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OLAP and Data Mining

Chapter 17
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OLTP Compared With OLAP
• On Line Transaction Processing – OLTPOLTP

– Maintains a database that is an accurate model of  some real-
world enterprise. Supports day-to-day operations. 
Characteristics:

• Short simple transactions
• Relatively frequent updates
• Transactions access only a small fraction of the database

• On Line Analytic Processing – OLAPOLAP
– Uses information in database to guide strategic decisions. 

Characteristics:
• Complex queries
• Infrequent updates
• Transactions access a large fraction of the database
• Data need not be up-to-date
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The Internet Grocer

• OLTP-style transaction:
– John  Smith, from Schenectady, N.Y., just bought a box 

of tomatoes; charge his account; deliver the tomatoes 
from our Schenectady warehouse; decrease our 
inventory of tomatoes from that warehouse

• OLAP-style transaction:
– How many cases of tomatoes were sold in all northeast 

warehouses in the years 2000 and 2001?

4

OLAP: Traditional Compared 
with Newer Applications

• Traditional OLAP queries
– Uses data the enterprise gathers in its usual activities, 

perhaps in its OLTP system

– Queries are ad hoc, perhaps designed and carried out  
by non-professionals (managers)

• Newer Applications (e.g., Internet companies)
– Enterprise actively gathers data it wants, perhaps 

purchasing it

– Queries are sophisticated, designed by professionals, 
and used in more sophisticated ways
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The Internet Grocer

• Traditional
– How many cases of tomatoes were sold in all 

northeast warehouses in the years 2000 and 
2001?

• Newer
– Prepare a profile of the grocery purchases of 

John Smith for the years 2000 and 2001 (so that 
we can customize our marketing to him and get 
more of his business)
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Data Mining

•• Data MiningData Mining is an attempt at knowledge discovery 
– to extract knowledge from a database

• Comparison with OLAP
– OLAP:

• What percentage of people who make over $50,000 defaulted 
on their mortgage in the year 2000?

– Data Mining: 
• How can information about salary, net worth, and other 

historical data be used to predict who will default on their 
mortgage?
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Data Warehouses

• OLAP and data mining databases are frequently 
stored on special servers called data 
warehouses:
– Can accommodate the huge amount of data 

generated by OLTP systems

– Allow OLAP queries and data mining to be run off -
line so as not to impact the performance of OLTP

8

OLAP, Data Mining, and 
Analysis

• The “A” in OLAP stands for “Analytical”
• Many OLAP and Data Mining applications 

involve sophisticated analysis methods from 
the fields of mathematics, statistical 
analysis, and artificial intell igence

• Our main interest is in the database aspects 
of these fields, not the sophisticated analysis 
techniques
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Fact Tables

• Many OLAP applications are based on a fact table

• For example, a supermarket application might be 
based on a table

SalesSales (Market_Id, Product_Id, Time_Id, Sales_Amt)

• The table can be viewed as multidimensional
– Market_Id, Product_Id, Time_Id are the dimensions that 

represent specific supermarkets, products, and time 
intervals

– Sales_Amt is a function of the other three

10

A Data Cube

• Fact tables can be viewed as an N-dimensional data cubedata cube
(3-dimensional in our example)
– The entries in the cube are the values for Sales_Amts
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Dimension Tables

• The dimensions of the fact table are further 
described with dimension tables

• Fact table:
SalesSales (Market_id, Product_Id, Time_Id, Sales_Amt)

• Dimension Tables:
MarketMarket (Market_Id, City, State, Region)

ProductProduct (Product_Id, Name, Category, Price)

TimeTime (Time_Id, Week, Month, Quarter)

12

• The fact and dimension relations can be 
displayed in an E-R diagram, which looks 
like a star and is called a star schema

Star Schema
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Aggregation

• Many OLAP queries involve aggregation of the 
data in the fact table

• For example, to find the total sales (over time) of 
each product in each market, we might use

SELECT S.Market_Id, S.Product_Id, SUM (S.Sales_Amt)
FROM   SalesSales S
GROUP BY S.Market_Id, S.Product_Id

• The aggregation is over the entire time dimension 
and thus produces a two-dimensional view of the  
data. (Note: aggregation here is over time, not 
supermarkets or products.)
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Aggregation over  Time

• The output of the previous query
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Drilling Down and Rolling Up
• Some dimension tables form an  aggregation hierarchy

