
1

Physical Data Organization and
Indexing

Chapter 9

2

Disks

• Capable of storing large quantities of data
cheaply

• Non-volatile

• Extremely slow compared with cpu speed

• Performance of DBMS largely a function of
the number of disk I/O operations that must
be performed

3

Physical Disk Structure

4

Pages and Blocks
• Data files decomposed into pages

– Fixed size piece of contiguous information in the file
– Unit of exchange between disk and main memory

• Disk divided into page size blocks of storage
– Page can be stored in any block

• Application’s request for read item satisfied by:
– Read page containing item to buffer in DBMS
– Transfer item from buffer to application

• Application’s request to change item satisfied by
– Read page containing item to buffer in DBMS (if it is not

already there)
– Update item in DBMS (main memory) buffer
– (Eventually) copy buffer page to page on disk

5

I/O Time to Access a Page

• Seek latencySeek latency – time to position heads over cylinder
containing page (avg = ~10 - 20 ms)

• Rotational latencyRotational latency – additional time for platters to
rotate so that start of block containing page is
under head (avg = ~5 - 10 ms)

• Transfer timeTransfer time – time for platter to rotate over block
containing page (depends on size of block)

• LatencyLatency = seek latency + rotational latency
• Our goal – minimize average latency, reduce

number of page transfers

6

Reducing Latency
• Store pages containing related information close

together on disk
– Justification: If application accesses x, it will next

access data related to x with high probability

• Page size tradeoff:
– Large page size – data related to x stored in same page;

hence additional page transfer can be avoided
– Small page size – reduce transfer time, reduce buffer

size in main memory
– Typical page size – 4096 bytes

7

Reducing Number of Page
Transfers

• Keep cache of recently accessed pages in
main memory
– Rationale: request for page can be satisfied

from cache instead of disk
– Purge pages when cache is full

• For example, use LRU algorithm

• Record clean/dirty state of page (clean pages don’t
have to be written)

8

Accessing Data Through Cache

cache

DBMS

Application

Page frames

Page transfer

block
Item
transfer

9

RAID Systems

• RAID (Redundant Array of Independent Disks) is an
array of disks configured to behave like a single disk
with
– Higher throughput

• Multiple requests to different disks can be handled independently
• If a single request accesses data that is stored separately on

different disks, that data can be transferred in parallel

– Increased reliability
• Data is stored redundantly
• If one disk should fail, the system can still operate

10

Striping

• Data that is to be stored on multiple disks is said
to be striped
– Data is divided into chunks

• Chunks might be bytes, disk blocks etc.

– If a file is to be stored on three disks
• First chunk is stored on first disk

• Second chunk is stored on second disk

• Third chunk is stored on third disk

• Fourth chunk is stored on first disk

• And so on

11

F1 F2 F3

F4

The striping of a file across three disks

12

Levels of RAID System

• Level 1: Striping but no redundancy
– A striped array of n disks

– The failure of a single disk ruins everything

13

RAID Levels (con’t)

– Level 2: Mirrored Disks (no striping)
• An array of n mirrored disks

– All data stored on two disks

• Increases reliability
– If one disk fails, the system can continue

• Increases speed of reads
– Both of the mirrored disks can be read concurrently

• Decreases speed of writes
– Each write must be made to two disks

• Requires twice the number of disks

14

RAID Levels (con’t)

• Level 3: Data is striped over n disks and an
(n+1)th disk is used to stores the exclusive or
(XOR) of the corresponding bytes on the
other n disks
– The (n+1)th disk is called the parity disk
– Chunks are bytes

15

Level 3 (con’t)

• Redundancy increases reliability
– Setting a bit on the parity disk to be the XOR of the bits

on the other disks makes the corresponding bit on each
disk the XOR of the bits on all the other disks,
including the parity disk

 1 0 1 0 1 1 (parity disk)

– If any disk fails, its information can be reconstructed as
the XOR of the information on all the other disks

16

Level 3 (con’t)

• Whenever a write is made to any disk, a write must
by made to the parity disk
 New_Parity_Bit = Old_Parity_Bit XOR

