
1

1

Chapter 14

Object Databases

2

What’s in This Module?

• Motivation

• Conceptual model

• SQL:1999/2003 object extensions

• ODMG
– ODL – data definition language

– OQL – query language

• CORBA

2

3

Problems with Flat Relations

Consider a relation

PersonPerson(SSN, Name, PhoneN, Child)

with:
• FD: SSN

�
Name

• Any person (identified by SSN) can have several
phone numbers and children

• Children and phones of a person are not related to
each other except through that person

4

An Instance of PersonPerson

555-66-7777212-987-1111Bob Public222-33-4444

444-55-6666212-987-1111Bob Public222-33-4444

555-66-7777212-987-6543Bob Public222-33-4444

444-55-6666212-987-6543Bob Public222-33-4444

333-44-5555516-345-6789Joe Public111-22-3333

333-44-5555516-123-4567Joe Public111-22-3333

222-33-4444516-345-6789Joe Public111-22-3333

222-33-4444516-123-4567Joe Public111-22-3333

ChildPhoneNNameSSN

3

5

Dependencies in PersonPerson

Join dependency (JD):

PersonPerson = (SSN,Name,PhoneN) (SSN,Name,Child)

Functional dependency (FD):

SSN � Name

6

Redundancies in Person

• Due to the JD:
Every PhoneN is listed with every Child SSN

Hence Joe Public is twice associated with 222-33-4444

and with 516-123-4567

Similarly for Bob Public and other phones/children

• Due to the FD:
Joe Public is associated with the SSN 111-22-3333 four

times (for each of Joe’s child and phone)!

Similarly for Bob Public

4

7

Dealing with Redundancies

• What to do? Normalize!
– Split PersonPerson according to the JD

– Then each resulting relation using the FD

– Obtain four relations (two are identical)

8

Normalization removes redundancy:

Bob Public222-33-4444

Joe Public111-22-3333

NameSSN

212-135-7924222-33-4444

212-987-6543222-33-4444

516-123-4567111-22-3333

516-345-6789111-22-3333

PhoneNSSN

555-66-7777222-33-4444

444-55-6666222-33-4444

333-44-5555111-22-3333

222-33-4444111-22-3333

ChildSSN

Person1Person1 PhonePhone

ChildOfChildOf

5

9

But querying is still cumbersome:

Against the original relation:Against the original relation: three cumbersome joins

SELECT G.PhoneN
FROM PersonPerson P, PersonPerson C, PersonPerson G
WHERE P.Name= ‘Joe Public’ AND

P.Child = C.SSN AND C.Child = G.SSN

Get the phone numbers of Joe’s grandchildren.

Against the decomposed relations is even worse: Against the decomposed relations is even worse: four joins

SELECT N.PhoneN

FROM Person1Person1 P, ChildOfChildOf C, ChildOfChildOf G, PhonePhone N

WHERE P.Name= ‘Joe Public’ AND P.SSN = C.SSN AND

C.Child = G.SSN AND G.Child = N.SSN

10

Objects Allow Simpler Design

Schema:
PersonPerson(SSN: String,

Name: String,
PhoneN: {String},
Child: {SSN})

No need to decompose in order to eliminate redundancy::
the set data type takes care of this.

Set data types

Object 1:Object 1:
(111-22-3333,

“Joe Public” ,
{ 516-345-6789, 516-123-4567} ,
{ 222-33-4444, 333-44-5555}

)

Object 2:Object 2:
(222-33-4444,

“Bob Public” ,
{ 212-987-6543, 212-135-7924} ,
{ 444-55-6666, 555-66-7777}

)

6

11

Objects Allow Simpler Queries

Schema (slightly changed):
PersonPerson(SSN: String,

Name: String,
PhoneN: {String},
Child: {Person})

- Because the type of Child is the set of PersonPerson-objects, it makes sense
to continue querying the object attributes in a path expression

Object-based query:
SELECT P.Child.Child.PhoneN
FROM PersonPerson P
WHERE P.Name = ‘Joe Public’

- Much more natural!

Set of persons

Path expression

12

ISA (or Class) Hierarchy
PersonPerson(SSN, Name)
StudentStudent(SSN,Major)
Query: Get the names of all computer science majors

Relational formulation:

SELECT P.Name

FROM PersonPerson P, StudentStudent S

WHERE P.SSN = S.SSN and S.Major = ‘CS’

Object-based formulation:

SELECT S.Name

FROM StudentStudent S
WHERE S.Major = ‘CS’

Student-objects are also Person-objects, so they inheritinherit the attribute Name

7

13

Object Methods in Queries

• Objects can have associated operations
(methods), which can be used in queries.
For instance, the method frameRange(fromframeRange(from, ,
to)to) might be a method in class Movie.Movie. Then
the following query makes sense:

SELECT M.frameRange(20000, 50000)
FROM MovieMovie M
WHERE M.Name = ‘The Simpsons’

14

The “Impedance” Mismatch
• One cannot write a complete application in SQL, so SQL

statements are embedded in a host language, like C or
Java.

• SQL: Set-oriented, works with relations, uses high-level
operations over them.

• Host language: Record-oriented, does not understand
relations and high-level operations on them.

• SQL: Declarative.
• Host language: Procedural.
• Embedding SQL in a host language involves ugly adaptors

(cursors/iterators) – a direct consequence of the above
mismatch of properties between SQL and the host
languages. It was dubbed “ impedance” mismatch“ impedance” mismatch.

8

15

Can the Impedance Mismatch be Bridged?

• This was the original idea behind object databases:
Use an object-oriented language as a data manipulation language.
Since data is stored in objects and the language manipulates
objects, there will be no mismatch!

