
Uniprocessor Scheduling

Chapter 9

Goals of Scheduling

Quick response time

Fast throughput

Processor efficiency

Type of Scheduling

 Long-term
 performed when new process is created

Medium-term
 swapping

 Short-term
 decision as to which ready process will be executed

by the processor

 I/O
 decision as to which process’s pending I/O request

shall be handled by available I/O device

Scheduling and Process

State Transition

Exit Running Ready

Blocked
Blocked,

suspend

Ready,

suspend

New

Long-term

scheduling

Medium-term

scheduling

Medium-term

scheduling

Long-term

scheduling

Short-term

scheduling

Queuing Diagram for

Scheduling

Processor

Medium-term

scheduling

Medium-term

scheduling

Batch

jobs

Long-term

scheduling
Time-out

Interactive

users

Ready Queue

Ready, Suspend Queue

Blocked, Suspend Queue

Blocked Queue

Event

Occurs

Event Wait

Release
Short-term

scheduling

Long-Term Scheduling

Determines which programs are admitted
to the system for processing

Controls the degree of multiprogramming

More processes, smaller percentage of
time each process is executed

Medium-Term Scheduling

Swapping

Based on the need to manage
multiprogramming (it is hard to foresee
the CPU and memory requirements of
processes in the long-term scheduling
phase).

Short-Term Scheduling

Performed by the dispatcher

Invoked when an event occurs, e.g.

 clock interrupt

 I/O interrupt

 operating system call

 signal (e.g., when software events occur)

Short-Tem Scheduling

Criteria

User-oriented
 Response Time

o Elapsed time between the submission of a request until
there is output.

 System-oriented
 effective and efficient utilization of the processor

 Performance-related
 response time and throughput

Not performance related
 predictability (e.g., fairness, no starvation)

Priorities

Scheduler will always choose a process of
higher priority over one of lower priority

Have multiple ready queues to represent
each level of priority

Lower-priority may suffer starvation

 allow a process to change its priority based
on its age or execution history

Priority Queuing

Processor

Event

occurs Blocked Queue

Event Wait

Preemption

Admit

RQn

RQ1

RQ0
Dispatch

Release

.

.

.

Decision Mode

Nonpreemptive
 Once a process is in the running state, it will

continue until it terminates or blocks itself for
I/O

Preemptive
 Currently running process may be interrupted

and moved to the Ready state by the
operating system

 Allows for better service since no process can
monopolize the processor for very long

An Example

Process

Arrival

Time

Service

Time

1

2

3

4

5

0

2

4

6

8

3

6

4

5

2

Each process joins the Ready queue

When the current process ceases to
execute, the oldest process in the Ready
queue is selected

0 5 10 15 20

1

2

3

4

5

First-Come-First-Served

(FCFS)

First-Come-First-Served

(FCFS)

A short process may have to wait a very
long time before it can execute

Favors CPU-bound processes

 I/O processes have to wait until CPU-bound
process completes

Uses preemption based on a clock

An amount of time is determined that
allows each process to use the
processor for that length of time

Round-Robin

0 5 10 15 20

1

2

3

4

5

Shortest Process Next

Nonpreemptive policy
Process with shortest expected

processing time is selected next
Short process jumps ahead of longer

processes

0 5 10 15 20

1

2

3

4

5

Shortest Process Next

Predictability of longer processes is
reduced

If estimated time for process not correct,
the operating system may abort it

Possibility of starvation for longer
processes

Shortest Remaining Time

Preemptive version of shortest process
next policy

Must be able to estimate remaining
processing time

0 5 10 15 20

1

2

3

4

5

Highest Response Ratio

Next (HRRN)

 Choose next process with the highest ratio of:

time spent waiting + expected service time

expected service time

1

2

3

4

5

0 5 10 15 20

Feedback

 Penalize jobs that have been running longer

Can be used when we don’t know the remaining
time a process needs to execute

 Implemented in UNIX (see later)

0 5 10 15 20

1

2

3

4

5

Fair-Share Scheduling

User’s application runs as a collection of
processes (threads)

User is concerned about the performance
of the application

Need to make scheduling decisions based
on groups of processes

For each process, there must be an a
priori upper limit on the waiting time

UNIX Scheduling

 Priorities are recomputed once per second
 Base priority divides all threads into fixed bands

of priority levels
 Adjustment factor used to keep process in its

assigned band
P(i) = Base + CPU(i)/2 + nice
 i – i-th interval
 CPU(i) – CPU utilization by the thread thus far
 nice – user controllable factor (rare)
 P – priority: lower values mean higher priority

Feedback

Process is demoted to the next lower-
priority queue each time it returns to the
ready queue

Longer processes drift downward

To avoid starvation, CPU time slices for
lower-priority processes are longer