 (Old_Data_Bit XOR New_Data_Bit)

• Thus each write requires 4 disk accesses
• The parity disk can be a bottleneck since all writes

involve a read and a write to the parity disk

17

RAID Levels (con’t)

• Level 5: Data is striped and parity
information is stored as in level 3, but
– The chunks are disk blocks
– The parity information is itself striped and is

stored in turn on each disk
• Eliminates the bottleneck of the parity disk

– Level most often recommended for transaction
processing applications

18

RAID Levels (con’t)

• Level 10: A combination of levels 0 and 1
(not an official level)
– A striped array of n disks (as in level 0)
– Each of these disks is mirrored (as in level 1)

• Achieves best performance of all levels
• Requires twice as many disks

19

Controller Cache

• To further increase the efficiency of RAID systems, a
controller cache can be used in memory
– When reading from the disk, a larger number of disk blocks

than have been requested can be read into memory
– In write back cache, the RAID system reports that the write

is complete as soon as the data is in the cache (before it is
on the disk)

• Requires some redundancy of information in cache

– If all the blocks in a stripe are to be updated, the new value
of the parity block can be computed in the cache and all the
writes done in parallel

20

Access Path

• Refers to the algorithm + data structure
(e.g., an index) used for retrieving and
storing data in a table

• The choice of an access path to use in the
execution of an SQL statement has no effect
on the semantics of the statement

• This choice can have a major effect on the
execution time of the statement

21

Heap Files

• Rows appended to end of file as they are
inserted
– Hence the file is unordered

• Deleted rows create gaps in file
– File must be periodically compacted to recover

space

22

Transcript Stored as a Heap File
666666 MGT123 F1994 4.0
123456 CS305 S1996 4.0 page 0
987654 CS305 F1995 2.0

717171 CS315 S1997 4.0
666666 EE101 S1998 3.0 page 1
765432 MAT123 S1996 2.0
515151 EE101 F1995 3.0

234567 CS305 S1999 4.0
 page 2

878787 MGT123 S1996 3.0

23

Heap File - Performance
• Assume file contains F pages
• Inserting a row:

– Access path is scan
– Avg. F/2 page transfers if row already exists
– F+1 page transfers if row does not already exist

• Deleting a row:
– Access path is scan
– Avg. F/2+1 page transfers if row exists
– F page transfers if row does not exist

24

Heap File - Performance
• Query

– Access path is scan
– Organization efficient if query returns all rows and

order of access is not important
 SELECT * FROM TranscriptTranscript

– Organization inefficient if a few rows are requested
• Average F/2 pages read to get get a single row

SELECT T.Grade
FROM TranscriptTranscript T
WHERE T.StudId=12345 AND T.CrsCode =‘CS305’
 AND T.Semester = ‘S2000’

25

Heap File - Performance

– Organization inefficient when a subset of rows
is requested: F pages must be read

SELECT T.Course, T.Grade
FROM TranscriptTranscript T -- equality search
WHERE T.StudId = 123456

SELECT T.StudId, T.CrsCode
FROM TranscriptTranscript T -- range search
WHERE T.Grade BETWEEN 2.0 AND 4.0

26

Sorted File
• Rows are sorted based on some attribute(s)

– Access path is binary search
– Equality or range query based on that attribute has cost

log2F to retrieve page containing first row

– Successive rows are in same (or successive) page(s) and
cache hits are likely

– By storing all pages on the same track, seek time can be
minimized

• Example – Transcript sorted on StudId :

SELECT T.Course, T.Grade
FROM TranscriptTranscript T

WHERE T.StudId = 123456

SELECT T.Course, T.Grade
FROM TranscriptTranscript T
WHERE T.StudId BETWEEN
 111111 AND 199999

27

Transcript Stored as a Sorted File
111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
123456 CS305 F1995 2.0

123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

234567 CS305 S1999 4.0
 page 2

313131 MGT123 S1996 3.0

28

Maintaining Sorted Order
• Problem: After the correct position for an

insert has been determined, inserting the row
requires (on average) F/2 reads and F/2 writes
(because shifting is necessary to make space)

