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ABSTRACT
A requirements analysis in the emerging field of Semantic Web Ser-
vices (SWS) (see http://daml.org/services/swsl/requirements/) has
identified four major areas of research: intelligent service discov-
ery, automated contracting of services, process modeling, and ser-
vice enactment. This paper deals with the intersection of two of
these areas: process modeling as it pertains to automated contract-
ing. Specifically, we propose a logic, called CT R-S, which cap-
tures the dynamic aspects of contracting for services. Since CT R-S
is an extension of the classical first-order logic, it is well-suited to
model the static aspects of contracting as well. A distinctive feature
of contracting is that it involves two or more parties in a potentially
adversarial situation. CT R-S is designed to model this adversarial
situation through its novel model theory, which incorporates cer-
tain game-theoretic concepts. In addition to the model theory, we
develop a proof theory for CT R-S and demonstrate the use of the
logic for modeling and reasoning about Web service contracts.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; I.1.3 [Computing
Methodologies ]: Symbolic and algebraic manipulation—Lan-
guages and Systems

General Terms
Web Services, Semantic Web

Keywords
Web Services, Services Composition, Contracts

1. INTRODUCTION
A Web service is a process that interacts with the client and other

services to achieve a certain goal. A requirements analysis in the
emerging field of Semantic Web Services (SWS)1 has identified four
major areas of research: intelligent service discovery, automated
contracting of services, process modeling, and service enactment.
It is generally agreed that Semantic Web Services should be based
on a formalism with a well-defined model-theoretic semantics, i.e.,
on some sort of a logic. In this paper we propose a logic, called
CT R-S, which captures the dynamics of contracting for services
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and thus is in the intersection of the areas of contracting and pro-
cess modeling. Since CT R-S is an extension of the classical first-
order logic, it is well-suited for modeling of the static aspects of
contracting as well. If object-oriented representation is desired, F-
logic [14] (and an adaptation of CT R-S) can be used instead.

The idea of using a logic to model processes is not new [12, 2,
23, 8, 21]. These methodologies are commonly based on the clas-
sical first-order logic, temporal logic [9], and Concurrent Transac-
tion Logic [5]. A distinctive aspect of contracting in Web services,
which is not captured by these formalisms, is that contracting in-
volves multi-party processes, which can be adversarial in nature.
One approach to deal with this situation could be to try and ex-
tend a multi-modal logic of knowledge [10]. However, we found
it more expedient to extend Concurrent Transaction Logic [5] (or
CT R), which has been proven a valuable tool for modeling and rea-
soning about processes [8, 4, 17]. The extension is called CT R-S
and is designed to model the adversarial situation that arises in ser-
vice contracting. This is achieved by extending the model theory of
CT R with certain concepts borrowed from the Game Theory [18,
13, 19]. In this paper we also develop a proof theory for CT R-S
and illustrate the use of this logic for modeling and reasoning about
Web service contracts.

A typical situation in contracting where different parties may
sometimes have conflicting goals is when a buyer interacts with a
seller and a delivery service. The buyer needs to be assured that the
goods will either be delivered (using a delivery service) or money
will be returned. The seller might need assurance that if the buyer
breaks the contract then part of the down-payment can be kept as
compensation. We thus see that services can be adversarial to an
extent. Reasoning about such services is an unexplored research
area and is the topic of this paper.

Overview and summary of results. We introduce game-theoretic
aspects into CT R using a new connective, the opponent’s conjunc-
tion. This connective represents the choice of action that can be
made by a party other than the reasoner. The reasoner here can
be the client of a Web service who needs to verify that her goals are
met or a service that needs to make sure that its business rules are
satisfied no matter what the other parties (the clients and other ser-
vices) do. Actors other than the reasoner are collectively referred
to as the opponent. We then develop a model theory for CT R-S
and show how this new logic can be used to specify executions of
services that may be non-cooperating and have potentially conflict-
ing goals. We also discuss reasoning about a fairly large class of
temporal and causality constraints.

In CT R-S, a contract is modeled as a workflow that represents
the various possibilities for the service and the outside actors (or the



client and other services). The CT R-S model theory characterizes
all possible outcomes of a formulaW that represents such a work-
flow. A constraint, Φ, represents executions of the contract with
certain desirable properties. For instance, from the client’s point of
view, a desirable property might be that either the good is delivered
or the payment is refunded. The formulaW∧Φ characterizes those
executions of the contract that satisfy the constraint Φ. IfW ∧Φ is
satisfiable, i.e., there is at least one execution in its model, then we
say that the constraint Φ is enforcible in the workflow formulaW .

We describe a synthesis algorithm that converts declarative spec-
ifications, such as W ∧ Φ, into equivalent CT R-S formulas that
can be executed more efficiently and without backtracking. The
transformation also detects unsatisfiable specifications, which are
contracts that the reasoner cannot force to execute with desirable
outcomes. In game-theoretic terms, the result of such a transfor-
mation can be thought of as a concise representation of all winning
strategies, i.e., all the ways for the reasoner to achieve the desired
outcome, regardless of what the rest of the system does, if all the
parties obey the terms of the contract.

Finally, since CT R-S is a natural generalization of CT R, a
pleasing aspect of this work is that our earlier results in [8] become
special cases of the new results.

The rest of the paper is organized as follows. In Section 2, we
introduce CT R-S and discuss its use for modeling workflows and
contracts. In Section 3, we introduce the model theory of CT R-S.
Section 4 discusses the proof theory. Section 5 introduces causal
and temporal workflow constraints that can be used to specify goals
of the participants in a contract. In Section 6, we present an algo-
rithm for solving these constraints and discuss its complexity. Sec-
tion 7 concludes with a discussion of related formalisms.

2. CT R-S AND THE DYNAMICS OF SER-
VICE CONTRACTS

Familiarity with CT R [5] can help understanding of CT R-S and
its relationship to workflows and contracts. However, this paper is
self-contained and includes all the necessary definitions. We first
describe the syntax of CT R-S and then supply intuition to help the
reader make sense out of the formal definitions that follow.

2.1 Syntax
The atomic formulas of CT R-S are expressions of the

form p(t1, ..., tn), where p is a predicate symbol and ti are terms,
i.e., they are the same as in classical logic. Complex formulas are
built with the help of connectives and quantifiers: if φ and ψ are
CT R-S formulas, then so are φ ∧ ψ, φ ∨ ψ, φ ⊗ ψ, φ | ψ, ¬φ,
φ u ψ, (∃X)φ, and (∀X)φ, where X is a variable. Intuitively, the
formula φ ⊗ ψ means: execute φ and then execute ψ. The con-
nective ⊗ is called serial conjunction. The formula φ | ψ
denotes an interleaved execution of two games φ and ψ. The con-
nective | is called concurrent conjunction. The formula
φ u ψ means that the opponent chooses whether to execute φ or
ψ, and therefore u is called opponent′s conjunction. The
meaning of φ ∨ ψ is similar, except the reasoner makes the deci-
sion. In CT R this connective is called classical disjunction
but because of its interpretation as reasoner’s choice we will also
refer to it as reasoner′s disjunction. Finally, the formula
φ∧ψ denotes execution of φ constrained by ψ (or ψ constraint by
φ). It is called classical conjunction.2

As in classical logic, we introduce φ←ψ as an abbreviation for

2The meaning of ∧ is all but classical. However, its semantic def-
inition looks very much like that of a conjunction in predicate cal-
culus. This similarity is the main reason for the name.