• Problems:
• Object-oriented languages are procedural – the advantages of a

high-level query language, such s SQL, are lost
• C++, Java, Smalltalk, etc., all have significantly different object

modeling capabilities. Which ones should the database use? Can a
Java application access data objects created by a C++ application?

• Instead of one query language we end up with a bunch! (one for
C++, one for Java, etc.)

16

Is Impedance Mismatch Really a
Problem?

• The jury is out

• Two main approaches/standards:
– ODMG (Object Database Management Group):

Impedance mismatch is worse that the ozone hole!

– SQL:1999/2003:
Couldn’t care less – SQL rules!

• We will discuss both approaches.

9

17

Object Databases vs. Relational Databases

• Relational: set of relations; relation = set of tuples

• Object: set of classes; class = set of objects

• Relational: tuple components are primitive (int, string)

• Object: object components can be complex types (sets, tuples,
other objects)

• Unique features of object databases:
– Inheritance hierarchy

– Object methods

– In some systems (ODMG), the host language and the data manipulation
language are the same

18

The Conceptual Object Data Model
(CODM)

• Plays the same role as the relational data
model

• Provides a common view of the different
approaches (ODMG, SQL:1999/2003)

• Close to the ODMG model, but is not
burdened with confusing low-level details

10

19

Object Id (Oid)

• Every object has a unique Id: different
objects have different Ids

• Immutable: does not change as the object
changes

• Different from primary key!
– Like a key, identifies an object uniquely

– But key values can change – oids cannot

20

Objects and Values

• An object is a pair: (oid, value)

• Example: A Joe Public’s object
(#32, [SSN: 111-22-3333,

Name: “Joe Public”,

PhoneN: {“516 -123-4567”, “516 -345-6789”},

Child: {#445, #73}])

11

21

Complex Values
• A valuevalue can be of one of the following forms:

–– PrimitivePrimitive value:: an integer (eg, 7), a string (“John”), a
float (eg, 23.45), a Boolean (eg, false)

–– ReferenceReference value: An oid of an object, e.g., #445
–– TupleTuple value: [A1: v1, …, An: vn]

– A1, …, An – distinct attribute names
– v1, …, vn – values

–– SetSet value: { v1, …, vn}
– v1, …, vn – values

•• ComplexComplex valuevalue: reference, tuple, or set.

• Example: previous slide

22

Classes
•• ClassClass: set of semantically similar objects (eg,

people, students, cars, motorcycles)
• A class has:

–– TypeType: describes common structure of all objects in the
class (semantically similar objects are also structurally
similar)

–– Method signaturesMethod signatures: declarations of the operations that
can be applied to all objects in the class.

–– ExtentExtent: the set of all objects in the class

• Classes are organized in a class hierarchy
– The extent of a class contains the extent of any of its

subclasses

12

23

Complex Types: Intuition

• Data (relational or object) must be properly
structured

• Complex data (objects) –– complex types
Object: (#32, [SSN: 111-22-3333,

Name: “Joe Public”,

PhoneN: {“516 -123-4567”, “516 -345-6789”},

Child: {#445, #73}])

Its type: [SSN: String,

Name: String,

PhoneN: {String},

Child: {PersonPerson}]

24

Complex Types: Definition
•• A A type is one of the followingis one of the following::

–– BasicBasic types: String, Float, Integer, etc.

–– ReferenceReference types: user defined class names, eg, Person,
Automobile

–– TupleTuple types: [A1: T1, …, A n: Tn]
– A1, …, A n – distinct attribute names

– T1, …, Tn – types

• Eg, [SSN: String, Child: {PersonPerson}]

–– SetSet types: {T}, where T is a type
•• EgEg, {, {String}, {Person}}, {Person}

•• ComplexComplex type: reference, type: reference, tupletuple, set, set

13

25

Subtypes: Intuition

• A subtypesubtypehas “more structure” than its supertype.

• Example: StudentStudent is a subtype of PersonPerson
PersonPerson: [SSN: String, Name: String,

Address: [StNum: Integer, StName: String]]

StudentStudent: [SSN: String, Name: String,

Address: [StNum: Integer, StName: String, Rm: Integer],

Majors: {String},

Enrolled: {CourseCourse}]

26

Subtypes: Definition

• T is a subtypesubtype of T
�

iff T ≠ T
�

and
– Reference types:

T, T
�

are referencetypes and T is a subclass T
�

– Tuple types:
T = [A1: T1, …, An: Tn, An+1: Tn+1, …, A m: Tm],

T
�

= [A1: T1

�

, …, An: Tn

�

]

are tuple types and for each i=1,…,n, either Ti = Ti

�

or Ti is a subtype of Ti

�

– Set types:
T = {T0} and T

�

= {T0
’ } are set typesand T0 is a subtype of T0

’

14

27

Domain of a Type

• domain(T) is the set of all objects that conform
to type T. Namely:
– domain(Integer) = set of all integers,

domain(String) = set of all strings, etc.
– domain(T), where T is reference type is the extent of

T, ie, oids of all objects in class T
– domain([A1: T1, …, A n: Tn]) is the set of all tuple values

of the form [A1: v1, …, A n: vn], where each vi ∈domain(Ti)

– domain({T}) is the set of all finite sets of the form
{w1 , …, wm}, where each wi ∈domain(T)

28

Database Schema

• For each class includes:
– Type

– Method signatures. E.g., the following signature could
be in class CourseCourse:

Boolean enroll(StudentStudent)

• The subclass relationship

• The integrity constraints (keys, foreign keys, etc.)

