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Physical Data Organization and 
Indexing

Chapter 9
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Disks

• Capable of storing large quantities of data 
cheaply

• Non-volatile

• Extremely slow compared with cpu speed

• Performance of DBMS largely a function of 
the number of disk I/O operations that must 
be performed
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Physical Disk Structure
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Pages and Blocks
• Data files decomposed into pages

– Fixed size piece of contiguous information in the file
– Unit of exchange between disk and main memory

• Disk divided into page size blocks of storage
– Page can be stored in any  block

• Application’s request for read item satisfied by:
– Read page containing item to buffer in DBMS 
– Transfer item from buffer to application

• Application’s request to change item satisfied by
– Read page containing item to buffer in DBMS (if it is not 

already there)
– Update item in DBMS (main memory) buffer 
– (Eventually) copy buffer page to page on disk
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I/O Time to Access a Page

• Seek latencySeek latency – time to position heads over cylinder 
containing page (avg = ~10 - 20 ms)

• Rotational latencyRotational latency – additional time for platters to 
rotate so that start of block containing page is 
under head (avg = ~5 - 10 ms)

• Transfer timeTransfer time – time for platter to rotate over block 
containing page (depends on size of block)

• LatencyLatency = seek latency + rotational latency
• Our goal – minimize average latency, reduce 

number of page transfers
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Reducing Latency
• Store pages containing related information close 

together on disk
– Justification:  If application accesses x, it will next 

access data related to x with high probability

• Page size tradeoff:  
– Large page size – data related to x stored in same page; 

hence additional page transfer can be avoided
– Small page size – reduce transfer time, reduce buffer 

size in main memory
– Typical page size – 4096 bytes
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Reducing Number of Page 
Transfers

• Keep cache of recently accessed pages in 
main memory
– Rationale: request for page can be satisfied 

from cache instead of disk
– Purge pages when cache is full

• For example, use LRU algorithm

• Record clean/dirty state of page (clean pages don’t 
have to be written)
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Accessing Data Through Cache

cache

DBMS

Application

Page frames

Page transfer

block
Item
transfer
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RAID Systems

• RAID (Redundant Array of Independent Disks) is an 
array of disks configured to behave like a single disk 
with
– Higher throughput

• Multiple requests to different disks can be handled independently
• If a single request accesses data that is stored separately on 

different disks, that data can be transferred in parallel

– Increased reliability
• Data is stored redundantly
• If one disk should fail, the system can still operate
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Striping

• Data that is to be stored on multiple disks is said 
to be striped
– Data is divided into chunks

• Chunks might be bytes, disk blocks etc.

– If a file is to be stored on three disks
• First chunk is stored on first disk

• Second chunk is stored on second disk

• Third chunk is stored on third disk

• Fourth chunk is stored on first disk

• And so on
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F1 F2 F3

F4

The striping of a file across three disks
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Levels of RAID System

• Level 1:  Striping but no redundancy
– A striped array of n disks

– The failure of a single disk ruins everything
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RAID Levels (con’t)

– Level 2:  Mirrored Disks (no striping)
• An array of n mirrored disks

– All data stored on two disks

• Increases reliability
– If one disk fails, the system can continue

• Increases speed of reads
– Both of the mirrored disks can be read concurrently

• Decreases speed of writes
– Each write must be made to two disks

• Requires twice the number of disks
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RAID Levels (con’t)

• Level 3: Data is striped over n disks and an 
(n+1)th disk is used to stores the exclusive or 
(XOR) of the corresponding bytes on the 
other n disks
– The (n+1)th disk is called the parity disk
– Chunks are bytes



15

Level 3 (con’t)

• Redundancy increases reliability
– Setting a bit on the parity disk to be the XOR of the bits 

on the other disks makes the corresponding bit on each 
disk the XOR of the bits on all the other disks, 
including the parity disk

                     1  0  1  0  1      1 (parity disk)