φ∨¬ψ. The usual dualities φ∨ψ ≡ ¬(¬φ∧¬ψ) and ∃φ ≡ ¬∀¬φ
also hold. The opponent’s conjunction has a dual connective, t, but
we will not discuss it in this paper.

As mentioned in the introduction, we model the dynamics of
service contracts using the abstraction of a 2-party workflow, where
the first party is the reasoner and the other represents the rest of
the players involved in the contract. In general, if several parties
need to be able to reason about the same contract, the contract can
be represented as several 2-party workflows, each representing the
contract from the point of view of a different reasoner.

Definition 1. (Workflows) A CTR-S goal is recursively de-
fined as either an atomic formula or an expression of the form φ⊗ψ,
φ | ψ, φ ∨ ψ, or φ u ψ, where φ and ψ are CT R-S goals. A rule
is of the form head←body, where head is an atomic formula and
body a CT R-S goal. A workflow control specification
consists of a CT R-S goal and a (possibly empty) set of rules.

Note that the connective ∧ is not allowed in workflow control spec-
ifications, but is used to specify constraints.

2.2 Modeling Contract Dynamics in CT R-S

Example 1. (Procurement Contract) Consider a procurement
application that consists of a buyer interacting with three services,
sell, finance, and deliver. We assume that the buyer is the rea-
soner in this example.

Services are modeled in terms of their significant events.
For instance, the buy service begins when the significant event
pay escrow occurs. When pay escrow is finished, a concurrent
execution of the sell and finance services begins.

Thus, at a high level, the buy service can be represented as:

pay escrow ⊗ (finance | sell)
The connective ⊗ represents succession of events or actions: when
the above expression “executes,” the underlying database state is
first changed by the execution of the formula pay escrow and then
by the execution of finance | sell. The connective | represents
concurrent, interleaved execution of the two sequences of actions.
Intuitively, this means that a legal execution of (finance | sell)
is a sequence of database states where the initial subsequence cor-
responds, say, to a partial execution of the subformula finance;
the next subsequence of states corresponds to an execution of
sell; the following subsequence is a continuation of the execu-
tion of finance; and so on. The overall execution sequence of
(finance | sell) is a merge of an execution sequence for the left
subformula and an execution sequence for the right subformula.

Execution has precise meaning in the model and proof theories
of CT R. Truth of CT R formulas is established not over database
states, as in classical logic, but over sequences of states; it is inter-
preted as an execution of that formula in which the initial database
state of the sequence is successively changed to the second, third,
etc., state. The database ends up in the final state of the sequence
when the execution terminates.3

Workflow formulas can be modularized with the help of rules.
The intuitive meaning of a rule, head←body, where head is an
atomic formula and body is a CT R-S goal, is that head is an in-
vocation interface to body, where body is viewed as a subroutine.
This is because according to the semantics described in Section 3,
3Space limitation does not permit us to compare CT R to other
logics that on the surface might appear to address the same issues
(e.g., temporal logics, process and dynamic logics, the situation
calculus, etc.). We refer the reader to the extensive comparisons
provided in [5, 6].



such a rule is true if every legal execution of body must also be a
legal execution of head. Combined with the minimal model seman-
tics this gives the desired effect [6]. With this in mind, we can now
express the above procurement workflow as follows:

buy ← pay escrow ⊗ (sell | finance)
Next, we search for matching services for the sell service using

a service directory to discover the following rules.

sell← reserve item ⊗ (deliver ∨ keep escrow)
deliver ← insured ∨ uninsured

The ∨ connective in the definition of sell represents alternative ex-
ecutions. For instance, a legal execution of insured ∨ uninsured
is either a legal execution of insured or of uninsured. Similarly,
a legal execution of sell involves the execution of reserve item
and then, an execution of either deliver or recv escrow.

The above definition of sell also requires compliance with the
following contract requirements between the buyer and the seller:

− if buyer cancels, then seller keeps the escrow
− if buyer pays, then seller must deliver

Thus, the connective ∨ represents a choice. The question is
whose choice is it: the reasoner’s or that of the opponent? In an
environment where workflow activities might not always cooper-
ate, we need a way to distinguish these two kinds of choices. For
instance, the contract may say that the outcomes of the actions of
the delivery agent are that the goods might be delivered or lost.
This alternative is clearly not under the control of the buyer, who
is the reasoner here. On the other hand, the choice of whether to
use insured or uninsured delivery is made by the buyer, i.e., the
reasoner. With this understanding, the insured and uninsured
services can be defined as follows:

insured← (delivered ⊗ satisfied) u (lost ⊗ satisfied)
uninsured← (delivered ⊗ satisfied) u lost

The connective u here represents the choice made by the actors
other than the reasoner (the buyer). If the buyer uses insured deliv-
ery then she is guaranteed satisfaction if the item is delivered or
lost (in the latter case the buyer presumably gets the money back).
If the buyer uses uninsured delivery then she can get satisfaction
only if the item is delivered. Whether the item is delivered or
lost is outside of the control of the buyer.

Next, we identify the following matching service for finance:

finance← (approve ⊗ (make payment ∨ cancel))
u (reject ⊗ cancel)

Note that approval or rejection of the financing request is an op-
ponent’s (the servicing agent’s) choice. However, if financing is
approved the choice of whether to proceed and make payment
or to cancel depends on the reasoner (the buyer). In addition, the
financing agent might require the following clause in the contract:

− if financing is approved and buyer does not cancel
then delivery should satisfy

Details of how to express the above contract requirement in CT R-S
will be given in Section 5.

The buyer and the services involved might have specific goals
with respect to the above contract. For instance, the buyer wants
that if financing is approved then she has a strategy to ensure that
she is satisfied (either by receiving the goods or by getting the
money back). The seller might want to have the peace of mind
knowing that if the buyer cancels the contract after receiving fi-
nancing then the seller can keep the escrow. In Section 6 we will

show how such goals can be represented and that they can be en-
forced under this contract even in adversarial situations.

We shall see that a large class of temporal and causality con-
straints can be represented as CT R-S formulas. If Φ represents
such a formula for the above example, then finding a strategy to
enforce the constraints under the rules of the contract is tantamount
to checking whether buy ∧ Φ is satisfiable in CT R-S.

Before going on, we should clear up one possible doubt: why
is there only one opponent? The answer is that this is sufficient
for a vast majority of practical cases, especially those that arise in
Web services. Indeed, even when multiple independent actors are
involved, we can view each one of them (or any group that decides
to cooperate) as the reasoner and all the rest as the opponent. Any
such actor or a group can then use CT R-S to verify that its goals
(specified as a condition Φ) are indeed enforcible.

3. MODEL THEORY
In this section we define a model theory for our logic. The im-

portance of a model theory is that it provides the exact semantics
for the behavioral aspects of service contracts and thus serves as a
yardstick of correctness for the algorithms in Section 6.

3.1 Sets of Multipaths
A path is a sequence of database states, d1...dn. Informally, a

database state can be a collection of facts or even more com-
plex formulas, but for this paper we can think of them as simply
symbolic identifiers for various collections of facts.

