in Section 7.7.2.

Action Logic and Related Proposals

Pratt [78] develops a logic, called Action Logic, that has a few similarities with 7R but is different
from it in many essential ways. Like 7R, Action Logic does not distinguish between actions and

2T A number of different process logics have been proposed in the literature, beginning with Pratt’s original work [77].
The version in [47] is closer to 7R than any other incarnation of Process Logic we are aware of.
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propositions: actions are simply propositions that hold on intervals. The semantics and the intent
of the two formalisms are very different however. First, Action Logic is not a language for updating
databases or defining transactions. In fact, it has no notion of database, no analogue of 7R’s transition
oracle, and no counterpart to executional entailment. Instead, Action Logic is an extension of regular
expressions, and as such, it can be viewed as a formalism for defining languages. Second, in contrast to
TR’s semantics, which is based on sequences of states, Pratt develops an algebraic semantics, based
on action algebras. The proof theory for Action Logic is a (finite) set of equations for reasoning about
these algebras.

Nevertheless, Action Logic is superficially similar to 7R. For instance, it has operators similar

to ®, V, state, and —path in 7R; and it has an iteration operator, “*”

, which can be expressed
in 7R using recursion. What makes the comparison seem especially close, is a pair of connectives,
denoted «— and — in Pratt’s notation, that look very similar to 7R’s connectives for serial implication,
< and =-. Semantically, however, these connectives are very different. For instance, the following

equation is an axiom of Action Logic:
ala—b) +b=2» (49)

Here, + denotes ordinary disjunction, and concatenation denotes sequential composition. This equa-
tion is therefore a sequential version of modus ponens: it says that if a(a — b) is true, then b is also
true. The same is not true in 7R. The analogue of equation (49) in 7R is the following statement:

a®(a=b) Vb=0»b

However, this statement is not a theorem of 7R. The intuitive reason is that the two occurrences
of a in this statement do not refer to the same time interval. In fact, the second occurrence of a can
begin only when the first occurrence ends. Hence, the truth of a ® (¢ = b) does not imply the truth
of b.

There is one more difference worth noting. 7R obtains much of its simplicity by having two kinds
of conjunction, classical and serial. Combined with negation, they lead to two kinds of disjunction,
and two kinds of implication, in a natural way. In contrast, Action Logic obtains much of its simplicity
by having one type of conjunction (serial conjunction), as pointed out in [78]. Action algebras have a
lattice-like “meet” operator that might form the model-theoretic basis for another kind of conjunction,
but unfortunately, the meet operation is not always defined.

In [91], van Benthem outlines a number of logical approaches to dynamic information processing.
These approaches and 7R share the idea that actions are to be represented as propositions, but the
similarities end here. The proposed logics are not path-based and there is no notion analogous to the
transition oracle of 7R.2®

One of the approaches in [91] is based on dynamic interpretation of classical predicate logic.
A dynamic interpretation associates a pair of states to each proposition, which resembles Dynamic
Prolog of Manchanda and Warren [65]. However, the states associated to propositions by dynamic
interpretations of [91] are not database states but rather variable assignments. van Benthem also

discusses an algebraic approach to the logic of dynamic systems, which is akin to the action logic of
Pratt [78].

28

van Benthem actually mentions that a path-based logic would be desirable, but no such logic was developed in [91].
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MeCarty’s Logic of Action

McCarty has outlined a logic of action as part of a larger proposal for reasoning about deontic concepts
[68]. His proposal contains three distinct layers, each with its own logic: first-order predicate logic,
a logic of action, and a logic of permission and obligation. In some ways, the first two layers are
similar to 7R, especially since the action layer uses logical operators to construct complex actions
from elementary actions. Because of his interest in deontic concepts, McCarty defines two notions of
satisfaction. In one notion, called “strict satisfaction,” conjunction, A, corresponds to parallel action,
as it does in Chen’s work [28]. In the other notion, called “satisfaction,” the same symbol corresponds
to constraints, as it does in 7R. However, since the focus of this work is on strict satisfaction, the
development of path constraints was never considered. Also, there is no analogue of 7R’s transition
oracle, and the only elementary updates considered correspond to insertion and deletion of atomic
formulas. Although obviously interesting, this action logic was not developed in detail. For instance,
although a model theory based on sequences of partial states is presented, there is no sound-and-
complete proof theory, and no mechanism is presented for executing actions or updating the database.
In contrast, the recent work of McCarty and Van der Meyden [69] is much more detailed, but is very
different from 7R and is not intended for updating databases.

The Situation Calculus

The situation calculus is a methodology for specifying the effects of actions in first-order predicate
calculus. It was introduced by McCarthy [66] and then further developed by McCarthy and Hayes
[67]. To a large extent, the situation calculus is orthogonal to 7R: whereas the situation calculus
focuses on specifying the effects of primitive actions, 7R focuses on combining such actions into
complex ones and executing them. In particular, the specification of elementary updates is factored
out of 7R, as a transition oracle, which can be specified either procedurally or declaratively.

Besides this difference in intent, there is a semantic difference in the way the two formalisms define
states of the world. Informally, in the situation calculus, states are historical, whereas in 7R, they are
not. In 7R, a state is a database, i.e., a finite set of first-order formulas, and different transactions
may terminate at the same state. In contrast, in the situation calculus, a state is identified with a
sequence of actions, and different transactions always terminate at different states. For example, the
state resulting from insert a, then insert b is different from the state resulting from insert b, then
insert a. To take a less abstract example, in the situation calculus, the following two action sequences
result in different states:

e Add two gallons of water to an empty barrel, then add four gallons.

e Add four gallons of water to an empty barrel, then add two gallons.

Equality statements can be used to make the resulting states equal. One might even be able to infer
the equality of many states by encoding a theory of commutative actions in first-order logic. Then, in
a sequence of commutative actions, such as the two above, the order of the actions would not affect
the final state. However, commutativity does not capture all the ways in which states can be equal
[12]. For instance, commutativity alone does not tell us that the two action sequences above result in
the same state as the following action sequence:

e Add five gallons of water to an empty barrel, then add one gallon.
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This example suggests that arbitrary arithmetical reasoning may be needed to infer whether two action
sequences terminate at the same state. It is therefore unlikely that all states with equal extent can be
inferred to be equal within first-order logic.

In addition to the two basic difference described above, 7R and the situation calculus have
numerous other differences, which reflect their different intent and semantics:

The ability to represent elementary updates procedurally solves the frame problem for many
practical situations and makes 7R well-suited to transaction execution. In contrast, the situa-
tion calculus deals with the frame problem declaratively, so it is better suited to reasoning about
elementary updates in the presence of incomplete information.

The situation calculus uses state variables whereas 7R does not. The value of a state variable
is a function term. In general, the state resulting from a sequence of n transactions is a func-
tion term with over n distinct subterms. These function terms could therefore reach enormous
proportions in database systems, where performance is measured in thousands of transactions
per second. State variables provide considerable power for reasoning about action, but they can
be cumbersome, and they make programming awkward (just as cpu registers make assembly
language awkward).

The situation calculus makes a sharp distinction between queries and actions: queries are logical
formulas, and actions are function terms. This approach forces actions to be deterministic and
may simplify reasoning. However, the approach is ill-suited for modeling systems that do not
distinguish actions and queries and can hinder application development, as described above.

In 7R, actions can be combined in complex ways. Sequential composition, subroutines, recur-
sion, conditional statements, iterative loops, non-determinism, and dynamic constraints are all
available, as are pre-conditions, post-conditions, and intermediate conditions. These constructs
make 7R ideal for programming and executing complex transactions. Of course, reasoning

about such transactions is hopelessly expensive, in general, and is outside of r.e.2°

In contrast, the situation calculus provides only two basic mechanisms for defining actions:
pre-conditions and sequential composition. Post-conditions, subroutines and other program-
ming constructs are not available. Thus, a complex action is at most a fixed (i.e., database-
independent) sequence of elementary actions. Although this frugality is not conducive to the
definition of complex transactions, it does make many kinds of reasoning possible, keeping it
within r.e.

In order to execute a transaction, the new database state resulting from the execution must be
computed, or materialized. 7R includes a theory of state materialization, but the situation
calculus does not. This is most apparent in the proof theory of 7R, where each new database
state is explicitly materialized. In contrast, in the situation calculus, materialization must be
done outside of the logic, i.e., in the meta-logic. Actually, one can think of 7R as a meta-level
logic for manipulating elementary actions. A separate, lower-level logic (such as the situation
calculus) could be used to specify the elementary actions. In this sense, 7R and the situation
calculus can be said to be orthogonal.

Finally, it is worth noting that in 7R, the database state can always be materialized. That is,
for any transaction expressed in 7R, the final state of the database after execution can always

2% For instance, Deciding whether a transaction succeeds from all initial database states is not in r.e.
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be computed and expressed as a first-order formula. This is a trivial consequence of using a
transition oracle. The same is not true of the situation calculus. That is, it is possible to define
transactions for which the final database state cannot be expressed as a first-order formula.
Thus, it is not always possible to materialize the database within first-order logic.%®

We should also mention the recent work by Reiter on the frame problem in the situation calculus.
In [82, 83, 81], Reiter develops a first-order formalization of actions that does not suffer from the
usual blow-up in the number of frame axioms, and he partially solves certain satellite problems, such
as the ramification problem [34, 62]. These results alleviate much of the complexity associated with
the frame problem, and permit reasoning about actions using first-order logic. However, the results
presented in [82, 83, 81| apply only to transactions defined in the situation calculus. Thus, a user must
specify a transaction as a fixed sequence of elementary actions. In addition, all elementary actions and
view definitions must be known in advance, and adding new ones requires re-programming the frame
axioms for the entire database. In [81], Reiter shows how to do this automatically, but the algorithm
is non-incremental, so that every view and every action must be “re-compiled” into frame axioms each
time any one of them changes. This makes the addition of transactions to large transaction bases
difficult, if not infeasible, since it may require bringing the entire database system down each time a
single transaction or view is modified. It also precludes the possibility of ad hoc updates, in the style
of SQL, since such updates are not known in advance, and have not been compiled into the system.
Finally, actions in [82, 83, 81] can insert and delete atomic formulas, but not arbitrary logical formulas.
Thus, an action cannot add new rules to a deductive database, nor can it add tuples with null values to
a relational database. None of these limitations apply to transactions in 7R. As usual, this is possible
because 7R focuses on execution, not on general reasoning. Unfortunately, it seems impossible to
generalize Reiter’s results to arbitrary transactions and remain within a first-order framework, since,
in general, reasoning about transactions is not in r.e.

