Object Databases

Chapter 14

What'sin This Module?

Motivation
Conceptual model
SQL:1999/2003 olyject extensions

ODMG

— ODL — data definition language
— OQL — query language
CORBA




Problems with Flat Relations

Consider arelation
Person(SSN, Name, PhoneN, Child)

with:

 FD: SSN - Name

» Any person (identified by SSN) can have several
phone numbers and children

¢ Children and phones of a person are not related to
each other except through that person

An Instance of Person

SN Name PhoneN Child
111-22-3333 Joe Public 516-123-4567 | 222-33-4444
111-22-3333 Joe Public 222-33-4444
111-22-3333 Joe Public 516-123-4567 | 333-44-5555
111-22-3333 Joe Public 333-44-5555
222-33-4444 | Bob Public

222-33-4444 | Bob Public 212-987-1111 | 555-66-7777
222-33-4444 | Bob Public 555-66-7777
222-33-4444 | Bob Public 212-987-1111




Dependenciesin Person

Join dependency (JD):
Person = (SS\,Name,PhoneN) < (SSN,Name,Child)
Functional dependency (FD):

SSN = Name

Redundanciesin Person

e Duetothe JD:
Every PhoneN is listed with every Child SN
Hence Joe Public istwice asociated with 222-33-4444
and with 516:123-4567
Similarly for Bob Public and ather phones/children

e Duetothe FD:

Joe Public is associated with the SN 111-22-3333 four
times (for eat of Jo€'s child and phone)!

Similarly for Bob Public




Dealing with Redundancies

* What todo? Normalizel
— Split Person according to the JD
— Then each resulting relation using the FD
— Obtain four relations (two are identical)

Normalization removes redundancy:

Personl

SSN Name
111-22-3333 | Joe Public
222-33-4444 | Bob Public
SSN Child
111-22-3333 222-33-4444
111-22-3333 333-44-5555
222-33-4444 444-55-6666
222-33-4444 555-66-7777

Phone
SN PhoneN
111-22-3333 516-345-6789
111-22-3333 516-123-4567
222-33-4444 212-987-6543
222-33-4444 212-135-7924
Childof




But querying is gill cumbersome:

Get the phore numbers of Joe’s grandchil dren.

Against the original relation: three embersome joins

SELECT G.PhoreN

FROM Person P, Person C, Person G

WHERE P.Name ="‘Joe Public  AND
P.Child=C.SN AND C.Child=G.SN

Against the decomposed relations is even worse: four joins
SELECT N.PhoreN

FROM Personl P, ChildOf C, ChildOf G, Phone N
WHERE P.Name=‘Joe Public AND P.SN=C.SSN AND
C.Child=G.SN AND G.Child=N.SN 9

Objects Allow Simpler Design

Schema:
Person(SIN: String,

Name: String, j
PhoreN: {String}, /i Set datatypes

Child: {SS\})

No neal to decompaose in arder to eli minate redundarcy:.
the set datatype takes care of this.

Objed 1: Objed 2:
( 111-22-3333, ( 222-33-4444,
“Joe Public”, “Bob Public”,
{516-3456789, 516-123-456%, {212-987-6543, 212-135-7924,

{222-33-4444, 333-44-5555 {444-55-6666, 55566-7777
) )

10




Objects Allow Simpler Queries

Schema (slightly changed):
Person(SSN: String,
Name: String,
PhoneN: { String}, Set of persons]

Child: {Person})

- Because the type of Child isthe set of Person-objects, it makes sense
to continue querying the object attributesin a path expression

Object-based query:
SELECT P.Child.Child.PhoneN
FROM  Peson P
WHERE P.Name = ‘Joe Public
Path expression
- Much more natural!

|SA (or Class) Hierarchy

Person(SSN, Name)

Student(SSN,Major)

Query: Get the names of all computer science majors
Relational formulation:

SELECT P.Name
FROM  Person P, Student S
WHERE P.SSN=S.SSN and S.Major =‘CS
Object-based formulation:
SELECT S.Name
FROM Sudent S
WHERE S.Major =‘CS
Student-objects are a so Person-aobjects, so they inherit the attribute Name

12




Object Methods in Queries

Objects can have associated operations
(methods), which can be used in queries.
For instance, the method frameRange(from,
to) might be a method in classMovie. Then
the following query makes sense:

SELECT M.frameRange(20000, 50000)
FROM Movie M
WHERE M.Name = ‘The Simpsons

13

The “Impedance’ Mismatch

One cannot write a complete application in SQL, so SQL
statements are embedded in a host language, like C or
Java.

SQL: Set-oriented, works with relations, uses high-level
operations over them.

Host language: Record-oriented, does not understand
relations and high-level operations on them.

SQL: Declarative.
Host language: Procedural.

Embedding SQL in a host language involves ugly adaptors
(cursord/iterators) — a direct consequence of the above
mismatch of properties between SQL and the host
languages. It was dubbed “ impedance’ mismatch.

14




Can the Impedance Mismatch be Bridged?

» Thiswasthe original idea behind object databases:

Use an object-oriented language as a data manipulation language.
Snce datais stored in objects and the language manipul ates
objects, there will be no mismatch!

* Problems:
« Object-oriented languages are procedural — the advantages of a
high-level query language, such s SQL, arelost
e C++, Java, Smalltalk, etc., all have significantly different object
modeling capabilities. Which ones should the database use? Can a
Java application access data objects created by a C++ application?