In CT R [5], which allows concurrent, interleaved execution, the
semantics is based on sequences of paths, π = 〈p1, ..., pm〉, where
each pi is a path. Such a sequence is called a multipath, or
an m-path [5]. For example, 〈d1d2, d3d4d5〉 is an m-path that
consists of two paths: one having two database states and the other
three (note that a comma separates paths, not states in a path). As
explained in Example 1, multipaths capture the idea of an execu-
tion of a transaction that interleaves with executions of other trans-
actions. Thus, an m-path can be viewed as an execution that is
broken into segments, such that other transactions could execute
in-between the segments.
CT R-S further extends this idea by recognizing that in the pres-

ence of other parties, the reasoner cannot be certain which execu-
tion (or “play”) will actually take place, due to the lack of informa-
tion about the actual moves that the opponent will make. However,
the reasoner can have a strategy to ensure that regardless of what
the opponent does the resulting execution will be contained within
a certain set of plays. If every play in the set satisfies the prop-
erties that the reasoner wants, then the strategy will achieve the
reasoner’s objectives. Such a set of plays is called an outcome
of the game. Thus, while truth values of formulas in CT R are
determined on m-paths, CT R-S formulas get their truth values on
sets of m-paths. Each such set, S, is interpreted as an outcome
of the game in the above sense, and saying that a CT R-S formula,
φ, is true on S is tantamount to saying that S is an outcome of φ.
In particular, two games are considered to be equivalent if and only
if they have the same sets of outcomes.

3.2 Satisfaction on Sets of Multipaths
The following definitions make the above discussion precise.

Definition 2. (m-Path Structure [5]) An m-path
structure is a triple of the form 〈U, IF , Ipath〉, where U
is the domain, IF is an interpretation function for constants and
function symbols (exactly like in classical logic), and Ipath is a



mapping such that if π is an m-path, then Ipath(π) is a first-order
semantic structure (as commonly used in classical predicate logic).

For a CT R formula, φ, and an m-path, π, the truth of φ on π
with respect to an m-path structure is determined by the truth val-
ues of the components of φ on the appropriate sub-m-paths of π.
In a well-defined sense, establishing the truth of a formula, φ, over
an m-path, π = 〈p1, ..., pn〉, corresponds to the possibility of exe-
cuting φ along π where the gaps between p1, ..., pn are filled with
executions of other formulas [5].

The present paper extends this notion to CT R-S by defining truth
of a formula φ over sets of m-paths, where each such set represents
a possible outcome of the game corresponding to φ. The new defi-
nition reduces to CT R’s for formulas that have no u’s.

Definition 3. (Satisfaction) Let I = 〈U, IF , Ipath〉 be an m-
path structure, π be an arbitrary m-path. Let S, T , S1, S2, etc.,
denote non-empty sets of m-path, and let ν be a variable assign-
ment, which assigns an element of U to each variable. We define
the notion of satisfaction of a formula, φ, in I on S by struc-
tural induction on φ:

1. Base Case: I, {π} |=ν p(t1, . . . , tn) iff
Ipath(π) |=classic

ν p(t1, . . . , tn). Here {π} is a set of m-
paths that contains only one m-path, π, and p(t1, . . . , tn)
is an atomic formula. Recall that Ipath(π) is a usual first-
order semantic structure, so |=classic here denotes the usual,
classical first-order entailment.

Typically, p(t1, ..., tn) is either defined via rules (as in Ex-
ample 1) or is a “built-in,” such as insert(q(a, b)), with a
fixed meaning. For instance, in case of insert(q(a, b)) the
meaning would be that I, {π} |=ν insert(q(a, b)) iff π is
an m-path of the form 〈d1 d2〉, which consists of a single
path, and d2 = d1 ∪ {q(a, b)}.4 These built-ins are called
elementary updates and constitute the basic building
blocks from which more complex actions, such as those at
the end of Example 1, are constructed.

2. Negation: I, S |=ν ¬φ iff it is not the case that I, S |=ν φ.

3. Reasoner’s Disjunction: I, S |=ν φ∨ψ iff I, S |=ν φ or
I, S |=ν ψ. We define φ∧ψ as a shorthand for ¬(¬φ∨¬ψ).

4. Opponent’s Conjunction: I, S |=ν φ u ψ iff S =
S1 ∪S2, for some pair of m-path sets, such that I, S1 |=ν φ ,
and I, S2 |=ν ψ. The dual connective, t, also exists, but is
not used in this paper.

5. Serial Conjunction: I, S |=ν φ ⊗ ψ iff there is a set R
of m-paths, such that S can be represented as

S
π∈R π ◦ Tπ ,

where each Tπ is a set of m-paths, I, R |=ν φ , and for each
Tπ , I, Tπ |=ν ψ.
Here π◦T = {π ◦ δ | δ ∈ T}, where π ◦ δ is an m-path ob-
tained by appending the m-path δ to the end of the m-path π.
(For instance, if π = 〈d1d2, d3d4〉 and δ = 〈d5d6, d7d8d9〉
then π ◦ δ = 〈d1d2, d3d4, d5d6, d7d8d9〉.) In other words,
R is a set of prefixes of the m-paths in S.

6. Concurrent Conjunction: I, S |=ν φ | ψ iff there
is a set R of m-paths, such that S can be represented
as
S
π∈R π‖Tπ , where each Tπ is a set of m-paths, and

• either I, R |=ν φ and for all Tπ , I, Tπ |=ν ψ;
4Formally, the semantics of such built-ins is defined using the no-
tion of the transition oracle [6].

• or I, R |=ν ψ and for all Tπ , I, Tπ |=ν φ

Here π‖Tπ denotes the set of all m-paths that are ob-
tained by interleaving π with some m-path in Tπ . For in-
stance, if π = 〈d1d2, d3d4〉 and 〈d5d6, d7d8d9〉 ∈ Tπ then
one interleaving is 〈d1d2, d5d6, d3d4, d7d8d9〉, another is
〈d1d2, d5d6, d7d8d9, d3d4〉, etc.

7. Universal Quantification: I, π |=ν ∀X.φ if and only
if I, π |=µ φ for every variable assignment µ that assigns
the same value as ν to all variables except X . Existential
quantification, ∃X.φ, is a shorthand for ¬∀X¬φ.

Example 2. (Database Transactions) Consider the following
formula, where st means “start,” ab means “abort,” cm is “commit,”
cp means “compensate,” and no stands for a noop. Further assume
that each elementary update em in the following formula denotes
an insert(em) operation which satisfies {〈d d ∪ {em}〉} |=
insert(em) where d is a set of ground atomic formulas.

φ = st ⊗ (ab u cm) ⊗ (cp ∨ no)
Then the possible outcomes for φ can be computed from the out-
comes of its components as follows:

1. By (3) in Definition 3: {〈∅ {cp}〉} |= (cp ∨ no),
and {〈∅ {no}〉} |= (cp ∨ no)

2. By (5) in Definition 3: {〈∅ {ab}〉, 〈∅ {cm}〉} |= (abu cm)

3. By (6) in Definition 3:
{〈∅ {st} {st, ab}〉, 〈∅ {st} {st, cm}〉} |= st ⊗ (ab u cm)

4. By (6) in Definition 3: Hence there are four possible
outcomes for φ;
{〈∅{st}{st, ab}{st, ab, cp}〉, 〈∅{st}{st, cm}{st, cm, cp}〉}
{〈∅{st}{st, ab}{st, ab, cp}〉, 〈∅{st}{st, cm}{st, cm, no}〉}
{〈∅{st}{st, ab}{st, ab, no}〉, 〈∅{st}{st, cm}{st, cm, cp}〉}
{〈∅{st}{st, ab}{st, ab, no}〉, 〈∅{st}{st, cm}{st, cm, no}〉}

Definition 4. (Playset) As in classical logic, φ ∨ ¬φ is a tautol-
ogy for any φ, i.e., it is true on every set of m-paths. We denote this
tautology with a special proposition Playset, an analogue of true
in classical logic.