• Partial Solution 1: Leave empty space in
each page: fillfactor

• Partial Solution 2: Use overflow pages
(chains).
– Disadvantages:

• Successive pages no longer stored contiguously
• Overflow chain not sorted, hence cost no longer log2 F

29

Overflow
 3
111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page
0
111111 ECO101 F2000 3.0
122222 REL211 F2000 2.0

 -
123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page
1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

 -
234567 CS305 S1999 4.0
 page 2

313131 MGT123 S1996 3.0

 7
111654 CS305 F1995 2.0
111233 PSY 220 S2001 3.0 page
3

Pointer to
overflow chain

Pointer to
next block
in chain

These pages are
Not overflown

30

Index

• Mechanism for efficiently locating row(s) without
having to scan entire table

• Based on a search key: rows having a particular
value for the search key attributes can be quickly
located

• Don’t confuse candidate key with search key:
– Candidate key: set of attributes; guarantees uniqueness
– Search key: sequence of attributes; does not guarantee

uniqueness –just used for search

31

Index Structure
• Contains:

– Index entries
• Can contain the data tuple itself (index and table are integrated in

this case); or
• Search key value and a pointer to a row having that value; table

stored separately in this case – unintegrated index

– Location mechanism
• Algorithm + data structure for locating an index entry with a given

search key value

– Index entries are stored in accordance with the search key
value

• Entries with the same search key value are stored together (hash,
B- tree)

• Entries may be sorted on search key value (B-tree)

32

Index Structure

Location Mechanism

Index entries

S
Search key
value

Location mechanism
facilitates finding
index entry for S

S

S, …….

Once index entry is
found, the row can
be directly accessed

33

Storage Structure

• Structure of file containing a table
– Heap file (no index, not integrated)

– Sorted file (no index, not integrated)
– Integrated file containing index and rows

(index entries contain rows in this case)
• ISAM

• B+ tree
• Hash

34

Integrated Storage Structure
Contains table
and (main) index

35

Index File With Separate Storage
Structure

 In this case, the storage
structure might be a heap or
sorted file, but often is an
integrated file with another
index (on a different search key
– typically the primary key)

Storage
structure
for table

Location mechanism

Index entriesIn
de

x
fi

le

36

Indices: The Down Side

• Additional I/O to access index pages (except if index is
small enough to fit in main memory)

• Index must be updated when table is modified.

• SQL-92 does not provide for creation or deletion of
indices
– Index on primary key generally created automatically
– Vendor specific statements:

• CREATE INDEX ind ON TranscriptTranscript (CrsCode)

• DROP INDEX ind

37

Clustered Index

• Clustered indexClustered index: index entries and rows are
ordered in the same way
– An integrated storage structure is always clustered

(since rows and index entries are the same)
– The particular index structure (eg, hash, tree) dictates

how the rows are organized in the storage structure
• There can be at most one clustered index on a table

– CREATE TABLE generally creates an integrated,
clustered (main) index on primary key

38

Clustered Main Index

Storage structure
contains table
and (main) index;
rows are contained
in index entries

39

Clustered Secondary Index

40

Unclustered Index

• Unclustered (secondary) index: index entries and
rows are not ordered in the same way

• An secondary index might be clustered or
unclustered with respect to the storage structure it
references
– It is generally unclustered (since the organization of rows

in the storage structure depends on main index)
– There can be many secondary indices on a table
– Index created by CREATE INDEX is generally an

unclustered, secondary index

41

Unclustered Secondary Index

42

Clustered Index

• Good for range searches when a range of search
key values is requested
– Use location mechanism to locate index entry at start of

range
• This locates first row.