The Event Calculus

The event calculus is also a methodology for encoding actions in first-order predicate logic. It was
developed by Kowalski and Sergot for reasoning about time and events in a logic-programming setting
[56, 55] and for overcoming some of the problems of the situation calculus. Like the situation calculus
(and unlike 7R), the event calculus makes a sharp distinction between actions and queries. However,
inspired by James Allen’s treatment of time and action [7], the event calculus focuses on time intervals
instead of states. Its use of intervals is somewhat dual to 7R’s use of paths: in 7R, actions take place
over paths, and facts are true at states; but in the event calculus, facts are true over intervals, and
actions take place instantaneously. Like the situation calculus, but unlike 7R, the event calculus does
not store the current database state. Instead, it records a history of events (database transactions),
from which it can infer the state of the database at any given time. Furthermore, under certain
conditions, it is possible to index the events and achieve efficiency comparable to assert and retract
in Prolog [55]. This is possible, for instance, if events are write-only, i.e., if they change the database
without reading it, as in “Set Joe’s salary to $50,000.” When events can both read and write, efficiency
is still possible if the database records not only a description of each event, but also its effects. Thus,
given the event “Add $5,000 to Joe’s salary,” the new salary would be computed and stored in the
database, in addition to storing the event itself. In this way, salaries would not have to be recomputed

3%Fangzhen Lin and Ray Reiter, personal communication.
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from time zero with each salary query.3! In a logic-programming setting, the event calculus relies on
negation-as-failure to solve the frame problem. In contrast, 7R solves the frame problem in a purely
monotonic logic, and its proof theory and model theory are both first-order.

Like the situation calculus, all actions in the event calculus are elementary. Thus, there is no
way to define complex actions in terms of simpler ones. A user can specify that one event occurs
before another, but he cannot construct transactions using conditional statements, iterative loops,
and subroutines. From the database perspective, however, it seems that the event calculus was not
intended as a language for building complex transactions. Rather, it can be seen as a logical account
of database logs. By centering on semantically meaningful events, it provides flexible support for
historical databases.

Thus, the event calculus seems to be complementary to 7R. Indeed, since 7R includes all of first-
order logic as a special case, this calculus can be incorporated in 7R as a methodology for reasoning
about events and supporting historical databases. Most database applications, however, are not
historical, and in these cases, 7R supports updates without the added cost that historical databases
demand. 7R can also be of benefit to the event calculus, as it provides a logical mechanism for
inserting events and their effects into the database, for revising incorrect assertions, and for combining
simple events into complex transactions—a mechanism that is ostensibly lacking in [55].

Approaches Based on Temporal Logic

In addition to the situation and event calculi, there are other approaches to modeling actions within
first-order logic (e.g., [7, 70]). Generally, these approaches are concerned with difficult problems in
Artificial Intelligence and Linguistics. Often they are concerned with the interaction of time and
action with belief, intention and causality. As such, the number and the complexity of the axioms
for these systems is quite large compared to the proof theory of 7R. More importantly, developing
a declarative programming language (like 7R) for specifying and executing transactions is not their
main concern. Indeed, these formalisms were intended for reasoning about action, not for actually
updating databases. Such reasoning is feasible if actions are relatively simple. However, once actions
are as complex as programs, reasoning about them is outside of r.e., and so cannot be formulated in
first-order logic. Inference systems for such reasoning may be sound, but they cannot be complete.
In contrast, because 7R focuses on execution, this problem does not arise, and inference in 7R is
both sound and complete. Many of our comments about the situation calculus also apply to other
encodings of action in first-order logic, especially those comments about the frame problem and the
use of explicit time variables.

Besides these general comments, the work by James Allen deserves special mention [7, 6, 8]. This
is because actions in Allen’s logic are not instantaneous, but take place over time intervals, much as
actions in 7R take place over paths. Allen’s logic supports a rich set of relations between actions:
besides coming before or after one another, actions can overlap, start at the same time, end at the
same time, etc. As illustrated in Section 7.7.2, similar relations can be expressed in 7R. Allen’s logic
can also express sequential planning goals, such as, “First boil the water, and then add the coffee”
[8]. As illustrated in Section 7.9.2, such goals can also be expressed in 7R. Generally, though, the
two logics have different applications. Allen’s logic is intended for reasoning about action, whereas
TR provides executable specifications for complex actions. Specifically, Allen’s logic uses temporal

31R. Kowalski, personal communication
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variables, which provide a powerful reasoning capability, while 7R uses a transition oracle, which
provides efficient execution.

We should also mention the logic of Halpern and Shoham [44], which is based on Allen’s logic
of time intervals. This work develops a propositional modal logic for reasoning about time intervals,
including results about undecidability. Although, by following this approach, one can represent some
aspects of transaction programming, it is not completely adequate for the task. For instance, there is
no counterpart to 7R’s transition oracle, nor to the notion of executional entailment, and it is not
clear that subroutines can be expressed in a straightforward way. In addition, although actions can be
sequenced, this is not done using a logical connective of serial conjunction, as in 7R. Consequently,
there is no counterpart to 7R’s dual connective of serial disjunction, nor to serial implication. Thus,
there is no obvious way to express constraints based on these connectives, such as those illustrated in
Section 7.7.2. Finally, although the logic is propositional, validity is already outside of r.e. for some
important models of time, including real time and integer time.

In [72], Moszkowski develops an imperative programming language called Tempura based on In-
terval Temporal Logic (ITL) [43, 71]. Moszkowski shows how each Tempura statement translates into
ITL, shows how to specify numerous applications in Tempura, and describes an interpreter for exe-
cuting Tempura programs. There are important similarities between Tempura and 7R. For instance,
Tempura emphasizes the ezecution of programs specified in logic. Tempura also evaluates formulas on
paths, that is, on sequences of states; and it has an operator of sequential composition, called chop,
which is identical to serial conjunction in 7R. Finally, like serial-Horn 7R, Tempura represents a
subset of a larger logic. However, there are also many significant differences between Tempura and
TR, which we itemize below.

e Tempura is not a database programming language. Indeed, there is no notion of database or of
persistence in Tempura or in ITL, and there is no analogue to 7R’s transition oracle. Further-
more, if applied to databases, Tempura and ITL would both suffer from the frame problem and
the ramification problem (Section 7.8).

e Although it has a logical semantics, Tempura is an imperative programming language, not a
logic programming language. Consequently, Tempura has no built-in facilities for unification,
for backtracking, or for non-determinism.

e Although a notion of serial conjunction is defined, the dual notion of serial disjunction is not
considered, nor is serial implication. Consequently, the kind of dynamic constraints described in
Section 7.7 were not developed.

e Tempura represents an executable fragment of ITL, but a fragment without a clean, simple
characterization. In particular, Tempura is not a “Horn” fragment of ITL.

o Unlike serial-Horn 7R (and classical Horn logic), Tempura lacks an efficient SLD-style inference
system. In fact, proof theory is barely mentioned in [72].

o Although Tempura has subroutines, they cannot be expressed within ITL [72]. It may be possible
to extend ITL to include (recursive) subroutines, perhaps by adding a fixpoint operator, but [72]
provides no details.

Finally, it is worth comparing 7R, ITL and Process Logic (discussed earlier). As in 7R and
Process Logic, formulas in ITL are true on paths, that is, on sequences of states. However, the
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semantics of ITL and Process Logic are fundamentally different from that of 7R. For instance, in
both ITL and Process Logic, an atom is true on a path iff it is true at the first state of the path. In
contrast, in 7R, the truth of atoms on a path is interpreted as ezecution and is independent of the
states that make up the path. Such dependencies can be described in 7R by logical axioms, but they
are not built into the semantics. One consequence is that in ITL and Process Logic, an atom can
only represent a static fact, such as age(tony, 32), whereas in 7R, an atom can represent an action,
such as promote(tony, manager). This is one reason why ITL must be extended in order to define
subroutines, since there is no facility for assigning names to complex actions.

Procedural Logic

Georgeff and Lansky develop a formalism called Procedural Logic whose intent is very similar to
that of 7R [39, 38]. Both systems focus on executable specifications of transactions, both provide
a subroutine facility, both allow for arbitrary primitive actions, both allow non-deterministic actions,
and both provide some kind of constraints. Indeed, we are in complete agreement with Georgeff
and Lansky on the limitations of existing logics of action. However, there are important differences
between Procedural Logic and 7R, both practically and philosophically. These difference arise largely
because Procedural Logic is actually two separate things: An implementation (called PRS), which
provides the aforementioned functionality; and a formalization, which accounts for only a fraction of
this functionality. It is probably fair to say that 7R is a formalization that accounts for almost all
of PRS and more. In the following discussion, we use the term “Procedural Logic” to refer to the
formalization.

The most obvious difference between 7R and Procedural Logic is syntactic: Whereas 7R uses
Horn-like rules to define transactions, Procedural Logic uses what in Al are called “recursive transition
networks,” which are a generalization of finite automata. Furthermore, the status of transactions in
the two formalisms is quite different. In 7R, transaction definitions are logical statements, while in
Procedural Logic, they are modal operators, as in Process Logic and Dynamic Logic. Each transition
network defines a distinct modal operator.

