
Virtual Memory

Chapter 8

Characteristics of

Paging and Segmentation

Memory references are dynamically translated
into physical addresses at run-time
 a process may be swapped in and out of main

memory, so it might occupy different regions at
different times

A process can be broken up into pieces that do
not need to be located contiguously in main
memory
 No need to load all pieces of a process in main memory

during execution at any given time

Execution of a Program

Operating system brings into main
memory a few pieces of the program

Resident set - portion of process that is in
main memory

A page fault interrupt is generated when
referencing an address that is not in main
memory

Operating system places the process in a
blocked state

Execution of a Program

Piece of process memory that contains the
referenced logical address is brought into
main memory as follows:
 OS issues a disk I/O Read request

 another process is dispatched to run while
the disk I/O takes place

 an interrupt is issued by the disk when it
completes the I/O; this tells the OS to place
the affected process (the one that caused the
page fault) in the Ready state

Advantages of

Breaking up Process

More processes can be maintained in
main memory
 can load only some of the pieces of each

process

With so many processes in main
memory, it is very likely a process will
be in the Ready state at any particular
time

It is possible for a process to be larger
than all the main memory

Advantages of

Breaking up Processes

Programmer is dealing with memory the
size of a portion of a hard disk

It would be wasteful to load in many
pieces of the process when only a few
pieces might be used

Time can be saved because unused pieces
are not swapped in and out of memory

Types of Memory

Real memory

 main memory

Virtual memory

 memory on disk

Thrashing

Swapping out a piece of a process just
before that piece is needed again

The processor spends most of its time
swapping pieces rather than executing
user instructions

Principle of Locality

Program and data references within a
process tend to cluster

Only a few pieces of a process will be
needed over a short period of time

Possible to make intelligent guesses about
which pieces will be needed in the future

This suggests that virtual memory may
work efficiently

Support Needed for

Virtual Memory

Hardware must support paging and/or
segmentation

Operating system must be able to manage
the movement of pages and/or segments
between secondary memory and main
memory

Paging

Each process has its own page table

Each page table entry contains the frame
number of the corresponding page in
main memory

A bit is needed to indicate whether the
page is in main memory or not

Modification Bit in

Page Table

A modification bit is needed to indicate if
the page has been altered since it was
last loaded into main memory

 If no change has been made (the mod bit is
off), the page does not have to be written to
the disk when it needs to be swapped out;

 if the bit is on -- the page must be first saved
on disk before being swapped out.

Paging

Virtual Address

Page Table Entry

Page Number Offset

P M Frame Number Other Control Bits

M: Modification bit

P: Validity

(or Presence) bit

Address Translation in a

Paging System

Program Paging Main Memory

Virtual Address

Register

Page Table

Page

Frame

Offset

P#

Frame #

Page Table Pointer

Page # Offset Frame # Offset

+

Page Tables

The entire page table may take up too
much main memory

Page tables are also stored in virtual
memory (of the kernel)

When a process is running, part of its
page table is in main memory

Another method (especially popular with
64 bit OS): inverted tables - next

Inverted Page Tables

Page# Proc# Control
bits

Chain
ptr

0223 0004 0000

1234 0012 0008

0013 0009 0000

Page# 223 Offset 555

Page# 13 Offset 200

hash

hash

Proc 9

Proc 4

0

1

3

4

5

6

7

8

9

occupied by other

page: use chain

frame# 3

223

Offset 555

Frame# 8 Offset 200

Inverted Page Tables

Only one table for all processes, not per process

o Size: the number of frames

 Chains – a disadvantage
o But usually their size is 0-2.

Translation Look-aside

Buffer

Each virtual memory reference can cause
two physical memory accesses

 one to fetch the page table

 one to fetch the data

To overcome this problem a special cache
is set up for page table entries

 called the TLB - Translation Look-aside Buffer

Translation Look-aside

Buffer

Contains page table entries that have
been most recently used

Works similarly to main memory cache

Translation Look-aside

Buffer

Given a virtual address, processor
examines the TLB

If page table entry is present (a hit), the
frame number is retrieved and the real
address is formed

If page table entry is not found in the TLB
(a miss), the page number is used to
index the process page table

Translation Look-aside

Buffer

First checks if page is already in main
memory

 if not in main memory a page fault is issued

The TLB is updated to include the new
page entry

Use of a Translation

Look-aside Buffer

Virtual Address

Translation

Look-aside Buffer

Page Table

TLB miss

Page fault

Real Address

TLB hit
Offset

Main Memory
Secondary

Memory

Load

page

Page # Offset

Frame # Offset

START

CPU checks

 the TLB

 Page

table entry in

 TLB?