– Subsequent rows are stored in successive locations if
index is clustered (not so if unclustered)

– Minimizes page transfers and maximizes likelihood of
cache hits

43

Example – Cost of Range Search
• Data file has 10,000 pages, 100 rows in search range
• Page transfers for table rows (assume 20 rows/page):

– Heap: 10,000 (entire file must be scanned)
– File sorted on search key: log2 10000 + (5 or 6) ≈ 19

– Unclustered index: ≤ 100
– Clustered index: 5 or 6

• Page transfers for index entries (assume 200
entries/page)
– Heap and sorted: 0
– Unclustered secondary index: 1 or 2 (all index entries for the

rows in the range must be read)
– Clustered secondary index: 1 (only first entry must be read)

44

Sparse vs. Dense Index

• Dense indexDense index: has index entry for each data
record
– Unclustered index must be dense
– Clustered index need not be dense

• Sparse indexSparse index: has index entry for each page
of data file

45

Sparse Vs. Dense Index

Sparse,
clustered
index sorted
on Id

Dense,
unclustered
index sorted
on Name

Data file sorted on Id

Id Name Dept

46

Sparse Index

Search key should
be candidate key of
data file (else additional
measures required)

47

Multiple Attribute Search Key

• CREATE INDEX Inx ON TblTbl (Att1, Att2)
• Search key is a sequence of attributes; index entries are lexically

ordered
• Supports finer granularity equality search:

– “Find row with value (A1, A2) ”

• Supports range search (tree index only):
– “Find rows with values between (A1, A2) and (A1′ , A2′) ”

• Supports partial key searches (tree index only):
– Find rows with values of Att1 between A1 and A1′
– But not “Find rows with values of Att2 between A2 and A2′ ”

48

Locating an Index Entry

• Use binary search (index entries sorted)
• If Q pages of index entries, then log2Q page transfers

(which is a big improvement over binary search of the
data pages of a F page data file since F >>Q)

• Use multilevel index: Sparse index on sorted
list of index entries

49

Two-Level Index

– Separator level is a sparse index over pages of index entries
– Leaf level contains index entries
– Cost of searching the separator level << cost of searching index level
 since separator level is sparse
– Cost or retrieving row once index entry is found is 0 (if integrated) or 1 (if
not)

50

Multilevel Index

– Search cost = number of levels in tree
– If Φ is the fanout of a separator page, cost is logΦ Q + 1
– Example: if Φ = 100 and Q = 10,000, cost = 3
 (reduced to 2 if root is kept in main memory)

51

Index Sequential Access Method (ISAM)

• Generally an integrated storage structure
– Clustered, index entries contain rows

• Separator entry = (ki , pi); ki is a search key value;
pi is a pointer to a lower level page

• ki separates set of search key values in the two
subtrees pointed at by pi-1 and pi.

52

Index Sequential Access Method
L

oc
at

io
n

m
ec

ha
n i

sm

53

Index Sequential Access Method

• The index is static:
– Once the separator levels have been constructed, they never

change
– Number and position of leaf pages in file stays fixed

• Good for equality and range searches
– Leaf pages stored sequentially in file when storage structure

is created to support range searches
• if, in addition, pages are positioned on disk to support a scan, a range

search can be very fast (static nature of index makes this possible)

• Supports multiple attribute search keys and partial key
searches

54

Overflow Chains
- Contents of leaf pages change
– Row deletion yields empty slot
 in leaf page
– Row insertion can result in
 overflow leaf page and
 ultimately overflow chain
 – Chains can be long, unsorted,
 scattered on disk
 – Thus ISAM can be inefficient
 if table is dynamic

55

B+ Tree

• Supports equality and range searches,
multiple attribute keys and partial key
searches

• Either a secondary index (in a separate file)
or the basis for an integrated storage
structure

Responds to dynamic changes in the table

56

B+ Tree Structure

– Leaf level is a (sorted) linked list of index entries
– Sibling pointers support range searches in spite of
 allocation and deallocation of leaf pages (but leaf
 pages might not be physically contiguous on disk)

57

Insertion and Deletion in B+ Tree

• Structure of tree changes to handle row
insertion and deletion – no overflow chains

• Tree remains balanced: all paths from root
to index entries have same length

• Algorithm guarantees that the number of
separator entries in an index page is
between Φ/2 and Φ
– Hence the maximum search cost is logΦ/2Q + 1

