
1

1

Distributed Databases

Chapter 16

2

What is a Distributed Database?

• Database whose relations reside on different
sites

• Database some of whose relations are
replicated at different sites

• Database whose relations are split between
different sites

2

3

Two Types of Applications that
Access Distributed Databases

• The application accesses data at the level of SQL
statements
– Example: company has nationwide network of

warehouses, each with its own database; a transaction
can access all databases using their schemas

• The application accesses data at a database using
only stored procedures provided by that database.
– Example: purchase transaction involving a merchant

and a credit card company, each providing stored
subroutines for its subtransactions

4

Optimizing Distributed Queries

• Only applications of the first type can
access data directly and hence employ
query optimization strategies

• These are the applications we consider in
this chapter

3

5

Some Issues

• How should a distributed database be designed?

• At what site should each item be stored?

• Which items should be replicated and at which
sites?

• How should queries that access multiple databases
be processed?

• How do issues of query optimization affect query
design?

6

Why Might Data Be Distributed

• Data might be distributed to minimize
communication costs or response time

• Data might be kept at the site where it was
created so that its creators can maintain
control and security

• Data might be replicated to increase its
availability in the event of failure or to
decrease response time

4

7

Application Designer’s View of a
Distributed Database

• Designer might see the individual schemas of each
local database -- called a multidatabase -- in
which case distribution is visible
– Can be homogeneous (all databases from one vendor)

or heterogeneous (databases from different vendors)

• Designer might see a single global schema that
integrates all local schemas (is a view) in which
case distribution is hidden

• Designer might see a restricted global schema,
which is the union of all the local schemas
– Supported by some vendors of homogeneous systems

8

Views of Distributed Data

(a) Multidatabase with local schemas

(b) Integrated distributed database with global schema

5

9

Multidatabases

• Application must explicitly connect to each site

• Application accesses data at a site using SQL
statements based on that site’s schema

• Application may have to do reformatting in order
to integrate data from different sites

• Application must manage replication
– Know where replicas are stored and decide which

replica to access

10

Global and Restricted Global
Schemas

• Middleware provides integration of local schemas
into a global schema
– Application need not connect to each site

– Application accesses data using global schema
• Need not know where data is stored – location transparency

– Global joins are supported

– Middleware performs necessary data reformatting

– Middleware manages replication – replication
transparency

6

11

Partitioning

• Data can be distributed by storing
individual tables at different sites

• Data can also be distributed by
decomposing a table and storing portions at
different sites – called partitioning

• Partitioning can be horizontal or vertical

12

Horizontal Partitioning

• Each partition, Ti , of table T contains a
subset of the rows and each row is in exactly
one partition:

Ti = σCi
(T)

T = ∪ Ti

– Horizontal partitioning is lossless

T4

T3

T2

T1

T

7

13

Horizontal Partitioning

• Example: An Internet grocer has a relation
describing inventory at each warehouse

InventoryInventory(StockNum, Amount, Price, Location)

• It partitions the relation by location and stores each
partition locally: rows with Location = ‘Chicago’
are stored in the Chicago warehouse in a partition

Inventory_chInventory_ch(StockNum, Amount, Price, Location)

• Alternatively, it can use the schema
Inventory_chInventory_ch(StockNum, Amount, Price)

14

Vertical Partitioning
• Each partition, Ti, of T contains a subset of the

columns, each column is in at least one partition,
and each partition includes the key:

Ti = πattr_listi
(T)

T = T1 T2 ….. Tn

– Vertical partitioning is lossless

• Example: The Internet grocer has a relation
EmployeeEmployee(SSnum, Name, Salary, Title, Location)

– It partitions the relation to put some information at
headquarters and some elsewhere:
Emp1Emp1(SSnum, Name, Salary) – at headquarters
Emp2Emp2(SSnum, Name, Title, Location) – elsewhere

8

15

Replication

• One of the most useful mechanisms in distributed
databases

• Increases
– Availability

• If one replica site is down, data can be accessed from another
site

– Performance:
• Queries can be executed more efficiently because they can

access a local or nearby copy

• Updates might be slower because all replicas must be updated

16

Replication Example

• Internet grocer might have relation
CustomerCustomer(CustNum, Address, Location)

– Queries are executed
• At headquarters to produce monthly mailings

• At a warehouse to obtain information about deliveries

– Updates are executed
• At headquarters when new customer registers and

when information about a customer changes

9

17

Example (con’ t)

• Intuitively it seems appropriate to either or both:
– Store complete relation at headquarters

– Horizontally partition a replica of the relation and store
a partition at the corresponding warehouse site

• Each row is replicated: one copy at headquarters,
one copy at a warehouse

• The relation can be both distributed and replicated

18

Example (con’ t): Performance Analysis

• We consider three alternatives:
– Store the entire relation at the headquarters site

and nothing at the warehouses (no replication)

– Store the partitions at the warehouses and
nothing at the headquarters (no replication)

– Store entire relation at headquarters and a
partition at each warehouse (replication)

10

19

Example (con’t):
Performance Analysis - Assumptions

• To evaluate the alternatives, we estimate the amount
of information that must be sent between sites.

• Assumptions:
– The CustomerCustomer relation has 100,000 rows
– The headquarters mailing application sends each customer

1 mailing a month
– 500 deliveries are made each day; a single row is read for

each delivery
– 100 new customers/day
– Changes to customer information occur infrequently

20

Example: The Evaluation

• Entire relation at headquarters, nothing at warehouses
– 500 tuples per day from headquarters to warehouses for

deliveries

• Partitions at warehouses, nothing at headquarters
– 100,000 tuples per month from warehouses to headquarters

for mailings (3,300 tuples per day, amortized)

– 100 tuples per day from headquarters to warehouses for new
customer registration

• Entire relation at headquarters, partitions at warehouses
– 100 tuples per day from headquarters to warehouses for new

customer registration

11

21

Example: Conclusion

• Replication (case 3) seems best, if we count the
number of transmissions.

