
1

OLAP and Data Mining

Chapter 17

2

OLTP Compared With OLAP
• On Line Transaction Processing – OLTPOLTP

– Maintains a database that is an accurate model of some real-
world enterprise. Supports day-to-day operations.
Characteristics:

• Short simple transactions
• Relatively frequent updates
• Transactions access only a small fraction of the database

• On Line Analytic Processing – OLAPOLAP
– Uses information in database to guide strategic decisions.

Characteristics:
• Complex queries
• Infrequent updates
• Transactions access a large fraction of the database
• Data need not be up-to-date

2

3

The Internet Grocer

• OLTP-style transaction:
– John Smith, from Schenectady, N.Y., just bought a box

of tomatoes; charge his account; deliver the tomatoes
from our Schenectady warehouse; decrease our
inventory of tomatoes from that warehouse

• OLAP-style transaction:
– How many cases of tomatoes were sold in all northeast

warehouses in the years 2000 and 2001?

4

OLAP: Traditional Compared
with Newer Applications

• Traditional OLAP queries
– Uses data the enterprise gathers in its usual activities,

perhaps in its OLTP system

– Queries are ad hoc, perhaps designed and carried out
by non-professionals (managers)

• Newer Applications (e.g., Internet companies)
– Enterprise actively gathers data it wants, perhaps

purchasing it

– Queries are sophisticated, designed by professionals,
and used in more sophisticated ways

3

5

The Internet Grocer

• Traditional
– How many cases of tomatoes were sold in all

northeast warehouses in the years 2000 and
2001?

• Newer
– Prepare a profile of the grocery purchases of

John Smith for the years 2000 and 2001 (so that
we can customize our marketing to him and get
more of his business)

6

Data Mining

•• Data MiningData Mining is an attempt at knowledge discovery
– to extract knowledge from a database

• Comparison with OLAP
– OLAP:

• What percentage of people who make over $50,000 defaulted
on their mortgage in the year 2000?

– Data Mining:
• How can information about salary, net worth, and other

historical data be used to predict who will default on their
mortgage?

4

7

Data Warehouses

• OLAP and data mining databases are frequently
stored on special servers called data
warehouses:
– Can accommodate the huge amount of data

generated by OLTP systems

– Allow OLAP queries and data mining to be run off -
line so as not to impact the performance of OLTP

8

OLAP, Data Mining, and
Analysis

• The “A” in OLAP stands for “Analytical”
• Many OLAP and Data Mining applications

involve sophisticated analysis methods from
the fields of mathematics, statistical
analysis, and artificial intell igence

• Our main interest is in the database aspects
of these fields, not the sophisticated analysis
techniques

5

9

Fact Tables

• Many OLAP applications are based on a fact table

• For example, a supermarket application might be
based on a table

SalesSales (Market_Id, Product_Id, Time_Id, Sales_Amt)

• The table can be viewed as multidimensional
– Market_Id, Product_Id, Time_Id are the dimensions that

represent specific supermarkets, products, and time
intervals

– Sales_Amt is a function of the other three

10

A Data Cube

• Fact tables can be viewed as an N-dimensional data cubedata cube
(3-dimensional in our example)
– The entries in the cube are the values for Sales_Amts

6

11

Dimension Tables

• The dimensions of the fact table are further
described with dimension tables

• Fact table:
SalesSales (Market_id, Product_Id, Time_Id, Sales_Amt)

• Dimension Tables:
MarketMarket (Market_Id, City, State, Region)

ProductProduct (Product_Id, Name, Category, Price)

TimeTime (Time_Id, Week, Month, Quarter)

12

• The fact and dimension relations can be
displayed in an E-R diagram, which looks
like a star and is called a star schema

Star Schema

7

13

Aggregation

• Many OLAP queries involve aggregation of the
data in the fact table

• For example, to find the total sales (over time) of
each product in each market, we might use

SELECT S.Market_Id, S.Product_Id, SUM (S.Sales_Amt)
FROM SalesSales S
GROUP BY S.Market_Id, S.Product_Id

• The aggregation is over the entire time dimension
and thus produces a two-dimensional view of the
data. (Note: aggregation here is over time, not
supermarkets or products.)