By definition, I, S |= Playset for any m-path structure and any
set of m-paths. Therefore, ¬Playset is unsatisfiable. Intuitively,
Playset is the game in which all outcomes are possible, while
¬Playset is a game with no outcomes.

4. PROOF THEORY

4.1 Execution as Entailment
We now define executional entailment, a concept that connects

model theory with the execution of a certain strategy of the rea-
soner.

Definition 5. (Executional Entailment) Let φ be a CT R-S
goal and W a set of rules that define services (see Definition 1).
Let D0, ...,Dn be a sequence of database states. A path tree
with a shared prefix D0, ...,Dn is a set of paths where each
begins with this sequence of states. We define

D0, ...,Dn --- |= (∃)φ (4.1)

to mean that for every model M of φ there is a path tree T such
that M, T |= (∃)φ and 〈D0, ...,Dn〉 is a shared prefix of T . Here
(∃) indicates that all variables in φ are quantified existentially.



Intuitively, (4.1) means that the reasoner playing the game φ can
ensure that the execution will begin with the database state D0 and
continue with D1, ..., Dn.

Observe that executional entailment is defined over path trees,
not over arbitrary outcomes. Hence, when we talk about execution
of a game we are only interested in enforcible outcomes that can
reduce to a path tree. We call these executable outcomes.
We are interested in these outcomes because ultimately we want
to obtain strategires that contain complete plays—plays that repre-
sent movements of all the players involved. Such a play must be
represented by a path, not m-path, because m-paths are incomplete
plays—they contain gaps, which must be filled by external players.

The plays in an outcome that represents a strategy must form a
path tree because all the plays in an outcome of a real game start
with the same initial state D0. Thus, finding out if a winning strat-
egy exists in state D0 is tantamount to provingW,D0 --- |= (∃)φ.

4.2 Inference Rules
We now develop an inference system for proving statements of

the form W, D0 --- |= (∃)φ, where W is a set of rules and φ is
a CT R-S goal. The system manipulates expressions of the form
W, D0 --- ` φ, called sequents.

First we need the notion of the hot component of a formula;
it is a generalization of a similar notion from [5]: hot(φ) is a set
of subformulas of φ, defined by induction on the structure of φ as
follows:

1. hot(φ) = {φ}, if φ is an atomic formula

2. hot(φ⊗ ψ) = hot(φ)

3. hot(φ | ψ) = hot(φ) ∪ hot(ψ)

4. hot(φ ∨ ψ) = {φ ∨ ψ}

5. hot(φ u ψ) = {φ u ψ}.

Note that in cases of ∨ and u, the hot component is a singleton set
that contains the very formula that is used as an argument to hot.
Here are some examples of hot components:

a⊗ b⊗ c {a}
(a⊗ b) | (c⊗ d) {a, c}
(a u b)⊗ c {a u b}
(a u b) | (c ∨ d) {a u b, c ∨ d}
((a u b)⊗ c) ∨ ((f | g)⊗ h) {((a u b)⊗ c) ∨ ((f | g)⊗ h)}

Note that a hot component represents a particular occurrence of
a subformula in a bigger formula. For instance, hot(a ⊗ b ⊗ a)
is {a}, where a corresponds to the first occurrence of this subfor-
mula in a ⊗ b ⊗ a and not the second one. This point is important
because in the inference rules, below, we will sometime say that
ψ′ is obtained from ψ by deleting a hot occurrence of a (or some
other subformula). Thus, in the above, deleting the hot component
a leaves us with b⊗ a, not a⊗ b.

The inference rules are as follows:

Axiom: P,D --- ` ( ), for any D.
Here ( ) is the empty CT R-S goal; it represents a game that
starts and stops in the same state without making any moves.
The axiom says that such a game can be played in any state.

Inference Rules: In Rules 1–4 below, σ is a substitution, ψ and
ψ′ are concurrent serial conjunctions, and a is a formula in
hot(ψ).

1. Applying transaction definitions: Let b←β be a rule in
P, and assume that its variables have been renamed so
that none are shared with ψ. If a and b unify with mgu
(most general unifier) σ then

P,D --- ` (∃)ψ′ σ
P,D --- ` (∃)ψ where ψ′ is ψ where a hot oc-

currence of a is replaced by β.

For instance, if ψ = (c u e) | (a ⊗ f) | (d ∨ h) and
the hot component in question is a in the middle sub-
formula, then ψ′ = (c u e) | (β ⊗ f) | (d ∨ h).

2. Querying the database: If Od(D) |=c (∃)aσ; aσ and
ψ′σ share no variables; then

P,D --- ` (∃)ψ′ σ
P,D --- ` (∃)ψ where ψ′ is obtained from ψ

by deleting a hot occurrence of a.

For instance, if ψ = (c u e) | (a ⊗ f) | (d ∨ h) and
the hot component is a in the middle subformula, then
ψ′ = (c u e) | f | (d ∨ h).

3. Executing elementary updates: If Ot(D1,D2) |=c

(∃)aσ; aσ and ψ′σ share no variables, then

P,D2 --- ` (∃)ψ′ σ
P,D1 --- ` (∃)ψ where ψ′ is obtained from

ψ by deleting a hot occurrence of a.

For instance, if ψ = (c u e) | (a ⊗ f) | (d ∨ h) and
the hot component is a in the middle subformula, then
ψ′ = (c u e) | f | (d ∨ h).
Note that in this rule the current state changes from D2

to D1.

4. Reasoner’s move: Let ψ be a formula with a hot com-
ponent η of the form α∨β. Then we have the following
pair of inference rules, which can lead to two indepen-
dent possible derivations.

P,D --- ` (∃)ψ′
P,D --- ` (∃)ψ

P,D --- ` (∃)ψ′′
P,D --- ` (∃)ψ

Here ψ′ is obtained fromψ by replacing the hot compo-
nent η with α and ψ′′ is obtained from ψ by replacing
η with β.
For instance, if ψ = (cue) | (a⊗f) | (d∨h) and the
hot component η is d∨h, then ψ′ = (cue) | (a⊗f) | d
and ψ′′ = (c u e) | (a⊗ f) | h.

5. Opponent’s move: Let ψ be a formula with the hot
component, τ , of the form γ u δ. Then we have the
following inference rule:

P,D --- ` (∃)ψ′ and P,D --- ` (∃)ψ′′
P,D --- ` (∃)ψ

where ψ′ is obtained from ψ by replacing the hot com-
ponent τ with γ andψ′′ is obtained fromψ by replacing
τ with δ.
For instance, if ψ = (cue) | (a⊗f) | (d∨h) and the
hot component τ is cue, then ψ′ = c | (a⊗f) | (d∨h)
and ψ′′ = e | (a⊗ f) | (d ∨ h).
Note that unlike in the reasoner’s case when we have
two inference rules, the opponent’s case is a sin-
gle inference rule. It says that in order to prove
P,D --- ` (∃)ψ (i.e., to execute ψ on a set S of



paths emanating from D) we need to be able to execute
ψ′ on a set S1 of paths emanating from D and ψ′′ on
another (possibly the same) set S2 of paths emanating
from D such that S = S1 ∪ S2.