« Ingtead of one query language we end up with abunch! (onefor
C++, onefor Java, etc.)

15

|s Impedance Mismatch Really a
Problem?

* Thejury isout
* Two main approaches/standards:

— ODMG (Object Database M anagement Group):
Impedance mismatch is worse that the ozone hole!

— SQL:1999/2003:
Couldn't careless — SQL rules!

» We will discuss both approaches.

16




Object Databases vs. Relational Databases

Relational: set of relations; relation = set of tuples
Object: set of classes; class = set of objects
Relational: tuple components are primitive (int, string)

Object: object components can be complex types (sets, tuples,
other objects)
Unique features of object databases:

— Inheritance hierarchy

— Object methods

— In some systems (ODMG), the host language and the data manipulation
language are the same

17

The Conceptual Object Data Model
(CODM)

» Playsthe samerole as therelational data
model

* Provides a common view of the different
approaches (ODMG, SQL:1999/2003)

» Close to the ODMG model, but is not
burdened with confusing low-level details

18




Object Id (Oid)

» Every object has aunique Id: different
objects have different Ids

 Immutable: does not change as the object
changes
 Different from primary key!
— Like a key, identifies an object uniquely
— But key values can change — oids cannot

19

Objects and Vaues

* Anobjectisapair: (oid, value)

« Example: A Joe Public’s object
(#32, [ SN 111-22-3333,
Name: “Joe Public”,

PhoneN: {*516-123-4567", “516 -345-6789'},

Child: {#445, #73} | )

20

10



Complex Values

A value can be of one of the following forms:
— Primitive value: an integer (eg, 7), astring (“John”), a
float (eg, 23.45), a Boolean (eg, false)
— Reference value: An oid of an objed, e.g., #445
— Tuplevalue: [A:v, ..., AV,
- A, ..., A,—digtinct attribute names

-V ..., V, —values
— Setvalue: {v,, ..., v}
-V ..., V, —values

» Complex value: reference, tuple, or set.

» Example: previous slide

21

Classes

* Class: set of semantically similar objeds (eg,
people, students, cars, motorcycles)
* A classhas:

— Type: describes common structure of all objedsin the
class(semantically similar objeds are dso structurally
similar)

— Method signatures: declarations of the operations that
can be gplied to all objedsinthe class

— Extent: the set of all objectsin the class

» Classes are organized in a dasshierarchy

— The extent of a class contains the extent of any of its
subclasses

22

11



Complex Types. Intuition

 Data (relational or object) must be properly
structured

» Complex data (objects) — complex types
Object: (#32, [ SSN:  111-22-3333,
Name:  “Joe Public”,
PhoneN: {“516-123-4567", “516 -345-6789"},
Child:  {#445, #73} ] )
Itstype:  [SSN: String,
Name:  String,
PhoneN: {String},
Child:  {Person} ]

23

Complex Types: Definition

A typeisone of the following:
— Basictypes: String, Float, Integer, etc.

— Reference types: user defined class names, eg, Person,
Automabile

— Tupletypes: [A;: T, .., A - T,]
- A, .., A —digtinct attribute names
- T, . Tn —types
* Eg, [SSN: String, Child: { Person}]
— Settypes {T}, where T isatype
* Eg, {String}, { Person}

» Complex type: reference, tuple, set

24

12



Subtypes: Intuition

* A subtype has “more structure” than its supertype.

» Example: Student is a subtype of Person
Person: [SSN: String, Name: String,
Address [SINum: Integer, SName: String]]
Student: [SSN: String, Name: String,
Address [SINum: Integer, SName: String, Rm: Integer],
Majors: { String},
Enrolled: { Course} ]

25

Subtypes. Definition

e Tisasubtypeof T’ iff T# T’ and

— Referencetypes:

T, T" arereferencetypesand T isasubclass T’
— Tuple types:

T =[ArT, o ArT A To 0 A Tl

T'=[A:T, . Ay T,

aretuple types and for eachi=1,...,n, either T, =T,  or T, isasubtypeof T

1
— Set types:
T={T} andT'={T,} areset typesand T, isa subtype of T,

26

13



Domain of aType

» domain(T) is the set of all objects that conform
to type T. Namely:

— domain(Integer) = set of all integers,
domain(String) = set of all strings, €etc.

— domain(T), where T is reference type is the extent of
T, ie, oids of all objectsinclass T

— domain([A;: T, .., A ; T.]) isthe set of all tuple values
of theform[A;: vy, .., A V], where each v, Odomain(T;)

— domain({T}) isthe set of al finite sets of the form
{w,, .., w,}, whereeachw Odomain(T)

27

Database Schema

» For each class includes:

— Type
— Method signatures. E.g., the following signature could
bein class Course:

Boolean enroll(Student)
» The subclassreationship
» Theintegrity constraints (keys, foreign keys, etc.)