A more important difference concerns functionality: Procedural Logic does not have a database.
As Georgeff and Lansky remark, having an updatable database “introduces all the standard planning
issues, such as the frame problem and consistency maintenance” [39]. These are problems that 7R has
resolved. Because it lacks a database, Procedural Logic cannot be used for specifying or executing
database transactions. The implementation does not have this limitation, but it is not a logic and
provides no rigorous account of actions. Likewise, only in the implementation can a user specify
primitive updates. This is impossible in the logic itself, which has no notion of database and thus
no notion of update, primitive or otherwise. In 7R, primitive executable actions are specified in the
transition oracle.

Another important difference between 7R and Procedural Logic is semantic. Like 7R, Procedural
Logic claims to have a declarative semantics. However, the declarative semantics of Procedural Logic
is still very procedural, and seems to anticipate a Prolog-style backtracking interpreter. It is for
this reason that the semantics is burdened with the notions of “successful” and “failed” behaviors.
Indeed, as Georgeff and Lansky remark, “the declarative semantics is surprisingly complex” [39], even
though databases and updates are not even included! In contrast, 7R has an elegant model-theoretic
semantics that accounts for databases, primitive updates, complex transactions, subroutines, and
executions that succeed or fail.
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Finally, like 7R, Procedural Logic has an operational semantics. However, unlike 7R, the oper-
ational semantics of Procedural Logic is an interpreter for the logic, not a logical inference system.
Moreover, the interpreter is not complete with respect to the declarative semantics. The main problem
is that the interpreter cannot rollback failed transactions, just as Prolog cannot rollback assert and
retract operations. Indeed, as pointed out in [39], soundness without completeness “is the best one
can really hope for when any particular selection may cause some possibly irreversible action.” Note
that without rollback, Procedural Logic cannot model sub-transactions. In contrast, 7R provides a
logical inference system that is both sound and complete with respect to its model-theory. It thus
provides both a theory and a procedure for dealing with transaction rollback and sub-transactions.
Furthermore, the procedure is a practical SLD-style inference system based on resolution. Thus, unlike
Procedural Logic (or PRS), 7R extends the advantages and elegance of pure Prolog to Prolog with
updates.
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A Appendix: Soundness of &7

This appendix contains proofs of soundness of the inference system $! developed in Section 6.3. The
proof for system $!{ is exactly parallel. Unlike completeness, soundness holds for arbitrary formulas
and transaction bases, and does not require the serial Horn conditions of Section 6.1.

For convenient reference, we reproduce the axioms and inference rules of system $7 below. Recall
that the inference system assumes a data oracle, @%, and a state transition oracle, @f. As described in
Sections 3 and 5, the data oracle specifies the semantics of database states, and the transition oracle
specifies the semantics of elementary state transitions. Intuitively, if b is a first-order formula and
b € O4(D), then b is true in database state D. Likewise, if b € O!(D1,D5), then b is an elementary
transition that transforms database D; into D,. The rest of this appendix assumes that these two
oracles are given.

Definition A.1 (Inference System $!) If P is a transaction base, then &7 is the following system of
axioms and inference rules, where D and D; are any database state identifiers.

Axioms: P,D--- I ().

Inference Rules: In Rules 1-3 below, o is a substitution, ¢ and b are atomic formulas, and ¢ and
rest are serial goals.

1. Applying transaction definitions:
Suppose a <« ¢ is a rule in P whose variables have been renamed so that the rule shares
no variables with b ® rest. If @ and b unify with mgu o, then

P,D--- F (3) (¢ ® rest)o
P,D--- F (3)(b® rest)

2. Querying the database:
If bo and resto share no variables, and O%(D) |=° (3) bo, then

P,D--- - (J)resto
P,D--- F (3)(b® rest)

3. Performing elementary updates:
If bo and resto share no variables, and O*(D;,D;) ¢ (3) bo, then
P,Dy--- () resto
P,D;--- F (3)(b® rest)

The following simple theorem is the main result of this section.
Theorem A.2 (Soundness of &') If P,D---+¢ then P,D--- |= ¢

To prove Theorem A.2, it is enough to show that the axioms and inference rules of system ! are
sound. Lemma A.3 below shows that the axioms are sound. Lemma A.4 shows that the inference
rules are sound.

Lemma A.3 P,D |= () for any transaction base, P, and any database, D.
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Proof: Recall that () is an abbreviation for the special proposition state, which is true on all states.
By definition, M, (D) |= state for all path structures, M, and in particular, for all models of P.
Thus P,D |= state. i.e., P,D[=(). O

Lemma A.4 Suppose b and rest are two transaction formulas, and o is a substitution.

1. Suppose that a «— ¢ is a rule in P whose variables may have been renamed, and suppose that a
and b unify with mgu o.

If P,D...D,|=(3)(¢@rest)c then P,D;..D, |=(3)(b® rest).

2. Suppose bo and resta share no variables, and ©O%(D,) =° (3) bo, then
If P,D,..D, |=(3)restc then P,D;..D, | (3) (bR rest).

3. Suppose bo and resto share no variables, and O*(D1,D;) =° (3) bo, then
If P,D,..D, |=(3)restc then P,D;...D, | (3) (b rest).

Proof: We prove each item in turn.

e To prove item 1, first note that since a «— ¢ is in P, every model of P is also a model of a « ¢
and, therefore, of (a «— ¢)o. With this in mind, suppose that P,D;...D, |= (3) (¢ ® rest)o. Then
for every model M of P,

M, (D;...D,,) = (3) (¢ ® rest)o

M, (D;...D,,) . (¢ ® rest)o for some variable assignment, v, by Definition 5.2;

M, (D;...D;) = ¢o for some 7, by Definition 5.2;
and M, (D,...D,) |5, resto

M, (D;...D;) L a0 since M is a model of (a « ¢)o;
and M, (D,...D,) |5, resto

M, (D;...D;) F, bo since ao = bo, as 0 = mgu(a,b);

and M, (D,...D,) |5, resto
M, (D;...D,,) . (b® rest)o by Definition 5.2;
M, (D;...D,,) =, (b ® rest) where p(X) = v(Xo), for every variable X;
M, (D;...D,,) &= (3) (b ® rest) by Definition 5.2.
Since this is true for every model, M, of P, it follows that P,D;...D, = (3) (b ® rest).
e To prove item 2, suppose that ©4(D;) |=¢ (3)bs. Then M, (D,) |= (3) bo for any path struc-

ture, M, by Definition 5.1. Thus M, (D,) |=, bo for some variable assignment, g. With this in mind,
suppose that P,D;...D,, |= (3)resto. Then for every model, M, of P,

M, (D;...D,,) = (3) resto
M, (D;...D,,) =, resto for some variable assignment, v.

Let < be a variable assignment that coincides with v on the variables in resto, and with g on the
variables in bo. This is possible since bo and rest o share no variables. Continuing:
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,(D1..Dy,) =« resto by the previous item and the construction of «;

{
, (D1) =k bo since M, (D1) |=, bo and by construction of «;
,(D1..Dy,) =« (bo @ rest o) by Definition 5.2;
(D;...D,,) F« (b® rest)o

(D1...D,,) =, (b® rest) where n(X) = k(X o), for every variable, X;

(D;..D,,) E (3) (b® rest) by Definition 5.2.
Since this is true for every model, M, of P, it follows that P,D;...D,, |= (3) (b ® rest).

bl

bl

22228E

e To prove item 3, suppose that O(D;,D,) |=° (3)bo. Then M, (D1, D,) |= ()bo for any path
structure, M, by Definition 5.1. Thus, M, (D, D) =, bo for some variable assignment, u. With
this in mind, suppose that P,D,...D, = (3)resto. Then for every model, M, of P,

M, (D,...D,,) = () resto
M, (D,...D,,) =, resto for some variable assignment, v.

As before, let k be a substitution that coincides with » on the variables in rest o, and with p on the
variables in bo. Then, as before, we have M, (D1, D) =, bo and M, (D,...D,,) =, rest . Therefore,

M, (D4, D;...D,) |5, (bo ® resto) by Definition 5.2;
M, (D4, D;...D,) =« (b ® rest)o
M, (D4, D,...D,,) |=, (b ® rest) where n(X) = k(X o), for every variable, X;
M, (D4, D,...D,) = (3) (b ® rest) by Definition 5.2.
Since this is true for every model, M, of P, it follows that P,D;...D, |= (3) (b ® rest). O

B Appendix: Completeness of I/

This appendix proves that inference system &/ developed in Sectlon 6.3 is complete. (The proof for
system $!7 is exactly parallel.) The axioms and inference rules of S’ are conveniently reproduced in
Appendix A. Our proof strategy is to first prove completeness of ground inference using a canonical-
model construction. We then prove completeness of general inference using a Herbrand theorem and a
lifting lemma. As in the other appendices, we assume that a Transition Oracle, O, and a Data Oracle,
4, are given. We also assume that all transactions are existential serial goals, that the transaction
base is a set of serial Horn rules, and that the other conditions of Definition 6.2 are satisfied.

B.1 Ground Inference

This section develops a ground version of inference system S called Ground $!. To simplify the
proof of completeness, this new inference system also keeps track of the execution path, D;...D,,, of
a transaction. Systems $7 and Ground $! use the same data oracle, ®¢, and the same transition
oracle, O. Both systems thus have the same set of database state identifiers, and the same semantics
for states and transitions. In addition to the serial Horn conditions, this subsection assumes that the
transaction base, P, and all transaction invocations are ground.