14

Aggregation over Time

• The output of the previous query

………P5

…70007503P4

…34503P3

…24026003P2

…15033003P1

M4M3M2M1
SUM(Sales_Amt)

Market_Id

P
ro

du
ct

_I
d

8

15

Drilling Down and Rolling Up
• Some dimension tables form an aggregation hierarchy

Market_Id → City → State → Region

• Executing a series of queries that moves down a
hierarchy (e.g., from aggregation over regions to that
over states) is called drilling down
– Requires the use of the fact table or information more specific

than the requested aggregation (e.g., cities)

• Executing a series of queries that moves up the hierarchy
(e.g., from states to regions) is called rolling up
– Note: In a rollup, coarser aggregations can be computed using

prior queries for finer aggregations

16

• Drilling down on market: from Region to State
SalesSales (Market_Id, Product_Id, Time_Id, Sales_Amt)
MarketMarket (Market_Id, City, State, Region)

1. SELECT S.Product_Id, M.Region, SUM (S.Sales_Amt)

FROM SalesSales S, MarketMarket M
WHERE M.Market_Id = S.Market_Id
GROUP BY S.Product_Id, M.Region

2. SELECT S.Product_Id, M.State, SUM (S.Sales_Amt)
FROM SalesSales S, MarketMarket M
WHERE M.Market_Id = S.Market_Id
GROUP BY S.Product_Id, M.State,

Drilling Down

9

17

Rolling Up
• Rolling up on market, from State to Region

– If we have already created a table, State_SalesState_Sales, using

1. SELECT S.Product_Id, M.State, SUM (S.Sales_Amt)
FROM Sales Sales S, MarketMarket M
WHERE M.Market_Id = S.Market_Id
GROUP BY S.Product_Id, M.State

then we can roll up from there to:

22. SELECT T.Product_Id, M.Region, SUM (T.Sales_Amt)
FROM State_SalesState_Sales T, MarketMarket M
WHERE M.State = T.State

GROUP BY T.Product_Id, M.Region

Can reuse the results of query 1.

18

Pivoting
• When we view the data as a multi-dimensional

cube and group on a subset of the axes, we are said
to be performing a pivotpivot on those axes
– Pivoting on dimensions D1,…, Dk in a data cube

D1,…,D k,Dk+1,…, Dn means that we use GROUP BY
A1,…, Ak and aggregate over Ak+1,…A n, where Ai is an
attribute of the dimension Di

– Example: Pivoting on ProductProduct and TimeTime corresponds to
grouping on Product_id and Quarter and aggregating
Sales_Amt over Market_id:

SELECT S.Product_Id, T.Quarter, SUM (S.Sales_Amt)
FROM SalesSales S, TimeTime T
WHERE T.Time_Id = S.Time_Id
GROUP BY S.Product_Id, T.Quarter

Pivot

10

19

Time Hierarchy as a Lattice

• Not all aggregation
hierarchies are linear
– The time hierarchy is a lattice

• Weeks are not contained in
months

• We can roll up days into weeks
or months, but we can only roll
up weeks into quarters

20

Slicing-and-Dicing

• When we use WHERE to specify a particular
value for an axis (or several axes), we are
performing a slice
– Slicing the data cube in the TimeTime dimension

(choosing sales only in week 12) then pivoting to
Product_id (aggregating over Market_id)

SELECT S.Product_Id, SUM (Sales_Amt)

FROM SalesSales S, TimeTime T

WHERE T.Time_Id = S.Time_Id AND T.T.WeekWeek = ‘Wk= ‘Wk--12’12’

GROUP BY S. S. Product_IdProduct_Id

Slice

Pivot

11

21

Slicing-and-Dicing

• Typically slicing and dicing involves several queries to
find the “right slice.”
For instance, change the slice & the axes (from the prev. example):

• Slicing on TimeTime and Market Market dimensions then pivoting to Product_id and
Week (in the time dimension)

SELECT S.Product_Id, T.Quarter, SUM (Sales_Amt)
FROM SalesSales S, TimeTime T
WHERE T.Time_Id = S.Time_Id

AND TT.Quarter = .Quarter = 44
AND S.S.Market_idMarket_id = 12345= 12345

GROUP BY S.S.Product_IdProduct_Id, T., T.WeekWeek

Slice

Pivot

22

The CUBE Operator

• To construct the following table, would take 4
queries (next slide)

…………Total

……70007503P4

……34503P3

……24026003P2

……15033003P1

TotalM3M2M1
SUM(Sales_Amt)

Market_Id

P
ro

du
ct

_I
d

12

23

The Three Queries
• For the table entries, without the totals (aggregation on time)