28

14



Database Instance

o Sat of extents for each class in the schema

» Each object in the extent of a class must
have the type of that class, i.e., it must
belong to the domain of the type

» Each object in the database must have
unique oid

» The extents must satisfy the constraints of
the database schema

29

Object-Relational Data Model

A straightforward subset of CODM: only tuple
types at the top level

* More precisely:
 Set of classes, where each class has atuple type (the types of
the tuple component can be anything)
« Each tupleisan object of the form (oid, tuple-value)

* Pure relational data model:
« Each class (rdation) has atupletype, but
¢ Thetypes of tuple components mugt be primitive

e Oidsarenat explicitly part of the model —tuples are pure
values




Objectsin SQL:1999/2003

Object-relational extension of SQL-92
I ncludes the legacy relational model
SQL:1999/2003 database = afinite set of relations

relation = aset of tuples (extendslegacy relations)
OR

aset of objects (completely new)
object = (oid, tuple-value)
tuple = tuple-value
tuple-value = [Attr,: vy, .., Attr:v,]
multiset-value = {vy, .., V,}

31

SQL:1999 Tuple Vaues

e Tuplevalue: [Attry:v,, .., Attrv,]
— Attr; are all distinct attributes

— Each v, isone of these:
— Primitive value: a constant of type CHAR(..), INTEGER,
FLOAT, etc.
— Reference value: an object 1d
— Another tuple value
— A collection value
MULTISET introduced in SQL:2003.
ARRAY- afixed size array

32

16



Row Types

» The same as the original (legacy) relational tuple type.
However:
— Row types can now be the types of the individual attributesin
atuple

— Inthelegacy relational model, tuples could occur only as top-
level types

CREATE TABLE PERSON (
Name CHAR(20),
Address ROW(Number INTEGER, Street CHAR(20), ZIP CHAR(5))

Row Types (Contd.)

» Use path expressionsto refer to the components of row types:
SELECT P.Name
FROM PERSONP
WHERE P.AddressZIP = 11794

» Update operations.
INSERT INTO PERSON(Name, Address)
VALUES (‘John Dog, ROW(666, ‘Hollow Rd., 66666))

UPDATE PERSON
SET Address.ZIP = ‘66666
WHERE Address.ZIP = *55555'

UPDATE PERSON
SET Address= ROW(21, ‘Main St,  12345)
WHERE
Address = ROW(123, ‘Maple Dr.’, '54321) AND Name="*J. Public

17



User Defined Types (UDT)

» UDTsallow specification of complex objects/tupes,
methods, and their implementation

* Like ROW types, UDTs can be types of individual
attributes in tuples

» UDTs can be much more complex than ROW types
(even disregarding the methods): the components of
UDTs do not need to be elementary types

A UDT Example

CREATE TYPE PersonType AS (
Name CHAR(20),
Address ROW(Number INTEGER, Sreet CHAR(20), ZIP CHAR(5))
);
CREATE TYPE StudentType UNDER PersonType AS (
Id INTEGER,
Satus CHAR(2)
)
METHOD award degree() RETURNS BOOLEAN;
CREATE METHOD award degree() FOR StudentType

LANGUAGE C
EXTERNAL NAME ‘file/home/admin/award_degree’;

File that holds the binary code h

36




Using UDTsin CREATE TABLE

* Asan attribute type:

CREATE TABLE TRANSCRIPT (
Student StudentType,
CrsCode CHAR(6),
Semester CHAR(6),

Grade CHAR(1) T .
) Apreviously defined UDT

* Asatabletype:

CREATE TABLE STUDENT OF StudentType;

Such atableiscaled typed table.

37

Objects

Only typed tables contain objects (ie, tuples with oids)
Compare:
CREATE TABLE STUDENT OF StudentType;
and
CREATE TABLE STUDENT1 (
Name CHAR(20),
Address ROW(Number INTEGER, Street CHAR(20), ZIP CHAR(5)),

Id  INTEGER,
Satus CHAR(2)

)
Both contain tuples of exactly the same structure

Only the tuplesin STUDENT — not STUDENT1 — have oids
Will see later how to reference objects, create them, etc.

19



Querying UDTs
» Nothing special —just use path expressions

SELECT T.Sudent.Name, T.Grade
FROM TRANSCRIPT T
WHERE T.Sudent.Address.Sreet = ‘Main &.’

Note: T.Sudent has the type StudentType. The attribute Name is
not declared explicitly in StudentType, but is inherited from
PersonType.

39

Updating User-Defined Types

Inserting arecord into TRANSCRIPT:

INSERT INTO TRANSCRIPT(Student,Course,Semester,Grade)
VALUES (?77?2?, *CS308', ‘2000, ‘A’)

The type of the Sudent attribute is StudentType. How does one
insert avalue of thistype (in place of 727?)?

Further complication: the UDT StudentType is encapsul ated,
ie, it is accessible only through public methods, which we
did not define

Do it through the observer and mutator methods provided
by the DBMS automatically

20



Observer Methods

For each attribute A of type T inaUDT, an SQL:1999 DBMS is supposed to
supply an observer method, A: () = T, which returnsthevalue of A (the notation
“(1)" means that the method takes no arguments)

Observer methods for StudentType:
« Id: () 2 INTEGER
+ Name: () © CHAR(20)
« Satus: () > CHAR(2)
« Address: () > ROW(INTEGER, CHAR(20), CHAR(5))
For example, in
SELECT T.Sudent.Name, T.Grade
FROM TRANSCRIPT T
WHERE T.Sudent.Address.Sreet =‘Main St
Name and Address are observer methods, since T.Sudent is of type StudentType

Note: Grade isnot an observer, because TRANSCRIPT isnot part of a UDT,
but thisisa conceptua diginction — syntactically there isno difference

41

Mutator M ethods

* An SQL DBMSis supposed to supply, for each
attribute A of type Tina UDT U, a mutator method
AT>U

