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An Overview of Query 
Optimization

Chapter 11
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Query Evaluation

• Problem: An SQL query is declarative – does 
not specify a query execution plan.

• A relational algebra expression is procedural 
– there is an associated query execution plan.

• Solution: Convert SQL query to an 
equivalent  relational algebra and evaluate it 
using the associated query execution plan.
– But which equivalent expression is best?
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Naive Conversion
SELECT DISTINCT TargetList
FROM R1, R2, …, RN
WHERE    Condition

is equivalent to
πTargetList (σCondition (R1 × R2 × ... × RN))

but this may  imply a very inefficient query execution plan.

Example:    πName(σId=ProfId ∧CrsCode=‘CS532’ (ProfessorProfessor × TeachingTeaching))
• Result can be  < 100  bytes

• But if each relation is 50K then we end up computing an
intermediate  result ProfessorProfessor × TeachingTeaching of size 500M
before shrinking it down to just a few bytes.

Problem: Find an equivalent relational algebra expression that can be 
evaluated “efficiently” .

4

Query Processing Architecture
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Query Optimizer

• Uses heuristic algorithms to evaluate relational 
algebra expressions. This involves:
– estimating the cost of a relational algebra expression

– transforming one relational algebra expression to an 
equivalent one

– choosing access paths for evaluating the subexpressions

• Query optimizers do not “optimize” – just try to find 
“ reasonably good” evaluation strategies
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Equivalence Preserving Transformations

• To transform a relational expression into another 
equivalent expression we need transformation 
rules that preserve equivalence

• Each transformation rule
– Is provably correct (ie, does preserve equivalence)

– Has a heuristic associated with it
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Selection and Projection Rules

• Break complex selection into simpler ones:
– σCond1∧Cond2 (R) ≡ σCond1 (σCond2 (R) )

• Break projection into stages:
– πattr (R) ≡ π attr (π attr′ (R)),  if attr ⊆ attr′

• Commute projection and selection:
– π attr (σCond(R)) ≡ σCond (π attr (R)),  

if attr ⊇ all attributes in Cond
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Commutativity and Associativity of Join
(and Cartesian Product as Special Case)

• Join commutativity:  R        S  ≡ S        R
– used to reduce cost of nested loop evaluation strategies (smaller relation 

should be in outer loop)

• Join associativity:  R        (S        T)  ≡ (R        S)        T
– used to reduce the size of intermediate relations in computation of multi-

relational join – first compute the join that yields smaller intermediate 
result

• N-way join has T(N)× N! different evaluation plans
– T(N) is the number of parenthesized expressions

– N! is the number of permutations

• Query optimizer cannot look at all plans (might take longer to 
find an optimal plan than to compute query brute-force). Hence it 
does not necessarily produce optimal plan
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Pushing Selections and Projections

• σCond (R × S) ≡ R      Cond S 
– Cond relates attributes of both R and S
– Reduces size of intermediate relation since rows can be 

discarded sooner

• σCond (R × S) ≡ σCond (R) × S 
– Cond involves only the attributes of R
– Reduces size of intermediate relation since rows of R are 

discarded sooner

• πattr(R × S) ≡ πattr(πattr′ (R) × S),

if  attributes(R) ⊇ attr′ ⊇ attr
�

attributes(R)
– reduces the size of an operand of product
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Equivalence Example

• σC1 ∧C2 ∧C3 (RR × SS) ≡ σC1 (σC2 (σC3 (RR × SS) ) )
≡ σC1 (σC2 (RR) × σC3 (SS) )
≡ σC2 (RR)        C1 σC3 (SS) 

assuming  C2 involves only attributes of  RR, 
C3 involves only attributes of  SS, 
and  C1 relates attributes of  R and  SS
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SELECT P.Name
FROM ProfessorProfessor P, TeachingTeaching T
WHERE P.Id = T.ProfId -- join condition

AND P. DeptId = ‘CS’  AND T.Semester = ‘F1994’

π Name(σDeptId=‘CS’ ∧ Semester=‘ F1994’(ProfessorProfessor Id=ProfId TeachingTeaching)) 

Cost - Example 1

π Name

σDeptId=‘CS’∧ Semester=‘ F1994’

Id=ProfId

ProfessorProfessor TeachingTeaching

Master query 
execution plan 
(nothing pushed)
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Metadata on Tables  (in system catalogue)

–– ProfessorProfessor (Id, Name, DeptId)
• size: 200 pages, 1000 rows, 50 departments

• indexes: clustered, 2-level B+tree on DeptId, hash on Id

–– TeachingTeaching (ProfId, CrsCode, Semester)
• size: 1000 pages, 10,000 rows, 4 semesters

• indexes: clustered, 2-level B+tree on Semester;

hash on ProfId

– Definition: WeightWeight of an attribute – average number 
of rows that have a particular value