SELECT S.Market_Id, S.Product_Id, SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY S.Market_Id, S.Product_Id
• For the row totals (aggregation on time and markets)

SELECT S.Product_Id, SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY S.Product_Id

• For the column totals (aggregation on time and products)

SELECT S.Market_Id, SUM (S.Sales)

FROM SalesSales S

GROUP BY S.Market_Id

• For the grand total (aggregation on time, markets, and products)

SELECT SUM (S.Sales)

FROM SalesSales S

24

Definition of the CUBE Operator

• Doing these three queries is wasteful
– The first does much of the work of the other two: if

we could save that result and aggregate over
Market_Id and Product_Id, we could compute the
other queries more efficiently

• The CUBE clause is part of SQL:1999
– GROUP BY CUBE (v1, v2, …, vn)

– Equivalent to a collection of GROUP BYs, one for
each of the 2n subsets of v1, v2, …, vn

13

25

Example of CUBE Operator

• The following query returns all the information
needed to make the previous products/markets
table:

SELECT S.Market_Id, S.Product_Id, SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY CUBE (S.Market_Id, S.Product_Id)

26

ROLLUP
• ROLLUP is similar to CUBE except that instead of

aggregating over all subsets of the arguments, it
creates subsets moving from right to left

• GROUP BY ROLLUP (A1,A2,…,A n) is a series of
these aggregations:
– GROUP BY A1 ,…, A n-1 ,An

– GROUP BY A1 ,…, A n-1

– … … …
– GROUP BY A1, A2

– GROUP BY A1

– No GROUP BY

• ROLLUP is also in SQL:1999

14

27

Example of ROLLUP Operator

SELECT S.Market_Id, S.Product_Id, SUM (S.Sales_Amt)

FROM SalesSales S

GROUP BY ROLLUP (S.Market_Id, S. Product_Id)

– first aggregates with the finest granularity:
GROUP BY S.Market_Id, S.Product_Id

– then with the next level of granularity:
GROUP BY S.Market_Id

– then the grand total is computed with no GROUP
BY clause

28

ROLLUP vs. CUBE

• The same query with CUBE:
- first aggregates with the finest granularity:

GROUP BY S.Market_Id, S.Product_Id

- then with the next level of granularity:
GROUP BY S.Market_Id

and
GROUP BY S.Product_Id

- then the grand total with no GROUP BY

15

29

Materialized Views

The CUBE operator is often used to
precompute aggregations on all dimensions of
a fact table and then save them as a
materialized views to speed up future queries

30

ROLAP and MOLAP

• Relational OLAP: ROLAP
– OLAP data is stored in a relational database as

previously described. Data cube is a conceptual
view – way to think about a fact table

• Multidimensional OLAP: MOLAP
– Vendor provides an OLAP server that

implements a fact table as a data cube using a
special multi-dimensional (non-relational) data
structure

16

31

MOLAP

- No standard query language for MOLAP
databases

- Many MOLAP vendors (and many ROLAP
vendors) provide proprietary visual
languages that allow casual users to make
queries that involve pivots, drilling down,
or rolling up

32

Implementation Issues

• OLAP applications are characterized by a very
large amount of data that is relatively static, with
infrequent updates
– Thus, various aggregations can be precomputed and

stored in the database
– Star joins, join indices, and bitmap indices can be used

to improve efficiency (recall the methods to compute
star joins in Chapter 14)

– Since updates are infrequent, the inefficiencies
associated with updates are minimized

17

33

Data Warehouse

• Data (often derived from OLTP) for both OLAP
and data mining applications is usually stored in a
special database called a data warehouse

• Data warehouses are generally large and contain
data that has been gathered at different times from
DBMSs provided by different vendors and with
different schemas

• Populating such a data warehouse is not trivial

34

Issues Involved in Populating a
Data Warehouse

• Transformations
– Syntactic: syntax used in different DMBSs for the same

data might be different
• Attribute names: SSN vs. Ssnum
• Attribute domains: Integer vs. String

– Semantic: semantics might be different
• Summarizing sales on a daily basis vs. summarizing sales on a

monthly basis

• Data Cleaning
– Removing errors and inconsistencies in data

18

35

Metadata

• As with other databases, a warehouse must
include a metadata repository
– Information about physical and logical organization

of data

– Information about the source of each data item and
the dates on which it was loaded and refreshed

36

Incremental Updates

• The large volume of data in a data warehouse
makes loading and updating a significant task