For any object o of type U, it takesavaluet of typeT
and replaces the old value of 0.A with t; it returns the

new value of the object. Thus, 0.A(t) isan object of
type U
e Mutators for StudentType:
¢ Id: INTEGER - StudentType

« Name: CHAR(20) - StudentType
» Address: ROW(INTEGER, CHAR(20), CHAR(5)) = StudentType

42

21



Example: Inserting aUDT Vaue

INSERT INTO TRANSCRIPT (Student,Course, Semester,Grade)
VALUES (
NEW StudentType().1d(111111111).Status(‘ G5') .Name(* Joe Public')
| . .Address(ROW(123,/Main &', ‘54321)) ,

‘CSh32, |
‘S2002',
) /o Add avalue
o for Id A . B
~ Add avalue for the
' Create ablank ' : Address attribute
. SudmtType Object ) 4 Add aVaer.”

for Satus

*CS532, °S2002, ‘A’ are primitive values for the attributes Course, Semester, Grade

Example: ChangingaUDT Value

UPDATE TRANSCRIPT
SET Sudent = Sudent.Address(ROW(21, Maple St.’,'12345")) .Name(‘ John Smith’),
Grade="‘B’

o : : "Change Namé N
Change Address =

WHERE Sudent.ld=111111111 AND CrsCode =‘CS532° AND Semester = S2002

» Mutators are used to change the values of the attributes Address
and Name

22



Referencing Objects

» Consider again
CREATE TABLE TRANSCRIPT (
Sudent StudentType,
CrsCode CHAR(6),
Semester CHAR(6),
Grade CHAR(1)

)
» Problem: TRANSCRIPT records for the same student refer to distinct
values of type SudentType (even though the contents of these
values may be the same) — a maintenance/consistency problem

» Solution: use self-referencing column (next slide)
— Bad design, which distinguishes objects from their references
— Not truly object-oriented

Self-Referencing Column

» Every typed table has a self-referencing column
— Normally invisible
— Contains explicit object Id for each tuple in the table

— Can be given an explicit name — the only way to enable
referencing of objects

CREATE TABLE STUDENT2 OF StudentType
REF IS gud oid;

- Sdf-referencing column

Saf-referencing columns can be used in queriesjust like regular columns
Their values cannot be changed, however




Reference Types and Self-Referencing Columns

» To reference objects, use self-referencing columns + reference
types. REF(some-UDT)

CREATE TABLE TRANSCRIPTL (
Student REF(StudentType) SCOPE STUDENT2,

CrsCode CHAR(6),
Semester CHAR(S), —
Grade CHAR(1) Reference type

» Two issues:
» How does one query the attributes of areference type
» How does one provide values for the attributes of type REF(..)
— Remember: you can't manufacture these values out of thin air —they are oids!

47

Typed tablewhere the
~ valuesaredrawn from

Querying Reference Types

* Recall: student REF(StudentType) SCOPE STUDENT2 IN TRANSCRIPTL.
How does one access, for example, student names?

¢ SQL:1999 has the same misfeature as C/C++ has (and which Java and
OQL do not have): it distinguishes between objects and referencesto
objects. To passthrough a boundary of REF(..) use® >” instead of “.”

SELECT T.§tudent—>Name, T.Grad

B

FROM TRANSCRIPT1 T
WHERE
T.Sudem—>AdressSreet =“Main &.”

gy

Crossing REF(..)
boundary, use >

24



Inserting REF Values

How does one give values to Rer attributes, like Student in
TRANSCRIPT1?

« Use explicit self-referencing columns, like stud_oid in STUDENT2
Example: Creating a TRANSCRIPT1 record whose Sudent attribute has
an object reference to an object in STUDENT2:

INSERT INTO TRANSCRIPT1(Student,Cour se,Semester,Grade)
SELECT Sstud oid, ‘HIS666', ‘F1462, ‘D’

" Explicit sdf-referential

FROM STUDENT2 S
column of STUDENT2

WHERE SlId='111111111

49

Collection Data Types
o Set (multiset) data type was added in SQL:2003.

CREATETYPE StudentType UNDER PersonType AS(
Id INTEGER,

Satus CHAR(2),

Enrolled REF(CourseType) MULTISET

" Abunch of references to objebts h
of type CourseType

25



Querying Collection Types

For each student, list the Id, address, and the
courses in which the student is enrolled
(assume STUDENT is atable of type

StudentType):
SELECT S.d, SAddress, C.Name " Ccovert |
FROM STUDENT S, COURSE C _Mmultisst o table |

WHERE C.CrsCode IN
(SELECT E - CrsCode .+
FROM UNNEST(SEnrolled) E)

Note: E isbound to tuplesin al-column
table of object references

51

The ODMG Standard

ODMG 3.0 was released in 2000
Includes the data model (more or less)
ODL.: The object definition language
OQL: The object query language

A transaction specification mechanism

Language bindings: How to access an
ODMG database from C++, Smalltalk, and
Java (expect C# to be added to the mix)

52

26



The Structure of an ODMG Application

Application Source Code
in Host Language (C++, Java, etc.)

!