(with ISAM search cost depends on length of
overflow chain)

58

Handling Insertions - Example

- Insert “vince”

59

Handling Insertions (cont’d)
– Insert “vera”: Since there is no room in leaf page:
 1. Create new leaf page, C
 2. Split index entries between B and C (but maintain
 sorted order)
 3. Add separator entry at parent level

60

Handling Insertions (con’t)
– Insert “rob”. Since there is no room in leaf page A:
 1. Split A into A1 and A2 and divide index entries
 between the two (but maintain sorted order)
 2. Split D into D1 and D2 to make room for additional
 pointer
 3. Three separators are needed: “sol”, “tom” and “vince”

61

Handling Insertions (cont’d)
– When splitting a separator page, push a separator up
– Repeat process at next level
– Height of tree increases by one

62

Handling Deletions

• Deletion can cause page to have fewer than Φ/2
entries
– Entries can be redistributed over adjacent pages to

maintain minimum occupancy requirement
– Ultimately, adjacent pages must be merged, and if

merge propagates up the tree, height might be reduced
– See book

• In practice, tables generally grow, and merge
algorithm is often not implemented
– Reconstruct tree to compact it

63

Hash Index
• Index entries partitioned into buckets in

accordance with a hash function, h(v), where v
ranges over search key values
– Each bucket is identified by an address, a

– Bucket at address a contains all index entries
with search key v such that h(v) = a

• Each bucket is stored in a page (with possible
overflow chain)

• If index entries contain rows, set of buckets forms
an integrated storage structure; else set of buckets
forms an (unclustered) secondary index

64

Equality Search with Hash Index

Given v:
 1. Compute h(v)
 2. Fetch bucket at h(v)
 3. Search bucket

Cost = number of pages
 in bucket (cheaper than
 B+ tree, if no overflow
 chains)

Location
mechanism

65

Choosing a Hash Function

• Goal of h: map search key values randomly
– Occupancy of each bucket roughly same for an

average instance of indexed table

• Example: h(v) = (c1∗ v + c2) mod M

– M must be large enough to minimize the
occurrence of overflow chains

– M must not be so large that bucket occupancy is
small and too much space is wasted

66

Hash Indices – Problems
• Does not support range search

– Since adjacent elements in range might hash to
different buckets, there is no efficient way to
scan buckets to locate all search key values v
between v1 and v2

• Although it supports multi-attribute keys, it
does not support partial key search
– Entire value of v must be provided to h

• Dynamically growing files produce
overflow chains, which negate the efficiency
of the algorithm

67

Extendable Hashing

• Eliminates overflow chains by splitting a bucket
when it overflows

• Range of hash function has to be extended to
accommodate additional buckets

• Example: family of hash functions based on h:
– hk(v) = h(v) mod 2k (use the last k bits of h(v))

– At any given time a unique hash, hk , is used
depending on the number of times buckets have
been split

68

Extendable Hashing – Example

 v h(v)
pete 11010
mary 00000
jane 11110
bill 00000
john 01001
vince 10101
karen 10111

Extendable hashing uses a directory (level of indirection) to
 accommodate family of hash functions
Suppose next action is to insert sol, where h(sol) = 10001.
Problem: This causes overflow in B1

Location
mechanism

69

Example (cont’d)
Solution:
 1. Switch to h3

 2. Concatenate copy of old
 directory to new directory
 3. Split overflowed bucket, B,
 into B and B′ , dividing
 entries in B between the
 two using h3

 4. Pointer to B in directory
 copy replaced by pointer
 to B′

Note: Except for B′ , pointers in directory copy refer to original
 buckets.

 current_hash identifies current hash function.

70

Example (cont’d)

Next action: Insert judy,
 where h(judy) = 00110
B2 overflows, but directory
 need not be extended

Problem: When Bi overflows, we need a mechanism for deciding
 whether the directory has to be doubled
Solution: bucket_level[i] records the number of times Bi has been
 split. If current_hash > bucket_level[i], do not enlarge directory

71

Example (cont’d)

72

Extendable Hashing

• Deficiencies:
– Extra space for directory

– Cost of added level of indirection:
• If directory cannot be accommodated in main

memory, an additional page transfer is necessary.