Market_Id → City → State → Region

• Executing a series of queries  that moves down a 
hierarchy (e.g., from aggregation over regions to that 
over states) is called  drilling down
– Requires the use of the fact table or information more specific 

than the requested aggregation (e.g., cities)

• Executing a series of queries  that moves up the hierarchy 
(e.g., from states to regions)  is called  rolling up
– Note:  In a rollup, coarser aggregations can be computed using 

prior queries for finer aggregations

16

• Drilling down on market: from Region to State
SalesSales (Market_Id, Product_Id, Time_Id, Sales_Amt)
MarketMarket (Market_Id, City, State, Region)

1. SELECT S.Product_Id, M.Region, SUM (S.Sales_Amt)

FROM  SalesSales S,  MarketMarket M
WHERE M.Market_Id = S.Market_Id
GROUP BY S.Product_Id, M.Region

2. SELECT S.Product_Id, M.State, SUM (S.Sales_Amt)
FROM SalesSales S,  MarketMarket M
WHERE M.Market_Id = S.Market_Id
GROUP BY S.Product_Id, M.State, 

Drilling Down
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Rolling Up
• Rolling up on market, from State to Region

– If we have already created a table, State_SalesState_Sales,  using

1. SELECT  S.Product_Id,  M.State, SUM (S.Sales_Amt)
FROM Sales Sales S,   MarketMarket M
WHERE   M.Market_Id = S.Market_Id
GROUP BY S.Product_Id, M.State

then we can roll up from there to:

22.     SELECT T.Product_Id,  M.Region, SUM (T.Sales_Amt)
FROM         State_SalesState_Sales T,  MarketMarket M
WHERE M.State = T.State

GROUP BY T.Product_Id,  M.Region

Can reuse the results of query 1.

18

Pivoting
• When we view the data as a multi-dimensional 

cube and group on a subset of the axes, we are said 
to be performing a pivotpivot on those axes
– Pivoting on dimensions D1,…, Dk in a data cube 

D1,…,D k,Dk+1,…, Dn means that we use GROUP BY 
A1,…, Ak and aggregate over Ak+1,…A n, where Ai is an 
attribute of the dimension Di

– Example: Pivoting on ProductProduct and TimeTime corresponds to 
grouping on Product_id and Quarter and aggregating 
Sales_Amt over Market_id:

SELECT S.Product_Id,  T.Quarter, SUM (S.Sales_Amt)
FROM SalesSales S,  TimeTime T
WHERE T.Time_Id = S.Time_Id
GROUP BY S.Product_Id, T.Quarter

Pivot
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Time Hierarchy as a Lattice

• Not all aggregation 
hierarchies are linear
– The time hierarchy is a lattice

• Weeks are not contained in 
months

• We can roll up days into weeks 
or months, but we can only roll 
up weeks into quarters

20

Slicing-and-Dicing

• When we use WHERE to specify a particular 
value for an axis (or several axes), we are 
performing a slice
– Slicing the data cube in the TimeTime dimension 

(choosing sales only in week 12)  then pivoting to 
Product_id (aggregating over Market_id)

SELECT S.Product_Id,  SUM (Sales_Amt)

FROM SalesSales S, TimeTime T

WHERE T.Time_Id = S.Time_Id AND T.T.WeekWeek = ‘Wk= ‘Wk--12’12’

GROUP BY   S. S. Product_IdProduct_Id

Slice

Pivot
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Slicing-and-Dicing

• Typically slicing and dicing involves several queries to 
find the “right slice.” 
For instance, change the slice & the axes (from the prev. example):

• Slicing on TimeTime and Market Market dimensions then pivoting to Product_id and 
Week (in the time dimension)

SELECT  S.Product_Id,  T.Quarter,  SUM (Sales_Amt)
FROM SalesSales S,  TimeTime T
WHERE T.Time_Id = S.Time_Id 

AND TT.Quarter =  .Quarter =  44
AND S.S.Market_idMarket_id = 12345= 12345

GROUP BY S.S.Product_IdProduct_Id,  T.,  T.WeekWeek

Slice

Pivot

22

The CUBE Operator

• To construct the following  table, would take 4 
queries (next slide)

…………Total
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The Three Queries
• For the table entries, without the totals (aggregation on time)

SELECT S.Market_Id,  S.Product_Id,  SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY S.Market_Id, S.Product_Id
• For the row totals (aggregation on time and markets)