Host Language
Compiler

ODBMS +
Application
Object Code

'

-ODBMS Object Code
libraries Linker

Method Implementation é"}PP"CEgiOJ

: Binaries stored in DBMS inary Code

Main | dea: Host Language = Data Language

» Objectsin the host language are mapped directly to
database objects

» Some objects in the host program are persistent. Think of
them as “proxies’ of the actual database objects. Changing
such objects (through an assignment to an instance variable
or with a method application) directly and transparently
affects the corresponding database object

» Accessing an object using its oid causes an “object fault”
similar to pagefaults in operating systems. This
transparently brings the object into the memory and the
program works with it asif it were aregular object
defined, for example, in the host Java program

27



Architecture of an ODMG DBMS

Database
Schema Specification in ODL Specifications Source Code for Class Methods
(Embedded in C++, Java, etc.) in Host Language (C++, Java, ...)

L ,,,,,,,,,,,,,,,,,,

Host Language
A Compiler

OoDL +

Preprocessor .
i 0DBMS, ~Software Me‘“"odb'j’;‘g'%’ggg‘a"°"

CULIISE 1 Object Code
Libraries Linker

Information Stored at the Server

Metadata
Method Implementation
et > Binaries Stored in DBMS
Data Access
Object Data

SQL Databasesvs. ODMG

e In SQL: Host program accesses the database by
sending SQL queriesto it (using JDBC, ODBC,
Embedded SQL, etc.)

* In ODMG: Host program works with database
objects directly

* ODMG hasthe facility to send OQL queriesto the
database, but thisis viewed as evil: brings back
the impedance mismatch

28



ODL: ODMG's Object Definition Language

* Israrely used, if at all!
— Relational databases. SQL isthe only way to describe datato the DB
— ODMG databases. can do this directly in the host language
— Why bother to develop ODL then?

» Problem: Making database objects created by applications
written in different languages (C++, Java, Smalltalk)
interoperable

— Object modeling capabilities of C++, Java, Smaltalk are very different.
— How can a Java application access database objects created with C++?

» Hence: Need areference data model, acommon target to which

to map the language bindings of the different host languages

— ODMG says. Applicationsin language A can access objects created by
applicationsin language B if these objects map into a subset of ODL
supported by language A

57

ODMG Data Model

» Classes + inheritance hierarchy + types

e Two kinds of classes. “ODMG classes’ and “ ODMG
interfaces’, smilarly to Java
— An ODMG interface:
¢ has no method code — only signatures

« does not haveits own objects — only the objectsthat belong to the interface's
ODMG subclasses

« cannet inherit from (be a subclass of) an ODMG class — only from ancther
ODMG interface (in fact, from multiple such interfaces)
— An ODMG class:
« can have methods with code, own objects
« caninherit from (be a subclass of) other ODMG classes or interfaces

— can have at most one immediate superclass (but multiple immediate super-
interfaces)

29



ODMG Data Model (Cont.)

* Distinguishes between objects and pure
values (values are called literals)

 Both can have complex internal structure, but only
objects have oids

59

Example

interface Personinterface: Object { /I Object isthe ODMG topmost interface
attribute String Name;

attribute String SSN;
Integer Age();

class PERSON: Personinterface [/l inherits from ODMG interface
( extent PersonExt /I note;  extents have names

keys SSN, (Name, PhoneN) ) : persstent;
{ attribute ADDRESS Address;
attribute Set<String> PhoneN;
attribute enum SexType {m,f} Sex;
attribute date DateOfBirth;
relationship PERSON Spouse; /I note: relationship vs. attribute
relaionship Set<PERSON> Child;
void add_phone_number(in String phone);  // method signature
}
struct ADDRESS{ // aliterd type (for pure values)
String SNurmber;
String SName;
} 60

30



More on the ODMG Data M od€l

» Can specify keys (also foreign keys — later)
 Class extents have their own names — this is what
IS used in queries

* Asif rdation instances had their own names, distinct from the
corresponding tables

« Distinguishes between relationships and attributes
* Attribute values areliterals

« Relationship values are abjects

« ODMG reationships have little to do with relationshipsin the
E-R moded —do not confuse them!!

61

Example (contd.)

class STUDENT extends PERSON {
( extent StudentExt )
attribute Set<String> Major;
relationship Set<COURSE> Enrolled;

« STUDENT IS asubclass of pErson (both are classes,
unlike Abpress in the previous example)

A class can have at most one immediate superclass

* No name overloading: a method with a given
name and signature cannot be inherited from more

than one place (a superclass or super-interface)
62

31



Referential Integrity

class STUDENT extends PERSON {
( extent StudentExt )
attribute Set<String> Major;
relationship Set<COURSE> Enrolled;

}
class COURSE: Object {
( extent CourseExt )
attribute Integer CrsCode;
attribute String Department;
relationship Set<STUDENT> Enrollment;

« Referential integrity: If JoePublic takes CS532, and CS532 [ JoePublic.Enrolled,
then deleting the object for CS532 will delete it from the set JoePublic.Enrolled

e Stll, thefollowing ispossible:
CS532 [0 JoePublic.Enrolled but JoePublic 0 CS532.Enrollment

¢ Question: Can the DBM S automatically maintain consistency between
JoePublic.Enrolled and CS532.Enrollment?

Referentia Integrity (Contd.)