15

29

Database Instance

• Set of extents for each class in the schema

• Each object in the extent of a class must
have the type of that class, i.e., it must
belong to the domain of the type

• Each object in the database must have
unique oid

• The extents must satisfy the constraints of
the database schema

30

Object-Relational Data Model

• A straightforward subset of CODM: only tuple
types at the top level

• More precisely:
• Set of classes, where each class has a tuple type (the types of

the tuple component can be anything)

• Each tuple is an object of the form (oid, tuple-value)

• Pure relational data model:
• Each class (relation) has a tuple type, but
• The types of tuple components must be primitive

• Oids are not explicitly part of the model – tuples are pure
values

16

31

Objects in SQL:1999/2003

• Object-relational extension of SQL-92

• Includes the legacy relational model

• SQL:1999/2003 database = database = a finite set of relations

•• relationrelation = a set of tuples (extends legacy relations)
OROR

a set of objects (completely new)

•• object = object = (oid, tuple-value)

•• tupletuple = tuple-value

•• tupletuple--valuevalue = [Attr1: v1, …, Attrn: vn]

•• multisetmultiset--value = value = {{v1, …, vn }}

32

SQL:1999 Tuple Values

•• TupleTuple valuevalue: [Attr1: v1, …, Attrn: vn]

–– AttrAttrii are all distinct attributesare all distinct attributes

–– Each Each vi is one of these:is one of these:
–– Primitive value: a constant of type Primitive value: a constant of type CHAR(…), INTEGER, CHAR(…), INTEGER,

FLOATFLOAT, etc., etc.

–– Reference value: an object IdReference value: an object Id

–– Another Another tupletuple valuevalue

–– A collection valueA collection value
MULTISET introduced in SQL:2003MULTISET introduced in SQL:2003..

ARRAYARRAY– a fixed size array

17

33

Row Types

• The same as the original (legacy) relational tuple type.
However:
– Row types can now be the types of the individual attributes in

a tuple

– In the legacy relational model, tuples could occur only as top-
level types

CREATE TABLE PERSONPERSON (

Name CHAR(20),

Address ROW(Number INTEGER, Street CHAR(20), ZIP CHAR(5))

)

34

Row Types (Contd.)

• Use path expressions to refer to the components of row types:
SELECT P.Name
FROM PERSONPERSON P
WHERE P.Address.ZIP = ‘11794’

• Update operations:
INSERT INTO PERSONPERSON(Name, Address)
VALUES (‘John Doe’, ROW(666, ‘Hollow Rd.’, ‘66666’))

UPDATE PERSONPERSON
SET Address.ZIP = ‘66666’
WHERE Address.ZIP = ‘55555’

UPDATE PERSONPERSON
SET Address = ROW(21, ‘Main St’, ‘12345’)
WHERE

Address = ROW(123, ‘Maple Dr.’, ‘54321’) AND Name = ‘J. Public’

18

35

User Defined Types (UDT)

• UDTs allow specification of complex objects/tupes,
methods, and their implementation

• Like ROW types, UDTs can be types of individual
attributes in tuples

• UDTs can be much more complex than ROW types
(even disregarding the methods): the components of
UDTs do not need to be elementary types

36

A UDT Example
CREATE TYPE PersonTypePersonType AS (

Name CHAR(20),
Address ROW(Number INTEGER, Street CHAR(20), ZIP CHAR(5))

);

CREATE TYPE StudentTypeStudentType UNDER PersonTypePersonType AS (
Id INTEGER,
Status CHAR(2)

)
METHOD award_degree() RETURNS BOOLEANBOOLEAN;

CREATE METHOD award_degree() FOR StudentTypeStudentType
LANGUAGE C
EXTERNAL NAME ‘file:/home/admin/award_degree’;

File that holds the binary code

19

37

Using UDTs in CREATE TABLE

• As an attribute type:

CREATE TABLE TRANSCRIPTTRANSCRIPT (
Student StudentTypeStudentType,
CrsCode CHAR(6),
Semester CHAR(6),
Grade CHAR(1)

)

• As a table type:

CREATE TABLE STUDENTSTUDENT OF StudentTypeStudentType;

Such a table is called typed table.typed table.

A previously defined UDT

38

Objects

• Only typed tables contain objects (ie, tuples with oids)

• Compare:
CREATE TABLE STUDENTSTUDENT OF StudentTypeStudentType;

and

CREATE TABLE STUDENT1STUDENT1 (

Name CHAR(20),

Address ROW(Number INTEGER, Street CHAR(20), ZIP CHAR(5)),
Id INTEGER,
Status CHAR(2)

)

• Both contain tuples of exactly the same structure

• Only the tuples in STUDENTSTUDENT – not STUDENT1STUDENT1 – have oids

• Will see later how to reference objects, create them, etc.

20

39

Querying UDTs

• Nothing special – just use path expressions

SELECT T.Student.Name, T.Grade

FROM TRANSCRIPTTRANSCRIPT T

WHERE T.Student.Address.Street = ‘Main St.’

Note: T.Student has the type StudentTypeStudentType. The attribute Name is
not declared explicitly in StudentTypeStudentType, but is inherited from
PersonTypePersonType.

40

Updating User-Defined Types

• Inserting a record into TRANSCRIPTTRANSCRIPT:

INSERT INTO TRANSCRIPTTRANSCRIPT(Student,Course,Semester,Grade)

VALUES (????, ‘CS308’, ‘2000’, ‘A’)

The type of the Student attribute is StudentTypeStudentType. How does one
insert a value of this type (in place of ????)?

Further complication: the UDT StudentTypeStudentType is encapsulated,encapsulated,
ie, it is accessible only through public methods, which we
did not define

Do it through the observerobserver and mutatormutator methods provided

by the DBMS automatically

21

41

Observer Methods
• For each attribute A of type T in a UDT, an SQL:1999 DBMS is supposed to

supply an observer methodobserver method, A: ()
�

T, which returns the value of A (the notation
“()” means that the method takes no arguments)

• Observer methods for StudentTypeStudentType:
• Id: ()

�
INTEGER

• Name: () � CHAR(20)
• Status: () � CHAR(2)
• Address: () � ROW(INTEGER, CHAR(20), CHAR(5))

• For example, in
SELECT T.Student.Name, T.Grade
FROM TRANSCRIPTTRANSCRIPT T
WHERE T.Student.Address.Street = ‘Main St.’