SELECT S.Product_Id,  SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY S.Product_Id

• For the column totals (aggregation on time and products)

SELECT S.Market_Id,  SUM (S.Sales) 

FROM SalesSales S 

GROUP BY S.Market_Id

• For the grand total (aggregation on time, markets, and products)

SELECT SUM (S.Sales) 

FROM SalesSales S

24

Definition of the CUBE Operator

• Doing these three queries is wasteful
– The first does much of the work of the other two:  if 

we could save that result and aggregate over 
Market_Id and Product_Id, we could compute the 
other queries more efficiently

• The CUBE clause is part of SQL:1999
– GROUP BY CUBE (v1, v2, …, vn)

– Equivalent to a collection of GROUP BYs, one for 
each of the  2n subsets of v1, v2, …, vn
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Example of  CUBE Operator

• The following query returns all the information 
needed to make the previous products/markets 
table:

SELECT  S.Market_Id, S.Product_Id, SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY CUBE (S.Market_Id, S.Product_Id)

26

ROLLUP
• ROLLUP is similar to CUBE except that instead of 

aggregating over all subsets of the arguments, it 
creates subsets moving from right to left

• GROUP BY ROLLUP (A1,A2,…,A n) is a series of 
these aggregations:
– GROUP BY A1 ,…, A n-1 ,An

– GROUP BY A1 ,…, A n-1

– … … … 
– GROUP BY A1, A2

– GROUP BY A1

– No GROUP BY

• ROLLUP is also in SQL:1999
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Example of  ROLLUP Operator

SELECT S.Market_Id,  S.Product_Id, SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY ROLLUP (S.Market_Id,  S. Product_Id)

– first aggregates with the finest granularity:
GROUP BY S.Market_Id,  S.Product_Id

– then with the next level of granularity:
GROUP BY S.Market_Id

– then the grand total is computed with  no GROUP 
BY clause

28

ROLLUP vs. CUBE

• The same query with CUBE:
- first aggregates with the finest granularity:

GROUP BY S.Market_Id,  S.Product_Id

- then with the next level of granularity:
GROUP BY S.Market_Id

and
GROUP BY S.Product_Id

- then the grand total with  no  GROUP BY
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Materialized Views

The CUBE operator is often used to 
precompute aggregations on all dimensions of 
a fact table and then save them as a 
materialized views to speed up future queries

30

ROLAP and MOLAP

• Relational OLAP:  ROLAP
– OLAP data is stored in a relational database as 

previously described.  Data cube is a conceptual 
view – way to think about a fact table

• Multidimensional OLAP:  MOLAP
– Vendor provides an OLAP server that 

implements a fact table as a data cube using a 
special multi-dimensional (non-relational) data 
structure
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MOLAP

- No standard query language for MOLAP 
databases

- Many MOLAP vendors (and many ROLAP 
vendors) provide proprietary visual 
languages that allow casual users to make 
queries that involve pivots, drilling down, 
or rolling up

32

Implementation Issues

• OLAP applications are characterized by a very 
large amount of data that is relatively static, with 
infrequent updates
– Thus, various aggregations can be precomputed and 

stored in the database
– Star joins,  join indices, and bitmap indices can be used 

to improve efficiency (recall the methods to compute 
star joins in Chapter 14)

– Since updates are infrequent, the inefficiencies 
associated with updates are minimized
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Data Warehouse

• Data (often derived from OLTP) for both OLAP 
and data mining applications is usually stored in a 
special database called a data warehouse

• Data warehouses are generally large and contain 
data that has been gathered at different times from 
DBMSs provided by different vendors and with 
different schemas

• Populating such a data warehouse is not trivial

34

Issues Involved in Populating  a 
Data Warehouse

• Transformations
– Syntactic: syntax used in different DMBSs for the same 

data might be different
• Attribute names:  SSN vs. Ssnum
• Attribute domains:  Integer vs. String

– Semantic: semantics might be different
• Summarizing sales on a daily basis vs. summarizing sales on a 

monthly basis

• Data Cleaning
– Removing errors and inconsistencies in data
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Metadata

• As with other databases, a warehouse must 
include a metadata repository
– Information about physical and logical organization 

of data

– Information about the source of each data item and 
the dates on which it was loaded and refreshed