Solution:

class STUDENT extends PERSON {
( extent StudentExt )
attribute Set<String> Major;
relationship Set<COURSE> Enrolled
inverse COURSE::Enrollment;
}
class COURSE: Object {
(‘extent CourseExt )
attribute Integer CrsCode;
attribute String Department;
relationship Set<STUDENT> Enrollment
inverse STUDENT::Enrolled;

32



OQL: The ODMG Query Language

Declarative
SQL-like, but better

Can be used in the interactive mode

 Very few vendors support interactive use
Can be used as embedded language in a host
language

» Thisishow it isusually used

» OQL brings back the impedance mismatch

65

Example: Simple OQL Query

SELECT DISTINCT S.Address
FROM PersonExt S
WHERE S.Name = “Smith”

o Can hardly tell if thisis OQL or SQL

* Note: Uses the name of the extent of class
PERSON, hot the name of the class

33



Example: A Query with Method Invocation

* Method inthe SELECT clause:
SELECT M.frameRange(100, 1000)
FROM MOVIE M
WHERE M.Name = ‘The Simpsons’

» Method with a side effect:
SELECT S.add_phone_number(“555-1212")
FROM PersonExt S
WHERE S.SSN = “123-45-6789”

67

OQL Path Expressions

* Path expressions can be used with attributes:

SELECT DISTINCT SAddressStNane
FROM PersonExt S T

WHERE S.Name = “Smith” | Attribute |

» Aswell aswith relationships:
SELECT DISTINCT SSpouse Name
FROM PersonExt S ;
WHERE S.Name = “Smith” |
Rel ationship |
68

34



Path Expressions (Contd.)

» Must be type consistent: the type of each prefix of a
path expression must be consistent with the
method/attribute/relationship that follows

» For instance, is Sis bound to a PERSON object, then
S.Address.SName and S.Spouse.Name are type
consistent:

« PERSON objects have attribute Address and relationship Spouse
¢ SAddressisaliterd of type ADDRESS, it has an attribute StName

* S.Spouseis an object of type PERSON,; it has a attribute Name,
which isinherited from Personinterface

69

Path Expressions (Contd.)

e Is P.Child.Child.PhoneN type consistent (P is bound to
a PERSON objects)?
— Insome query languages, but not in OQL!
* Issue Is P.Child asingle set-object or a set of objects?

1. Ifitisaset of PERSON objects, we can apply Child to each such
object and P.Child.Child makes sense (as a set of grandchild
PERSON objects)

2. Ifitisasingle set-object of type Set<PERSON>, then
P.Child.Child does not make sense, because such objects do not
have the Child relationship

*  OQL usesthe second option. Can we still get the phone
numbers of grandchildren? — Must flatten out the sets:

flatten(flatten(P.Child).Child).Phone
— A bad design decision. We will see in Chapter 17 that
XML query languages use option 1.

70

35



Nested Queries

Asin SQL, nested OQL queries can occur in
— The FROM clause, for virtual ranges of variables
— The WHERE clause, for complex query conditions
In OQL nested subqueries can occur in SELECT, too!
¢ Do nested subqueriesin SELECT make sensein SQL?

What does the next query do?

SELECT dtruct{ name:  S.Name,
courses. (SELECT E
FROM  SEnrolled E
WHERE E.Department="CS")

}
FROM StudentExt S

71

Aggregation and Grouping

» The usual aggregate functions avg, sum, count, min, max

* Ingeneral, do not need the GROUP BY operator, because
we can use nested queries in the SELECT clause.

— For example: Find all students along with the number of
Computer Science courses each student isenrolled in

SELECT name: S.Name
count: count( SELECT E.CrsCode
FROM SEnrolled E
WHERE E.Department = “CS’ )
FROM StudentExt S

72

36



Aggregation and Grouping (Contd.)

* GROUPBY/HAVING exists, but does not increase the
expressive power (unlike SQL):

SELECT S.Name, count: count(E.CrsCode)
FROM StudentExt S, S.Enrolled E
WHERE E.Department = “CS’

GROUPBY S.SSN

Same effect, but the optimizer can useit asahint.

73

GROUP BY as an Optimizer Hint

SELECT
name: S.Name
count: count(SELECT E.CrsCode

FROM S.Enrolled E

WHERE E.Department = “CS" )
FROM StudentExt S

The query optimizer would compute the
inner query for each sOStudentExt, SO
sEnrolled will be computed for each s.

If enrollment information is stored
separatdly (not as part of the STUDENT
Object), then given s, index islikely to be
used to find the corresponding courses.
Can be expensive, if theindex is not
clustered

SELECT S.Name, count: count(E.CrsCode)
FROM StudentExt S, S.Enrolled E
WHERE E.Department = “CS’
GROUPBY S.SSN

The query optimizer can recognize that
it needsto find al coursesfor each
student. It can then sort the enrollment
file on student oids (thereby grouping
courses around students) and then
compute the result in one scan of that
sorted file.