• For efficiency, updating is usually incremental
– Different parts are updated at different times

• Incremental updates might result in the database
being in an inconsistent state
– Usually not important because queries involve only

statistical summaries of data, which are not greatly
affected by such inconsistencies

19

37

Loading Data into A Data
Warehouse

38

Data Mining

• An attempt at knowledge discovery

• Searching for patterns and structure in a sea
of data

• Uses techniques from many disciplines,
such as statistical analysis and machine
learning
– These techniques are not our main interest

20

39

Goals of Data Mining

• Association
– Finding patterns in data that associate instances of that

data to related instances
• Example: what types of books does a customer buy

• Classification
– Finding patterns in data that can be used to classify that

data (and possibly the people it describes)
• Example “high -end buyers” and “low -end” buyers

– This classification might then be used for Prediction
• Which bank customers will default on their mortgages?

– Categories for classification are known in advance

40

Goals (con’t)

• Clustering
– Finding patterns in data that can be used to

classify that data (and possibly the people it
describes) into categories determined by a
similarity measure

• Example: Are cancer patients clustered in any
geographic area (possibly around certain power
plants)?

– Categories are not known in advance, unlike is
the classification problem

21

41

Associations

• An associationassociation is a correlation between certain
values in a database (in the same or different
columns)
– In a convenience store in the early evening, a large

percentage of customers who bought diapers also
bought beer

• This association can be described using the
notation

Purchase_diapers => Purchase_beer

42

Confidence and Support
• To determine whether an association exists, the system

computes the confidence and support for that
association

•• Confidence Confidence in A => B
– The percentage of transactions (recorded in the database)

that contain B among those that contain A
• Diapers => Beer:

The percentage of customers who bought beer among those who bought
diapers

•• SupportSupport
– The percentage of transactions that contain both items

among all transactions
• 100* (customers who bought both Diapers and Beer)/(all customers)

22

43

Ascertain an Association

• To ascertain that an association exists, both
the confidence and the support must be
above a certain threshold
– Confidence states that there is a high

probability, given the data, that someone who
purchased diapers also bought beer

– Support states that the data shows a large
percentage of people who purchased both
diapers and beer (so that the confidence
measure is not an accident)

44

A Priori Algorithm for Computing Associations

• Based on this observation:
– If the support for A => B is larger than T, then the

support for A and B must separately be larger than T
• Find all items whose support is larger than T

– Requires checking n items
– If there are m items with support > T (presumably,

m<<n), find all pairs of such items whose support is
larger than T

– Requires checking m(m-1) pairs
• If there are p pairs with support > T, compute the

confidence for each pair
– Requires checking p pairs

23

45

Classification

• Classification involves finding patterns in data
items that can be used to place those items in
certain categories.That classification can then be
used to predict future outcomes.
– A bank might gather data from the application forms of

past customers who applied for a mortgage and classify
them as defaulters or non-defaulters.

– Then when new customers apply, they might use the
information on their application forms to predict
whether or not they would default

46

Example: Loan Risk Evaluation

• Suppose the bank used only three types of
information to do the classification
– Whether or not the applicant was married

– Whether or not the applicant had previously
defaulted

– The applicants current income

• The data about previous applicants might be
stored in a table called the training table

24

47

No45YesYesC10

No75NoYesC9

Yes10NoYesC8

No10YesYesC7

No30NoNoC6

No50NoYesC5

No125NoYesC4

Yes135YesNoC3

No100NoYesC2

No50NoYesC1

Default (outcome)IncomePreviousDefaultMarriedId

Training Table

48

No30NoYesC20

No40NoYesC19

Yes160YesNoC18

No35NoYesC17

Yes15NoYesC16

No60NoNoC15

No15NoNoC14

No20YesYesC13

Yes125YesNoC12

Yes60NoYesC11

Default (outcome)IncomePreviousDefaultMarriedId

Training Table (cont’d)

25

49

Classification Using Decision
Trees

• The goal is to use the information in this
table to classify new applicants into
defaulters or non defaulters

• One approach is to use the training table to
make a decision tree

50Default = yes Default = No

Default = NoDefault = yesDefault = No

PreviousDefault

Married Married

Income

Yes No

Yes No Yes No

< 30 >= 30

A Decision Tree

26

51

Decision Trees Imply
Classification Rules

• Each classification rule implied by the tree
corresponds to a path from the root to a leaf

