Distributed Databases

Chapter 16

What 1s a Distributed Database?

o Database whose relations reside on dff erent
Sites

» Database some of whose relations are
replicated at different sites

» Database whose relations are split between
different sites

Two Types of Applicaions that
AccessDistributed Databases

* The gplicaion accesses data at the level of SQL
statements

— Example: company has nationwide network of
warehouses, each with its own database; atransadion
can acessall databases using their schemas

* The gplicaion accesses data at a database using
only stored procedures provided by that database.

— Example: purchase transadion involving a merchant
and a aedit card company, each providing stored
subroutines for its subtransadions

Optimizing Distributed Queries

» Only applications of the first type can
acaessdatadirectly and hence employ
query optimization strategies

» These arethe gplicaionswe consider in
this chapter

Some Issues

» How should a distributed database be designed?

» At what site should each item be stored?

» Which items should be replicated and at which
Sites?

» How should queries that access multiple databases
be processed?

» How do issues of query optimization affect query
design?

Why Might Data Be Distributed

» Data might be distributed to minimize
communication costs or response time

» Data might be kept at the site where it was
created so that its creators can maintain
control and security

» Data might be replicated to increase its
availability in the event of failure or to
decrease response time

ApplicaionDesigner’sView of a
Distributed Database

» Designer might seethe individual schemas of ead
local database -- cdled a multidatabase -- in
which case distribution is visible

— Can be homogeneous (all databases from one vendor)
or heterogeneous (databases from different vendors)

» Designer might see asingle global schema that
integrates all local schemas (is aview) in which
case distribution is hidden

» Designer might see arestricted global schema,
which is the union of all the local schemas

— Supported by some vendors of homogeneous systems

Views of Distributed Data

i

1

1

1

1

1

:

application i DEMS application i
program ! prograrm !
1

1 1

1 1

1 1

1

1

(2) Multidatabase with local schemas
(b) Integrated distributed database with global schema
8

Multidatabases

Applicaion must explicitly conned to ead site

Applicaion accesses data at a site using SQL
statements based on that site’s £hema

Applicaion may have to doreformatting in order
to integrate data from diff erent sites
Applicaion must manage replicaion

— Know where replicas are stored and decide which
replicato access

Globa and Restricted Global
Schemas

» Middleware provides integration of local schemas
into a global schema
— Applicaion reed not conned to ead site

— Applicaion accesses data using global schema
« Nedl not know where datais dored —location transparency

— Global joins are supported

— Middleware performs necessary data reformatting

— Middleware manages replication — replication
transparency

10

Partitioning

 Data can be distributed by storing
individual tables at different sites

» Data can also be distributed by
decomposing atable and storing portions at
different sites — called partitioning

« Partitioning can be horizontal or vertical

11

Horizontal Partitioning

» Each partition, T; , of table T containsa
subset of the rows and each row isin exactly
one partition:

Ti = GCi (T) T
T=0T, T2
— Horizontal partitioning is lossless T,

12

Horizontal Partitioning

» Example: An Internet grocer has arelation
describing inventory at ead warehouse
Inventory(StockNum, Amount, Price, Location)

* It partitions the relation by location and stores eat
partition locally: rows with Location = * Chicago’
are stored in the Chicago warehouse in a partition

Inventory_ch(StockNum, Amount, Price, Location)

» Alternatively, it can use the schema
Inventory_ch(StockNum, Amount, Price)

13

Vertical Partitioning

« Eadh partition, T, of T contains a subset of the
columns, ead column isin at least one partition,
and ead partition includes the key:

T; = Ty ig, (T)
T=T,><1T,.... > T,
— Vertical partitioning is lossless
» Example: The Internet grocer has arelation
Employeg SShum, Name, Salary, Title, Location)

— It partitions the relation to put some information at
headquarters and some elsewhere:

Emp1(SShum, Name, Salary) — at headquerters
Emp2(SShum, Name, Title, Location) — elsewhere