THEOREM 1 (SOUNDNESS OF INFERENCE SYSTEM). Un-
der the Horn conditions, the entailment P,D --- |= (∃)φ holds
if there is a deduction of the sequent P,D --- ` φ in the above
inference system.

We conjecture that the above proof theory is also complete for
workflow control specifications. The importance of the proof the-
ory in CT R-S is that it can be used to execute workflow specifi-
cations. When these specifications represent a service contract, the
inference system will be able to execute the contract.

5. CONSTRAINTS ON CONTRACT
EXECUTION

In [8], we have shown how a large class of constraints on work-
flow execution can be expressed in CT R. In CT R-S we are in-
terested in finding a similar class of constraints, which could be
used to denote the desirable properties of a contract, as explained
at the end of Sections 1 and 2.2. In this context, verification of
a constraint against a contract means that the reasoner has a way
of executing the contract so that the constraint will hold no matter
what the other parties do (for instance, that the goods are delivered
or the payment is refunded regardless). Our verification algorithm
requires that behavioral specifications of contracts have no loops
in them and that they have the unique event property defined be-
low.5 The no-loops requirement is captured by the restriction that
the workflow rules are non-recursive (so having rules is just a mat-
ter of convenience, which does not increase the expressive power).

We assume that there is a subset of propositions, EVENT , which
represents the “interesting” events that occur in the course of work-
flow execution. These events are the building blocks of both work-
flows and constraints. In terms of Definition 3, these propositions
would be defined as built-in elementary updates.

Definition 6. (Unique-event property) A CT R-S workflowW
has the unique event property if and only if every proposi-
tion in EVENT can execute at most once in any execution of W .
Formally, this can be defined both model-theoretically and syn-
tactically. The syntactic definition is that for every proposition
e ∈ EVENT :

If W is W1 ⊗ W2 or W1 | W2 and e occurs in W1

then it cannot occur inW2, and vice versa.

For workflows with no loops, we can always rename different oc-
currences of the same type of event to satisfy the above property.
We shall call such workflows unique event workflows.

Definition 7. (Constraints) Let φ be a u-free formula. Then
∗φ denotes a formula that is true on a set of m-paths, S, if and only
if φ is true on every m-path in S. The operator ∗ can be expressed
using the basic machinery of CT R-S.

Our constraints on workflow execution, defined below, will all
be of the form ∗φ because, intuitively, the most common thing that
a reasoner wants is to make sure that every execution in the out-
come has certain desirable properties. Items 1–3 define primitive
5This assumption is made by virtually all formal approaches to
workflow modeling (e.g., [2, 22]) and even such specification lan-
guages as WSFL — IBM’s proposal for a Web service specification
language that was one of the inputs to BPEL4WS [15].

constraints, denoted PRIMIT IVE. Item 4 defines the set CONSTR
of all constraints.

1. Elementary primitive constraints: If e ∈ EVENT is an
event, then ∗e and ∗(¬e) are primitive constraints. Infor-
mally, the constraint ∗e is true on a set S of m-paths in an
m-path structure I = (U, IF , Ipath) iff e occurs on every m-
path in S. Similarly, ∗(¬e) is true on S iff e does not occur
on any m-path in S.

Formally, ∗e says that every execution of the contract, i.e.,
every m-path 〈p1, ..., pi, ..., pn〉 ∈ S, includes a path, pi, of
the form d1...dkdk+1...dm, such that for some pair of adja-
cent states, dk and dk+1, the event e occurs at dk and causes
a state transition to dk+1, i.e., Ipath(〈dkdk+1〉) |=classic e
(see Definition 3). The constraint ∗(¬e) means that e does
not occur on any m-path in S.

2. Disjunctive and Conjunctive Primitive constraints: Any
∨, ∧, or ¬ combination of propositions from EVENT is al-
lowed under the scope of ∗. For instance, ∗(e1 ∨ e2) and
∗(e1 ∨ ¬e2) are allowed. The former is true on a set of m-
paths, S, if either e1 or e2 occurs on every m-path in S. The
latter is true if, for every m-path in S, the occurrence of e1 on
the m-path implies that e2 occurs on the same m-path. For
∗(e1 ∨ ¬e2), we will use the abbreviation ∗(e2 → e1).

3. Serial primitive constraints: If e1, ..., en ∈ EVENT then
∗(e1 ⊗ ... ⊗ en) is a primitive constraint. It is true on a set
of m-paths S iff e1 occurs before e2 before ... before en on
every path in S.

4. Complex constraints: The set of all constraints, CONSTR,
consists of all Boolean combinations of primitive constraints
(i.e., constraints defined by Items 1–3) using the connectives
∨ and ∧: φ∧ψ (resp. φ∨ψ) is satisfied by a set of m-paths
S iff S satisfies φ and (resp. or) ψ.

It can be shown that under the unique event assumption any serial
primitive constraint can be decomposed into a conjunction of bi-
nary serial constraints. For instance, ∗(e1 ⊗ e2 ⊗ e3) is equivalent
to ∗(e1 ⊗ e2) ∧ ∗(e2 ⊗ e3). Here are some typical constraints in
CONSTR and their real-world meaning:
∗e − event e should always eventually happen;
∗e ∧ ∗f − events e and f must always both occur (in some order);
∗(e ∨ f) − always either event e or event f or both must occur;
∗e ∨ ∗f − either always event e occurs or always event f occurs;
∗(¬e ∨ ¬f) − it is not possible for e and f to happen together;
∗(e→ f) − if event e occurs, then f must also occur.

Example 3. (Contract Goals) The actors in the procurement
workflow of Example 1 may want to ensure that they have a way to
reach their goals within the scope of the contract. We express these
goals using the following set of constraints:

∗(approve ∧ ¬cancel→ satisfied)
if financing is approved and buyer does not cancel
then she wants to be satisfied

∗(cancel→ keep escrow)
if buyer cancels, then seller keeps the escrow

∗(make payment→ deliver)
if buyer pays, then seller must deliver

6. ENFORCEMENT OF EXECUTION
CONSTRAINTS



Given a contract represented as a CT R-S workflow, W , and a
reasoner’s goal specified as a constraint, Φ ∈ CONSTR, we would
like to construct another workflow, WΦ, that represents a class of
strategies that enforce Φ within the rules of the contract. “Enforce-
ment” here means that as long as the opponent plays by the rules of
the contract (i.e., chooses only the alternatives specified by the u-
connective), the reasoner can still ensure that all the plays belong to
an outcome that satisfies the constraints. In CT R-S this amounts to
computingW ∧ Φ — the formula that represents the collection of
all reasoner’s strategies for finding the outcomes ofW that satisfy
the constraint Φ.