B APPENDIX: COMPLETENESS OF &' 127

Definition B.1 (Inference in Ground S!) Let P be a (possibly infinite) transaction base that is ground
and serial Horn. Then Ground &/ is the following system of axioms and inference rules, where D and
D; are any database state identifiers.®2

Axioms: P,DF ()

Inference Rules: In Rules 1'-3’ below, b is a ground atomic formula, and ¢ and rest are ground
serial goals.

1'. Applying transaction definitions: If b «— ¢ is a rule in P, then:

P,D;..D, F ¢ ® rest
P,D,..D, - b® rest

2'. Querying the database: If ©%(D;) |=° b, then

P,D,..D, F rest
P,D,..D, I b® rest

3'. Performing elementary transitions: If O*(D,D,) |=° b, then

P,D,...D, F rest
P,D,,D,..D, I bQ rest

O

Like &7, the soundness of Ground 7 follows immediately from Lemmas A.3 and A.4, which show
that each axiom and inference rule of Ground $ is sound. We thus have the following result.

Theorem B.2 (Soundness of Ground ') Let ¢ be a ground serial goal.

If P,D,..D,t¢ then P,D,..D,E ¢

Below, we give some properties of Ground . The properties in Lemma B.3 are special cases of
the inference rules with rest = (). Lemma B.4 is a bit more difficult, and is central to our proof of
completeness for ground inference.

Lemma B.3 (Basic Properties) Ground S! has the following properties, where b is a ground
atomic formula:

1. If b— ¢ isaruleinP, andif P,D;..D,+F¢, then P,D;..D,Fb.
2. If O4D)|=°b then P,DIb.
3. If OY(Dy,Dy) b then P,D;,Dytb.
Lemma B.4 Ground ST has the following property, where o and B are ground serial goals:
If P,D,.D;ta and P,D;..D,FB3 then P,D.;..D,Fa®p

Proof: We shall transform a derivation of P,D;...D;F a into a derivation of P,D;...D,Fa® 3. The
proof is by induction over the length of the former derivation.

32Note that the databases need not be ground; that is, (’)d(D) may contain variables.
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Basis: Suppose that the sequent P, D;...D;Fa can be derived in 1 step. It is therefore an axiom,
sot=1and a = (). Thus, a ® 8 = 3, so the sequent P,D;...D,Fa ® 3 is identical to the sequent
P,D;...D, 3, which is identical to the sequent P,D;...D, 3, which is given to be true.

Induction: Suppose the lemma is true for all sequents P, D;...D;F « derivable in at most N steps.
Since a is a ground serial goal, it has the form b ® rest, where b is a ground atomic formula, and rest
is a ground serial goal. Suppose the sequent P, D;...D;b® rest can be derived in N + 1 steps. We
must show that P, D;..D,,Fb® rest ® 3 is derivable. There are three cases, depending on the last
inference rule used in the derivation.

o If Rule 1 is the last inference rule used, then P,D;..D;F ¢ ® rest, for some rule b — ¢ in
P. Moreover, this sequent can be derived in at most N steps. Hence, by induction hypothesis,
P,D,..D,F ¢ ® rest ® 3. Finally, by inference rule 1, we have P,D;...D,Fb® rest ® 5.

o If rule 2 is the last inference rule used, then O%(D;) |=°b and P,D;...D;} rest. Moreover, the
last sequent can be derived in at most IV steps. Hence, by induction hypothesis, P,D+...D, - rest® 3.
Finally, by inference rule 2, we have P,D;...D,,Fb® rest ® 3.

o If rule 3 is the last inference rule used, O(D;,D,) |=° b and P, D,...D; rest, where the latter
sequent can be derived in at most N steps. Hence, by induction hypothesis, P,D,...D, I rest ® 5.
Finally, by inference rule 3, we have P,D;..D,Fb® rest ® 3. O

B.2 Completeness of Ground &7

To prove the completeness of Ground ¥/, we construct a canonical Herbrand model of the transaction
base, P. This model, constructed proof theoretically, provides the necessary link between the proof
theory and model theory. Once again, in addition to the serial Horn conditions, this subsection
assumes that the transaction base, P, and all transactions are ground.

Given a language for 7R, we define the Herbrand universe and classical Herbrand interpretations in
a standard way. The Herbrand universe is the set of all ground terms that can be constructed out of the
symbols in F, and a Herbrand interpretation is a semantic structure where the domain is the Herbrand
universe and where function symbols are interpreted in a fixed way: Iz(f)(t1,...,tn) = f(t1,..0ytn)-
The symbol HB shall denote the set of all ground atomic formulas, which is commonly known as the
Herbrand base. There is a 1-1 correspondence between Herbrand interpretations and subsets of HI,
so we shall often treat them as the same thing.

Recall from Definition 5.1 that a path structure is a triple (U, Iz, I,qtp), where U is the domain,
Ir interprets function symbols, and I,u interprets paths. A Herbrand path structure is any path
structure whose domain is the Herbrand universe and whose function symbols have the Herbrand
interpretation. Thus, since U and I are the same for all Herbrand path structures, we can omit them
and specify Herbrand path structures in terms of I, alone.

Definition B.5 (Canonical Model) The canonical model of a transaction base, P, is the Herbrand path
structure Mp = (Ipqth), Where

Latn({(D1..D,)) = {beHB | P,Dy..D,+b}
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We first observe that Mp is a legitimate path structure. This follows immediately from Defini-
tion 5.1 and the following lemma.

Lemma B.6 Let Mp = (L,q:n) be the canonical model of P. Then:

(1) Latn((D)) =¢ ¢ for every closed first-order formula such that ¢ € O%(D)
(so Mp, (D) |= ¢)

(1t) Ipatn((D1,D3)) E° b for every b such that b € OY(Dq, Dy)
(so Mp,(D1,Ds) |- b)

Proof: Recall that O*(D;,D;) is a set of ground atomic formulas. Item (i7) then follows di-
rectly from Lemma B.3 and Definition B.5. That is, if b€ OY(D;,D;) then P,D;,DyFb so
b € Ipgin((D1,D3)) so Ipgn((D1,D2)) |=° 0.

To prove item (%), recall that because of the serial Horn restrictions, O%(D) is independent of P.
That is, no predicate symbol in the head of a rule in P appears in the body of a rule in O4(D). Thus,
rules in O4(D) do not use conclusions inferred by rules in P.

Second, note that in the canonical model, every atom in L, ((D)) comes from a sequent of the
form P,DFb. These expressions are generated only by inference rules 1 and 2. Rule 2 infers P, Db
iff ©4(D) |=°b, and rule 1 infers P,D b only if b is the head of a rule in P. Let S be the set of
ground atomic formulas classically entailed by O¢(D). Thus, Ip.s((D)) consists of the atoms in §
plus the heads of some rules in P.

By the serial-Horn restrictions on the data oracle, § must contain some model of ©¢(D). Since the
rules in Od(D) are independent of the rules in P, any set obtained from S by adding some rule-heads
of P is also a model of O%(D). Since L. ((D)) is just such a set, it is a Herbrand model of O¢(D).
Thus I.n((D)) ¢ ¢ for every 04(D) =€ ¢. O

The following lemma states a basic result about canonical models. Theorem B.8 partially gener-
alizes this result from atoms to serial goals. A full generalization is given in Corollary B.11.

Lemma B.7 If b is a ground atomic formula, then
Mp,(D;..D,) b iff P,D;..D,Fb

Proof: Follows immediately from Definitions B.5 and 5.2. O

Theorem B.8 Let ¢ be a ground serial goal.
If Mp,(D1..D,)E¢ then P,D;.D,t¢

Proof: ¢ has the form b; ® ... ® by, where & > 0 and each b; is a ground atomic formula. Our proof
is by induction on k. In the base case, k = 0 and ¢ is the empty clause (z.e., (), or state). If the
expression Mp, (D;...D,) |= () is true, then n = 1, since the empty clause is true only on states.
But, the sequent P,D;F () is trivially true, since it is an axiom.

For the inductive case, assume the claim is true for all values of k& from 0 to m. We show that it
is true for k = m + 1:
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Mp,(D1.D,) E b1 ® ... ® by, ® b1 given;
Mp,(D;.D;))E01®...Q by, and Mp,(D;...D,) = bpi1 for some %, by Definition 5.2;
P,D;.D;F0; ®..8®b, and Mp,(D;..D,) | bni1 by induction hypothesis;
P,D,.D;F1®..0b, and P,D;,.D,Fb,i11 by Lemma B.7;
P,D;..D,Fb; ®...0 by, ® byt by Lemma B.4.

O

Theorem B.9 Mp is a model of P.

Proof: Let b — ¢ be any rule in P. Then, for any path (D;...D,),

if Mp, (D;..D,) = ¢
then P,D...D,F¢ by Theorem B.8;
P,D,..D,Fb by Lemma B.3;
Mp, (D;...D,) = b by Lemma B.7.
Mp thus satisfies the rule b «— ¢ on every path. Mp is therefore a model of every rule in P, so it is

a model of P. O

To prove the completeness of S, we do not need the completeness of Ground &’ per se. Instead,
we need Theorems B.8 and B.9. However, since all the machinery is already in place, we can state the
completeness of Ground S as an easy corollary.

Corollary B.10 (Completeness of Ground $') For any ground serial goal, ¢,
i P,D;..D, = ¢ then P,D;..D,F¢

Proof: Suppose that P,D;...D,, = ¢. Then:

M, (D;...D,) |= ¢  for every model, M, of P, by Definition 5.6,
Mp,(D;..D,) E ¢ since Mp is a model of P, by Theorem B.9,
P,D,.D,-¢ by Theorem B.8.

Although this completes the proof of completeness in Ground $7, we include one more important
corollary. This corollary generalizes Lemma B.7 from atoms to serial goals. It shows that inference in
Ground $ is equivalent to satisfaction in the canonical model.