74

37



ODMG Language Bindings

» A set of interfaces and class definitions that allow host
programs to:
— Map host language classes to database classesin ODL

— Access objects in those database classes by dired manipulation of
the mapped host language objects

* Querying
— Some querying can be done by ssimply applying the methods
supplied with the database classes

— A more powerful method isto send OQL queriesto the database
using a statement-level interface (which makesimpedance
mismatch)

75

Java Bindings: Simple Example

public class STUDENT extends PERSON {
public DSet Major;
} I Cant sy et of strings'
—aJava limitation

e DSet class .. @Javalmiation ,J

— part of ODMG Java binding, extends Java Set class
— defined because Java Set class cannot adequately replace ODL's Set<..>

STUDENT X,

add ) isamethod of class DSet (amodified Java’'s method). If X is
bound to a persistent STUDENT object, the above Java statement will

change that object in the database
76

38



Language Bindings: Thorny Issues

* Host as adata manipulation language is a powerful idea, but:
— Some ODMG/ODL facilities do not exist in some or al host languages
— Theresult isthelack of syntactic and conceptud unity
* SOme issues.
— Specification of persistence (which objects persist, ie, are automaticaly
stored in the database by the DBMS, and which are transient)

» Fird, aclass must be declared persistence capable (differently in different |anguages)
» Second, to actually make an object of a persistence capabl e class persistent, different
facilitiesare used:
— InC++, aspecid form of new() isused
— InJava, the method makePersistent() (defined in the ODM G-Javainterface Database) is used
— Representation of relationships
— Javabinding does not support them; C++ and Smaltak bindings do
— Representation of literals
— Java& Smdltak bindings do not support them; C++ does

v

Java Bindings. Extended Example

* The OQLQuery class:
class OQLQuery {
public OQLQuery(String query); // the query constructor
public bind(Object parameter);  // explained later
public Object execute(); /I executes queries
...... several more methods......

e Constructor: OQLQuery(“SELECT ..7)
— Creates aquery object
— The query string can have placeholders $1, $2, etc., likethe™ ?
placeholdersin Dynamic SQL, JDBC, ODBC. (Why?)

78

39



Extended Example (Cont.)

» Coursestaken exclusively by CS students in Spring 2002:

DSet students,courses;
String semester;
OQLQuery queryl, query2;
queryl = new OQLQuery(“SELECT S FROM STUDENT S “
+ “WHERE \"CS\" IN S.Mgjor”);
students = (DSet) queryl.execute();
query2 = new OQLQuery(“SELECT T FROM COURSE T *“
+ “WH ERE T.Enrollment.subsetOf($1) “
+ “AND T.Semester = $27);
semester = new String(“S2002");
query2.bind(students); // bind $1 to the value of the variabl e students
query2.bind(semester); // bind $2 to the value of the variable semester
courses = (DSet) query2.execute();

79

|nterface DCollection

» Allows queries (select) from collections of database
objects

* DSet inherits from DCollection, so, for example, the
methods of DCollection can be applied to variables
courses, students (previous slide)

publicinterface DCollection extends java.util.Collection {
public DCollection query(String condition);
public Object sdlectElement(String condition);
public Boolean existsElement(String condition);
public java.util.lterator select(String condition);

40



Extended Example (Cont.)

» query( condition) — selects a subcollection of objects that
satisfy condition:
DSet seminars;
seminars = (DSet) courses.query(‘this. Credits = 17);
 select(condition) — like query( ), but creates an iterator; can
now scan the selected subcollection object-by-object:
java.util.lterator seminarlter;
Course seminar;
seminarlter = (java.util.lterator) courses.select(‘this. Credits=1");
while ( seminar=seminarlter.next() ) {

81l

CORBA:
Common Object Request Broker Architecture

Distributed environment for clientsto access objects on various
servers

Provides location transparency for distributed computational
resources

Analogous to remote procedure call (RPC) and remote method
invocation in Java (RMI) in that all three can invoke remote
code.

But CORBA is more general and defines many more protocols
(eg, for object persistence, querying, etc.). Infact, RMI is
implemented using CORBA in Java 2

82

41



Interface Description Language (IDL)

» Specifiesinterfaces only (ie, classes without
extents, attributes, etc.)

» No constraints or collection types
/I File Library.idl
module Library {
interface myLibrary{
string searchByKeywords(in string keywords);
string searchByAuthor Title(in string author, in string title);

Object Request Broker (ORB)

* Sits between clients and servers

» |dentifies the actual server for each method call
and dispatches the call to that server

 Objects can be implemented in different
languages and reside on dissimilar
OSs/machines, so ORB convertsthe calls
according to the concrete language/ OS'machine
conventions

42



ORB Server Side

Library.idl = IDL Compiler = Library-stubs.c, Library-skeleton.c

- Method signatures tO interface repository

Server skeleton: Library-skeleton.c
* Requests come to the server in OS/language/machine independent way

« Server objects are implemented in some concrete language, deployed on a
concrete OS and machine

 Server skeleton maps OS/language/machine independent requests to calls
understood by the concrete i mplementation of the objects on the server
Object adaptor: How does ORB know which server can handle
which method calls? — Object adaptor, apart of ORB
* When aserver garts, it registersitself with the ORB object adaptor
« Tellswhich method callsin which interfaces it can handle. (Recall that method
signature for al interfaces are recorded in the interface repository).
I mplementation repository: remembers which server implements
which methods/interfaces (the object adaptor stores this info when
aserver registers) -

ORB Client Side

» Static invocation: used when the application knows
which exactly method/interface it needs to call to get
the needed service

» Dynamic invocation: an application might need to figure out
what method to call by querying the interface repository

 For ingance, an application that searches community libraries, where
each library provides different methods for searching with different
capabilities. For ingance, some might allow search by title/author,
while others by keywords. Method names, argument semantics, even
the number of arguments might be different in each case

43



Static Invocation

e Client stub: Library-stubs.c

— For static invocation only, when the method/interface to call is known
— Converts OS/language/machine specific client’s method call into the
OS/language/machine independent format in which the request is delivered
over the network
— Thisconversion is called marshalling of arguments

— Needed because client and server can be deployed on different
OS/machine/etc.