36

Incremental Updates

• The large volume of data in a data warehouse 
makes loading and updating a significant task

• For efficiency, updating is usually incremental
– Different parts are updated at different times

• Incremental updates might result in the database 
being in an inconsistent state
– Usually not important because queries involve only 

statistical summaries of data, which are not greatly 
affected by such inconsistencies
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Loading Data into A Data 
Warehouse

38

Data Mining

• An attempt at knowledge discovery

• Searching for patterns and structure in a sea 
of data

• Uses techniques from many disciplines, 
such as statistical analysis and machine 
learning
– These techniques are not our main interest
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Goals of Data Mining

• Association
– Finding  patterns in data that associate instances of that 

data to related instances
• Example: what types of books does a customer buy

• Classification
– Finding patterns in data that can be used to classify that 

data (and possibly the people it describes)
• Example “high -end buyers” and “low -end” buyers

– This classification might then be used for Prediction
• Which bank customers will default on their mortgages?

– Categories for classification are known in advance

40

Goals (con’t )

• Clustering
– Finding patterns in data that can be used to 

classify that data (and possibly the people it 
describes) into categories determined by a 
similarity measure

• Example:  Are cancer patients clustered in any 
geographic area (possibly around certain power 
plants)?

– Categories are not known in advance, unlike is 
the classification problem
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Associations

• An associationassociation is a correlation between certain 
values in a database (in the same or different 
columns)
– In a convenience store in the early evening, a large 

percentage of customers who bought diapers also 
bought beer

• This association can be described using the 
notation

Purchase_diapers  =>  Purchase_beer

42

Confidence and Support
• To determine whether an association exists, the system 

computes the confidence and support for that 
association

•• Confidence Confidence in A => B
– The percentage of transactions (recorded in the database) 

that contain B among those that contain A
• Diapers => Beer:

The percentage of customers who bought beer among those who bought 
diapers

•• SupportSupport
– The percentage of transactions that contain both items 

among all transactions
• 100* (customers who bought both Diapers and Beer)/(all customers)
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Ascertain an Association

• To ascertain that an association exists, both 
the confidence and the support must be 
above a certain threshold
– Confidence states that there is a high 

probability, given the data, that someone who 
purchased diapers also bought beer

– Support states that the data shows a large 
percentage of people who purchased both 
diapers and beer (so that the confidence 
measure is not an accident)

44

A Priori Algorithm for Computing Associations

• Based on this observation:
– If the support for  A => B  is larger than T, then the 

support for A and B must separately be larger than T
• Find all items whose support is larger than T

– Requires checking n items 
– If there are m items with support > T (presumably, 

m<<n), find all pairs of such items whose support is 
larger than T

– Requires  checking  m(m-1)  pairs
• If there are p pairs with support > T, compute the 

confidence for each pair
– Requires checking  p pairs
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Classification

• Classification involves finding patterns in data 
items that can be used to place those items in 
certain categories.That classification can then be 
used to predict future outcomes.
– A bank might gather data from the application forms of 

past customers who applied for a mortgage and classify 
them as defaulters or non-defaulters. 

– Then when new customers apply, they might use the 
information on their application forms to predict 
whether or not they would default

46

Example: Loan Risk Evaluation

• Suppose the bank used only three types of 
information to do the classification
– Whether or not the applicant was married

– Whether or not the applicant had previously 
defaulted

– The applicants current income

• The data about previous applicants might be 
stored in a table called the training table
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No45YesYesC10

No75NoYesC9

Yes10NoYesC8

No10YesYesC7

No30NoNoC6

No50NoYesC5

No125NoYesC4

Yes135YesNoC3

No100NoYesC2

No50NoYesC1

Default (outcome)IncomePreviousDefaultMarriedId

Training Table

48

No30NoYesC20

No40NoYesC19

Yes160YesNoC18

No35NoYesC17

Yes15NoYesC16

No60NoNoC15

No15NoNoC14

No20YesYesC13

Yes125YesNoC12

Yes60NoYesC11

Default (outcome)IncomePreviousDefaultMarriedId

Training Table (cont’d)
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Classification Using Decision 
Trees

• The goal is to use the information in this 
table to classify new applicants into 
defaulters or non defaulters

• One approach is to use the training table to 
make a decision tree

50Default = yes Default = No

Default = NoDefault = yesDefault = No

PreviousDefault

Married Married

Income

Yes No

Yes No Yes No

< 30 >= 30

A Decision Tree
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Decision Trees Imply 
Classification Rules