Name and Address are observer methods, since T.Student is of type StudentTypeStudentType

Note: Grade is not an observer, because TRANSCRIPTTRANSCRIPT is not part of a UDT,
but this is a conceptual distinction – syntactically there is no difference

42

Mutator Methods

• An SQL DBMS is supposed to supply, for each
attribute A of type T in a UDT U, a mutatormutator methodmethod

AA:: T T �� UU

For any object o of type U, it takes a value t of type T
and replaces the old value of o.A with t; it returns the
new value of the object. Thus, o.A(t) is an object of

type U
• Mutators for StudentTypeStudentType:

• Id: INTEGER
�

StudentTypeStudentType
• Name: CHAR(20)

�
StudentTypeStudentType

• Address: ROW(INTEGER, CHAR(20), CHAR(5))
�

StudentTypeStudentType

22

43

Example: Inserting a UDT Value

INSERT INTO TRANSCRIPTTRANSCRIPT(Student,Course,Semester,Grade)

VALUES (

NEW StudentTypeStudentType().Id(111111111).Status(‘G5’) .Name(‘Joe Public’)

.Address(ROW(123,’Main St.’, ‘54321’)) ,

‘CS532’,

‘S2002’,
‘A’

)

‘CS532’, ‘S2002’, ‘A’ are primitive values for the attributes Course, Semester, Grade

Create a blank
StudentType object

Add a value
for Id

Add a value
for Status

Add a value for the
Address attribute

44

Example: Changing a UDT Value

UPDATE TRANSCRIPTTRANSCRIPT

SET Student = Student.Address(ROW(21,’Maple St.’,’12345’)) .Name(‘John Smith’) ,

Grade = ‘B’

WHERE Student.Id = 111111111 AND CrsCode = ‘CS532’ AND Semester = ‘S2002’

• Mutators are used to change the values of the attributes Address
and Name

Change Address
Change Name

23

45

Referencing Objects

• Consider again
CREATE TABLE TRANSCRIPTTRANSCRIPT (

Student StudentTypeStudentType,
CrsCode CHAR(6),
Semester CHAR(6),
Grade CHAR(1)

)

• Problem: TRANSCRIPTTRANSCRIPT records for the same student refer to distinct
values of type StudentType (even though the contents of these
values may be the same) – a maintenance/consistency problem

• Solution: use selfself--referencing columnreferencing column (next slide)
– Bad design, which distinguishes objects from their references

– Not truly object-oriented

46

Self-Referencing Column

• Every typed table has a selfself--referencing columnreferencing column
– Normally invisible

– Contains explicit object Id for each tuple in the table

– Can be given an explicit name – the only way to enable
referencing of objects

CREATE TABLE STUDENT2STUDENT2 OF StudentTypeStudentType

REF IS stud_oid;

Self-referencing columns can be used in queries just like regular columns

Their values cannot be changed, however

Self-referencing column

24

47

Reference Types and Self-Referencing Columns

• To reference objects, use self-referencing columns + reference reference
typestypes: REF(some-UDT)

CREATE TABLE TRANSCRIPT1TRANSCRIPT1 (
Student REF(StudentTypeStudentType) SCOPE STUDENT2STUDENT2,

CrsCode CHAR(6),
Semester CHAR(6),
Grade CHAR(1)

)

• Two issues:
• How does one query the attributes of a reference type
• How does one provide values for the attributes of type REF(…)

– Remember: you can’t manufacture these values out of thin air – they are oids!

Reference type

Typed table where the
values are drawn from

48

Querying Reference Types

• Recall: StudentStudent REF(StudentTypeStudentType) SCOPE STUDENT2STUDENT2 in TRANSCRIPT1TRANSCRIPT1.

How does one access, for example, student names?
• SQL:1999 has the same misfeature as C/C++ has (and which Java and

OQL do not have): it distinguishes between objects and references to
objects. To pass through a boundary of REF(…) use “ � ” instead of “.”

SELECT T.Student � Name, T.Grade

FROM TRANSCRIPT1TRANSCRIPT1 T
WHERE

T.Student � Address.Street = “Main St.”

Crossing REF(…)
boundary, use �

Not crossing REF(…)
boundary, use “.”

25

49

Inserting REF Values
• How does one give values to REF attributes, like Student in

TRANSCRIPT1TRANSCRIPT1?
• Use explicit self-referencing columns, like stud_oid in STUDENT2STUDENT2

• Example: Creating a TRANSCRIPT1TRANSCRIPT1 record whose Student attribute has
an object reference to an object in STUDENT2STUDENT2:

INSERT INTO TRANSCRIPT1TRANSCRIPT1(Student,Course,Semester,Grade)

SELECT S.stud_oid, ‘HIS666’, ‘F1462’, ‘D’

FROM STUDENT2STUDENT2 S

WHERE S.Id = ‘111111111’

Explicit self-referential

column of STUDENT2STUDENT2

50

Collection Data Types

• Set (multiset) data type was added in SQL:2003.