— Consider: 32-bit machines vs. 64 hit, little-endian vs. big endian, different
representation for data structures (eg, strings)

— Recall: the machine-independent request is unmarshalled on the server side
by the server skeleton

— Conversion isdonetransparently for the programmer — the programmer
simply links the stub with the client program

87

Dynamic Invocation

» Used when the exact method calls are not known

» Example: Library search service

— Several community libraries provide CORBA abjects for searching their
book holdings

— New libraries can join (or be temporarily or permanently down)

— Each library hasits own legacy system, which iswrapped in CORBA
objects. While the wrappers might follow the same conventions, the search
capabilities of different libraries might be different (eg, by keywords, by
wildcards, by title, by author, by a combination thereof)

— User fills out aWeb form, unaware of what kind of search the different
libraries support
— The user-side search application should
« take advantage of newly joined libraries, even with different search
capabilities
* continueto function even if somelibrary servers are down




Dynamic Invocation (Contd.)

» Example: IDL module with different search capabilities

module Library {
interface libraryl {
string searchByKeywords(in string keywords);
string searchByAuthor Title(in string author, in string title);
}
interface library2 {
void searchByTitle(in gtring title, out gtring result);
void searchByWildcard(in string wildcard, out string result);
}
}

The client application:

Examinesthe fields in the form filled out by the user
Examinestheinterfacerepository — next dide

Decides which methods it can call with which arguments

Constructsthe actual call — next slide 89

Dynamic Invocation API

* Provides methods to query the interface repository

» Provides methods to construct machine-independent requeststo
be passed along to the server by the ORB

» Once the application knows which method/interface to call with
which arguments, it constructs a request, which includes:
— Object reference (which object to invoke)
— Operation name (which method in which interface to call)
— Argument descriptors (argument names, types, val ues)
— Exception handling info
— Additiond “context” info, which is not part of the method argum ents

» Note: Theclient stub is essentially a piece of code that usesthe
dynamic invocation API to create the above requests. Thus:
« With dtatic invocation, the stub is created automatically by the IDL compiler

* With dynamic invocation, the programmer has to manually write the code to
create and invoke the requests, because the requisite information is not

available at compiletime %0

45



CORBA Architecture

Client

Application Server
Methods
Interface Implementation
Repository Repository
S S—
‘ 1

I, \
. e e \
Invocation Piad AN
API /" request { R
object_reference; ™.  "~<

{ operation_name; N Object
argument_descriptors; N Adaptor
: exception_handling_info; ;
\ iy context_object;
Client-Side Y T Server-Side
ORB '"‘x“ //' ORB

Request

ORB Core

|nteroperability within CORBA

* ORB allows objectsto talk to each other if they are
registered with that ORB; can objects registered with
different ORBs talk to each other?

» General inter-ORB protocol (GIOP): message format
for requesting services from objects that live under the
control of a different ORB

— Often implemented using TCP/IP

— Internet inter-ORB protocol (110P) specifies how GIOP
messages are encoded for delivery viaTCP/IP

46



Inter-ORB Architecture

Client Object
A
ORB 1 —i i— ORB 2
GIOP GIOP
1IOP 1IOP

Internet (TCP/IP)

93

CORBA Services

* Rich infrastructure on top of basic CORBA

» Some services support database-like functions:
* Persistence services— how to ssore CORBA objectsina
database or some other data store
 Object query services— how to query persistent CORBA
objects
 Transaction services — how to make CORBA applications
atomic (either execute them to the end or undo all changes)

 Concurrency control services— how to request/release
locks. In this way, applications can implement transaction
isolation policies, such as two-phase commit

47



Persistent State Services (PSS)

PSS — a standard way for data stores (eg, databases, file
systems) to define interfaces that can be used by CORBA
clients to manipulate the objects in that data store

On the server:

* Objectsarein storage homes (eg, classes)

« Storage homes are grouped in data stores (eg, databases)
On the client:

* Persistent objects (from the data store) are represented using storage

object proxies

» Storage object proxies are organized into storage home proxies

Clients manipulate storage object proxies directly, like

ODMG applications do

95

CORBA Pergistent State Services

| Catalog ¢ A pplication [ iCataog

__________________ T N Sy S JP
\ [ 1 'I' H 1 [

Data Stores

48



Object Query Services (0QS)

» OQS makesit possible to query persistent CORBA objects
» Supports SQL and OQL
* Doestwo things:

— Query evaluator: Takesaquery (from the client) and trandated it into the
query appropriate for the data store at hand (eg, afile system does not support
SQL, so the query evaluator might have quite some work to do)

— Query collection service: Processes the query result.

« Creates an object of type collection, which contain references to the objectsin the
query result

 Provides an iterator object to | et the gpplication to process each object in the
result one by one

97

Object Query Services

Client

Query Evaluator ~ <€------- > Query Collection Service

S

Non-DBMS

DBMS

98

49



Transaction and Concurrency Services

* Transactional services:
— Allow threads to become transactions. Provide

* begin()
« rollback()
e commit()

— Implement two-phase commit protocol to ensure atomicity
of distributed transactions
» Concurrency control services:
— Allow transactional threads to request and release locks
— Implement two-phase locking

— Only supports — does not enforce — isolation. Other, non-
transactional CORBA applications can violate serializability

9

50