14

Replication

* One of the most useful mechanisms in distributed
databases

* Increases
— Availability
* If onereplicasiteis down, data can be accessed from another
Site
— Performance:

* Queries can be executed more efficiently because they can
access alocal or nearby copy

« Updates might be slower because all replicas must be updated

15

Replication Example

* Internet grocer might have relation
Customer(CustNum, Address, Location)
— Queries are executed

* At headquartersto produce monthly mailings
» At awarehouse to obtain information about deliveries

— Updates are executed

At headquarters when new customer registers and
when information about a customer changes

16

Example (con’t)

* Intuitively it seems appropriate to either or both:
— Store complete relation at headquarters

— Horizontally partition areplicaof the relation and store
a partition at the corresponding warehouse site

* Eadhrow isreplicated: one aopy at headquarters,
one wpy at awarehouse

» Therelation can be both distributed and replicaed

17

Example (con't): Performance Analysis

* \We consider threealternatives:

— Store the entire relation at the headquarters ste
and nothing at the warehouses (no replicaion)

— Store the partitions at the warehouses and
nothing at the headquarters (no replication)

— Store entire relation at headquarters and a
partition at ead warehouse (replication)

18

Example (con't):
Performance Analysis - Assumptions

» To evaluate the alternatives, we estimate the amount
of information that must be sent between sites.

* Assumptions:
— The Customer relation has 100,000 rows

— The headquarters mailing application sends each customer
1 mailing a month

— 500 deliveries are made each day; a single row is read for
each delivery

— 100 new customers/day
— Changesto customer information occur infrequently

19

Example: The Evaluation

» Entire relation at headguarters, nothing at warehouses

— 500 tuples per day from headquarters to warehouses for
deliveries

» Partitions at warehouses, nothing at headquarters

— 100,000 tuples per month from warehouses to headquarters
for mailings (3,300 tuples per day, amortized)

— 100 tuples per day from headquartersto warehouses for new
customer registration

» Entire relation at headquarters, partitions at warehouses

— 100 tuples per day from headquartersto warehouses for new
customer registration

20

10

Example: Conclusion

* Replication (case 3) seems best, if we count the
number of transmissions.

» Let uslook at other measures:

— If no data stored a warehouses, the time to handle
deliveries might suffer because of the remote access
(probably not important)

— If no datais stored at headquarters, the monthly mailing
requires that 100,000 rows be transmitted in asingle
day, which might clog the network

— If wereplicate, the time to register a new customer
might suffer because of the remote update

 But this update can be done by a separate transaction after the
regigtration transaction commits (asynchronous update)

21

Query Planning

» Systems that support a global schema contain a
global query optimizer, which analyzes each
global query and translates it into an appropriate
sequence of steps to be executed at each site

* |namultidatabase system, the query designer
must manually decompose each global query into
a sequence of SQL statements to be executed at
each site

— Thus a query designer must be her own query optimizer

22

11

Global Query Optimization

» A familiarity with algorithms for global
query optimization helps the application
programmer in designing

— Global queries that will execute efficiently for a
particular distribution of data

— Algorithms for efficiently evaluating global
gueries in a multidatabase system

— The distribution of data that will be accessed by
global queries

23

Planning Global Joins

» Suppose an application at site A wantsto join
tables at sites B and C. Two straightforward
approaches

— Transmit both tablesto site A and do the join there
» The application explicitly tests the join condition
 Thisapproach must be used in multidatabase systems
— Transmit the smaller of the tables, e.g. thetable at site
B, to site C; execute the join there; transmit the result to
site A
* This approach might be used in a homogenous di stributed
database system

24

12

Global Join Example

« SiteB
Student(Id, Major)
« SiteC
Transcript(Studid, CrsCode)
» Application at Site A wantsto compute join
with join condition
Student.ld = Transcript.Sudld