• Each classification rule implied by the tree 
corresponds to a path from the root to a leaf

• For example, one such rule is
IfIf

PreviousDefault = No   AND Married = Yes   AND Income < 30  

ThenThen
Default = Yes

52

Decision Trees Might Make Mistakes

• Some of the classification rules developed from a 
decision tree might incorrectly classify some data; for 
example

If      PreviousDefault = No  AND Married = Yes  AND Income >= 30

ThenThen Default = No

does not correctly classify customer C11

• It is unreasonable to expect that a small number of 
classification rules can always correctly classify a large 
amount of data
– Goal:  Produce the best possible tree from the given data
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Producing a Decision Tree From 
a Training Set

• Several algorithms have been developed for 
constructing a decision tree from a training set
– We discuss the  ID3 algorithmID3 algorithm

• ID3 starts by selecting the attribute to be used at the 
top level of the tree to make the first decision

• This decision yields the nodes at the second level of 
the tree. The procedure repeats on each of these nodes

54

Picking the Top-Most Attribute

• Intuitively we want to pick the attribute that gives the 
“most information” about the final decision

• The ID3 algorithm uses the entropy measure from 
Information Theory

entropy(TrainingTable) = –
�

i∈outcomes pi log2 pi
�

pi =  probability of the outcome of  i in TrainingTable

– Practically: pi is approximated as 
pi = (#items in the table with outcome=i) / (# of all items in the table)
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Properties of the Entropy 
–

�
pi log2 pi

• Entropy determines the degree of randomness in 
the data:
– pyes = pno = ½  – data is completely random

entropy = – ½ log2 ½ – ½ log2 ½ = ½ + ½ = 1

– pyes= 1, pno= 0   or  pno= 1, pyes= 0  – data  is totally nonrandom

entropy = – 1 log2 1 – 0 log2 0 = 0

• The lower the entropy – the less randomness is in 
the data � the more information is in the data

56

Information Gain

• For the entire table, 6 entries have  the 
outcome “Yes”and 14 have the outcome “No”
– So the entropy of the entire table is

• - (6/20 log2 6/20 + 14/20 log2 14/20) = .881

• The ID3 algorithm selects as the top-most 
node the attribute that provides the largest 
Information Gain (explained next)
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Information Gain (cont’d)

• Select an attribute, A, 
and compute the 
entropies of the subtrees
w.r.t. that attribute

• Information gain:
entropy – ( � i=1..n entropyi)/n
– How much less random 

the data has become after 
splitting the training set 
into subtrees

A = 1 A = 2 A = 3

entropy

entropy1

entropy2

entropy3

58

Information Gain (con’t )
• If the top-most node in the tree were Previous DefaultPrevious Default, there 

would be two subtrees:
a subtree with Previous DefaultPrevious Default = “Yes” 
a subtree with Previous DefaultPrevious Default = “No”

• The entropies of these two subtrees would be 
– For Previous DefaultPrevious Default = “Yes”:

• 4 of the 6 entries have the outcome “Yes” and 2 have “No” 
– The entropy is   – 4/6 log2 4/6 – 2/6 log2 2/6 = .918 

– For Previous DefaultPrevious Default = “No”:
• 2 of the 14 entries have the outcome “Yes” and 12 have “No”

– The entropy is   – 2/14 log2 2/14 – 12/14 log2 12/14 = .592

• The average entropy of these subtrees is (.918+.592)/2 = .690
• The Information GainInformation Gain from using Previous DefaultPrevious Default as the top 

attribute is .881 – .690  = .191
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Comparing Information Gains
•• Previous DefaultPrevious Default as the top-most attribute

– The information gain =  .191

•• MarriedMarried as the top-most attribute
– The information gain =  .036

•• IncomeIncome as the top-most attribute
– Must compute information gain for all possible ranges
– For example for the range Income < 50 and Income >= 

50 the Information Gain is .031

• The maximum Information Gain turns out to be 
for the attribute Previous DefaultPrevious Default,  so we select 
that as the top-most attribute in the decision tree

60

The Rest of the Tree
• Repeat the process on the each of the subtrees

– Different subtrees might have different top-most nodes and/or 
different ranges for Income

– If all nodes in a subtree have the same outcome:
• the subtree becomes a leaf node and the procedure stops for 

that subtree

– If all nodes in a subtree do not have the same outcome:
• If there are no more attributes to use: That subtree becomes a 

leaf node and the procedure stops for that subtree
– The classification rules that access such a subtree will 

incorrectly classify some data. 
E.g., the subtree PreviousDefault = No  AND Married = Yes  AND

Income >= 30 incorrectly classifies C11.