CREATE TYPE StudentTypeStudentType UNDER PersonTypePersonType AS (
Id INTEGER,
Status CHAR(2),
Enrolled REF(CourseTypeCourseType) MULTISET

)

A bunch of references to objects
of type CourseTypeCourseType

26

51

Querying Collection Types

• For each student, list the Id, address, and the
courses in which the student is enrolled
(assume STUDENTSTUDENT is a table of type
StudentTypeStudentType):

SELECT S.Id, S.Address, C.Name
FROM STUDENTSTUDENT S, COURSECOURSE C
WHERE C.CrsCode IN

(SELECT E
�

CrsCode
FROM UNNEST(S.Enrolled) E)

• Note: E is bound to tuples in a 1-column
table of object references

Convert
multiset to table

52

The ODMG Standard

• ODMG 3.0 was released in 2000

• Includes the data model (more or less)

•• ODLODL: The object definition language

•• OQLOQL: The object query language

• A transaction specification mechanism

•• Language bindingsLanguage bindings: How to access an
ODMG database from C++, Smalltalk, and
Java (expect C# to be added to the mix)

27

53

The Structure of an ODMG Application

54

Main Idea: Host Language = Data Language

• Objects in the host language are mapped directly to
database objects

• Some objects in the host program are persistent. persistent. Think of
them as “proxies” of the actual database objects. Changing
such objects (through an assignment to an instance variable
or with a method application) directly and transparently
affects the corresponding database object

• Accessing an object using its oid causes an “object faultobject fault”
similar to pagefaults in operating systems. This
transparently brings the object into the memory and the
program works with it as if it were a regular object
defined, for example, in the host Java program

28

55

Architecture of an ODMG DBMS

56

SQL Databases vs. ODMG

• In SQL: Host program accesses the database by
sending SQL queries to it (using JDBC, ODBC,
Embedded SQL, etc.)

• In ODMG: Host program works with database
objects directly

• ODMG has the facility to send OQL queries to the
database, but this is viewed as evil: brings back
the impedance mismatch

29

57

ODL: ODMG’s Object Definition Language

• Is rarely used, if at all!
– Relational databases: SQL is the only way to describe data to the DB
– ODMG databases: can do this directly in the host language
– Why bother to develop ODL then?

• Problem: Making database objects created by applications
written in different languages (C++, Java, Smalltalk)
interoperable
– Object modeling capabilities of C++, Java, Smalltalk are very different.
– How can a Java application access database objects created with C++?

• Hence: Need a reference data model, a common target to which
to map the language bindings of the different host languages
– ODMG says: Applications in language A can access objects created by

applications in language B if these objects map into a subset of ODL
supported by language A

58

ODMG Data Model

• Classes + inheritance hierarchy + types
• Two kinds of classes: “ODMG classesODMG classes” and “ ODMG ODMG

interfacesinterfaces”, similarly to Java
– An ODMG interface:

• has no method code – only signatures
• does not have its own objects – only the objects that belong to the interface’s

ODMG subclasses
• cannot inherit from (be a subclass of) an ODMG class – only from another

ODMG interface (in fact, from multiple such interfaces)

– An ODMG class:
• can have methods with code, own objects
• can inherit from (be a subclass of) other ODMG classes or interfaces

– can have at most one immediate superclass (but multiple immediate super-
interfaces)

30

59

ODMG Data Model (Cont.)

• Distinguishes between objects and pure
values (values are called literalsliterals)

• Both can have complex internal structure, but only
objects have oids

60

Example
interface PersonInterfacePersonInterface: ObjectObject { // Object is the ODMG topmost interface

attributeattribute String Name;
attributeattribute String SSN;
Integer Age();

}
class PERSONPERSON: PersonInterfacePersonInterface // inherits from ODMG interface

(extent PersonExtPersonExt // note: extents have names
keys SSN, (Name, PhoneN)) : persistent;

{ attribute ADDRESSADDRESS Address;
attributeattribute Set<String> PhoneN;
attributeattribute enum SexTypeSexType {m,f} Sex;
attributeattribute date DateOfBirth;
relationship PERSONPERSON Spouse; // note: relationship vs. attributeattribute
relationship Set<PERSONPERSON> Child;
void add_phone_number(in String phone); // method signature

}
struct ADDRESSADDRESS { // a literal type (for pure values)

String StNumber;
String StName;

}

31

61

More on the ODMG Data Model

• Can specify keys (also foreign keys – later)

• Class extents have their own names – this is what
is used in queries

• As if relation instances had their own names, distinct from the
corresponding tables

• Distinguishes between relationshipsrelationships and attributesattributes
• Attribute values are literals

• Relationship values are objects

• ODMG relationships have little to do with relationships in the
E-R model – do not confuse them!!

62

Example (contd.)
class STUDENTSTUDENT extends PERSONPERSON {

(extent StudentExtStudentExt)

attribute Set<String> Major;

relationship Set<COURSECOURSE> Enrolled;

}

•• STUDENTSTUDENT is a subclass of PERSONPERSON (both are classes,
unlike ADDRESSADDRESS in the previous example)

• A class can have at most one immediate superclass

• No name overloadingname overloading: a method with a given
name and signature cannot be inherited from more
than one place (a superclass or super-interface)

32

63

Referential Integrity
class STUDENTSTUDENT extends PERSONPERSON {

(extent StudentExtStudentExt)
attribute Set<String> Major;
relationship Set<COURSECOURSE> Enrolled;

}
class COURSECOURSE: ObjectObject {

(extent CourseExtCourseExt)
attribute Integer CrsCode;
attribute String Department;
relationship Set<STUDENTSTUDENT> Enrollment;

}

• Referential integrity: If JoePublic takes CS532, and CS532 ∈ JoePublic.Enrolled,
then deleting the object for CS532 will delete it from the set JoePublic.Enrolled

• Still, the following is possible:

CS532 ∈ JoePublic.Enrolled but JoePublic ∉ CS532.Enrollment

• Question: Can the DBMS automatically maintain consistency between
JoePublic.Enrolled and CS532.Enrollment?

