An Overview of Query
Optimization

Chapter 11

Query Evaluation

» Problem: An SQL query is declarative — does
not specify a query execution plan.

» A relational algebra expresson is procedural
— thereis an asciated query execution plan.

 Solution: Convert SQL query to an
equivalent relational algebra and evaluate it
using the associated query execution plan.
— But which equivalent expression is best?

Naive Conversion

SELECT DISTINCT TargetList
FROM R1,R2, ...,RN
WHERE Condtion
is equivalent to
T[TargetList (GCondtion (Rl XR2x..x RN))

but thismay imply avery inefficient query exeaution plan.

Example: Thame (O1g=profid rerscode=' css32 (Profesor x Teadiing))
* Result canbe <100 bytes

* But if each relation is 50K then we end up computing an
intermediate result Professor x Teaching of size 500M
before shrinking it down to just a few bytes.

Problem: Find an equivalent relational algebra expression that can ke
evaluated “efficiently”.

3
Query Processng Architedure
SQL Query
R R] SUL Parser
Y \\\
Relational Algebra Expression IS .
Query Optimizer N
I] e~ System
|Query Plan;; Cost | <€=-=----- > Catalog
| Generator | | Estimator |
[i S ¥
Y e
Query Execution Plan /»/
I Query Plan |,
Interpreter
Y

Query Result

Query Optimizer

» Uses heuristic dgorithms to evaluate relational
algebra expresgons. Thisinvolves:
— egtimating the ast of arelational algebra expression

— transforming one relational algebra expression to an
equivalent one

— choaosing acacess paths for evaluating the subexpressons
* Query optimizers do not “optimize” —just try to find
“reasonably good’ evaluation strategies

Equivalence Preserving Transformations

» Totransform arelational expresson into anather
equivalent expresson we need transformation
rules that preserve ejuivalence

e Eadh transformation rule
— Isprovably correct (ie, does preserve equivalence)

— Has aheuristic associated with it

Selection and Projection Rules

» Break complex selection into ssmpler ones:
— OCcond1rcCond2 (R) = Ocond1 (aCondZ (R))

» Break projection into stages.
— Ty (R) =T, (M (R)), if attr [attr’

» Commute projection and selection:

— Ty (aCond(R)) = Ocond (T[attr (R))!
if attr O all attributesin Cond

Commutativity and Associativity of Join

(and Cartesian Product as Special Case)

Join commutativity: R >} S = S X R

— used to reduce cost of nested |oop evaluation strategies (smaller relation
should be in outer loop)

Join associativity: Rp<i (S T) = (R S 1 T
— used to reduce the size of intermediate relations in computation of multi-
relational join —first compute thejoin that yields smaller intermediate

result
N-way join has T(N)x N! different evaluation plans
— T(N) isthe number of parenthesized expressions
— N!'isthenumber of permutations
Query optimizer cannot look at all plans (might take longer to
find an optimal plan than to compute query brute-force). Hence it

does not necessarily produce optimal plan .

Pushing Selections and Projections

* GCond (R X S) =R Dgond S
— Cond relates attributes of both R and S

— Reduces size of intermediate relation since rows can be
discarded sooner

° GCond (R X S) = GCond (R) xS
— Cond involves only the attributes of R

— Reduces size of intermediate relation since rows of R are
discarded sooner

* T (R % S) = 1y (T4 (R) x S),
if attributes(R) [attr’ [attr N attributes(R)

— reduces the size of an operand of product

Equivalence Example

* Ocirczc3(R%S) = 0gy (0, (03 (RXS)))
= 01 (02 (R) x 05 (9))
= 0, (R) ><d 1035 (S

assuming C2 involves only attributes of R,
C3 involves only attributes of S,
and C1 relates attributesof Rand S

10

Cost - Example 1

SELECT P.Name
FROM Professor P, Teahing T
WHERE P.Id = T.Profld -- join condtion
AND P. Deptld=‘CS AND T.Semester = ‘F1994

TUName(Opeptid="cs 0 semester="F1994 (Profesor | 4-pronq TEAAING))

Tt

“Master query ’
exeation gan
(nothing pshed)

Name

Obeptid=*CS TSemester="F1994

N Id=Profid

/

Profesor T Teading "

Metadata on Tables (in system caalogue)

— Professor (I1d, Name, Deptld)
 size: 200 mages, 1000rows, 50 departments
* indexes. clustered, 2-level B*treeon Deptld, hash on Id