Corollary B.11 If ¢ is a ground serial goal, then

Mgp,(D:..D,)) ¢ iff P,D...D,+¢

Proof: The only if direction is just Theorem B.8. The if direction follows from the soundness of
Ground &, since, by Theorem B.9, Mp is a model of P. O
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B.3 Completeness of &'

Having proved the completeness of Ground &7, we now prove the completeness of S itself. We first
prove a result analogous to the Herbrand Theorem of classical logic, which lets us reduce general
entailment to ground inference. Then we prove a lifting lemma, whose purpose is to “lift” ground
inferences up to general inferences. In this subsection, we again assume the serial Horn conditions,
but not groundness. Thus, transactions and the transaction base, P, may be non-ground. The ground
instantiation of P is denoted P*. We shall need to distinguish between the sequents of inference
systems $7 and Ground $7. In general, sequents of the form P, D ---¢ belong to &7, while sequents
of the form P*,D;...D,+¢ belong to Ground L.

Lemma B.12 Mp- is a model of P.

Proof: Let b «— ¢ be a rule in P with free variables X = {X;...X,,}. For any variable assignment, v,
let 8, be a substitution that replaces each variable X; € X with the Herbrand term v(X;). Note that
(b — ¢)8, is ground. Moreover, by the discussion surrounding Definition 5.2,

MP*aﬂ- |:u b ¢ ljf MP*,” |: (b — ¢)0U (50)

for any path, 7. Observe that the right-hand side of (50) is a true statement, since (b «— ¢)8, is a
rule in P*, and Mp-~ is a model of P*, by Theorem B.9. Thus, the left-hand side of (50) is also true,
for any variable assignment, v. Thus,

Mp:, 7 |= VX (b «— ¢)
by Definition 5.2. Since this is true for every path, Mp+ is a model of b «— ¢, by Definition 5.5. Mp=
is thus a model of every rule in P, so it is a model of P. O
We can now prove a result that is analogous to Herbrand’s Theorem in classical logic.
Corollary B.13 (Herbrand’s Theorem for $) Let ¢ be a serial goal.
If P,D...D, | (3)¢ then P*,D;..D,+¢
for some ground instance, ¢', of ¢.
Proof: If P,D;...D,, = (3) ¢ then

M, (D;...D,,)) = (3) ¢ for every model, M, of P,
Mp+,(D;..D,) = (3) ¢ since Mp+ is a model of P, by Lemma B.12,

Mp+,(D;..D,) . ¢ for some variable assignment, v,
Mp+,(D;..D,) = ¢6, as described in the proof of Lemma B.12,
P*,D;..D,F ¢80, by Theorem B.8.

The result follows with ¢' = ¢6,. O

Lemma B.14 (Lifting Lemma for $7) Let ¢ be a serial goal, and let 1’ be one of its ground in-
stantiations.

If P*Dy.D.t¢' then P,Dy---+(3)¢

Proof: The proof is by induction on the length of the ground derivation.
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Basis: In this case, both inference expressions are axioms, so they are both trivially true.

Induction: Suppose the lemma is true for all ground derivations having at most N steps. Now
suppose the sequent P* D;...D,F%' is derivable in Ground S in N 4 1 steps. There are three
cases, depending on the last inference rule used in the derivation.

e Suppose inference rule 1’ was used last in the ground derivation. Then ) has the form b ® rest
and 7' has the form b’ ® rest’, where b and b' are atomic formulas. Moreover, for some rule &' « ¢’
in P*, the sequent P*,D;...D,F ¢' ® rest’ is derivable in Ground $! in at most N steps.

The rule & «— ¢' is a ground instantiation of some rule a « ¢ in P. We show below that
the formula ¢' ® rest’ is a ground instantiation of (¢ ® rest)o, where o is the most general unifier
(mgu) of a and b. Thus, by induction hypothesis, P,D;---F (3) (¢ ® rest)o. From this we get
P,D;---F(3) (b® rest) by inference rule 1 of ST and rule a « ¢ in P.

To show that ¢'® rest’ is a ground instantiation of (¢ ® rest)o, note that the atom b’ is a ground
instantiation of both a and b. The atomic formulas a and b therefore unify. Let o be their mgu. The
atom b’ is thus a ground instantiation of bo = ao, i.e., there is a ground substitution ¢’ such that
b' = aco’ = aco’. Hence,

b ®rest’ = (bQ® rest)oo'o;
b —¢ = (a< ¢)oo'o,
for some pair of ground substitutions, oy and o,; the substitution oo’ instantiates the variables in
a and b. The substitutions o; and o, instantiate any remaining variables. By inference rule 1, the
variables in the rule a < ¢ have been renamed so that it and b ® rest have no variables in common.

Thus, (a «— ¢)oo’ and (b ® rest)oo’ have no variables in common, since oo’ is a ground substitution.
Thus, o; and oy instantiate different variables. Thus o1 and o3 commute; that is, o307 = o103.

Extracting subformulas from the formulas above, we get:

rest’ = restoc'o, = restoo'cios
¢ = ¢pooloy = ¢poa'oyo;
The rightmost equalities follow because applying substitutions to ground formulas has no effect. Com-
bining these equalities, and using the commutativity of o7 and o4, we get:
¢ @rest! = ¢od'oioy ® restoc'oio,

= (¢ ®rest)oo'oi0,
Thus, the formula ¢’ ® rest’ is a ground instantiation of (¢ ® rest)o.

e Suppose inference rule 2’ was used last in the ground derivation. Then v has the form b ® rest,
and ¢’ has the form bo @ rest o, for some ground substitution, o. Moreover, O¢(D;) |=¢ bo, and
the sequent P*,D;...D,F resto is derivable in Ground $7 in at most N steps. Thus, by induction
hypothesis, the sequent P,D;--- - (3)resto is derivable in 7, since rest o is (trivially) a ground
instance of resto. Also, bo and rest o share no variables, since they are both ground. Thus, the
sequent P,D;--- I (3) (b® rest) is derivable in S, by inference rule 2.

e Suppose inference rule 3’ was used last in the ground derivation. Then 1) has the form b® rest,
and 7' has the form bo ® resto, for some ground substitution, . Moreover, O*(D;,D,) |=°¢ bo,
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and the sequent P*,D,..D, | resto is derivable in Ground $7 in at most N steps. By induction
hypothesis, the sequent P,D,--- I (3)resto is derivable in $7, since rest o is (trivially) a ground
instance of resto. Also, bo and rest o share no variables, since they are both ground. Thus, the
sequent P,D;--- I-(3) (b® rest) is derivable in ST, by inference rule 3. O

Theorem B.15 (Completeness of $) Let ¢ be a serial goal. Then:

If P,D-—- (3¢ then P,D---F(3)¢

Proof: If P,D--- |=(3)¢ then P,D,D,..D,|=(3)¢ for some databases D,...D,, by Defini-
tion 5.6. Thus P*,D,D,...D, F ¢/, where ¢’ is some ground instance of ¢, by Corollary B.13. Hence
P,D--- (3d) ¢, by Lemma B.14. O

Although this completes our proof of completeness in &/, we include the following important
corollary. It shows that inference in $ is equivalent to satisfaction in the canonical model.

Corollary B.16 Let ¢ be a serial goal. Then:
P,D---+(3)¢ f Mp+,(D,Dy..D,) = (3)¢ for some databases D,...D,.

Proof: The only if direction:

P,D---+-(3)¢ given;
P,D--- =(3)¢ by Soundness, Theorem A.2;
P,D,D,.D, = (3)¢ for some D,...D,,, by Definition 5.6;

M, (D,D,..D,) = (3) ¢ for all models, M, of P;
Mp-,(D,D,...D,,) |= (3) ¢ since Mp~ is a model of P, by Lemma B.12.

The if direction:

Mp+,(D,D,...D,,) E (3)¢ given;

Mp-,(D,D,...D,) =, ¢ for some variable assignment, v, by Definition 5.2;
Mp-,(D,D,...D,)) = ¢0,  as described in the proof of Lemma B.12;
P*,D,D,..D, ¢6, by Theorem B.8;

P,D---+-(3)¢ by the lifting lemma, Lemma B.14.
O

C Appendix: Executional Deduction in &/

Section 6.3.1 developed the notion of executional deduction, a special kind of deduction that corre-
sponds to the intuitive notion of transaction execution. Executional deductions trace out the execution
path of a transaction during inference. The proofs of soundness and completeness given in Appen-
dices A and B are for general deductions in inference system $. This appendix adapts these proofs

to executional deductions in L. (The proofs for system S are exactly parallel.) As in Appendix B,
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we assume that all transactions are existential serial goals, that the transaction base is a set of serial
Horn rules, and that the other conditions of Definition 6.2 are satisfied.

Our proof strategy is to define a new inference system called Path $I. Path $7 is identical to
except that it records the execution path of a transaction. Sequents in Path & have the form
P,D;,D,...D, 1, which intuitively means that D;,D,...D, is an (inferred) execution path
for transaction . Path $! is similar to inference system Ground ! developed in Appendix B.1,
except that the transaction base, P, and the transaction, %, need not be ground. Since Path S is
closely related to &' and Ground &7, it is easy to show that Path &7 is sound and complete. The only
remaining step is to show that any general deduction in Path S can be associated with an executional

deduction in &, and vice-versa.

gI

Definition C.1 (Inference in Path %I) If P is a transaction base, then Path S/ is the following system
of axioms and inference rules, where D and D; are any database state identifiers.

Axioms: P,D-- I ().

Inference Rules: In Rules 1'-3' below, ¢ is a substitution, @ and b are atomic formulas, and ¢ and
rest are serial goals.

