Uniprocessor _Sched_t_lling

f—-— R e e Mg = W
" B e " e

Chapter 9



Goals of Scheduling

Quick response time
Fast throughput
Processor efficiency



Type of Scheduling

Long-term

performed when new process is created
Medium-term

swapping
Short-term

decision as to which ready process will be executed
by the processor

/0

decision as to which process’s pending I/O request
shall be handled by available I/O device




Scheduling and Process
State Transition

Long-term
scheduling

Long-term
scheduling

- -—-a_
- -

T =
Short—term- -

. 4
scheduling”
4
4

Medium-term
scheduling

Medium-term
scheduling



Queuing Diagram for

Scheduling

Time-out
Ready Queue Short-te_rm Release
scheduling -

3
>

3
>

Long-term
scheduling
|
Batch |
jobs !
% W
A
Interactive
users
Event

Occurs

Medium-term

|

:

I
v

scheduling

Ready, Suspend Queue

&
<

«—
«—

locked, Suspend Queue
%

Blocked Queue

> Processor

Medium-term

scheduling

Event Wait

A



Long-Term Scheduling

Determines which programs are admitted
to the system for processing

Controls the degree of multiprogramming

More processes, smaller percentage of
time each process is executed



Medium-Term Scheduling

Swapping

Based on the need to manage
multiprogramming (it is hard to foresee
the CPU and memory requirements of
processes in the long-term scheduling
phase).



Short-Term Scheduling

Performed by the dispatcher

Invoked when an event occurs, e.g.
clock interrupt
I/O interrupt
operating system call
sighal (e.g., when software events occur)



Short-Tem Scheduling
Criteria

User-oriented

Response Time

Elapsed time between the submission of a request until
there is output.

System-oriented
effective and efficient utilization of the processor

Performance-related
response time and throughput

Not performance related
predictability (e.g., fairness, no starvation)



Priorities

Scheduler will always choose a process of
higher priority over one of lower priority

Have multiple ready queues to represent
each level of priority
Lower-priority may suffer starvation

allow a process to change its priority based
on its age or execution history



Priority Queuing

RQO ) Release
Dispatch _—

——> 'y >Processor

RQ1
—> >

Admit ——>

RON

—>
Preemption
Event Wait
Event <

occurs Blocked Queue



Decision Mode

Nonpreemptive

Once a process is in the running state, it will
continue until it terminates or blocks itself for
I/0

Preemptive

Currently running process may be interrupted
and moved to the Ready state by the
operating system

Allows for better service since no process can
monopolize the processor for very long




An Example

Arrival Service
Process Time Time
1 0 3
2 2 6
3 4 4
4 6 5
5 8 2




First-Come-First-Served
(FCFS)

0 S 10 15 20

1
2
3
4

5

Each process joins the Ready queue

When the current process ceases to
execute, the oldest process in the Ready
gueue is selected




First-Come-First-Served
(FCFS)

A short process may have to wait a very
long time before it can execute
Favors CPU-bound processes

I/O processes have to wait until CPU-bound
process completes



Round-Robin

0 S 10 15 20

o B~ W NN P

Uses preemption based on a clock

An amount of time is determined that
allows each process to use the
processor for that length of time



Shortest Process Next

0 S 10 15 20

1
2
3
4

Nonpreemptive policy

Process with shortest expected
processing time is selected next

Short process jumps ahead of longer
processes



Shortest Process Next

Predictability of longer processes is
reduced

If estimated time for process not correct,
the operating system may abort it

Possibility of starvation for longer
processes



Shortest Remaining Time

0 S 10 15 20

o B~ W NN P

Preemptive version of shortest process
next policy

Must be able to estimate remaining
processing time



Highest Response Ratio
Next (HRRN)

0 S 10 15 20

o B~ W NN P

Choose next process with the highest ratio of:

time spent waiting + expected service time
expected service time




Feedback

0 S 10 15 20

o B~ W NN P

Penalize jobs that have been running longer

Can be used when we don‘t know the remaining
time a process needs to execute

Implemented in UNIX (see later)



Fair-Share Scheduling

User’s application runs as a collection of
brocesses (threads)

Jser is concerned about the performance
of the application

Need to make scheduling decisions based
on groups of processes

For each process, there must be an a
priori upper limit on the waiting time




UNIX Scheduling

Priorities are recomputed once per second

Base priority divides all threads into fixed bands
of priority levels
Adjustment factor used to keep process in its
assigned band
P(i) = Base + CPU(i)/2 + nice
| — i-th interval

CPU(i) — CPU utilization by the thread thus far

nice — user controllable factor (rare)

P — priority: lower values mean higher priority



Feedback

Process is demoted to the next lower-
priority queue each time it returns to the
ready queue

Longer processes drift downward

To avoid starvation, CPU time slices for
lower-priority processes are longer