• weight of Id = 1 (it is a key)

• weight of ProfId = 10 (10,000 classes/1000 professors)
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Estimating Cost - Example 1
• Join - block-nested loops with  52  page buffer (50 

pages – input for Professor, Professor, 1 page – input for 
TeachingTeaching, 1 – output page

– Scanning ProfessorProfessor (outer loop): 200 page transfers, 
(4 iterations, 50 transfers each)

– Finding matching rows in TeachingTeaching (inner loop):  
1000 page transfers for each iteration of outer loop

– Total cost = 200+4*1000 = 4200 page transfers
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Estimating Cost - Example 1 (cont’d)

• Selection and projection – scan rows of 
intermediate file, discard those that don’t satisfy 
selection, project on those that do, write result 
when output buffer is full.

• Complete algorithm:
– do join, write result to intermediate file on disk
– read intermediate file, do select/project, write final 

result
– Problem: unnecessary I/O
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Pipelining
• Solution:  use pipeliningpipelining:

– join and select/project act as coroutines, operate as 
producer/consumer sharing a buffer in main memory.

• When join  fills buffer; select/project filters it and outputs  
result

• Process is repeated until select/project has processed last 
output from join 

– Performing select/project adds no additional cost

joinjoin selectselect/projectprojectIntermediate
result

output
final result

buffer

16

Estimating Cost - Example 1 (cont’d)

• Total cost:
4200 + (cost of outputting final result)

– We will disregard the cost of  outputting final 
result  in comparing with other query evaluation 
strategies, since this will be same for all
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πName(σSemester=‘F1994’ (σDeptId=‘CS’ (ProfessorProfessor)         Id=ProfId TeachingTeaching))

Cost Example 2
SELECT P.Name
FROM ProfessorProfessor P,  TeachingTeaching T
WHERE P.Id = T.ProfId AND

P. DeptId = ‘CS’ AND T.Semester = ‘F1994’

π Name

σSemester=‘F1994’

σDeptId=‘CS’

ProfessorProfessor TeachingTeaching

Id=ProfId

Partially pushed 
plan: selection 
pushed to ProfessorProfessor
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Cost Example 2 -- selection
• Compute σDeptId=‘CS’ (ProfessorProfessor) (to reduce size of one 

join table) using clustered, 2-level B+ tree on DeptId.

– 50 departments and 1000 professors; hence weight
of DeptId is 20 (roughly 20 CS professors).  These 
rows are in ~4 consecutive pages in ProfessorProfessor.

• Cost = 4 (to get rows) + 2 (to search index) = 6

• keep resulting 4 pages in memory and pipe to next step

clustered index
on DeptId rows of

ProfessorProfessor
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Cost Example 2 -- join

• Index-nested loops join using hash index on 
ProfId of TeachingTeaching and looping on the selected 
professors (computed on previous slide)
– Since selection on Semester was not pushed, hash 

index on ProfId of  TeachingTeaching can be used 

– Note: if selection on Semester were pushed, the 
index on ProfId would have been lost – an 
advantage of not using a fully pushed query 
execution plan
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Cost Example 2 – join (cont’d)
– Each professor matches ~10 TeachingTeaching rows. Since 20 CS 

professors, hence 200 teaching records.

– All index entries for a particular ProfId are in same bucket.  
Assume ~1.2 I/Os to get a bucket.

• Cost = 1.2 × 20 (to fetch index entries for 20 CS 
professors) + 200 (to fetch TeachingTeaching rows, since hash 
index is unclustered) = 224

TeachingTeachinghash

1.2
20 × 10

ProfId
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Cost Example 2 – select/project

• Pipe result of join to select (on Semester) and 
project (on Name) at no I/O cost

• Cost of output same as for Example 1

• Total cost:
6 (select on ProfessorProfessor) + 224 (join)  =  230

• Comparison: 
4200 (example 1) vs. 230 (example 2) !!!
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Estimating Output Size

• It is important to estimate the size of the output of a 
relational expression – size serves as input to the next 
stage and affects the choice of how the next stage will 
be evaluated.