– If any disk fails, its information can be reconstructed as 
the XOR of the information on all the other disks
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Level 3 (con’t)

• Whenever a write is made to any disk, a write must 
by made to the parity disk
       New_Parity_Bit = Old_Parity_Bit  XOR 

                       (Old_Data_Bit  XOR  New_Data_Bit)

• Thus each write requires 4 disk accesses
• The parity disk can be a bottleneck since all writes 

involve a read and a write to the parity disk
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RAID Levels (con’t)

• Level 5: Data is striped and parity 
information is stored as in level 3, but
– The chunks are disk blocks
– The parity information is itself striped and is 

stored in turn on each disk
• Eliminates the bottleneck of the parity disk

– Level most often recommended for transaction 
processing applications



18

RAID Levels (con’t)

• Level 10: A combination of levels 0 and 1 
(not an official level)
– A striped array of n disks (as in level 0)
– Each of these disks is mirrored (as in level 1)

• Achieves best performance of all levels
• Requires twice as many disks
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Controller Cache

• To further increase the efficiency of RAID systems, a 
controller cache can be used in memory
– When reading from the disk, a larger number of disk blocks 

than have been requested can be read into memory
– In write back cache, the RAID system reports that the write 

is complete as soon as the data is in the cache (before it is 
on the disk)

• Requires some redundancy of information in cache

– If all the blocks in a stripe are to be updated, the new value 
of the parity block can be computed in the cache and all the 
writes done in parallel
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Access Path

• Refers to the algorithm + data structure 
(e.g., an index) used for retrieving and 
storing data in a table

• The choice of an access path to use in the 
execution of an SQL statement has no effect 
on the semantics of the statement

• This choice can have a major effect on the 
execution time of the statement
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Heap Files

• Rows appended to end of file as they are 
inserted  
– Hence the file is unordered

• Deleted rows create gaps in file
– File must be periodically compacted to recover 

space
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Transcript Stored as a Heap File
666666      MGT123    F1994    4.0
123456      CS305        S1996    4.0         page 0
987654      CS305        F1995    2.0

717171      CS315        S1997    4.0
666666      EE101        S1998    3.0         page 1
765432      MAT123    S1996    2.0
515151      EE101        F1995    3.0

234567      CS305        S1999    4.0
                                                                 page 2

878787      MGT123    S1996    3.0
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Heap File - Performance
• Assume file contains F pages
• Inserting a row:

– Access path is scan
– Avg. F/2 page transfers if row already exists
– F+1 page transfers if row does not already exist

• Deleting a row:
– Access path is scan
– Avg. F/2+1 page transfers if row exists
–  F  page transfers if row does not exist
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Heap File - Performance
• Query

– Access path is scan 
– Organization efficient if query returns all rows and 

order of access is not important
   SELECT * FROM TranscriptTranscript 

– Organization inefficient if a few rows are requested
• Average F/2 pages read to get get a single row

SELECT  T.Grade
FROM  TranscriptTranscript T
WHERE  T.StudId=12345 AND  T.CrsCode =‘CS305’
                AND  T.Semester = ‘S2000’
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Heap File - Performance

– Organization inefficient when a subset of rows 
is requested:  F  pages must be read

SELECT  T.Course, T.Grade
FROM  TranscriptTranscript T                             -- equality search
WHERE  T.StudId = 123456

SELECT  T.StudId, T.CrsCode
FROM  TranscriptTranscript T                              -- range search 
WHERE  T.Grade BETWEEN 2.0 AND 4.0
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Sorted File
• Rows are sorted  based on some attribute(s)

– Access path is binary search
– Equality or range query based on that attribute has cost 

log2F to retrieve page containing first row

– Successive rows are in same (or successive) page(s) and 
cache hits are likely

– By storing all pages on the same track, seek time can be 
minimized

• Example – Transcript sorted on StudId :