We must clarify what we mean by “computing” W ∧ Φ. After
all,W ∧ Φ already is a representation of all the winning strategies
for the reasoner and all outcomes of W ∧ Φ satisfy Φ. However,
this formula is not an explicit set of instructions to the workflow
scheduler. In fact, it is not even a workflow specification in the
sense of Definition 1. In contrast, the formulaWΦ that we are after
is a workflow specification. It does not contain the ∧-connective,
and it can be directly executed by the CT R-S proof theory. This
means that the proof theory can be used to execute the contractW
in such a way that the reasoner’s objectives Φ will be satisfied. The
precise relationship betweenW∧Φ andWΦ will be established in
Definition 8. Informally speaking, the two formulas are equivalent
in the sense that they have exactly the same executions modulo
certain synchronization acts.

We now develop an algorithm for computingWΦ through a se-
ries of transformations.

Enforcing complex constraints. Let ∗C1, ∗C2 ∈ CONSTR, W
be a CT R-S workflow, then

(∗C1 ∨ ∗C2) ∧ W ≡ (∗C1 ∧ W) ∨ (∗C2 ∧ W)
(∗C1 ∧ ∗C2) ∧ W ≡ (∗C1 ∧ (∗C2 ∧ W))

Thus, we can compute W(∗C1∨∗C2) as W∗C1 ∨ W∗C2 and
W(∗C1∧∗C2) asW∗C1 ∧ W∗C2 .
Enforcing elementary constraints. The following transformation
takes an elementary primitive constraint Φ of the form ∗α or ∗¬α
and a CT R-S unique-event workflow W , and returns a CT R-S
workflow that is equivalent to W ∧ Φ. Let α, β ∈ EVENT and
W1,W2 be CT R-S workflows. Then:

∗α ∧ α ≡ α ∗¬α ∧ α ≡ ¬Playset
∗α ∧ β ≡ ¬Playset ∗¬α ∧ β ≡ β if α 6= β

∗α∧ (W1 ⊗W2) ≡ (∗α∧W1)⊗W2 ∨W1 ⊗ (∗α∧W2)
∗¬α ∧ (W1 ⊗ W2) ≡ (∗¬α ∧ W1) ⊗ (∗¬α ∧ W2)
∗α ∧ (W1 | W2) ≡ (∗α ∧ W1) | W2 ∨ W1 | (∗α ∧ W2)
∗¬α ∧ (W1 | W2) ≡ (∗¬α ∧ W1) | (∗¬α ∧ W2)

(Recall that Playset was introduced in Definition 4.) These log-
ical equivalences are identical to those used for workflows of co-
operating tasks in [8]. The first equivalence below is specific to
CT R-S. Here we use Φ to denote ∗α or ∗¬α:

Φ ∧ (W1 uW2) ≡ (Φ ∧ W1) u (Φ ∧ W2)
Φ ∧ (W1 ∨W2) ≡ (Φ ∧ W1) ∨ (Φ ∧ W2)

For example, ifW is abortuprepare⊗ (abort∨commit), then:

∗abort ∧ W ≡ abort u (prepare⊗ abort)
∗¬abort ∧ W ≡ ¬Playset

The above equivalences enable us to decompose the prob-
lem of computing WΦ into simpler problems. For instance,
(α)∗α = α, and to compute (W1 uW2)Φ it suffices to compute
(W1)Φ u (W2)Φ.

Enforcing serial constraints. Next we deal with constraints of
the form ∗(α ⊗ β). Let α, β ∈ EVENT and let W be a CT R-S
workflow. We define W∗(α⊗β) as

sync(α < β, (∗α ∧ (∗β ∧ W)))

where sync is a transformation that synchronizes events in the
right order. It uses elementary updates send(ξ) and receive(ξ)
and is defined as follows: sync(α < β,W) = W ′, where W ′
is likeW , except that every occurrence of event α is replaced with
α⊗send(ξ) and every occurrence of β with receive(ξ)⊗β, where
ξ is a new constant.

The primitives send and receive can be defined as
insert(channel(ξ)) and channel(ξ) ⊗ delete(channel(ξ)),
respectively, where ξ is a new proposition symbol. The point here
is that these two primitives can be used to provide synchronization:
receive(ξ) can become true if and only if send(ξ) has been
executed previously. In this way, β cannot start before α is done.
The following examples illustrate the definition ofW∗(α⊗β):

(β ⊗ α)∗(α⊗β) = receive(ξ)⊗ β ⊗ α⊗ send(ξ)

(α | β | ρ1 | ... | ρn)∗(α⊗β) =

(α⊗ send(ξ)) | (receive(ξ)⊗ β) | ρ1 | ... | ρn)

Note that W∗(α⊗β) is not logically equivalent to W ∧ ∗(α ⊗ β),
but these two formulas are behaviorally equivalent as defined next.

Definition 8. (Behavioral Equivalence) A CT R-S formula φ
behaviorally entails ψ iff for every m-path structure I =
(U, IF , Ipath) and a set on m-paths S, if I, S |= φ then there is
another set S′ such that I, S′ |= ψ, where S′ and S are congruent
modulo synchronization; namely, these sets of m-paths reduce to
the same set of m-paths under the following operations:

• Remove all synchronization messages inserted by the
send and receive primitives (i.e., the atoms of the form
channel(ξ)) from all database states in S ′ and S.

• Eliminate adjacent duplicate states from all m-paths (i.e., if
π is an m-path of the form 〈..., d1...dkdk+1..., ...〉 and dk
is the same state as dk+1 then delete dk+1 from π. (After the
previous step, such adjacent duplicate states normally corre-
spond to state transitions that occur due to the execution of
send and receive.)

φ and ψ are behaviorally equivalent if each behaviorally
entails the other.

Proposition 1. (Enforcing Elementary and Serial Con-
straints) The above transformations compute a CT R-S workflow
that is behaviorally equivalent toW∧Φ, where Φ is an elementary
or serial constraint andW is a unique event workflow.

Enforcing conjunctive primitive constraints. To enforce a prim-
itive constraint of the form ∗(Φ1 ∧ ...∧Φm), where all Φi are ele-
mentary, we utilize the logical equivalence ∗(Φ1 ∧ ...∧Φm) ≡ ∗
Φ1∧ ...∧∗Φm (and the earlier equivalences for enforcing complex
constraints).
Enforcing disjunctive primitive constraints. These constraints
have the form ∗(Φ1 ∨ ... ∨ Φn), where all Φi are elementary con-
straints. Enforcement of such constraints relies on the following
lemma.

Lemma 1. (Disjunctive Primitive Constraints) Let Φi be ele-
mentary constraints. Then

∗(Φ1 ∨ ... ∨ Φn) ≡ (∗¬Φ2 ∧ ... ∧ ∗¬Φn → ∗Φ1) u ...
u (∗¬Φ1 ∧ ... ∧ ∗¬Φi−1 ∧ ∗¬Φi+1 ∧ ... ∧ ∗¬Φn → ∗Φi) u ...
u (∗¬Φ1 ∧ ... ∧ ∗¬Φn−1 → ∗Φn)



This equivalence allows us to decompose the set of all plays in an
outcome into subsets that satisfy the different implications shown
in the lemma. Unfortunately, enforcing such implications is still not
easy. Unlike the other constraints in this section, enforcement of the
implicational constraints cannot be described by a series of simple
equivalences. Instead, we have to resort to equivalence transforma-
tions defined with the help of parse trees of CT R-S formulas that
represent unique event workflows.