Access page

 table

Page in main

 memory?

Update TLB

CPU generates

 Physical

 Address

Yes

No

Yes Page fault

handling routing

No

Operation of TLB

Page Fault

Handling

 OS instructs

CPU to read the

 page from disk

CPU activates

I/O Hardware

Memory

 full?

 Perform

 Page

Replacement

Page transferred

 from disk to

 main memory

Page tables

 updated

Yes

No

A saga in its own right!

(discussed later)

Page Size Trade-offs

 Smaller page size, less amount of internal
fragmentation (why?)

 Smaller page size, more pages required per
process

More pages per process means larger page
tables

 Larger page tables means large portion of page
tables in virtual memory

 Secondary memory is designed to efficiently
transfer large blocks of data so a large page size
is better

Page Size Trade-offs

Small page size, large number of pages will
be found in main memory

As time goes on during execution, the
pages in memory will all contain portions of
the process memory situated near the
recent references. Page fault rate gets low.

Increased page size causes pages to
contain locations further from any recent
reference. Page faults might rise.

Page Size Trade-offs

Multiple page sizes provide the flexibility
needed to effectively use a TLB

Large pages can be used for program
instructions

Small pages can be used for thread stack

 Good idea in theory; not used in practice

Segmentation

Can be dynamic

Simplifies handling of growing data
structures (why?)

Allows programs to be altered and
recompiled independently (how?)

Used for sharing data among processes

Lends itself to protection (how?)

Segment Tables

Each entry contains the starting address
of the corresponding segment in main
memory

Each entry contains the length of the
segment

A bit is needed to determine if segment is
already present in main memory

A bit is needed to determine if the
segment has been modified since it was
loaded in main memory

Segmentation

Virtual Address

Segment Table Entry

Segment Number Offset

P M Other Control Bits Length Segment Base

Presence bit

Modification bit

Address Translation in a

Segmentation System

Base + d

Program Segmentation Main Memory

Virtual Address

Register

Segment Table

S
eg

m
en

t

d

S#

Length Base

Seg Table Ptr

Seg # Offset = d

Segment Table

+

+

Combined Paging and

Segmentation

Paging is transparent to the programmer

Paging eliminates external fragmentation

Segmentation is visible to the programmer

Segmentation allows for growing data
structures, modularity, and support for
sharing and protection

Each segment is broken into fixed-size
pages

Combined Segmentation

and Paging

Virtual Address

Segment Table Entry

Page Entry Table

Segment Number Page Number Offset

Other Control Bits Length Segment Base

P M Other Control Bits Frame Number

One page table is used for each segment

Address Translation in

Segmentation/Paging System

Main Memory

Page

Frame

Offset

Paging

Page Table

P#

+

Frame # Offset

Seg Table Ptr

+
S #

Segmentation Program

Segment

Table

Seg # Page # Offset

Operating System Policies

for Virtual Memory

 Fetch Policy
 determines when a page should be brought into

memory

Demand paging only brings pages into main
memory when a reference is made to a location
on the page

o many page faults when process first started

 Prepaging brings in more pages than needed
o more efficient to bring in pages that reside contiguously on

the disk

Operating System Policies

for Virtual Memory

Replacement Policy

 deals with the selection of a page in memory
to be replaced when a new page is brought in

 frame locking used for frames that cannot be
replaced

oused for the kernel and key control structures of
the operating system

o I/O buffers (why lock them?)

Operating System Policies

for Virtual Memory

Replacement Policy (contd.)