1'. Applying transaction definitions:
Suppose a « ¢ is a rule in P whose variables have been renamed so that the rule shares
no variables with b ® rest. If @ and b unify with mgu o, then

P,D;...D,-- F (3) (¢ Qrest)o
P,D;...D,-- F (3)(b® rest)

2. Querying the database:
If bo and resto share no variables, and O%(D) |=¢ (3) bo, then
P,D;...D,--- F (J)resto
P,D;...D,-- F (3)(b® rest)

3'. Performing elementary updates:
If bo and resto share no variables, and O*(D;,D;) ¢ (3) bo, then
P,D,...D,--- F (J)resto
P,D;,D;...D,,— F (3) (b ® rest)

O

Path &7 is a trivial extension of &/, and there is a one-to-one correspondence between derivations
in & and derivations in Path ${. The soundness and completeness proofs for S/ are easily adapted to
Path $7, to give Theorem C.2 below. Note that this theorem specifies the execution path both in the
|= sequent and in the - sequent. This theorem thus contains more information than the soundness and
completeness theorems for &7 (Theorems A.2 and B.15), in which the execution paths are unspecified.

Theorem C.2 (Soundness and Completeness of Path $7)
If % is a serial goal, then the following two statements are equivalent:

1. P,D;,D,...D, | (99
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2. The sequent P,D1,D,...D, (3¢ is derivable in Path St.

Proof: Lemmas A.3 and A.4 show that the axioms and inference rules of Path & are sound. This
proves that item 2 implies item 7 (soundness). To prove the converse (completeness), suppose that
P,D;...D, | (3)%. Then P*,D;...D, %' is derivable in Ground S’ for some ground instance,
', of 1, by Corollary B.13.3> We must now show that a derivation in Ground ! can be “lifted” to a
derivation in Path &1, That is, if 4 is a serial conjunction, and %’ is one of its ground instantiations,
then

if P*D;...D,,F¢' is derivable in Ground !
then P,D;...D,F(3)¢ is derivable in Path $L

The proof of this is a straightforward adaptation of the proof of Lemma B.14. Completeness follows
immediately. O

Theorem C.2 links executional entailment with inference in Path $!. The next theorem finishes
the job by linking inference in Path & with executional deduction in $!. The reader is referred to
Definition 6.9 for a precise description of executional deduction, and to Section 6.3.1 for a description
of execution paths.

Theorem C.3 If ¢ is a serial goal, then the following two statements are equivalent:

1. The sequent P,D1,D,...D,F(3)% is derivable in Path S'.

2. There is an ezecutional deduction of (3)¢ in S whose execution path is D1, D,...D,,.

Proof: Since every executional deduction is also a general deduction, it is easy to show that item 2
implies item 1. The proof is a straightforward induction on the length of executional deductions. To
show the converse, that item 7 implies item 2, suppose the sequent P,D;...D, F(3)¢ is derivable
in Path $. Our proof is by induction on the length of this derivation.

Basis: If a sequent is derivable in Path $! in one step, then it is an axiom of Path &!. It therefore
has the form P,D (). But P,D-- () is an axiom of S!. Thus, there is an executional deduction
of () in $! whose execution path is D.

Induction: Suppose that item 7 implies item 2 for all sequents derivable in Path S in at most N
steps. Now suppose the sequent P,D;,D,...D,F(3)(b® rest) is derivable in Path ST in N + 1
steps. There are three cases, depending on the last rule of inference used in the derivation.

o Suppose that inference rule 1’ is the last rule used in the derivation. Then the sequent
P,D;...D,(3)(¢ ® rest)o is derivable in Path S in at most N steps. Here, o = mgu(a,b) for
some rule a «— ¢ in P. By induction hypothesis, there is an executional deduction of (3) (¢ ® rest)o
in &7 whose execution path is D;...D,,. Using inference rule 1 in $7, this can be extended by one
sequent to an executional deduction of (3) (b ® rest). Moreover, since this extension does not involve
inference rule 3, the execution path is still D;...D,.

33Recall that P* is the ground instantiation of P.
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e Suppose that inference rule 2’ is the last rule used in the derivation. Then, the sequent
P,D;...D,(3)resto is derivable in Path ! in at most NV steps. Here, bo shares no variables with
resto and O%(D) |=¢ (3)bo. By induction hypothesis, there is an executional deduction of (3) resto
in & whose execution path is D;...D,. Using inference rule 2 in &, this can be extended by one
sequent to an executional deduction of (3)(b® rest). Since this extension does not involve inference
rule 3, the execution path is still D;...D,,.

e Suppose that inference rule 3’ is the last rule used in the derivation. Then, the sequent
P,D,...D,(3)resto is derivable in Path ! in at most N steps. Here, bo shares no variables
with rest o and O%(Dq,Dy) |=° (3)bo. By induction hypothesis, there is an executional deduction of
(3) rest o in ST whose execution path is Dy ...D,. Using inference rule 3 in $7, this can be extended
by one sequent to an executional deduction of (3)(b ® rest). The execution path is extended to
D;,D,...D,. O

Combining Theorems C.2 and C.3, we get the following corollary, which is the main result of this
appendix.

Corollary C.4 (Executional Soundness and Completeness of $7)
If % is a serial goal, then the following two statements are equivalent:

1. P,D;,D,...D, = (3)v.

2. There is an ezecutional deduction of (3) in ST whose ezecution path is D1,D,...,D,,.

D Appendix: Soundness of I°

In Section 8.3, we developed $°, an inference system for specifying and executing hypothetical as well
as committed transactions. This appendix proves that $° is sound. Unlike completeness, soundness
holds for arbitrary transaction formulas and transaction bases, and does not require the serial-Horn
conditions of Sections 6.1 and 8.3.1.

For convenient reference, we reproduce below the axioms and inference rules of system $°, devel-
oped in Sections 6.3, 6.4, and 8.3. To simplify references during proofs, we have re-numbered the rules.
Thus, rules 1 and 1’ are now called 1f and 17, respectively. The adornments f and r indicate whether
rules correspond to forward or reverse execution during top-down inference. Recall that the inference
system assumes a data oracle, @%, and a state transition oracle, O. As described in Sections 3 and
5, the data oracle specifies the semantics of database states, and the transition oracle specifies the
semantics of elementary state transitions. The rest of this appendix assumes that these two oracles
are given.

Definition D.1 (Inference System %0) If P is a transaction base, then $° is the following system of
axioms and inference rules, where D and D; are any database state identifiers.

Axioms:
P,D--- F ()
P,---DF ()
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Inference Rules: In the rules below, o is a substitution, ¢ and b are atomic formulas, and ¢, rest

and test are <-serial goals.

Applying transaction definitions: Suppose a < ¢ is a rule in P whose variables have been
renamed so that the rule shares no variables with b ® rest. If @ and b unify with mgu o,

then:
17 P,D--- F (3) (¢ ® rest)o
" P,D--- + (3)b® rest
1 P,---D F (3) (rest ® ¢)
" TP, -Dr (F)rest® b

Querying the database: If bo and rest o share no variables, and O4(D) =¢ (3) bo, then

2f P,D--- - (J)resto
" P,D--- () b® rest

5 P,---DF (J)resto
" TP, -DFr (F)rest® b

Performing elementary transitions: If bo and rest o share no variables, then:

P,Dy--- + () resto

) . »
37 P,D;--- F b® rest if 0OY(Dy,D,) =¢ (3)bo

if Ot(Dz,Dl) |:c (El)ba

€)
P,---Dy k- () resto
3r. Q)

P,--D; F rest ® b
Introduction of modalities: If test o and rest o share no variables, then
af P,D--- F (J)testo P,D--- - (J)resto
" P,D--- F (3)(Otest) ® rest

(
P,---DF (J)resto P,---D F (I)testo
P, ---D F (3) rest ® (testd)

4r.

Mized introduction of modalities: If test o and rest o share no variables, then

5f P,-D | (J)testo P,D--- - (J)resto
" P,D--- | (3)(testO) ® rest

5 P,---DF (J)resto P,D--- F (Itesto
" TP, -DFr (3) rest ® (Otest)

Theorem D.2 (Soundness of S°) Let ¢ be a transaction formula.
If P,D--—-F¢ then P,D--E¢

If P,—-DF¢ then P,--Df¢
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To prove Theorem D.2, it is enough to show that the axioms and inference rules of system S are
sound. Lemma A.3 shows that the axioms are sound. Lemma A.4 shows that inference rules 1f, 2f
and 3f are sound. Lemma D.3 below shows that inference rules 4f and 5f are sound. Similar results

(with similar proofs) hold for inference rules 1r to 5r.

Lemma D.3 Suppose rest and test are two transaction formulas, and o is a substitution such that

test o and rest o share no variables.

4. If P,D.,D,.D,, =3 testc and P,D;,D,..D,|=(3I)resto
then P,Dq,D,...D, = (3)(Ctest) ® rest.

5. If P,D.. D'2,D1 E () testec and P,D;,D,.D, = (I)resto
then P,Dq,D,...D, = (3)(testd) ® rest.

Proof: To prove item 4, suppose that the if part is true. Then, for every model, M, of P,

M, (D4, D)..D! ) = () testo
and M, (D1,D,..D,) |= () restoc by Definition 5.6;

M, (D,,D)...D..) £, testo for some variable assignment, v, which exists

and M, (Dq,D,..D,) |, resto since test ¢ and rest o share no variables;
M, (D4, D...D.,) =, test

and M, (D1,D,...D,) =, rest where p(X) = v(Xo) for all variables, X;
M, (D) |=, $test

and M, (D,D,...D,) =, rest by the definition of <;

M, (D4, D;...D,,) =, (Otest) ® rest by Definition 5.2;
M, (D4, D;...D,,) |= (3) (Otest) ® rest by Definition 5.2.
Since this is true for every model, M, of P, it follows that P,D;, D,...D,, |= (3) (Otest) ® rest.