• If there are more attributes to use: Continue the process
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Other Measures 

• A number of other measures can be used to 
produce a decision tree from a training set

• Gain Ratio  =  (Information Gain)/SplitInfo
– Where SplitInfo =    –

�
| ti | / | t | * log2 | ti | / | t |

– |t| is the number of entries in the table  being 
decomposed and | ti |  is the number of entries in 
the ith table produced

• Gini Index = 1 - pi
2∑

62

Neural Networks : Another Approach 
to Classification and Prediction

• Machine Learning
– A mortgage broker believes that several factors might 

affect whether or not a customer is likely to default on 
mortgage, but does now know how to weight these factors

– Use data from past customers to “learn” a set of weights to 
be used  in the decision for future customers

• Neural networks, a technique studied in the context of Artificial 
Intelligence, provides a model for analyzing this problem

• Various learning algorithms have been proposed in the literature
and are being used in practice
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A Model of a Neuron

• Suppose the factors are represented as xi where 
each xi can be 1 or 0, and the  weight of each such 
factor is represented as wi Then the weighted sum 
of the factors is compared with a threshold t.  If 
the weighted sum exceeds the threshold

the output is 1 and we predict that the customer 
will default; otherwise the output is 0 and we 
predict he would be considered a good risk

∑
=

≥×
n

i

ii txw
1

64

Simplified Model

• The model is simplified if we introduce a 
new weight w0, which equals t, and assume 
there is a new input x0 which always equals 
–1.  Then the above inequality becomes

∑
=

≥×
n

i

ii xw
0

0
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Step-Function Activation

• This model is said to have step-function 
activation
– Its output is 1 if the weighted sum of the inputs is 

greater than or equal to 0

– Its output is 0 otherwise

• Neurons with this activation function are 
sometimes called perceptrons.

• Later we will discuss another activation function

66

Perceptron Learning Algorithm

• Set the values of each weight (and threshold) to some 
small random number

• Apply the inputs one at a time and compute the outputs

• If the desired output for some input is d and the actual 
output is y, change each weight wi  by

where     is a small constant called the learning factor

• Continue until some termination condition is met

)( ydxw ii −××=∆ η
η
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Rationale for Learning Algorithm

• If there is no error, no change in the weights 
are made

• If there is an error, each weight is changed 
in the direction to decrease the error
– For example if the output is 0 and the desired 

output is 1, the weights of all the inputs that 
were 1 are increased and the threshold is 
decreased.

68

Correctness and Problems with 
Perceptron Learning Algorithm

• If the decision can always be made correctly 
by a single neuron, this algorithm will 
eventually “learn” the correct weights

• The problem is that, for most applications, 
the decision cannot be made, even 
approximately, by a single neuron

• We therefore consider networks of such 
neurons
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Three Level Neural Network

Input Layer

Hidden Layer

Outrput Layer

70

Three-Level Network

• The input level just gathers the inputs and 
submits them to the other levels (no 
neurons)

• The middle or hidden level consists of 
neurons that make intermediate decisions 
and send them to the output layer

• The output layer makes the final decisions
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The  Sigmoid Activation 
Function

• To mathematically derive a learning algorithm for such a 
neural network, we must take derivatives

– But we cannot take derivatives of the step function 
activation function

• Therefore we must use a continuous activation function

– A common such activation function is the sigmoid 
function

y = 1/(1+e-X)

where

∑
=

×=
n

i

ii xwX
0

72

The Sigmoid Function
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Properties of Sigmoid Function

• In some sense the sigmoid function is similar to the step 
function
– It has the value .5 for x = 0

– It becomes asymptotic to 1 for large positive values of x

– It becomes asymptotic to 0 for large negative values of x

• However it is continuous and, as can be easily computed,  
has the derivative

which is used in many of the following computations

)1()1/( 2 yyee
X

y XX −×=+=
∂
∂ −−
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Learning Algorithm for a Single 
Sigmoid Neuron