 Optimal policy selects for replacement the
page for which the time to the next reference
is the longest

o impossible to have perfect knowledge of future
events

Operating System Policies

for Virtual Memory

Replacement Policy - Least Recently Used
(LRU)

 Replaces the page that has not been
referenced for the longest time

 By the principle of locality, this should be the
page least likely to be referenced in the near
future

 Each page could be tagged with the time of
last reference. This requires a great deal of
overhead.

Operating System Policies for

Virtual Memory

Replacement Policy

 First-in, first-out (FIFO): treats page frames
allocated to a process as a circular buffer

oPages are removed in round-robin style

oSimplest replacement policy to implement

oPage that has been in memory the longest is
replaced

oThese pages may be needed again very soon
(e.g., in program loops!)

Operating System Policies

for Virtual Memory

Replacement Policy - Clock Policy
 Additional bit called a use bit

 When a page is first loaded in memory, the
use bit is set to 0

 When the page is referenced, the use bit is
set to 1 (in hardware)

 When it is time to replace a page, the first
frame encountered with the use bit set to 0
is replaced.

 During the search for replacement, each use
bit is changed to 0

Clock Policy
State of buffer just prior to a

page replacement

0

1

2

3

4

5 6

7

8

n

.

.

.

Page 9

use = 1

Page 19

use = 1

Page 1

use = 0

Page 45

use = 1

Page 191

use = 1

Page 556

use = 0

Page 13

use = 0

Page 67

use = 1

Page 33

use = 1

Page 222

use = 0

next frame

 pointer

Need to place page 727

Clock Policy
State of buffer just after

the next page replacement

0

1

2

3

4

5 6

7

8

n

.

.

.

Page 9

use = 1

Page 19

use = 1

Page 1

use = 0

Page 45

use = 0

Page 191

use = 0

Page 727

use = 1

Page 13

use = 0

Page 67

use = 1

Page 33

use = 1

Page 222

use = 0

Page 556 got replaced

Resident Set Size

Fixed-allocation

 gives a process a fixed number of pages
within which to execute

 when a page fault occurs, one of the pages of
that process must be replaced

Variable-allocation

 number of pages allocated to a process varies
over the lifetime of the process

Cleaning Policy

Demand cleaning

 a page is written out only when it has been
selected for replacement

Precleaning

 pages are written out in batches when the
swap I/O device idles

Cleaning Policy

Best approach uses page buffering

 replaceable pages are placed in two lists

omodified and unmodified

 Pages in the modified list are periodically
written out in batches

 Pages in the unmodified list are either
reclaimed if referenced again or lost when its
frame is assigned to another page

Load Control

Determines the number of processes that
will be resident in main memory

Too few processes, many occasions when
all processes will be blocked and
processor will be idle

Too many processes will lead to thrashing

Process Suspension

Needed when there are too many page faults
because too many processes are active &
their page allotments get small due to
memory contention; suspended process is
swapped out

 Policies:
 Lowest priority process

 Faulting process
o this process does not have its working set in main

memory so it will be blocked anyway

 Last process activated
o this process is least likely to have its working set resident

Process Suspension

Process with smallest resident set

 this process requires the least future effort to
reload

Largest process

 obtains the most free frames

Process with the largest remaining
execution window

UNIX and Solaris Memory

Management

Process memory: Paging system

Kernel memory: special memory allocator

UNIX and Solaris Memory

Management

Data Structures
 Page table - one per process

 Disk block descriptor - describes the disk copy
of the virtual page (where in the swap device
the virtual page lives)

 Page frame data table - describes each frame
of real memory (free/occupied, info needed
to swap page out of the frame)

 Swap-use table - one for each swap device
(# of page table entries that point to swap
device)

UNIX and Solaris Memory

Management

Page Replacement

 refinement of the clock policy known as the
two-handed clock algorithm (Read!)

Kernel Memory Allocator

 most blocks are smaller than a typical page
size, hence paging would be inefficient for the
frequently used tables in the kernel

Windows Memory

Management

 Each process sees a separate 2 Gbyte of user
space

 All processes share the same system (OS) space
 A page can have different states:

 available: pages not currently used

 reserved: for a process but does not count against
the process’s memory quota until actually used; no
space reserved on the swap device

 committed: pages actually used by the process and
space committed on swap device