— Teading (Profld, CrsCode, Semester)
» size: 1000 @ges, 10,000rows, 4 semesters
* indexes. clustered, 2-level B*treeon Semester;
hash on Profld

— Definition: Weight of an dtribute — average number
of rows that havea paticular value
o weight of 1d = 1 (it isakey)
» weight of Profld = 10 (10,000 classes/1000 pofessors)

12

Estimating Cost - Example 1

* Join - block-nested loops with 52 page buffer (50
pages — input for Professor, 1 page — input for
Teaching, 1 — output page

— Scanning Professor (outer loop): 200 page transfers,
(4 iterations, 50 transfers each)

— Finding matching rows in Teaching (inner loop):
1000 page transfers for each iteration of outer loop

— Total cost = 200+4* 1000 = 4200 page transfers

13

Estimating Cost - Example 1 (cont'd)

» Selection and projection — scan rows of
intermediate file, discard those that don't satisfy
selection, project on those that do, write result
when output buffer is full.

» Complete algorithm:

— do join, write result to intermediate file on disk

— read intermediate file, do select/project, write final
result

— Problem: unnecessary 1/0O

14

Pipelining

 Solution: use pipelining:

— join and select/project act as coroutines, operate as
producer/consumer sharing a buffer in main memory.
* When join fills buffer; select/project filters it and outputs

result

* Processis repeated until select/project has processed last

output from join

— Performing select/project adds no additional cost

.. Intermediate :
join select/project

buffer

output
fina result

15

Estimating Cost - Example 1 (cont'd)

e Total cost:

4200 + (cost of outputting final result)

— Wewill disregard the cost of outputting final
result in comparing with other query evaluation

strategies, since this will be same for all

16

Cost Example 2

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id =T.Profld AND
P. Deptld=‘CS AND T.Semester = ‘F1994’

Thamel Osemester="F1904' (Opeptid=+cs (Professor) > d=profid 1 €2Ching))
T Name

“Partially pushed ‘
plan: sdection 0.
pushed to Professor Semester="F1994'

|
/ N Id=Profld

Obeptig="cs \

Professor Teaching .

Cost Example 2 -- selection

* Compute Opeyg-cs (Professor) (to reduce size of one
join table) using clustered, 2-level B* tree on Deptld.
— 50 departments and 1000 professors; hence weight
of Deptld is 20 (roughly 20 CS professors). These
rows are in ~4 consecutive pages in Professor.
» Cost =4 (to get rows) + 2 (to search index) = 6
* keep resulting 4 pages in memory and pipe to next step

clustered index
on Deptld

rows of

Professor
18

Cost Example 2 -- join

* Index-nested loops join using hash index on
Profld of Teaching and looping on the selected
professors (computed on previous slide)

— Since selection on Semester was not pushed, hash
index on Profld of Teaching can be used

— Note: if selection on Semester were pushed, the
index on Profld would have been lost — an
advantage of not using a fully pushed query
execution plan

19

Cost Example 2 —join (cont’d)

— Each professor matches ~10 Teaching rows. Since 20 CS
professors, hence 200 teaching records.
— All index entries for a particular Profld are in same bucket.
Assume ~1.2 I/Osto get a bucket.
e Cost = 1.2 x 20 (to fetch index entries for 20 CS
professors) + 200 (to fetch Teaching rows, since hash
index is unclustered) = 224

12 S

= 20x 10

Profld @ Teaching

20

10

Cost Example 2 — select/project

Pipe result of join to select (on Semester) and
project (on Name) at no 1/O cost

Cost of output same as for Example 1

Total cost:
6 (select on Professor) + 224 (join) = 230

Comparison:
4200 (example 1) vs. 230 (example 2) !!!

21

Estimating Output Size

It is important to estimate the size of the output of a
relational expression — size serves as input to the next
stage and affects the choice of how the next stage will
be evaluated.
Size estimation uses the following measures on a
particular instance of R:

— Tuples(R): number of tuples

— Blocks(R): number of blocks

— Values(R.A): number of distinct values of A

— MaxVal(R.A): maximum value of A

— MinVal(R.A): minimum value of A

22

11

Estimating Output Size

* For the query: SELECT TargetList
FROM R,R, ...,R
WHERE Condition

n

— Reduction factor is Blocks (result set)
Blocks(R,) x ... x Blocks(R)

« Esgtimates by how much query result is smaller than input

23

Estimation of Reduction Factor
» Asaume that reduction factors due to target
list and query condition are independent

e Thus:
reduction(Query) =
reduction(TargetList) x reduction(Condition)