Definition 9. (Maximal guarantee for an event) Let ∗Φ be an
elementary constraint (i.e., Φ is e or ¬e), W be a formula for a
unique event workflow, and ϕ be a subformula of W . Then ϕ is
said to be a maximal guarantee for ∗Φ iff

1. (W ∧ (ϕ | Playset)) |= ∗ Φ

2. ϕ is a maximal subformula ofW that satisfies (1)

Intuitively, a maximal guarantee for ∗e is any maximal subformula,
φ, of W such that e occurs in every execution of φ. A maximal
guarantee for ∗¬e is such a maximal subformula, φ, of W that
e does not occur in any execution of φ. The set of all maximal
guarantees for an elementary event ∗Φ is denoted by GS∗Φ(W).

Definition 10. (Co-executing sub-formulas) Let W be a for-
mula for a unique event workflow and ψ,ϕ be a pair of subfor-
mulas ofW . We say that ψ coexecutes with ϕ inW , denoted
ψ ∈ coExec(W, ϕ), iff

1. (W ∧ (ϕ | Playset)) |= (ψ | Playset),

2. φ and ψ are disjoint subformulas inW , and

3. ψ is a maximal subformula inW satisfying (1) and (2)

Intuitively members of coExec(W, ϕ) correspond to maximal
sub-formulas ofW that must be executed whenever ϕ executes as
part of the workflowW .

Proposition 2. (Computing GS∗Φ(W) and coExec(W, ϕ))
The following procedures compute GS∗Φ(W) and
coExec(W, ϕ). They operate on the parse tree of W , which
is defined as usual: the inner nodes correspond to composite
subformulas and the leaves to atomic subformulas. Thus, the
leaves are labeled with their corresponding atomic subformulas,
while the inner nodes are labeled with the main connective of the
corresponding composite subformula.

GS∗e(W): The set of subformulas that correspond to the nodes in
the parse tree ofW that are closest to the root of the tree and
can be reached by the following marking procedure: (i) mark
all the leaves labeled with e; (ii) mark any node correspond-
ing to a subformula ofW of the form (ϕ ⊗ ψ) or (ϕ | ψ) if
either the node for ϕ or for ψ is marked; (iii) mark any node
corresponding to a subformula of the form (ϕ∨ψ) or (ϕuψ)
if both the node for ϕ and the node for ψ are marked.

coExec(W, ϕ): Consider a subformula ofW of the form ψ1 | ψ2,
ψ2 | ψ1, ψ1 ⊗ ψ2, or ψ2 ⊗ ψ1, where φ is a subformula of
ψ1. Suppose that ψ2 is a maximal subformula with such a
property, i.e., W has no subformula of the form ψ′1 | ψ′2,
ψ′2 | ψ′1, ψ′1 ⊗ ψ′2, or ψ′2 ⊗ ψ′1, respectively, such that φ is a
subformula of ψ′1 and ψ2 is a subformula of ψ′2 (ψ′2 6= ψ2).
Then, ψ2 ∈ coExec(W, ϕ).

GS∗¬e(W): Let T be the set of nodes in the parse tree ofW that
belong to any of the subformulas ϕ ∈ GS∗e(W) or ψ ∈
coExec(W, ϕ). Then, η ∈ GS∗¬e(W) iff it is a subformula
ofW such that its subtree contains no nodes in T and η is a
maximal subformula with such a property.
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Figure 1: Workflow parse tree and workflow graph for Exam-
ple 3

Example 4. (Computation of maximal guarantees and co-
execution) The workflow parse tree for Example 3 is shown in
Figure 1. For the event approve, the highest node that can be
reached by the aforesaid marking procedure is n1 and there are
no other such nodes. Therefore, GS∗approve(W) is {approve ⊗
(make payment∨cancel)}. The set of co-executing subformulas
for n1, coExec(W, n1), consists of two formulas that correspond
to the nodes n3 and n4 in the figure. The only maximal guarantee
for ¬approve is the subformula reject ⊗ cancel, which corre-
sponds to node n2.

procedure ComputeW(∗Φ1∧...∧∗Φn→∗Φ)

1. if W |= ∗Φ1 ∧ ... ∧ ∗Φn then Compute W∗Φ
2. else Guard(g) := ∅ for all g ∈ subformulas(W)
3. for each i such thatW 6|= ∗ Φi do
4. for each f ∈ GS∗¬Φi(W) do
5. if ∃h ∈ coExec(W, f) and (h ∧ ∗Φ) is satisfiable
6. then Rewrite f to send(ξ)⊗ f and
7. for every g ∈ GS∗¬Φ(h) set
8. Guard(g) := Guard(g) ∪ {receive(ξ)}
9. else Compute sibling(f)(∗Φ1∧...∧∗Φn→∗Φ)

10. for each g ∈ subformulas(W) do
11. if Guard(g) 6= ∅ then
12. rewrite g to (Wreceive(ξ)∈Guard(g) receive(ξ))⊗ g

Figure 2: Computation ofW(∗Φ1∧...∧∗Φn→∗Φ)

Recall that, according to Lemma 1, in order to enforce a disjunc-
tive constraint we need to learn how to enforce implicational con-
straints of the form ∗Φ1 ∧ ... ∧ ∗Φn → ∗Φ, where Φ and the Φis
are elementary. This is done using the algorithm in Figure 2, which
computes a workflow that is equivalent to (∗Φ1 ∧ ... ∧ ∗Φn →
∗Φ) ∧ W . If the antecedent of the constraint is true during an
execution, then (in line 1) ∗Φ must be enforced onW . Otherwise,
for every ∗Φi that is not true everywhere, we identify the subfor-
mulas f ∈ GS∗¬Φi (lines 2-3). Note that, whenever subformulas
in GS∗¬Φi are executed the constraint ∗Φ1 ∧ ... ∧ ∗Φn → ∗Φ is
vacuously true. In lines 4-6, we identify the subformulas h of W



that co-execute with the formulas f ∈ GS∗¬Φi . If ∗Φ is enforcible
in any of these subformulas h, i.e., h ∧ ∗Φ is satisfied (there can
be at most one such subformula h per f , due to the unique event
property, Definition 6), then we enforce the above constraint by de-
laying executions of those subformulas in h that violate ∗Φ (these
are exactly the g’s in line 7) until it is guaranteed that the execution
moves into f ∈ GS∗¬Φi , because once f is executed our constraint
becomes satisfied. This delay is achieved by synchronizing the ex-
ecutions of f to occur before the executions of g by rewriting f into
send(ξ)⊗ f (in line 6) and by adding receive(ξ) to the guard for
g (in line 8). Otherwise, if no such h exists, in line 9, we explicitly
enforce the constraint on the sibling nodes (in the parse tree ofW)
of the formulas f ∈ GS∗¬Φi (because an outcome that satisfies
∗Φi might exist in a sibling). Finally, in lines 10-12, we make sure
that the execution of every g that has a non-empty guard is condi-
tioned on receiving of a message from at least one f with which g
is synchronized.

Example 5. (Procurement Workflow, contd.) The algorithm in
Figure 2 creates the following workflow by applying the constraints
in Example 3 to the procurement workflow in Example 1. Refer to
the parse tree for that workflow in Figure 1.