64

Referential Integrity (Contd.)

Solution:

class STUDENTSTUDENT extends PERSONPERSON {
(extent StudentExtStudentExt)
attribute Set<String> Major;
relationship Set<COURSECOURSE> EnrolledEnrolled

inverse COURSECOURSE::Enrollment;
}
class COURSECOURSE: ObjectObject {

(extent CourseExtCourseExt)
attribute Integer CrsCode;
attribute String Department;
relationship Set<STUDENTSTUDENT> Enrollment

inverse STUDENTSTUDENT::EnrolledEnrolled;
}

33

65

OQL: The ODMG Query Language

• Declarative

• SQL-like, but better

• Can be used in the interactive mode
• Very few vendors support interactive use

• Can be used as embedded language in a host
language

• This is how it is usually used

• OQL brings back the impedance mismatch

66

Example: Simple OQL Query

SELECT DISTINCT S.Address

FROM PersonExtPersonExt S

WHERE S.Name = “Smith”

• Can hardly tell if this is OQL or SQL

• Note: Uses the name of the extent of class
PERSON, not the name of the class

34

67

Example: A Query with Method Invocation

• Method in the SELECT clause:

SELECT M.frameRange(100, 1000)

FROM MOVIEMOVIE M

WHERE M.Name = “The Simpsons”

• Method with a side effect:

SELECT S.add_phone_number(“555 -1212”)

FROM PersonExtPersonExt S

WHERE S.SSN = “123 -45-6789”

68

OQL Path Expressions

• Path expressions can be used with attributes:
SELECT DISTINCT S.Address.StName

FROM PersonExtPersonExt S

WHERE S.Name = “Smith”

• As well as with relationships:
SELECT DISTINCT S.Spouse.Name

FROM PersonExtPersonExt S

WHERE S.Name = “Smith”

Attribute

Relationship

35

69

Path Expressions (Contd.)

• Must be type consistenttype consistent: the type of each prefix of a
path expression must be consistent with the
method/attribute/relationship that follows

• For instance, is S is bound to a PERSONPERSON object, then
S.Address.StName and S.Spouse.Name are type
consistent:

• PERSON objects have attribute Address and relationship Spouse

• S.Address is a literal of type ADDRESSADDRESS; it has an attribute StName

• S.Spouse is an object of type PERSONPERSON; it has a attribute Name,
which is inherited from PersonInterfacePersonInterface

70

Path Expressions (Contd.)

• Is P.Child.Child.PhoneN type consistent (P is bound to
a PERSONPERSON objects)?

– In some query languages, but not in OQL!

• Issue: Is P.Child a single set-object or a set of objects?
1. If it is a set of PERSONPERSON objects, we can apply Child to each such

object and P.Child.Child makes sense (as a set of grandchild
PERSONPERSON objects)

2. If it is a single set-object of type Set<PERSONPERSON>, then
P.Child.Child does not make sense, because such objects do not
have the Child relationship

• OQL uses the second option. Can we still get the phone
numbers of grandchildren? – Must flattenflatten out the sets:

flatten(flatten(P.Child).Child).Phone

– A bad design decision. We will see in Chapter 17 that
XML query languages use option 1.

36

71

Nested Queries

• As in SQL, nested OQL queries can occur in
– The FROM clause, for virtual ranges of variables
– The WHERE clause, for complex query conditions

• In OQL nested subqueries can occur in SELECT, too!
• Do nested subqueries in SELECT make sense in SQL?

What does the next query do?

SELECT struct{ name: S.Name,
courses: (SELECT ESELECT E

FROM S.FROM S.EnrolledEnrolled EE
WHERE E.WHERE E.DepartmentDepartment=“CS”=“CS”)

}
FROM StudentExtStudentExt S

72

Aggregation and Grouping

• The usual aggregate functions avg, sum, count, min, max

• In general, do not need the GROUP BY operator, because
we can use nested queries in the SELECT clause.
– For example: Find all students along with the number of

Computer Science courses each student is enrolled in

SELECT name : S.Name

count: count(SELECT SELECT E.E.CrsCodeCrsCode

FROM S.FROM S.EnrolledEnrolled EE

WHERE E.WHERE E.DepartmentDepartment = “CS”= “CS”)

FROM StudentExtStudentExt S

37

73

Aggregation and Grouping (Contd.)

• GROUP BY/HAVING exists, but does not increase the
expressive power (unlike SQL):

SELECT S.Name, count: count(E.CrsCode)

FROM StudentExtStudentExt S, S.Enrolled E

WHERE E.Department = “CS”

GROUP BY S.SSN

Same effect, but the optimizer can use it as a hint.

74

GROUP BY as an Optimizer Hint

SELECT
name : S.Name
count: count(SELECT SELECT E.E.CrsCodeCrsCode

FROM S.FROM S.EnrolledEnrolled EE

WHERE E.WHERE E.DepartmentDepartment = “CS”= “CS”)
FROM StudentExtStudentExt S

The query optimizer would compute the

inner query for each s∈StudentExtStudentExt, so

s.Enrolled will be computed for each s.

If enrollment information is stored

separately (not as part of the STUDENTSTUDENT

ObjectObject), then given s, index is likely to be

used to find the corresponding courses.

Can be expensive, if the index is not

clustered

SELECT S.Name, count: count(E.CrsCode)

FROM StudentExtStudentExt S, S.Enrolled E

WHERE E.Department = “CS”

GROUP BYGROUP BY S.SSN

The query optimizer can recognize that

it needs to find all courses for each

student. It can then sort the enrollment

file on student oids (thereby grouping

courses around students) and then

compute the result in one scan of that

sorted file.