• Size estimation uses the following measures on a 
particular instance of RR:
– Tuples(RR): number of tuples
– Blocks(RR): number of blocks
– Values(RR.A): number of distinct values of A
– MaxVal(RR.A): maximum value of A
– MinVal(RR.A): minimum value of A
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Estimating Output Size

• For the query:

–– Reduction factorReduction factor is

• Estimates by how much query result is smaller than input

SELECT TargetList
FROM    RR11, RR22, …, RRnn

WHERE Condition

Blocks (result set)
Blocks(RR11) × ... × Blocks(RRnn)

24

Estimation of Reduction Factor

• Assume that reduction factors due to target 
list and query condition are independent

• Thus:
reduction(Query) = 

reduction(TargetList) × reduction(Condition)
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• reduction (RRii.A=val)   =

• reduction (RRii.A=RRjj.B) =

– Assume that  values are uniformly distributed,              

Tuples(RRii) < Tuples(RRjj), and every row of RRii matches a row 

of RRjj .  Then the number of tuples that satisfy Condition is:

• reduction (RRii.A > val) = 
MaxVal(RRii.A) – val

MaxVal(RRii.A) – MinVal(Ri.A)

Reduction Due to Simple Condition
1

Values(RR.A)

Values(RRii.A) × (Tuples(RRii)/Values(RRii.A)) 
× (Tuples(RRjj)/Values(RRjj.B))

1
max(Values(RRii.A), Values(RRjj.B))
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Reduction Due to Complex Condition

• reduction(Cond1 AND Cond2) =  
reduction(Cond1)  × reduction(Cond2)

• reduction(Cond1 OR Cond2) =  

min(1,  reduction(Cond1) + reduction(Cond2))
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Reduction Due to TargetList

• reduction(TargetList) = 

number-of-attributes (TargetList)
Σi number-of-attributes (RRi)

28

Estimating Weight of Attribute

weight(RR.A) = 
Tuples(RR) × reduction(RR.A=value)
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Choosing Query Execution Plan

• Step 1: Choose a logical plan

• Step 2: Reduce search space

• Step 3: Use a heuristic search to further 
reduce complexity

30

Step 1: Choosing a Logical Plan

• Involves choosing a query tree, which indicates the 
order in which algebraic operations are applied

• Heuristic: Pushed trees are good, but sometimes “nearly 
fully pushed” trees are better due to indexing (as we 
saw in the example)

• So: Take the initial “master plan” tree and produce a 
fully pushed tree plus several nearly fully pushed trees.
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Step 2: Reduce Search Space

• Deal with associativity of binary operators 
(join, union, …)

A     B      C     DA     B      C     D

A       B     C       DA       B     C       D

DD

CC

A       BA       B

Logical query
execution plan

Equivalent
query tree

Equivalent left left 
deep query treedeep query tree
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Step 2 (cont’d)

• Two issues:
– Choose a particular shape of a tree (like in the 

previous slide)
• Equals the number of ways to parenthesize N-way 

join – grows very rapidly

– Choose a particular permutation of the leaves
• E.g., 4! permutations of the leaves  A, B, C, DA, B, C, D
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Step 2: Dealing With Associativity
• Too many trees to evaluate: settle on a particular 

shape:  leftleft--deep tree.deep tree.
– Used because it allows pipeliningpipelining:

– Property: once a row of XX has been output by P1, it need not 
be output again (but C may have to be processed several 
times in P2 for successive portions of XX)

– Advantage: none of the intermediate relations (X, YX, Y) have to 
be completely materialized and saved on disk.

• Important if one such relation is very large, but the final result is 
small

A          BA          B X          CX          C Y         DY         D
XX YY

P1 P2 P3

34

Step 2: Dealing with Associativity

• consider the alternative:  if we use the 
association ((A        BA        B)        (C        DC        D))

A          BA          B

C          DC          D

X         YX         Y

XX

YY

Each row of XX must
be processed against
all of YY.  Hence all of
YY (can be very large)
must be stored 

in P3, or P2 has to
recompute it several 
times.

P1

P2
P3
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Step 3: Heuristic Search

• The choice of left-deep trees still leaves open 
too many options (N! permutations):
– (((A        BA        B)          CC)          DD), 

– (((C        AC        A)          DD)          BB), …..

• A heuristic (often dynamic programming 
based) algorithm is used to get a ‘good’ plan

36

Step 3: Dynamic Programming Algorithm

• Just an idea – see book for details

• To compute a join of  E1, E2, …, EN in a left-deep 
manner:
– Start with 1-relation expressions (can involve σ, π)

– Choose the best and “nearly best” plans for each (a plan is 
considered nearly best if its out put has some “ interesting”
form, e.g., is sorted)

– Combine these 1-relation plans into 2-relation expressions.  
Retain only the best and nearly best 2-relation plans

– Do same for 3-relation expressions, etc.
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Index-Only Queries
• A  B+ tree index with search key attributes A1, A2, …, 

An has stored in it the values of these attributes for each 
row in the table.
– Queries involving a prefix of the attribute list A1, A2, .., An

can be satisfied using only the index – no access to the actual 
table is required.

• Example:  TranscriptTranscript has a clustered B+ tree index on 
StudId.  A frequently asked query is one that requests 
all grades for a given CrsCode.  
– Problem: Already have a clustered index on StudId – cannot 

create another one (on CrsCode)
– Solution: Create an unclustered index on (CrsCode, Grade)

• Keep in mind, however, the overhead in maintaining extra indices


