
Uniprocessor Scheduling

Chapter 9

Goals of Scheduling

Quick response time

Fast throughput

Processor efficiency

Type of Scheduling

 Long-term
 performed when new process is created

Medium-term
 swapping

 Short-term
 decision as to which ready process will be executed

by the processor

 I/O
 decision as to which process’s pending I/O request

shall be handled by available I/O device

Scheduling and Process

State Transition

Exit Running Ready

Blocked
Blocked,

suspend

Ready,

suspend

New

Long-term

scheduling

Medium-term

scheduling

Medium-term

scheduling

Long-term

scheduling

Short-term

scheduling

Queuing Diagram for

Scheduling

Processor

Medium-term

scheduling

Medium-term

scheduling

Batch

jobs

Long-term

scheduling
Time-out

Interactive

users

Ready Queue

Ready, Suspend Queue

Blocked, Suspend Queue

Blocked Queue

Event

Occurs

Event Wait

Release
Short-term

scheduling

Long-Term Scheduling

Determines which programs are admitted
to the system for processing

Controls the degree of multiprogramming

More processes, smaller percentage of
time each process is executed

Medium-Term Scheduling

Swapping

Based on the need to manage
multiprogramming (it is hard to foresee
the CPU and memory requirements of
processes in the long-term scheduling
phase).

Short-Term Scheduling

Performed by the dispatcher

Invoked when an event occurs, e.g.

 clock interrupt

 I/O interrupt

 operating system call

 signal (e.g., when software events occur)

Short-Tem Scheduling

Criteria

User-oriented
 Response Time

o Elapsed time between the submission of a request until
there is output.

 System-oriented
 effective and efficient utilization of the processor

 Performance-related
 response time and throughput

Not performance related
 predictability (e.g., fairness, no starvation)

Priorities

Scheduler will always choose a process of
higher priority over one of lower priority

Have multiple ready queues to represent
each level of priority

Lower-priority may suffer starvation

 allow a process to change its priority based
on its age or execution history

Priority Queuing

Processor

Event

occurs Blocked Queue

Event Wait

Preemption

Admit

RQn

RQ1

RQ0
Dispatch

Release

.

.

.

Decision Mode

Nonpreemptive
 Once a process is in the running state, it will

continue until it terminates or blocks itself for
I/O

Preemptive
 Currently running process may be interrupted

and moved to the Ready state by the
operating system

 Allows for better service since no process can
monopolize the processor for very long

An Example

Process

Arrival

Time

Service

Time

1

2

3

4

5

0

2

4

6

8

3

6

4

5

2

Each process joins the Ready queue

When the current process ceases to
execute, the oldest process in the Ready
queue is selected

0 5 10 15 20

1

2

3

4

5

First-Come-First-Served

(FCFS)

First-Come-First-Served

(FCFS)

A short process may have to wait a very
long time before it can execute

Favors CPU-bound processes

 I/O processes have to wait until CPU-bound
process completes

Uses preemption based on a clock

An amount of time is determined that
allows each process to use the
processor for that length of time

Round-Robin

0 5 10 15 20

1

2

3

4

5

Shortest Process Next

Nonpreemptive policy
Process with shortest expected

processing time is selected next
Short process jumps ahead of longer

processes

0 5 10 15 20

1

2

3

4

5

Shortest Process Next

Predictability of longer processes is
reduced

If estimated time for process not correct,
the operating system may abort it

Possibility of starvation for longer
processes

Shortest Remaining Time

Preemptive version of shortest process
next policy

Must be able to estimate remaining
processing time

0 5 10 15 20

1

2

3

4

5

Highest Response Ratio

Next (HRRN)

 Choose next process with the highest ratio of:

time spent waiting + expected service time

expected service time

1

2

3

4

5

0 5 10 15 20

Feedback

 Penalize jobs that have been running longer

Can be used when we don’t know the remaining
time a process needs to execute

 Implemented in UNIX (see later)

0 5 10 15 20

1

2

3

4

5

Fair-Share Scheduling

User’s application runs as a collection of
processes (threads)

User is concerned about the performance
of the application

Need to make scheduling decisions based
on groups of processes

For each process, there must be an a
priori upper limit on the waiting time

UNIX Scheduling

 Priorities are recomputed once per second
 Base priority divides all threads into fixed bands

of priority levels
 Adjustment factor used to keep process in its

assigned band
P(i) = Base + CPU(i)/2 + nice
 i – i-th interval
 CPU(i) – CPU utilization by the thread thus far
 nice – user controllable factor (rare)
 P – priority: lower values mean higher priority

Feedback

Process is demoted to the next lower-
priority queue each time it returns to the
ready queue

Longer processes drift downward

To avoid starvation, CPU time slices for
lower-priority processes are longer