24

12

Reduction Due to Simple Condition

1

e reduction (Ri-szaI) = m

1
max(Values(R..A), Values(R..B))

* reduction (R.A=R.B) =

— Assumethat values are uniformly distributed,
Tuples(R)) < Tuples(R)), and every row of R; matches arow
of R;. Thenthe number of tuples that satisfy Condition is:
Values(R..A) x (Tuples(R)/Values(R..A))
x (Tuples(R))/Values(R;.B))

MaxVal(R..A) — val
MaxVal(R..A) —MinVal(R.A)
25

* reduction (R.A>val) =

Reduction Due to Complex Condition

» reduction(Cond, AND Cond,) =
reduction(Cond,) x reduction(Cond,)

« reduction(Cond, or Cond,) =
min(1, reduction(Cond,) + reduction(Cond,))

26

13

Reduction Due to TargetList

 reduction(TargetList) =

number -of-attributes (TargetList)
2; number-of-attributes (R;)

27

Estimating Weight of Attribute

weight(R.A) =
Tuples(R) x reduction(R.A=value)

28

14

Choosing Query Execution Plan

» Step 1. Choose alogical plan
» Step 2: Reduce search space

o Step 3: Use a heuristic search to further
reduce complexity

29

Step 1: Choosing aLogical Plan

* Involves choosing a query tree, which indicates the
order in which algebraic operations are applied

» Heuristic: Pushed trees are good, but sometimes “nearly
fully pushed” trees are better due to indexing (as we
saw in the example)

» So: Taketheinitial “master plan” tree and produce a
fully pushed tree plus several nearly fully pushed trees.

15

Step 2: Reduce Search Space

» Deal with associativity of binary operators
(join, union, ...)

> > >
AN m N/\D
A B C D /\ A /\
: A B C D M ¢
Logicd query A
exeaution plan Eqtivalent A B
. t Equivalent |eft
querytree deep query tree
Step 2 (cont’d)
* Two isaues:

— Choose aparticular shape of atree(likein the
previous side)
 Equals the number of ways to parenthesize N-way
join —grows very rapidly
— Choose aparticular permutation of the leaves
* E.g., 4! permutations of the leaves A, B, C, D

32

16

Step 2: Dealing With Associativity

» Too many trees to evaluate: settle on a particular
shape: left-deep tree.
— Used because it allows pipelining:
F)l F)2 P3

A< B ™ X <] cC v Y><] D

— Property: once arow of X has been output by P,, it need not
be output again (but C may have to be processed several
times in P, for successive portions of X)

— Advantage: none of the intermediate relations (X, Y) have to
be completely materialized and saved on disk.
e Important if one such relation isvery large, but thefinal result is

small
33

Step 2: Dealing with Associativity

e consider the dlternative: if we usethe
association ((A <] B) <] (C X1 D))

Each row of X must

P, |AD<]B
be processed against

Y (can be very large)
P, must be stored

in P;, or P, hasto
recompute it several
times.

X
> X[>] Y | alofY. Henceall of
Y

17

Step 3. Heuristic Seach

» The choice of left-deep trees ill leaves open
too many options (N! permutations):
- (A IB) <1 ¢ X1 D),
—(((c ><]1A) <1 D) X< B),.....

* A heuristic (often dynamic programming
based) algorithm isused to get a‘goad’ plan

35

Step 3: Dynamic Programming Algorithm

« Just an idea— seebookfor details
« Tocompute ajoinof E;, E,, ..., Ey inaleft-deg
manner:

— Start with 1-relation expresgons (can involve o,)

— Choosethe best and “nealy best” plans for eat (aplanis
considered nealy best if its out put has ssme “interesting”
form, e.g., is orted)

— Combine these 1-relation plans into 2-relation expressions.
Retain only the best and nealy best 2-relation plans

— Do same for 3-relation expressions, etc.

36

18

Index-Only Queries

« A B* treeindex with search key attributes A;, A,, ..,
A, has stored in it the values of these attributes for each
row in the table.

— Queriesinvolving a prefix of the attribute list A, A,, .., A,
can be satisfied using only the index — no access to the actual
table is required.

« Example: Transcript has a clustered B* tree index on
Sudld. A frequently asked query is one that requests
all grades for a given CrsCode.

— Problem: Already have a clustered index on Studld — cannot
create another one (on CrsCode)

— Solution: Create an unclustered index on (CrsCode, Grade)
» Keep in mind, however, the overhead in maintaining extraindices

37

19