To prove item 5, suppose that the ¢f part is true. Then, for every model, M, of P,

M, (D....D}, D) = () testo
and M, (D1,D,..D,) |= () restoc by Definition 5.6;

M, (D.,...D}, D) |, testo for some variable assignment, v, which exists

and M, (Dq,D,..D,) |, resto since test ¢ and rest o share no variables;
M, (D,,..D},D,) =, test

and M, (D1, D,...D,) =, rest where p(X) = v(Xo) for all variables, X;
M, (Dy) =, testo

and M, (D, D,...D,) =, rest by the definition of <;

M, (D4, D;...D,,) =, (testd) ® rest by Definition 5.2;
M, (D4, D;...D,,) |= (3) (testO) ® rest by Definition 5.2.
Since this is true for every model, M, of P, it follows that P,D;,D,...D,, |= (3) (test{) ® rest.
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E Appendix: Completeness of 3¢

This appendix proves that inference system $° developed in Section 8.3 is complete. Recall that S is
an inference system for hypothetical and retrospective transactions as well as committed transactions.
The axioms and inference rules of S are reproduced in Appendix D. We shall use the numbering
system given there to identify inference rules, i.e., 1f, 1r, 2f, 2r, etc.

As in Appendix B, our strategy is to first prove completeness of ground inference using a canonical-
model construction. We then prove completeness of general inference using a Herbrand theorem and a
lifting lemma. As in the other appendices, we assume that a Transition Oracle, Of, and a Data Oracle,
O4, are given. We also assume that all transactions are <-serial conjunctions, that the transaction
base is a set of <-serial Horn rules, and that the other conditions of Definition 6.2 are satisfied.

E.1 Ground Inference

This section develops a ground version of inference system $° called Ground $°. As in the case
of Ground 7, this inference system keeps track of transaction execution paths and is an important
auxiliary construction used in the proof of completeness. Systems $° and Ground $° use the same
data oracle, ®%, and the same transition oracle, O*. Both systems thus have the same set of database
state identifiers, and the same semantics for states and transitions. In addition to the <-serial Horn
conditions, this subsection assumes that the transaction base, P, and all transaction invocations are
ground.

Ground $° uses two kinds of sequents. They are based on two turnstyles, F¢ and I,
which correspond to the two kinds of sequent in inference system $°. Specifically, the sequent
P,D;,..D,Fs¢ corresponds to P,D;---¢, while the sequent P,D,..D;F,. ¢ corresponds to
P, ---D;F¢. From the perspective of top-down (or goal-directed) inference, - corresponds to the
forward (or normal) execution of transactions, while |-, corresponds to reverse execution.

Definition E.1 (Inference in Ground $°) Let P be a (possibly infinite) ground <-serial Horn trans-

action base. Then Ground $© is the following system of axioms and inference rules, where D and D;

are any database state identifiers.3*

Axioms:
P,D s ()
P,DF,. ()

Inference Rules: In the rules below, b is a ground atomic formula, and ¢, rest and test are ground
O-serial goals.
Applying transaction definitions: If b «— ¢ is a rule in P, then

P,D:..D, s ¢ @ rest
P,D;,..D, -5 b® rest

1£.

P,D,..D; F, rest ® ¢
P,D,.D;F,rest®b

1r.

34Note that the databases need not be ground; that is, Od(D) may contain variables.
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Querying the database: If O%(D;) |=° b, then

of P,D;..D, I-5 rest
) P,D;..D, s b® rest

P,D,..D; F, rest
P,D,.D;F,rest®b

2r.

Performing elementary transitions:

3f P,D,..D, -5 rest
) P,D;,D,..D, s b® rest

if 0Dy, Dy) = b

P,D,..D; I, rest

. ¢ e
P,Dn...D2,D1 l_r rest ® b it 0 (D27D1) |— b

3r.

Introduction of modalities:

af P,D,,D)...D), F test P,D,,D,..D, F; rest
) P,Dq,D,..D, F; (Otest) @ rest
P,D,..D,,D; I, rest P,D!...D), D, I, test

ar. P,D,..D;,D; I, rest ® (testd)

Mized introduction of modalities:

57 P,D....D,, D, I, test P,D,,D,..D, ¢ rest
) P,D,,D,...D, F¢ (testO) @ rest

P,D,...D,,D; I, rest P,D,,D)...D, F test
P,D,..D;,D; I, rest ® (Otest)

5r.

O

The soundness of Ground $° follows immediately from the proof of soundness of &° (Theorem
D.2). We thus have the following result.

Theorem E.2 (Soundness of Ground S°) Let ¢ be a ground O-serial goal.
If P,D,..D,t.¢ then P,D;..D,E7v
where € {f,r}.

Below, we give some properties of Ground $°. The properties in Lemma E.3 are special cases of
the inference rules with rest = (). Lemma E.4 is a bit more difficult, and is central to our proof of

completeness of the ground inference.

Lemma E.3 (Basic Properties) Ground $° has the following properties, where b is a ground
atomic formula, ¢ is a O-serial goal, and z € {f,r}:

e If b— ¢ isaruleinP and if P,D1..D,F,¢ then P,D;..D,F.b

o If OYD)|=°b then P,DI,b
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[ ] If Ot(Dl,D2) |:c b then P,Dl,Dz l_mb
o If P,D,..D,, ;¢ then P,Dit, ¢
L If P, Dn...Dl "7. ¢ then P, D1 l_m ¢<>

Lemma E.4 Ground $° has the following property, where a and 3 are ground -serial goals, and

:BE{T,f}’
Iy P,D,..D;t,a and P,D;..D,F.8 then P,D;.D,t,a®pg

Proof: We prove the lemma for ¢; the proof for I, is similar. The proof is similar to, but more
complex than the proof of Lemma B.4. We transform a derivation of P,D;...D;l-¢a into a derivation
of P,D;..D,Fsa®pB. The proofis by induction on the length of the derivation of P,D;...D; ¢ c.
(The proof for I, is by induction on the length of the derivation of P,D,...D,F, 8.)

Basis: Suppose that the sequent P,D;...D;F¢a can be derived in 1 step. It is therefore an axiom,
soi=1and a = (). Thus, a ® 8 = 3, so the sequent P,D;...D,t;a ® § is identical to the sequent
P,D;...D, ¢ (3, which is identical to the sequent P,D;...D, ¢ 3, which is given to be true.

Induction: Suppose the lemma is true for derivations of length at most N, and suppose the
expression P,D;..D;Fsa can be derived in N 4 1 steps. We must show that the sequent
P,D:..D,Ffa® B is derivable. There are five cases, depending on the last inference rule used
in the derivation of P,D;...D;l¢a.

e For inference rules 1f, 2f, and 3 f, the proof is essentially identical to the proof of Lemma B.4.

o If inference rule 4 f is the last rule used in the derivation, then o has the form (Otest)®@rest. More-
over, P,D;,D)..D] Fstest for some databases D5...D],, and the sequent P,D;...D;F;rest can
be derived in at most N steps. Thus, by induction hypothesis, the sequent P,D;...D,lsrest ® 8 is
derivable. Hence, by rule 4f, P,D;..D,l;({test)® rest ® B, which is synonymous with
P,D;..D,Fsa® B.

o If inference rule 5 f is the last rule used in the derivation, then o has the form (test$)®rest. More-
over, P,D; ..D), D;F,test for some databases D},...D%, and the sequent P,D;..D;F;rest can
be derived in at most N steps. Thus, by induction hypothesis, the sequent P,D;...D,l-srest ® 8 is
derivable. Hence, by rule 5f, P,D;...D,l(testO)® rest ® 8, which is synonymous with
P,D;..D,F;a®pB. O

E.2 Completeness of Ground $°

To prove the completeness of Ground $°, we construct a canonical Herbrand model of the transaction
base, P. This model, constructed proof theoretically, provides the necessary link between the proof
theory and model theory. Again, in addition to the <-serial Horn conditions, this subsection assumes
that the transaction base, P, and all transaction invocations are ground.

Given a language for 7R, we define the Herbrand universe and classical Herbrand interpretations
in a standard way, as in Appendix B.2. The symbol HB shall denote the set of all ground atomic
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formulas, i.e., the Herbrand base. There is a 1-1 correspondence between Herbrand interpretations
and subsets of HB, so we shall often treat them as the same thing. Recall from Appendix B.2
that Herbrand path structures are determined by the mapping I,,:, alone, since the domain and the
interpretation of function symbols are fixed.

Definition E.5 (Canonical Model) The canonical model of a transaction base, P, is the Herbrand path
structure Mp = (Ipqtn), Where

Lon((D1..D,)) = {beHB | P,D:..D,+sb and P,D;..D,+,b} 0

We first observe that Mp is a legitimate path structure. This follows immediately from Defini-
tion 5.1 and the following lemma.

Lemma E.6 Let Mp = (Ip.n) be the canonical model of P. Then:

(i) Latn((D)) ¢ ¢ for every closed first-order formula ¢ in O¢(D)
(so Mp, (D) = ¢)

(11) Ipatn((D1,D3)) E° b for every b in OY(D1,Dy)
(so Mp, (D1, Ds) = b)

Proof: The same as for Lemma B.6. O

The following lemma states a basic result about canonical models; its proof is analogous to that of
Lemma B.7. Theorem E.8 partially generalizes this result from atoms to <-serial goals. Corollary E.10,
below, is a full generalization of this result.

Lemma E.7 Ifb is a ground atomic formula, then
Mp, (D;..D,) =b iff P,D;.D,Fsb and P,D;..D,F.b
Theorem E.8 Let ¢ be a ground &-serial goal.
If Mp,(D1..D,)E¢ then P,D;.D,l,¢
where € {f,r}.