• The idea is to take the derivative of the squared 
error with respect to each of the weights and 
change each weight by a small multiple of the 
negative of that derivative

– Called the Gradient Descent Approach

– Move in the direction towards the minimum of 
the function
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The Algorithm for One Neuron 
(continued)

• After a bit of math, and using the previous 
result for the derivative of the sigmoid 
function, we get
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Back Propogation Algorithm for 
3-Level Neural Network

• Initially set the values of all weights to 
some small random number

• Apply the inputs from the learning set one 
at a time and, for each input, compute the 
outputs of the neurons in the output layer
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Back Propagation  Algorithm 
(continued)

• Adjust the weights of each neuron in the outer 
layer

• Using the same reasoning as for the single neuron

)()1( outoutoutoutout
i

out
i ydyyxw −×−×××=∆ η

78

Back Propagation  Algorithm 
(continued)

• For reasons that will be clear later, this 
equation can be simplified to

where
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Back Propagation  Algorithm 
(continued)

• Now consider neurons in the hidden layer.  
Assume first that there is only one neuron in 
the output layer

• Using the same reasoning as before, the 
gradient descent method tells us that
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Back Propagation  Algorithm 
(continued)

• Doing the math, we get

where

and where        was previously computed (the back 
propagation property)
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Back Propagation  Algorithm 
(continued)

• If there is more than one neuron in the output layer, we 
compute

where
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Back Propagation  Algorithm 
(continued)

• Continue the training until some termination 
condition is met
– The data in the training set has been used some fixed 

number of times

– The number of errors has stopped decreasing 
significantly

– The weights have stopped changing significantly

– The number of errors has reached some predetermined 
level



42

83

Clustering
• Given:

– a set of items
– characteristic attributes for the items
– a similarity measure based on those attributes

• Clustering involves placing those items into 
clusters, such that items in the same cluster are 
close according to the similarity measure
– Different from Classification: there the categories are 

known in advance

• For example, cancer patients might have the 
attribute location, and might be placed in clusters 
with similar locations.
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Example: Clustering Students by Age

2.626S6

3.523S5

3.020S4

3.118S3

3.517S2

3.917S1

GPAAge Student Id
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K-Means Algorithm

• To cluster a set of items into k categories
1. Pick k items at random to be the (initial) centers of the 

clusters (so each selected item is in its own cluster)

2. Place each item in the training set in the cluster to which 
it is closest to the center 

3. Recalculate the centers of each cluster as the mean of the 
items in that cluster

4. Repeat the procedure starting at Step 2 until there is no 
change in the membership of any cluster
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The Student Example (con’t )

• Suppose we want 2 clusters based on Age
– Randomly pick S1 (age 17) and S4 (age 20) as the centers 

of the initial centers
– The initial clusters are

17  17  18         20  23  26

– The centers of these clusters are
17.333  and  23

– Redistribute items among the clusters based on the new 
centers:

17  17  18  20        23  26

– If we repeat the procedure, the clusters remain the same
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The  Hiearchical or Aglomerative
Algorithm

• Number of clusters is not fixed in advance
• Initially select each item in the training set as the 

center of its own cluster
• Select two clusters to merge into a single center

– One approach it to pick the clusters whose centers are 
closest according to some measure (e.g., Euclidian 
distance)

• Continue until some termination condition is 
reached (e.g., the number of clusters falls below 
some limit)
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Student Example (con’t )

17 17       18      20      23      26

17  17            18      20      23   26

17  17  18                20      23      26

17  17  18  20                    23      26

17  17  18  20                    23  26  --- K-means Solution

17  17  18  20  23  26
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Dendrogram

• One way to manually analyze the results of 
the hierarchical algorithm is with the use of 
a tree called a dendrogram

• The nodes are clusters in the intermediate 
stages of the hierarchical algorithm

• The tree is constructed in reverse order of 
the execution of the hierarchical algorithm, 
starting with the final (single) cluster
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17 17 18 20 22 26

22  2617  17

17  17  18

17  17  18  20

17  17  18  20  22  26

A Dendrogram for the Student Example

Possible set of 
clusters
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Analysis of Dendrogram

• Any set of nodes whose children partition
all the leaves is a possible clustering  
– For example           

17  17  18    20  23  26
is an allowable set of clusters.
Note: these clusters were not seen at any of

the intermediate steps in the hierarchical
or K- means algorithms!