Choosing An Index
• An index should support a query of the

application that has a significant impact on
performance
– Choice based on frequency of invocation,

execution time, acquired locks, table size
Example 1: SELECT E.Id
 FROM Employee E
 WHERE E.Salary < :upper AND E.Salary >
:lower

 – This is a range search on Salary.
 – Since the primary key is Id, it is likely that there is a clustered,
 main index on that attribute that is of no use for this query.
 – Choose a secondary, B+ tree index with search key Salary

74

Choosing An Index (cont’d)

Example 2: SELECT T.StudId
 FROM TranscriptTranscript T

 WHERE T.Grade = :grade

 - This is an equality search on Grade.
 - Since the primary key is (StudId, Semester, CrsCode) it is
 likely that there is a main, clustered index on these attributes
 that is of no use for this query.
 - Choose a secondary, B+ tree or hash index with search key
 Grade

75

Choosing an Index (cont’d)
Example 3:
 SELECT T.CrsCode, T.Grade
 FROM TranscriptTranscript T
 WHERE T.StudId = :id AND T.Semester = ‘F2000’

 – Equality search on StudId and Semester.
 – If the primary key is (StudId, Semester, CrsCode) it is
 likely that there is a main, clustered index on this
 sequence of attributes.
 – If the main index is a B+ tree it can be used for this search.
 – If the main index is a hash it cannot be used for this
 search. Choose B+ tree or hash with search key StudId
 (since Semester is not as selective as StudId) or

 (StudId, Semester)

76

Choosing An Index (cont’d)

Example 3 (cont’d):
 SELECT T.CrsCode, T.Grade

 FROM TranscriptTranscript T
 WHERE T.StudId = :id AND T.Semester = ‘F2000’

- Suppose TranscriptTranscript has primary key (CrsCode, StudId, Semester).
 Then the main index is of no use (independent of whether it is a
 hash or B+ tree).

	Physical Data Organization and Indexing
	Disks
	Physical Disk Structure
	Pages and Blocks
	I/O Time to Access a Page
	Reducing Latency
	Reducing Number of Page Transfers
	Accessing Data Through Cache
	RAID Systems
	Striping
	Slide 11
	Levels of RAID System
	RAID Levels (con’t)
	Slide 14
	Level 3 (con’t)
	Slide 16
	Slide 17
	Slide 18
	Controller Cache
	Access Path
	Heap Files
	Transcript Stored as a Heap File
	Heap File - Performance
	Slide 24
	Slide 25
	Sorted File
	Transcript Stored as a Sorted File
	Maintaining Sorted Order
	Overflow
	Index
	Index Structure
	Slide 32
	Storage Structure
	Integrated Storage Structure
	Index File With Separate Storage Structure
	Indices: The Down Side
	Clustered Index
	Clustered Main Index
	Clustered Secondary Index
	Unclustered Index
	Unclustered Secondary Index
	Slide 42
	Example – Cost of Range Search
	Sparse vs. Dense Index
	Sparse Vs. Dense Index
	Sparse Index
	Multiple Attribute Search Key
	Locating an Index Entry
	Two-Level Index
	Multilevel Index
	Index Sequential Access Method (ISAM)
	Index Sequential Access Method
	Slide 53
	Overflow Chains
	B+ Tree
	B+ Tree Structure
	Insertion and Deletion in B+ Tree
	Handling Insertions - Example
	Handling Insertions (cont’d)
	Handling Insertions (con’t)
	Slide 61
	Handling Deletions
	Hash Index
	Equality Search with Hash Index
	Choosing a Hash Function
	Hash Indices – Problems
	Extendable Hashing
	Extendable Hashing – Example
	Example (cont’d)
	Slide 70
	Slide 71
	Slide 72
	Choosing An Index
	Choosing An Index (cont’d)
	Choosing an Index (cont’d)
	Slide 76