38

75

ODMG Language Bindings

• A set of interfaces and class definitions that allow host
programs to:
– Map host language classes to database classes in ODL

– Access objects in those database classes by direct manipulation of
the mapped host language objects

• Querying
– Some querying can be done by simply applying the methods

supplied with the database classes

– A more powerful method is to send OQL queries to the database
using a statement-level interface (which makes impedance
mismatch)

76

Java Bindings: Simple Example
public class STUDENTSTUDENT extends PERSONPERSON {

public DSetDSet Major;
……….

}
• DSet class

– part of ODMG Java binding, extends Java Set class
– defined because Java Set class cannot adequately replace ODL’s Set<…>

STUDENTSTUDENT X;
… … …
X.Major.add(“CS”);
… … …

add() is a method of class DSetDSet (a modified Java’s method). If X is
bound to a persistent STUDENTSTUDENT object, the above Java statement will
change that object in the database

Cant say “set of strings”
– a Java limitation

39

77

Language Bindings: Thorny Issues

• Host as a data manipulation language is a powerful idea, but:
– Some ODMG/ODL facilities do not exist in some or all host languages

– The result is the lack of syntactic and conceptual unity

• Some issues:
– Specification of persistence (which objects persist, ie, are automatically

stored in the database by the DBMS, and which are transient)
• First, a class must be declared persistence capablepersistence capable (differently in different languages)

• Second, to actually make an object of a persistence capable class persistent, different
facilities are used:

– In C++, a special form of new() is used

– In Java, the method makePersistent() (defined in the ODMG-Java interface Database) is used

– Representation of relationships
– Java binding does not support them; C++ and Smalltalk bindings do

– Representation of literals
– Java & Smalltalk bindings do not support them; C++ does

78

Java Bindings: Extended Example

• The OQLQueryOQLQuery class:
class OQLQueryOQLQuery {

public OQLQuery(String query); // the query constructor

public bind(ObjectObject parameter); // explained later

public ObjectObject execute(); // executes queries

… … several more methods … …

}

• Constructor: OQLQuery(“SELECT …”)
– Creates a query object

– The query string can have placeholdersplaceholders $1, $2, etc., like the ` ?’
placeholders in Dynamic SQL, JDBC, ODBC. (Why?)

40

79

Extended Example (Cont.)

• Courses taken exclusively by CS students in Spring 2002:

DSetDSet students,courses;

String semester;

OQLQueryOQLQuery query1, query2;

query1 = new OQLQueryOQLQuery(“SELECT S FROM STUDENTSTUDENT S “

+ “W HERE \”CS \” IN S.Major”);

students = (DSetDSet) query1.executeexecute();

query2 = new OQLQueryOQLQuery(“SELECT T FROM COURSECOURSE T “

+ “WH ERE T.Enrollment.subsetOf($1) “

+ “AN D T.Semester = $2”);

semester = new String(“S2002”);

query2.bindbind(students); // bind $1 to the value of the variable students

query2.bindbind(semester); // bind $2 to the value of the variable semester

courses = (DSetDSet) query2.executeexecute();

80

Interface DCollection

• Allows queries (select) from collections of database
objects

•• DSetDSet inherits from DCollectionDCollection, so, for example, the
methods of DCollectionDCollection can be applied to variables
courses, students (previous slide)

public interface DCollectionDCollection extends java.util.CollectionCollection {

public DCollectionDCollection query(String condition);

public ObjectObject selectElement(String condition);

public Boolean existsElement(String condition);

public java.util.IteratorIterator select(String condition);

}

41

81

Extended Example (Cont.)

• query(condition) – selects a subcollection of objects that
satisfy condition:

DSetDSet seminars;

seminars = (DSetDSet) courses.queryquery(“this. Credits = 1”);

• select(condition) – like query(), but creates an iterator; can
now scan the selected subcollection object-by-object:

java.util.IteratorIterator seminarIter;

Course seminar;

seminarIter = (java.util.IteratorIterator) courses.selectselect(“this. Credits=1”);

while (seminar=seminarIter.next()) {

… … …

}

82

CORBA:
Common Object Request Broker Architecture

• Distributed environment for clients to access objects on various
servers

• Provides location transparencylocation transparency for distributed computational
resources

• Analogous to remote procedure call (RPC) and remote method
invocation in Java (RMI) in that all three can invoke remote
code.

• But CORBA is more general and defines many more protocols
(eg, for object persistence, querying, etc.). In fact, RMI is
implemented using CORBA in Java 2

42

83

Interface Description Language (IDL)

• Specifies interfaces only (ie, classes without
extents, attributes, etc.)

• No constraints or collection types
// File Library.idl

module Library {

interface myLibrary{

string searchByKeywords(in string keywords);

string searchByAuthorTitle(in string author, in string title);

}

}

84

Object Request Broker (ORB)

• Sits between clients and servers

• Identifies the actual server for each method call
and dispatches the call to that server

• Objects can be implemented in different
languages and reside on dissimilar
OSs/machines, so ORB converts the calls
according to the concrete language/OS/machine
conventions

43

85

ORB Server Side
• Library.idl � IDL Compiler � Library-stubs.c, Library-skeleton.c

� Method signatures to interface repositoryinterface repository

•• Server skeletonServer skeleton: Library-skeleton.c
• Requests come to the server in OS/language/machine independent way
• Server objects are implemented in some concrete language, deployed on a

concrete OS and machine
• Server skeleton maps OS/language/machine independent requests to calls

understood by the concrete implementation of the objects on the server

•• Object adaptorObject adaptor: How does ORB know which server can handle
which method calls? – Object adaptor, a part of ORB

• When a server starts, it registersregisters itself with the ORB object adaptor
• Tells which method calls in which interfaces it can handle. (Recall that method

signature for all interfaces are recorded in the interface repository).