25

Assumptions

* Lengths of attributes
— Id and Sudld: 9 bytes
— Major: 3 bytes
— CrsCode: 6 bytes
e Student: 15,000 tuples, each of length 12 bytes
» Transcript: 20,000 tuples, each of length 15 bytes

— 5000 students are registered for at least 1 course (10,000
students are not registered — summer session)

— Each student is registered for 4 courses on the average

26

13

Comparison of Alternatives

» Send both tables to site A, do join there:
— haveto send 15,000* 12 + 20,000* 15 = 480,000 bytes

» Send the smaller table, Student, from site B to site C,
compute the join there. Then send result to Site A:
— haveto send 15,000*12 + 20,000* 18 = 540,000 bytes

o Alternative 1 is better

27

Another Alternative: Semijoin

o Stepl:
At site C: Compute P = 1, 4(Transcript)
Send Pto site B

— P containslds of studentsregistered for at least 1 course

— Student tuples having Ids not in P do not contribute to join, so no need to
send them

* Step 2:
At site B: Compute Q = Student >< |, _ g,a1q P

Send Q, to site A

— Q containstuples of Student corresponding to students registered for at
least 1 course (i.e., 5,000 students out of 15,000)

— Qisasemijoin —theset of al Student tuplesthat will participatein the
join

* Step 3:
Send Transcript to site A
At site A: Compute Transcript ™><7 4 - quaig @

28

14

Comparision Semijoin with Previous
Alternatives

Instep 1. 45,000 = 5,000*9 bytes sent
In step 2: 60,000 = 5,000* 12 bytes sent
In step 3: 300,000 = 20,000* 15 bytes sent

In total: 405,000 = 45,000 + 60,000 + 300,000
bytes sent

Semijoin isthe best of the three alternatives

29

Definition of Semijoin

» The semijoin of two relations, T, and T,, is
defined as:

Tl D< join_cond T2 = Trattributw(Tl)(Tl N join_cond TZ)
= Tl N Tﬁoin-attributes(Tz)

— In other words, the semijoin consists of the
tuplesin T, that participate in the join with T,

15

Using the Semijoin

e Tocompute T, <1, ona T2 USING &
semijoin, first compute T,>< ;1 cona T2

thenjoinitwithT,:

A
-~ ™

Trattributes(Tl)(L > join_cond 12) > join_cond 12

31

Queries that Involve Joins and Seledions

» Suppacse the Internet grocer relation Employeeis
verticdly partitioned as
Empl(SSnm, Name, Sdary) a SiteB
Emp2(SSnm, Title, Location) at SiteC
* A query at site A wants the names of all employees
with Title = "manager’ and Sdary > ‘20000

» Solution 1: First dojoin then seledion:

Tivame (OTitle=* manager’ AND Sdary>'20000 (EMP1 ><] Emp2)

— Semijoin naot helpful here: all tuples of each table must be
brought together to form the join (the join ison SSNum)

32

16

Queries that Involve Joins and Seledions

Solution 2: Do seledions before the join:

T[Name((GSaIary>’20000’ (Empl)) N (GTitIe:‘managa’(Empz)))
At site B, seled al tuples from Emp1 satisfying
Salary > ‘20000; cdl theresult R1

At site C, seleda all tuples from Emp2 satisfying
Title = *manager’; cdl the result R2

At some site to be determined by minimizing
communication costs, compute Ty,«(R1><] R2);
Sendresult to site A

— Inamultidatabase, join must be performed at Site A, but
communicaion costs are reduced becaise only “seleded’
data neals to be sent

33

Summary: Choicesto be Made by a

Distributed Database Applicaion Designer

Placetables at diff erent sites

Partition tables in diff erent ways and place
partitions at different sites

Replicae tables or data within tables and place
replicas at different sites

In multidatabase systems, do manual “query
optimization”: choose an optimal sequence of
SQL statements to be exeauted at ead site

34

17