SELECT  T.Course, T.Grade
FROM  TranscriptTranscript T                 
            
WHERE  T.StudId = 123456

SELECT  T.Course, T.Grade
FROM  TranscriptTranscript T
WHERE T.StudId BETWEEN 
                  111111 AND 199999
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Transcript Stored as a Sorted File
111111      MGT123    F1994    4.0
111111      CS305        S1996    4.0         page 0
123456      CS305        F1995    2.0

123456      CS315        S1997    4.0
123456      EE101        S1998    3.0         page 1
232323      MAT123    S1996    2.0
234567      EE101        F1995    3.0

234567      CS305        S1999    4.0
                                                                 page 2

313131      MGT123    S1996    3.0
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Maintaining Sorted Order
• Problem: After the correct position for an 

insert has been determined, inserting the row 
requires (on average) F/2 reads and F/2 writes 
(because shifting is necessary to make space) 

• Partial Solution 1:  Leave empty space in 
each page:  fillfactor

• Partial Solution 2:  Use overflow pages 
(chains).
– Disadvantages:  

• Successive pages no longer stored contiguously
• Overflow chain not sorted, hence cost no longer log2 F
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Overflow
    3
111111      MGT123    F1994    4.0
111111      CS305        S1996    4.0         page 
0
111111      ECO101     F2000    3.0
122222      REL211     F2000    2.0

    -
123456      CS315        S1997    4.0
123456      EE101        S1998    3.0         page 
1
232323      MAT123    S1996    2.0
234567      EE101        F1995    3.0

    -
234567      CS305        S1999    4.0
                                                                 page 2

313131      MGT123    S1996    3.0

    7
111654      CS305        F1995    2.0
111233      PSY 220     S2001    3.0         page 
3

Pointer to
overflow chain

Pointer to
next block
in chain

These pages are
Not overflown
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Index

• Mechanism for efficiently locating row(s) without 
having to scan entire table

• Based on a search key: rows having a particular 
value for the search key attributes can be quickly 
located

• Don’t confuse candidate key with search key:
– Candidate key: set of attributes; guarantees uniqueness
– Search key: sequence of attributes; does not guarantee 

uniqueness –just used for search
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Index Structure
• Contains:

– Index entries
• Can contain the data tuple itself (index and table are integrated in 

this case); or
• Search key value and a pointer to a row having that value; table 

stored separately in this case – unintegrated index

– Location mechanism 
• Algorithm + data structure for locating an index entry with a given 

search key value

– Index entries are stored in accordance with the search key 
value

• Entries with the same search key value are stored together (hash, 
B- tree)

• Entries may be sorted on search key value (B-tree)
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Index Structure

Location Mechanism

Index entries

S
Search key
value

Location mechanism
facilitates finding
index entry for S

S

S, …….

Once index entry is 
found, the row can 
be directly accessed
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Storage Structure

• Structure of file containing a table
– Heap file (no index, not integrated)

– Sorted file (no index, not integrated)
– Integrated file containing index and rows 

(index entries contain rows in this case)
• ISAM

• B+ tree
• Hash
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Integrated Storage Structure
Contains table
and (main) index
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Index File With Separate Storage 
Structure

    In this case, the storage 
structure might be a heap or 
sorted file, but often is an 
integrated file with another 
index (on a different search key 
– typically the primary key)

Storage
structure
for table

Location mechanism

Index entriesIn
de

x 
fi

le
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Indices: The Down Side

• Additional I/O to access index pages (except if index is 
small enough to fit in main memory)

• Index must be updated when table is modified.