• To enforce (∗cancel → ∗keep escrow) we first com-
pute GS∗¬cancel(buy) = {n5}, and coExec(buy, n5) =
{n3, n4, n6}. Of these, n4 (substituted for h) satisfies the
conditions on line 5 of the algorithm in Figure 2. Since
GS∗¬keep escrow(n4) = {n7}, we insert a synchronization
from node n5 to n7 shown in Figure 1 as a dotted line. This
ensures that if the buyer cancels the procurement workflow,
the seller collects the escrow.

• To enforce (∗approve ∧ ∗ ¬cancel → ∗satisfied),
we compute GS∗¬approve(buy) = {n2} and notice that
n4 ∈ coExec(buy, n2)} satisfies the conditions in line 5
of the algorithm in Figure 2. Since GS∗¬satisfied(n4) =
{n8, n9}, we insert a synchronization from node n2 to n8
and n9 which yields the dotted edges in Figure 1. We
also compute GS∗cancel(buy) = {n10, n2} and notice
that n4 ∈ coExec(buy, n2)}, n4 ∈ coExec(buy, n10)},
and n4 satisfies the conditions in line 5 of the algorithm.
Since GS∗¬satisfied(n4) = {n8, n9}, we insert a syn-
chronization from the nodes n10 and n2 to n8 and n9,
which yields the dotted edges in Figure 1. This synchro-
nization ensures that if buyer’s financing is approved and he
chooses to make the payment and buy the item then deliv-
ery must use the insured method. Also, once the constraint
(∗make payment → ∗deliver) is enforced too, the seller
can no longer pocket the escrow. The resulting strategy is:

buy ← pay escrow ⊗ (finance | sell)
finance← (approve ⊗ ((send(ξ1)⊗make payment) ∨

((send(ξ3)⊗ cancel))) u (send(ξ2)⊗ (reject ⊗ cancel))
sell← reserve item ⊗ ((receive(ξ1)⊗ deliver)

∨ ((receive(ξ2) ∨ receive(ξ3))⊗ keep escrow))
deliver ← insured ∨ ((receive(ξ2) ∨ receive(ξ3))⊗ uninsured)
insured← (delivered ⊗ satisfied) u (lost ⊗ satisfied)
uninsured← (delivered ⊗ satisfied) u lost

Proposition 3. (Enforcing disjunctive primitive constraints)
The above algorithm for enforcing disjunctive primitive constraints
computes a CT R-S workflow WΦ that is behaviorally equivalent
toW ∧ ∗(Φ1 ∨ ... ∨ Φn) where Φi are elementary constraints.

THEOREM 2 (DISJUNCTIVE CONSTRAINTS). Let W be a
control flow graph and ∗Φ ∈ PRIMIT IVE be a disjunctive prim-
itive constraint. Let |W| denote the size of W , and d be the
number of elementary disjuncts in ∗Φ. Then the worst-case size
of WΦ is O(d× |W|), and the time complexity is O(d× |W|2).

Enforcement of arbitrary constraints. If Φ =
V
N (∨jPrim)

where Prim ∈ PRIMIT IVE, we compute WΦ by applying the
above transformations for complex and elementary constraints.
Each transformation is either a logical equivalence or a behavioral
equivalence. Therefore,WΦ is behaviorally equivalent toW ∧ Φ.

THEOREM 3 (ARBITRARY CONSTRAINTS). Let W be a
control flow graph W and Φ ⊂ CONSTR be a set of global
constraints in the conjunctive normal form

V
N (∨jPrim) where

Prim ∈ PRIMIT IVE. Let |W| denote the size of W , N be
the number of constraints in Φ, and d be the largest number of
disjuncts in a primitive constraint in Φ. Then the worst-case size
of WΦ is O(dN×|W|), and the time complexity isO(dN×|W|2).

Cycle detection and removal. We can still improve the above
transformation by eliminating certain “useless” parts of WΦ—the
parts that will never be executed. The problem is that even though
WΦ is an executable workflow specification, WΦ may have sub-
formulas where the send/receive primitives cause a cyclic wait.
This means that those parts of WΦ can never be involved in an
execution. Fortunately, we can show that all cyclic waits can be
removed fromW in time O(|W|3).

Example 6. (Cyclic Wait Removal) LetW be (a∨b)⊗ (cud)
and Φ be (∗c → ∗a). Our algorithm transformsW ∧ Φ into (a ∨
receive(ξ)⊗b)⊗(cu(send(ξ)⊗d)). Now, if the reasoner chooses
b, a deadlock occurs. However, we can rewrite this formula into a
behaviorally equivalent formula a⊗ (cud) and avoid the problem.

7. CONCLUSION AND RELATED WORK
We presented a novel formalism, CT R-S, for modeling the dy-

namics of service contracts. CT R-S is a logic in which service con-
tracts are represented as formulas that specify the various choices
that are allowed for the parties to the contracts. The logic permits
the reasoner to state the desired outcomes of the contract execution
and verify that a desired outcome can be achived no matter what
the other parties do as long as they obey the rules of the contract.

There is a body of preliminary work trying to formalize the rep-
resentation of Web service contracts [20, 11], but none deals with
the dynamics of such contracts, which is the main subject of this
paper. Technically, the works closest to ours come from the fields
of model checking and game logics.

Process algebras and alternating temporal logic [7, 1] have been
used for modeling open systems with game semantics. Model
checking is a standard mechanism for verifying temporal proper-
ties of such systems and deriving automata for scheduling. In [16],
the complexity and size of computing the winning strategies for
infinite games played on finite graphs are explored. A result anal-
ogous to ours is obtained for infinite games: assuming the size of
the graph isQ and the size of the winning condition isW , the com-
plexity of computing winning strategies is exponential in the size
of W and polynomial in the size of the set Q.

The use of CT R-S has enabled us to find a more efficient veri-
fication algorithm than what one would get using model checking.
Indeed, standard model checking techniques [7, 1] are worst-case
exponential in the size of the entire formula and the corresponding
scheduling automata are also exponential. This is often referred to



as the state-explosion problem. In contrast, the size of our solver
is linear in the size of the original workflow specification and ex-
ponential only in the size of the constraint set (Theorem 3), which
is a much smaller object. In a sense, our solver can be viewed as
a specialized and more efficient model checker for the problem at
hand. It accepts high level specifications of workflows and yields
strategies and schedulers in the same high level language.

Logic games have been proposed before in other contexts [13,
19]. As in CT R-S, validity of a statement in such a logic means
that the reasoner has a winning strategy against the opponent. In
CT R-S however, games, winning conditions, and strategies are
themselves logical formulas (rather than modal operators). Log-
ical equivalence in CT R-S is a basis for constructive algorithms
for solving games and synthesizing strategies, which are in turn
executable by the proof theory of CT R-S. Related game logic for-
malisms, such as [13, 19], only deal with assertions about games
and their winning strategies. In these logics, games are modalities
rather than executable specifications, so they can only be used for
reasoning about Web service contracts, but not for modeling and
executing them.

Related work in planning, where goals are expressed as temporal
formulas, includes [3]. In [3], plans are generated using a forward
chaining engine that generates finite linear sequences of actions. As
these linear sequences are generated, the paths are incrementally
checked against the temporal goals. This approach is sound and
complete. However, in the worst case it performs an exhaustive
search of the model similar to the model checking approaches.

For the future work, we are planning to extend our results to al-
low contracts that include iterative behaviour. Such contracts can
already be specified in CT R-S. However, iteration requires new
verification algorithms to enable reasoning about the desired out-
comes of such contracts.
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