• Let us look at other measures:
– If no data stored at warehouses, the time to handle

deliveries might suffer because of the remote access
(probably not important)

– If no data is stored at headquarters, the monthly mailing
requires that 100,000 rows be transmitted in a single
day, which might clog the network

– If we replicate, the time to register a new customer
might suffer because of the remote update

• But this update can be done by a separate transaction after the
registration transaction commits (asynchronous update)

22

Query Planning

• Systems that support a global schema contain a
global query optimizer, which analyzes each
global query and translates it into an appropriate
sequence of steps to be executed at each site

• In a multidatabase system, the query designer
must manually decompose each global query into
a sequence of SQL statements to be executed at
each site
– Thus a query designer must be her own query optimizer

12

23

Global Query Optimization

• A familiarity with algorithms for global
query optimization helps the application
programmer in designing
– Global queries that will execute efficiently for a

particular distribution of data
– Algorithms for efficiently evaluating global

queries in a multidatabase system
– The distribution of data that will be accessed by

global queries

24

Planning Global Joins

• Suppose an application at site A wants to join
tables at sites B and C. Two straightforward
approaches
– Transmit both tables to site A and do the join there

• The application explicitly tests the join condition
• This approach must be used in multidatabase systems

– Transmit the smaller of the tables, e.g. the table at site
B, to site C; execute the join there; transmit the result to
site A

• This approach might be used in a homogenous distributed
database system

13

25

Global Join Example

• Site B
StudentStudent(Id, Major)

• Site C
TranscriptTranscript(StudId, CrsCode)

• Application at Site A wants to compute join
with join condition

StudentStudent.Id = TranscriptTranscript.StudId

26

Assumptions

• Lengths of attributes
– Id and StudId: 9 bytes

– Major: 3 bytes

– CrsCode: 6 bytes

•• Student:Student: 15,000 tuples, each of length 12 bytes

•• Transcript: Transcript: 20,000 tuples, each of length 15 bytes
– 5000 students are registered for at least 1 course (10,000

students are not registered – summer session)

– Each student is registered for 4 courses on the average

14

27

Comparison of Alternatives

• Send both tables to site A, do join there:
– have to send 15,000*12 + 20,000*15 = 480,000 bytes

• Send the smaller table, StudentStudent, from site B to site C,
compute the join there. Then send result to Site A:
– have to send 15,000*12 + 20,000*18 = 540,000 bytes

• Alternative 1 is better

28

Another Alternative: Semijoin
• Step1:

At site C: Compute PP = πStudId(TranscriptTranscript)
Send PP to site B

– P contains Ids of students registered for at least 1 course
–– StudentStudent tuples having Ids not in P do not contribute to join, so no need to

send them

• Step 2:
At site B: Compute QQ = StudentStudent Id = StudId PP
Send QQ, to site A

– Q contains tuples of StudentStudent corresponding to students registered for at
least 1 course (i.e., 5,000 students out of 15,000)

– Q is a semijoinsemijoin – the set of all StudentStudent tuples that will participate in the
join

• Step 3:
Send TranscriptTranscript to site A
At site A: Compute Transcript Transcript Id = StudId QQ

15

29

Comparision Semijoin with Previous
Alternatives

• In step 1: 45,000 = 5,000*9 bytes sent

• In step 2: 60,000 = 5,000*12 bytes sent

• In step 3: 300,000 = 20,000*15 bytes sent

• In total: 405,000 = 45,000 + 60,000 + 300,000
bytes sent

• Semijoin is the best of the three alternatives

30

Definition of Semijoin

• The semijoin of two relations, T1 and T2, is
defined as:

T1 join_cond T2 = πattributes(T1)(T1 join_cond T2)
= T1 πjoin-attributes(T2)

– In other words, the semijoin consists of the
tuples in T1 that participate in the join with T2

16

31

Using the Semijoin

• To compute T1 join_cond T2 using a
semijoin, first compute T1 join_cond T2

then join it with T2:

πattributes(T1)(T1 join_cond T2) join_cond T2

32

Queries that Involve Joins and Selections

• Suppose the Internet grocer relation EmployeeEmployeeis
vertically partitioned as

Emp1Emp1(SSnum, Name, Salary) at Site B
Emp2Emp2(SSnum, Title, Location) at Site C

• A query at site A wants the names of all employees
with Title = ‘ manager’ and Salary > ‘20000’

• Solution 1: First do join then selection:

– Semijoin not helpful here: all tuples of each table must be
brought together to form the join (the join is on SSNum)

πName (σTitle=‘ manager’ AND Salary> ’20000’ (Emp1Emp1 Emp2Emp2))

17

33

Queries that Involve Joins and Selections
• Solution 2: Do selections before the join:

• At site B, select all tuples from Emp1Emp1 satisfying
Salary > ‘20000’; call the result R1R1

• At site C, select all tuples from Emp2Emp2 satisfying
Title = ‘ manager’; call the result R2R2

• At some site to be determined by minimizing
communication costs, compute πName(R1 R1 R2)R2);
Send result to site A
– In a multidatabase, join must be performed at Site A, but

communication costs are reduced because only “selected”
data needs to be sent

πName((σSalary>’20000’ (Emp1Emp1)) (σTitle=‘manager’(Emp2Emp2)))

34

Summary: Choices to be Made by a
Distributed Database Application Designer

• Place tables at different sites

• Partition tables in different ways and place
partitions at different sites

• Replicate tables or data within tables and place
replicas at different sites

• In multidatabase systems, do manual “query
optimization” : choose an optimal sequence of
SQL statements to be executed at each site