• SQL-92 does not provide for creation or deletion of 
indices
– Index on primary key generally  created automatically
– Vendor specific statements:

• CREATE INDEX ind ON TranscriptTranscript (CrsCode)

• DROP INDEX ind
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Clustered Index

• Clustered indexClustered index:  index entries and rows are 
ordered in the same way
– An integrated storage structure is always clustered 

(since rows and index entries are the same)
– The particular index structure (eg, hash, tree) dictates 

how the rows are organized in the storage structure
• There can be at most one clustered index on a table

– CREATE TABLE generally creates an integrated, 
clustered (main) index on primary key
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Clustered Main Index

Storage structure
contains table
and (main) index;
rows are contained
in index entries
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Clustered Secondary Index
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Unclustered Index

• Unclustered (secondary) index: index entries and 
rows are not ordered in the same way

• An secondary index might be clustered or 
unclustered with respect to the storage structure it 
references
– It is generally unclustered (since the organization of rows 

in the storage structure depends on main index)
– There can be many secondary indices on a table
– Index created by CREATE INDEX is generally an 

unclustered, secondary  index
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Unclustered Secondary Index
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Clustered Index

• Good for range searches when a range of search 
key values is requested
– Use location mechanism to locate index entry at start of 

range
• This locates first row.

– Subsequent rows are stored in successive locations if 
index is clustered (not so if unclustered)

– Minimizes page transfers and maximizes likelihood of 
cache hits
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Example – Cost of Range Search
• Data file has 10,000 pages, 100 rows in search range
• Page transfers for table rows (assume 20 rows/page):

– Heap:  10,000 (entire file must be scanned)
– File sorted on search key: log2 10000 + (5 or 6) ≈ 19

– Unclustered index:  ≤ 100
– Clustered index:  5 or 6

• Page transfers for index entries (assume 200 
entries/page)
– Heap and sorted: 0
– Unclustered secondary index:  1 or 2 (all index entries for the 

rows in the range must be read) 
– Clustered secondary index:  1 (only first entry must be read)
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Sparse vs. Dense Index

• Dense indexDense index:  has index entry for each data 
record  
– Unclustered index must be dense
– Clustered index need not be dense

• Sparse indexSparse index: has index entry for each page 
of data file
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Sparse Vs. Dense Index

Sparse, 
clustered
index sorted
on Id

Dense, 
unclustered
index sorted
on Name

Data file sorted on Id

Id          Name       Dept
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Sparse Index

Search key should
be candidate key of
data file (else additional
measures required)
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Multiple Attribute Search Key

• CREATE INDEX  Inx ON TblTbl  (Att1, Att2)
• Search key is a sequence of attributes; index entries are lexically 

ordered
• Supports finer granularity equality search: 

– “Find row with value (A1, A2) ”

• Supports range search (tree index only):
– “Find rows with values between (A1, A2) and (A1′ , A2′ ) ”

• Supports partial key searches (tree index only):
– Find rows with values of Att1 between A1 and A1′
– But not “Find rows with values of Att2 between A2 and A2′  ” 
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Locating an Index Entry

• Use binary search (index entries sorted)
• If Q pages of index entries, then log2Q  page transfers 

(which is a big improvement over binary search of the 
data pages of a F page data file since  F >>Q)

• Use multilevel index:  Sparse index on sorted 
list of index entries
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Two-Level Index

– Separator level  is a sparse index over pages of index entries
– Leaf level contains index entries 
– Cost of searching the separator level << cost of searching index level
   since separator level is sparse
–  Cost or retrieving row once index entry is found is 0 (if integrated)  or 1 (if 
not)
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Multilevel Index

– Search cost = number of levels in tree
– If Φ is the fanout of a separator page, cost is logΦ Q + 1
– Example: if Φ = 100 and Q = 10,000, cost = 3
          (reduced to 2 if root is kept in main memory)
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Index Sequential Access Method (ISAM)

• Generally an integrated storage structure
– Clustered, index entries contain rows

• Separator entry = (ki , pi); ki is a search key value; 
pi is a pointer to a lower level page

• ki separates set of search key values in the two 
subtrees pointed at by pi-1 and pi.
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Index Sequential Access Method
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Index Sequential Access Method