•• Implementation repositoryImplementation repository: remembers which server implements
which methods/interfaces (the object adaptor stores this info when
a server registers)

86

ORB Client Side

•• Static invocationStatic invocation: used when the application knows
which exactly method/interface it needs to call to get
the needed service

•• Dynamic invocationDynamic invocation: an application might need to figure out
what method to call by querying the interface repository

• For instance, an application that searches community libraries, where
each library provides different methods for searching with different
capabilities. For instance, some might allow search by title/author,
while others by keywords. Method names, argument semantics, even
the number of arguments might be different in each case

44

87

Static Invocation

•• Client stubClient stub: Library-stubs.c
– For static invocation only, when the method/interface to call is known

– Converts OS/language/machine specific client’s method call into the
OS/language/machine independent format in which the request is delivered
over the network

– This conversion is called marshalling of argumentsmarshalling of arguments

– Needed because client and server can be deployed on different
OS/machine/etc.

– Consider: 32-bit machines vs. 64 bit, little-endian vs. big endian, different
representation for data structures (eg, strings)

– Recall: the machine-independent request is unmarshalled on the server side
by the server skeleton

– Conversion is done transparently for the programmer – the programmer
simply links the stub with the client program

88

Dynamic Invocation

• Used when the exact method calls are not known
• Example: Library search service

– Several community libraries provide CORBA objects for searching their
book holdings

– New libraries can join (or be temporarily or permanently down)
– Each library has its own legacy system, which is wrapped in CORBA

objects. While the wrappers might follow the same conventions, the search
capabilities of different libraries might be different (eg, by keywords, by
wildcards, by title, by author, by a combination thereof)

– User fills out a Web form, unaware of what kind of search the different
libraries support

– The user-side search application should
• take advantage of newly joined libraries, even with different search

capabilities
• continue to function even if some library servers are down

45

89

Dynamic Invocation (Contd.)

• Example: IDL module with different search capabilities
module Library {

interface library1 {
string searchByKeywords(in string keywords);
string searchByAuthorTitle(in string author, in string title);

}
interface library2 {

void searchByTitle(in string title, out string result);
void searchByWildcard(in string wildcard, out string result);

}
}

The client application:
• Examines the fields in the form filled out by the user
• Examines the interface repository – next slide
• Decides which methods it can call with which arguments
• Constructs the actual call – next slide

90

Dynamic Invocation API

• Provides methods to query the interface repository
• Provides methods to construct machine-independent requests to

be passed along to the server by the ORB

• Once the application knows which method/interface to call with
which arguments, it constructs a requestrequest, which includes:

– Object reference (which object to invoke)
– Operation name (which method in which interface to call)
– Argument descriptors (argument names, types, values)
– Exception handling info
– Additional “context” info, which is not part of the method argum ents

• Note: The client stub is essentially a piece of code that uses the
dynamic invocation API to create the above requests. Thus:

• With static invocation, the stub is created automatically by the IDL compiler
• With dynamic invocation, the programmer has to manually write the code to

create and invoke the requests, because the requisite information is not
available at compile time

46

91

CORBA Architecture

92

Interoperability within CORBA

• ORB allows objects to talk to each other if they are
registered with that ORB; can objects registered with
different ORBs talk to each other?

•• General interGeneral inter--ORB protocol (GIOP)ORB protocol (GIOP): message format
for requesting services from objects that live under the
control of a different ORB
– Often implemented using TCP/IP

– Internet inter-ORB protocol (IIOP) specifies how GIOP
messages are encoded for delivery via TCP/IP

47

93

Inter-ORB Architecture

94

CORBA Services
• Rich infrastructure on top of basic CORBA

• Some services support database-like functions:
•• Persistence servicesPersistence services – how to store CORBA objects in a

database or some other data store

•• Object query servicesObject query services – how to query persistent CORBA
objects

•• Transaction servicesTransaction services – how to make CORBA applications
atomic (either execute them to the end or undo all changes)

•• Concurrency control servicesConcurrency control services – how to request/release
locks. In this way, applications can implement transaction
isolation policies, such as two-phase commit

48

95

Persistent State Services (PSS)

• PSS – a standard way for data stores (eg, databases, file
systems) to define interfaces that can be used by CORBA
clients to manipulate the objects in that data store

• On the server:
• Objects are in storage homesstorage homes (eg, classes)

• Storage homes are grouped in data storesdata stores (eg, databases)

• On the client:
• Persistent objects (from the data store) are represented using storage storage

object proxiesobject proxies

• Storage object proxies are organized into storage home proxiesstorage home proxies

• Clients manipulate storage object proxies directly, like
ODMG applications do

96

CORBA Persistent State Services

49

97

Object Query Services (OQS)

• OQS makes it possible to query persistent CORBA objects

• Supports SQL and OQL

• Does two things:
–– Query evaluatorQuery evaluator: Takes a query (from the client) and translated it into the

query appropriate for the data store at hand (eg, a file system does not support
SQL, so the query evaluator might have quite some work to do)

–– Query collection serviceQuery collection service: Processes the query result.
• Creates an object of type collection, collection, which contain references to the objects in the

query result

• Provides an iteratoriterator objectobject to let the application to process each object in the
result one by one

98

Object Query Services

50

99

Transaction and Concurrency Services

•• Transactional servicesTransactional services:
– Allow threads to become transactions. Provide

• begin()

• rollback()

• commit()

– Implement twotwo--phase commit protocolphase commit protocol to ensure atomicity
of distributed transactions

•• Concurrency control servicesConcurrency control services:
– Allow transactional threads to request and release locks

– Implement twotwo--phase lockingphase locking

– Only supports – does not enforce – isolation. Other, non-
transactional CORBA applications can violate serializability