• For example, one such rule is
IfIf

PreviousDefault = No AND Married = Yes AND Income < 30

ThenThen
Default = Yes

52

Decision Trees Might Make Mistakes

• Some of the classification rules developed from a
decision tree might incorrectly classify some data; for
example

If PreviousDefault = No AND Married = Yes AND Income >= 30

ThenThen Default = No

does not correctly classify customer C11

• It is unreasonable to expect that a small number of
classification rules can always correctly classify a large
amount of data
– Goal: Produce the best possible tree from the given data

27

53

Producing a Decision Tree From
a Training Set

• Several algorithms have been developed for
constructing a decision tree from a training set
– We discuss the ID3 algorithmID3 algorithm

• ID3 starts by selecting the attribute to be used at the
top level of the tree to make the first decision

• This decision yields the nodes at the second level of
the tree. The procedure repeats on each of these nodes

54

Picking the Top-Most Attribute

• Intuitively we want to pick the attribute that gives the
“most information” about the final decision

• The ID3 algorithm uses the entropy measure from
Information Theory

entropy(TrainingTable) = –
�

i∈outcomes pi log2 pi
�

pi = probability of the outcome of i in TrainingTable

– Practically: pi is approximated as
pi = (#items in the table with outcome=i) / (# of all items in the table)

28

55

Properties of the Entropy
–

�
pi log2 pi

• Entropy determines the degree of randomness in
the data:
– pyes = pno = ½ – data is completely random

entropy = – ½ log2 ½ – ½ log2 ½ = ½ + ½ = 1

– pyes= 1, pno= 0 or pno= 1, pyes= 0 – data is totally nonrandom

entropy = – 1 log2 1 – 0 log2 0 = 0

• The lower the entropy – the less randomness is in
the data � the more information is in the data

56

Information Gain

• For the entire table, 6 entries have the
outcome “Yes”and 14 have the outcome “No”
– So the entropy of the entire table is

• - (6/20 log2 6/20 + 14/20 log2 14/20) = .881

• The ID3 algorithm selects as the top-most
node the attribute that provides the largest
Information Gain (explained next)

29

57

Information Gain (cont’d)

• Select an attribute, A,
and compute the
entropies of the subtrees
w.r.t. that attribute

• Information gain:
entropy – (� i=1..n entropyi)/n
– How much less random

the data has become after
splitting the training set
into subtrees

A = 1 A = 2 A = 3

entropy

entropy1

entropy2

entropy3

58

Information Gain (con’t)
• If the top-most node in the tree were Previous DefaultPrevious Default, there

would be two subtrees:
a subtree with Previous DefaultPrevious Default = “Yes”
a subtree with Previous DefaultPrevious Default = “No”

• The entropies of these two subtrees would be
– For Previous DefaultPrevious Default = “Yes”:

• 4 of the 6 entries have the outcome “Yes” and 2 have “No”
– The entropy is – 4/6 log2 4/6 – 2/6 log2 2/6 = .918

– For Previous DefaultPrevious Default = “No”:
• 2 of the 14 entries have the outcome “Yes” and 12 have “No”

– The entropy is – 2/14 log2 2/14 – 12/14 log2 12/14 = .592

• The average entropy of these subtrees is (.918+.592)/2 = .690
• The Information GainInformation Gain from using Previous DefaultPrevious Default as the top

attribute is .881 – .690 = .191

30

59

Comparing Information Gains
•• Previous DefaultPrevious Default as the top-most attribute

– The information gain = .191

•• MarriedMarried as the top-most attribute
– The information gain = .036

•• IncomeIncome as the top-most attribute
– Must compute information gain for all possible ranges
– For example for the range Income < 50 and Income >=

50 the Information Gain is .031

• The maximum Information Gain turns out to be
for the attribute Previous DefaultPrevious Default, so we select
that as the top-most attribute in the decision tree

60

The Rest of the Tree
• Repeat the process on the each of the subtrees

– Different subtrees might have different top-most nodes and/or
different ranges for Income

– If all nodes in a subtree have the same outcome:
• the subtree becomes a leaf node and the procedure stops for

that subtree

– If all nodes in a subtree do not have the same outcome:
• If there are no more attributes to use: That subtree becomes a

leaf node and the procedure stops for that subtree
– The classification rules that access such a subtree will

incorrectly classify some data.
E.g., the subtree PreviousDefault = No AND Married = Yes AND

Income >= 30 incorrectly classifies C11.