• The index is static:  
– Once the separator levels have been constructed, they never 

change
– Number and position of leaf pages in file stays fixed

• Good for equality and range searches
– Leaf pages stored sequentially in file when storage structure 

is created to support range searches 
• if, in addition, pages are positioned on disk to support a scan, a range 

search can be very fast (static nature of index makes this possible)

• Supports multiple attribute search keys and partial key 
searches
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Overflow Chains
- Contents of leaf pages change 
– Row deletion yields empty slot   
   in leaf page
– Row insertion can result in  
   overflow leaf page and  
   ultimately overflow chain
     – Chains can be long, unsorted,
        scattered on disk
     – Thus ISAM can be inefficient 
         if table is dynamic
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B+ Tree

• Supports equality and range searches, 
multiple attribute keys and partial key 
searches

• Either a secondary index (in a separate file) 
or the basis for an integrated storage 
structure

Responds to dynamic changes in the table
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B+ Tree Structure

– Leaf level is a (sorted) linked list of index entries
– Sibling pointers support range searches in spite of
  allocation and deallocation of leaf pages (but leaf 
  pages might not be physically contiguous on disk)
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Insertion and Deletion in B+ Tree

• Structure of tree changes to handle row 
insertion and deletion – no overflow chains

• Tree remains balanced:  all paths from root 
to index entries have same length

• Algorithm guarantees that the number of 
separator entries in an index page is 
between Φ/2 and Φ 
– Hence the maximum search cost is logΦ/2Q + 1 

(with ISAM search cost depends on length of 
overflow chain)
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Handling Insertions - Example

- Insert  “vince”
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Handling Insertions (cont’d)
– Insert “vera”:  Since there is no room in leaf page:
     1. Create new leaf page, C
     2. Split index entries between B and C (but maintain
         sorted order)
     3. Add separator entry at parent level
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Handling Insertions (con’t)
– Insert “rob”. Since there is no room in leaf page A:
    1. Split A into A1 and A2 and divide index entries
        between the two (but maintain sorted order)
    2. Split D into D1 and D2 to make room for additional
        pointer
    3. Three separators are needed: “sol”, “tom” and “vince”
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Handling Insertions (cont’d)
– When splitting a separator page, push a separator up
–  Repeat process at next level
–  Height of tree increases by one
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Handling Deletions

• Deletion can cause page to have fewer than Φ/2 
entries
– Entries can be redistributed over adjacent pages to 

maintain minimum occupancy requirement
– Ultimately, adjacent pages must be merged, and if 

merge propagates up the tree, height might be reduced
– See book

• In practice, tables generally grow, and merge 
algorithm is often not implemented
– Reconstruct tree to compact it
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Hash Index
• Index entries partitioned into buckets in 

accordance with a hash function,  h(v), where v 
ranges over search key values
– Each bucket is identified by an address, a 

– Bucket at address a contains all index entries 
with search key v such that h(v) = a

• Each bucket is stored in a page (with possible 
overflow chain)

• If index entries contain rows, set of buckets forms 
an integrated storage structure; else set of buckets 
forms an (unclustered) secondary index
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Equality Search with Hash Index

Given v:
  1. Compute h(v)
  2. Fetch bucket at h(v)
  3. Search bucket

Cost = number of pages
   in bucket (cheaper than
   B+ tree, if no overflow 
   chains)

Location
mechanism
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Choosing a Hash Function

• Goal of h: map search key values randomly
– Occupancy of each bucket roughly same for an 

average instance of indexed table

• Example:  h(v) = (c1∗ v + c2) mod  M

– M must be large enough to minimize the 
occurrence of overflow chains

– M must not be so large that bucket occupancy is 
small and too much space is wasted
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Hash Indices – Problems
• Does not support range search

– Since adjacent elements in range might hash to 
different buckets, there is no efficient way to 
scan buckets to locate all search key values v 
between v1 and v2