Proof: The proof is by induction on the number of logical operators in ¢. In the base case, ¢ is a
singleton <-serial goal, that is, either a ground atomic formula or the empty clause (z.e., state). In the
former case, the result follows by Lemma E.7. In the later case, if the expression Mp, (D;1...D,,) = ()
is true, then n = 1, since the empty clause is true only on states. But, the sequent P,D;F, () is
trivially true, since it is an axiom.

For the inductive case, assume the theorem is true for formulas with at most N logical operators,
and suppose that ¢ has NV + 1 logical operators. There are three cases, one for each type of operator.

o If ¢ has the form ¢ ® ¢,, then ¢; and ¢, have at most IV logical operators each. Thus,

MP7 <D1Dn> |: ¢1 ® ¢2 given;
Mp, (D;..D;) = ¢1  and Mp,(D;...D,) E ¢2 for some %, by Definition 5.2;
P,D,..D;F.¢1 and P,D;..D,lF,¢dy by induction hypothesis;

P,D;..D,F.¢1 ® ¢ by Lemma E.4.
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o If ¢ has the form v, then 1 has at most N logical operators, and n = 1, since hypothetical
formulas are true only on states. Thus,

Mg, (D;) |= O¢ given;

Mp, (D, D)...D],) = ¢ for some databases D...D! , by definition;
P,D,,D..D], s by induction hypothesis;

P.D F, O by Lemma E.3.

o If ¢ has the form %<, then ¥ has at most N logical operators, and n = 1, since retrospective
formulas are true only on states. Thus,

Mp, (D) E ¥ given

Mp,(D,,..D,,D;) = ¢ for some databases D}, ...D}, by definition;
P,D,...D}), Dk, ¢ by induction hypothesis;

P.DF, O by Lemma E.3.

Theorem E.9 Mp is a model of P.

Proof: Let b — ¢ be any rule in P. Then, for any path (D;...D,),

if Mp,(D;..D,) E ¢

then P,D...D,F.¢ for z € {f,r}, by Theorem E.8,
P,D,..D,F.b by Lemma E.3,
Mp,(D;..D,) E b by Lemma E.7.

Mp thus satisfies the rule b < ¢ on every path. It is therefore a model of every rule in P and, thus,
of P. O

To prove the completeness of I, we do not need the completeness of Ground & per se. Instead,
we need Theorems E.8 and E.9. However, the completeness of Ground $° has now become an easy
corollary.

Corollary E.10 (Completeness of Ground $°) For any ground $-serial goal, ¢,
If P,D;.D, | ¢ then P,D;..D,F.¢
where € {f,r}.

Proof: The same as for Corollary B.10. O

Although the proof of completeness in Ground $ is now finished, we include two more important
corollaries. The first generalizes Lemma E.7 from atoms to <-serial conjunctions. It shows that
inference in Ground $° is equivalent to satisfaction in the canonical model. The second shows that
in Ground $°, forward and backward derivations yield the same set of sequents.
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Corollary E.11 If ¢ is a ground <-serial goal, and € {f,r}, then
Mp,(D:..D,) = ¢ iff P,Di..D.t.¢

Proof: The same as for Corollary B.11. O

Corollary E.12 For any ground <-serial goal, ¢,
P,D;,..D,Fs¢ iff P,D:.D,F.¢

Proof: Follows immediately from Corollary E.11:
P,D,..D,ts¢ iff Mp,(D:;..D,)=¢ iff P,D..D,F.¢ O

E.3 Completeness of ¢

Having proved the completeness of Ground $°, we now prove the completeness of S itself. As in
Appendix B.3, we first prove a result analogous to the Herbrand Theorem of classical logic, which lets
us reduce general entailment to ground inference. We then prove a lifting lemma, to “lift” ground
inference up to general inference. In this subsection, we again assume the <-serial Horn conditions,
but not groundness. Thus, the transaction base, P, and transaction invocations may be non-ground.
The ground instantiation of P is denoted P*. We shall need to distinguish between the sequents of
inference systems S and Ground $°. In general, sequents of the form P,D--- - ¢ belong to S,
while sequents of the form P*,D;...D, F, ¢ belong to Ground °, where z € {f,7}.

Lemma E.13 Mp-+ is a model of P.

Proof: The same as for Lemma B.12. O

Corollary E.14 (Herbrand’s Theorem for $°) Let ¢ be a O-serial goal, and z € {f,r}.
If P,D,..D, |- (3)¢ then P* Di..Dnb,d
for some ground instance, ¢', of ¢.
Proof: The same as for Corollary B.13. O
Lemma E.15 (Lifting Lemma for $°) Let ¢ be a O-serial goal, and let ' be one of its ground

instantiations.

If P*D;.D,ts¢' then P,Dp---F(3)9
If P*D,..D;k, ¢ then P,--Dik- (I

Proof: The proof is by induction on the length of ground derivations.

Basis: In this case, both sequent are axioms, so they are both trivially true.
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Induction: Suppose the lemma is true for all ground derivations having at most N steps. Now
consider derivations of V + 1 steps. There are ten cases, depending on the last inference rule used in
the derivation. We shall consider only the five f-rules, since proofs for the five r-rules are similar. We
therefore assume that the sequent P*,D;...D, ¢4’ is derivable in Ground 3% in N + 1 steps.

e When the last inference rule used in the ground derivation is 1f, 2f, or 3f, the proof is the same
as in Lemma B.14.

e Suppose inference rule 4f is the last rule used in the ground derivation. Then % has the form
(Otest) @ rest, and 1’ has the form (Otest o) @ rest o for some ground substitution o. Moreover, the
following two sequents are derivable in Ground S in at most N steps:

P*,D,,D,..D,, tstesto P*,D,D,..D,Fsresto

for some databases D)...D! . Thus, by induction hypothesis, the following two sequents are derivable
in $°:

P,D;-- F(3)testo P,D;-- F(J)resto
since test o and rest o are (trivially) ground instantiations of test ¢ and rest o, respectively. Being
ground, testo and resto share no variables. Thus, the sequent P,D;--- F(3)(Otest) ® rest is
derivable in $°, by rule 4f.

e Suppose inference rule 5f is the last one used in the ground derivation. Then % has the form
(testd) ® rest, and 9’ has the form (test 0 <) ® rest o for some ground substitution, o. Moreover,
the following two sequents are derivable in Ground & in at most N steps:

P*, D!, ..D,, D], testo P*,Dy,D,..D, s resto
for some databases D/,...D}. Thus, by induction hypothesis, the following two sequents are derivable
in §°:
P,---D;F(3)testo P,D;-- F(3)resto
since test o and rest o are (trivially) ground instantiations of test ¢ and rest o, respectively. Being

ground, testo and resto share no variables. Thus, the sequent P,D;--- F(3)(testO) ® rest is
derivable in §°, by rule 5f. O

Theorem E.16 (Completeness of S°) Let ¢ be a O-serial goal.

If P,D--—-E(3)¢ then P,D--F(I)¢
If P,---DE(3)¢ then P,---DF(I)¢
Proof: As in Theorem B.15. For instance, if P,D--- |= (3) ¢, then P,D,D,..D, = (3) ¢ for some

databases D, ...D,, by Definition 5.6. Thus P*,D,D,...D,t¢', where ¢ is some ground instance
of ¢, by Corollary E.14. Hence P,D--- -(3) ¢, by Lemma E.15. O

Although this completes our proof of completeness, we include the following important corollary.
It shows that inference in §° is equivalent to satisfaction in the canonical model.

Corollary E.17 Let ¢ be a $-serial goal. Then:
P’D'" |‘(E|)¢ lﬁ MP*7<DaD2---Dn>
P,---DF(3)¢ if Mp+,(D,...Dy,D)

Proof: The same as for Corollary B.16. O

= (3) ¢ for some databases D,...D,,.
= (3) ¢ for some databases D,,...D,.
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F Appendix: Executional Deduction in 3¢

Section 8.3.5 developed the idea of executional deduction for hypothetical and retrospective inference.
Executional deductions trace out the execution path of a transaction during inference. The proofs
of soundness and completeness given in Appendices D and E are for general deductions in $°. The
present appendix adapts these proofs to executional deductions in $°. As in Appendix E, we assume
that all transactions are <-serial goals, that the transaction base, P, is a set of <-serial Horn rules,
and that the other conditions of Definition 6.2 are satisfied.

As in Appendix C, the main idea is to introduce an intermediate inference system called Path $°.
Path $° is identical to ° except that it records the execution path of a transaction. Sequents in Path
3 have the form P,D;,D,...D, -, which intuitively means that D;,D;...D,, is an (inferred)
execution path for transaction . Path &7 is similar to inference system Ground $° developed in
Appendix E.1, except that the transaction base, P, and the transaction, 1, need not be ground.
Path $° is a trivial extension of $°, and there is a one-to-one correspondence between derivations
in $° and derivations in Path §°. The soundness and completeness proofs for $° are thus easily
adapted to Path §°, to give Theorem F.1 below. The only remaining step is to show that any general
deduction in Path §° can be associated with an executional deduction in $°, and vice-versa. This is
done in Theorem F.2 below. The proofs are a straightforward extension of those in Appendix C, so
we simply state the main results.

Theorem F.1 (Soundness and Completeness of Path $°)
If 1 is a O-serial goal, then the following two statements are equivalent:

1. P,D;,D,...D, EF (v
2. The sequent P,D1,D,...D, (3¢ is derivable in Path $°.
Theorem F.2 If 1 is a O-serial goal, then the following two statements are equivalent:

1. The sequent P,D,D,...D,+(3)¢ is derivable in Path $°.

2. There is an ezecutional deduction of () in S whose ezecution path is D1,D;y...D,,.

Corollary F.3 (Executional Soundness and Completeness of $°)

If 1 is a O-serial goal, then the following two statements are equivalent:
1. P,D;,D,...D, F (3)%.

2. There is an ezecutional deduction of (3) in S° whose execution path is D1, Dy...,D,,.
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