• If there are more attributes to use: Continue the process

31

61

Other Measures

• A number of other measures can be used to
produce a decision tree from a training set

• Gain Ratio = (Information Gain)/SplitInfo
– Where SplitInfo = –

�
| ti | / | t | * log2 | ti | / | t |

– |t| is the number of entries in the table being
decomposed and | ti | is the number of entries in
the ith table produced

• Gini Index = 1 - pi
2∑

62

Neural Networks : Another Approach
to Classification and Prediction

• Machine Learning
– A mortgage broker believes that several factors might

affect whether or not a customer is likely to default on
mortgage, but does now know how to weight these factors

– Use data from past customers to “learn” a set of weights to
be used in the decision for future customers

• Neural networks, a technique studied in the context of Artificial
Intelligence, provides a model for analyzing this problem

• Various learning algorithms have been proposed in the literature
and are being used in practice

32

63

A Model of a Neuron

• Suppose the factors are represented as xi where
each xi can be 1 or 0, and the weight of each such
factor is represented as wi Then the weighted sum
of the factors is compared with a threshold t. If
the weighted sum exceeds the threshold

the output is 1 and we predict that the customer
will default; otherwise the output is 0 and we
predict he would be considered a good risk

∑
=

≥×
n

i

ii txw
1

64

Simplified Model

• The model is simplified if we introduce a
new weight w0, which equals t, and assume
there is a new input x0 which always equals
–1. Then the above inequality becomes

∑
=

≥×
n

i

ii xw
0

0

33

65

Step-Function Activation

• This model is said to have step-function
activation
– Its output is 1 if the weighted sum of the inputs is

greater than or equal to 0

– Its output is 0 otherwise

• Neurons with this activation function are
sometimes called perceptrons.

• Later we will discuss another activation function

66

Perceptron Learning Algorithm

• Set the values of each weight (and threshold) to some
small random number

• Apply the inputs one at a time and compute the outputs

• If the desired output for some input is d and the actual
output is y, change each weight wi by

where is a small constant called the learning factor

• Continue until some termination condition is met

)(ydxw ii −××=∆ η
η

34

67

Rationale for Learning Algorithm

• If there is no error, no change in the weights
are made

• If there is an error, each weight is changed
in the direction to decrease the error
– For example if the output is 0 and the desired

output is 1, the weights of all the inputs that
were 1 are increased and the threshold is
decreased.

68

Correctness and Problems with
Perceptron Learning Algorithm

• If the decision can always be made correctly
by a single neuron, this algorithm will
eventually “learn” the correct weights

• The problem is that, for most applications,
the decision cannot be made, even
approximately, by a single neuron

• We therefore consider networks of such
neurons

35

69

Three Level Neural Network

Input Layer

Hidden Layer

Outrput Layer

70

Three-Level Network

• The input level just gathers the inputs and
submits them to the other levels (no
neurons)

• The middle or hidden level consists of
neurons that make intermediate decisions
and send them to the output layer

• The output layer makes the final decisions

36

71

The Sigmoid Activation
Function

• To mathematically derive a learning algorithm for such a
neural network, we must take derivatives

– But we cannot take derivatives of the step function
activation function

• Therefore we must use a continuous activation function

– A common such activation function is the sigmoid
function

y = 1/(1+e-X)

where

∑
=

×=
n

i

ii xwX
0

72

The Sigmoid Function

37

73

Properties of Sigmoid Function

• In some sense the sigmoid function is similar to the step
function
– It has the value .5 for x = 0

– It becomes asymptotic to 1 for large positive values of x

– It becomes asymptotic to 0 for large negative values of x

• However it is continuous and, as can be easily computed,
has the derivative

which is used in many of the following computations

)1()1/(2 yyee
X

y XX −×=+=
∂
∂ −−

74

Learning Algorithm for a Single
Sigmoid Neuron

• The idea is to take the derivative of the squared
error with respect to each of the weights and
change each weight by a small multiple of the
negative of that derivative

– Called the Gradient Descent Approach

– Move in the direction towards the minimum of
the function

i
i

w

yd
w

∂
−∂×−=∆

2)(η

38

75

The Algorithm for One Neuron
(continued)

• After a bit of math, and using the previous
result for the derivative of the sigmoid
function, we get

)()1(ydyyxw ii −×−×××=∆ η

76

Back Propogation Algorithm for
3-Level Neural Network

• Initially set the values of all weights to
some small random number

• Apply the inputs from the learning set one
at a time and, for each input, compute the
outputs of the neurons in the output layer