• Although it supports multi-attribute keys, it 
does not support partial key search
– Entire value of v must be provided to h

• Dynamically growing files produce 
overflow chains, which negate the efficiency 
of the algorithm
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Extendable Hashing

• Eliminates overflow chains by splitting a bucket 
when it overflows

• Range of hash function has to be extended to 
accommodate additional buckets

• Example: family of hash functions based on h:
– hk(v) = h(v)  mod 2k    (use the last k bits of h(v))

– At any given time a unique hash, hk , is used 
depending on the number of times buckets have 
been split
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Extendable Hashing – Example

   v             h(v)      
pete        11010 
mary       00000  
jane        11110
bill          00000
john        01001
vince      10101
karen      10111

Extendable hashing uses a directory  (level of indirection) to
   accommodate family of hash functions
Suppose next action is to insert sol, where h(sol) = 10001.
Problem:  This causes overflow in B1 

Location 
mechanism
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Example (cont’d)
Solution: 
   1. Switch  to h3

   2. Concatenate copy of old
       directory to new directory
   3. Split overflowed bucket, B,
       into B and B′ , dividing 
       entries in B between the
       two using h3

     4. Pointer to B in directory
       copy replaced by pointer
       to B′

Note: Except for B′  , pointers in directory copy refer to original
   buckets.

          current_hash  identifies current hash  function.
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Example (cont’d)

Next action:  Insert judy,
   where h(judy) = 00110 
B2 overflows, but directory
   need not be extended

Problem:  When Bi overflows, we need a mechanism for deciding 
    whether the directory has to be doubled
Solution:  bucket_level[i] records the number of times Bi has been
    split.  If current_hash > bucket_level[i], do not enlarge directory
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Example (cont’d)
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Extendable Hashing

• Deficiencies:
– Extra space for directory

– Cost of added level of indirection:  
• If directory cannot be accommodated in main 

memory, an additional page transfer is necessary.



Choosing An Index
• An index should support a query of the 

application that has a significant impact on 
performance
– Choice based on frequency of invocation, 

execution time, acquired locks, table size
Example 1:  SELECT  E.Id
                  FROM   Employee E
                  WHERE   E.Salary < :upper  AND  E.Salary > 
:lower

   – This is a range search on Salary.  
   – Since the primary key is Id, it is likely that there is a clustered, 
      main index on that attribute that is of no use for this query.
   – Choose  a secondary, B+ tree index with  search key Salary
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Choosing An Index (cont’d)

Example 2:      SELECT  T.StudId
            FROM    TranscriptTranscript T

                        WHERE  T.Grade = :grade

    - This is an equality search on Grade.  
    - Since the primary key is (StudId, Semester, CrsCode) it is
       likely that there is a main, clustered index on these attributes
       that is of no use for this query.  
     - Choose a secondary, B+ tree or hash index with search key
        Grade
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Choosing an Index (cont’d)
Example 3:
             SELECT   T.CrsCode, T.Grade
             FROM     TranscriptTranscript T
             WHERE    T.StudId = :id  AND  T.Semester = ‘F2000’

 – Equality search on StudId and Semester. 
             – If the primary key is (StudId, Semester, CrsCode) it is 
                likely that there is a main, clustered index on this 
               sequence of attributes.
             – If the main index is a B+ tree it can be used for this search. 
             – If the main index is a hash it cannot be used for this 
                search.  Choose B+ tree or hash with search key StudId
                (since Semester is not as selective as StudId) or

    (StudId, Semester)
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Choosing An Index (cont’d)

Example 3  (cont’d):  
 SELECT   T.CrsCode, T.Grade

             FROM  TranscriptTranscript T
             WHERE  T.StudId = :id  AND  T.Semester = ‘F2000’

- Suppose TranscriptTranscript has primary key (CrsCode, StudId, Semester).
  Then the main index is of no use (independent of whether it is a
  hash or B+ tree).
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