39

77

Back Propagation Algorithm
(continued)

• Adjust the weights of each neuron in the outer
layer

• Using the same reasoning as for the single neuron

)()1(outoutoutoutout
i

out
i ydyyxw −×−×××=∆ η

78

Back Propagation Algorithm
(continued)

• For reasons that will be clear later, this
equation can be simplified to

where

outoutout
iii xw δη ××=∆

)()1(outoutoutout
i ydyyout −×−×=δ

40

79

Back Propagation Algorithm
(continued)

• Now consider neurons in the hidden layer.
Assume first that there is only one neuron in
the output layer

• Using the same reasoning as before, the
gradient descent method tells us that

mid
i

outout
mid

i

w

yd
w

∂
−∂×−=∆

2)(η

80

Back Propagation Algorithm
(continued)

• Doing the math, we get

where

and where was previously computed (the back
propagation property)

midmid
ii xw mid δη ××=∆

outoutmidmidmidmid wyy δδ ××−×= /)1(
outδ

41

81

Back Propagation Algorithm
(continued)

• If there is more than one neuron in the output layer, we
compute

where

mid
i

out
j

out
j

jmid
i

w

yd

w
∂

−∂
×−=∆

∑ 2)(

η

midmid
ix δη ××=

)()1(/ out
j

outmid
j

j

midmidmid wyy δδ ××−×= ∑

82

Back Propagation Algorithm
(continued)

• Continue the training until some termination
condition is met
– The data in the training set has been used some fixed

number of times

– The number of errors has stopped decreasing
significantly

– The weights have stopped changing significantly

– The number of errors has reached some predetermined
level

42

83

Clustering
• Given:

– a set of items
– characteristic attributes for the items
– a similarity measure based on those attributes

• Clustering involves placing those items into
clusters, such that items in the same cluster are
close according to the similarity measure
– Different from Classification: there the categories are

known in advance

• For example, cancer patients might have the
attribute location, and might be placed in clusters
with similar locations.

84

Example: Clustering Students by Age

2.626S6

3.523S5

3.020S4

3.118S3

3.517S2

3.917S1

GPAAge Student Id

43

85

K-Means Algorithm

• To cluster a set of items into k categories
1. Pick k items at random to be the (initial) centers of the

clusters (so each selected item is in its own cluster)

2. Place each item in the training set in the cluster to which
it is closest to the center

3. Recalculate the centers of each cluster as the mean of the
items in that cluster

4. Repeat the procedure starting at Step 2 until there is no
change in the membership of any cluster

86

The Student Example (con’t)

• Suppose we want 2 clusters based on Age
– Randomly pick S1 (age 17) and S4 (age 20) as the centers

of the initial centers
– The initial clusters are

17 17 18 20 23 26

– The centers of these clusters are
17.333 and 23

– Redistribute items among the clusters based on the new
centers:

17 17 18 20 23 26

– If we repeat the procedure, the clusters remain the same

44

87

The Hiearchical or Aglomerative
Algorithm

• Number of clusters is not fixed in advance
• Initially select each item in the training set as the

center of its own cluster
• Select two clusters to merge into a single center

– One approach it to pick the clusters whose centers are
closest according to some measure (e.g., Euclidian
distance)

• Continue until some termination condition is
reached (e.g., the number of clusters falls below
some limit)

88

Student Example (con’t)

17 17 18 20 23 26

17 17 18 20 23 26

17 17 18 20 23 26

17 17 18 20 23 26

17 17 18 20 23 26 --- K-means Solution

17 17 18 20 23 26

45

89

Dendrogram

• One way to manually analyze the results of
the hierarchical algorithm is with the use of
a tree called a dendrogram

• The nodes are clusters in the intermediate
stages of the hierarchical algorithm

• The tree is constructed in reverse order of
the execution of the hierarchical algorithm,
starting with the final (single) cluster

90

17 17 18 20 22 26

22 2617 17

17 17 18

17 17 18 20

17 17 18 20 22 26

A Dendrogram for the Student Example

Possible set of
clusters

46

91

Analysis of Dendrogram

• Any set of nodes whose children partition
all the leaves is a possible clustering
– For example

17 17 18 20 23 26
is an allowable set of clusters.
Note: these clusters were not seen at any of

the intermediate steps in the hierarchical
or K- means algorithms!

