
Memory Management

Chapter 7

Memory Management

Subdividing memory to accommodate
multiple processes

Memory needs to be allocated efficiently
to pack as many processes into memory
as needed/possible (and still ensure
adequate performance)

Memory Management

Requirements

Relocation

 programmer does not know where the
program will be placed in memory when it is
executed

 while the program is executing, it may be
swapped to disk and returned to main
memory at a different location

 memory references must be translated in the
code to actual physical memory address

Memory Management

Requirements

Protection

 processes should not be able to reference
memory locations in another process without
permission

 impossible to check addresses in programs
since addresses can be generated during
execution

 hence: addresses must be checked during
execution, by hardware

Memory Management

Requirements

Sharing

 allow several processes to access the same
portion of memory

 allow each process to access the same copy
of the programs (e.g., Unix shell in a multi-
user system) rather than creating a separate
copy each time

Memory Management

Requirements

Logical Organization

 programs are written in modules

 different degrees of protection given to
modules (read-only, execute-only)

 modules can be shared

Memory Management

Requirements

Physical Organization

 memory available for a program plus its data
might be insufficient

ooverlaying allows various modules to be assigned
the same region of memory

 secondary memory cheaper, larger capacity,
and permanent, hence temporarily keep parts
of the program data in secondary memory

Overlaying

Main segment

Overlay

 segments

M
e
m

o
ry

•Overlay segments are loaded over each other

•Programmer is responsible for splitting application

 into segments and for loading them.

P
ro

g
ra

m

Fixed Partitioning

Partition available memory into regions
with fixed boundaries

Method 1: Equal-size partitions
 any process whose size is less than or equal

to the partition size can be loaded into an
available partition

 if all partitions are full, the operating system
can swap a process out of a partition

 a program may not fit in a partition; the
programmer must design the program with
overlays

Fixed Partitioning

Main memory use is inefficient. Any program,
no matter how small, occupies an entire
partition. This is called internal fragmentation.

8 M

8 M

8 M

8 M

8 M

Operating System

Program 1

Program 2

Program 3

Empty

Fixed Partitioning

Method 2: Unequal-size partitions

 lessens the problem with equal-size partitions

 External fragmentation:
 some partitions might be too

 small for some jobs, even
 though the sum of the partition
 sizes might be large enough

Operating System

8 M

12 M

8 M

8 M

6 M

4 M

2 M

Fixed Partitions Problems

External fragmentation

Internal fragmentation

Processes may grow/shrink

Placement Algorithm with

Partitions

Equal-size partitions

 because all partitions are of equal size, it
does not matter which partition is used

Unequal-size partitions

 can assign each process to the smallest
partition within which it will fit

 queue for each partition

 processes are assigned in such a way as to
minimize wasted memory within a partition

One Queue of Processes

per Partition

New

Processes

Operating

System

One Global Process Queue

When its time to load a process into main
memory, the smallest available partition
that will hold the process is selected

Operating

System

New

Processes

Dynamic Partitioning

Partitions are of variable length and
number

Process is allocated exactly as much
memory as required

Eventually you get holes in the memory.
This is another manifestation of external
fragmentation

Must use compaction to shift processes so
they are contiguous and all free memory
is in one block

Example of Dynamic

Partitioning

Operating

 System
128 K

896 K

Operating

 System

Process 1 320 K

576 K

Operating

 System

Process 1 320 K

Process 2 224 K

352 K

Example of Dynamic

Partitioning

Operating

 System

Process 1 320 K

Process 2

Process 3

224 K

288 K

64 K

Operating

 System

Process 1 320 K

Process 3

224 K

288 K

64 K

Operating

 System

Process 1 320 K

Process 3 288 K

64 K

Process 4 128 K

96 K

Example of Dynamic

Partitioning

Operating

 System

320 K

Process 3 288 K

64 K

Process 4 128 K

96 K

Operating

 System

Process 3 288 K

64 K

Process 4 128 K

96 K

Process 2 224 k

96 K

Dynamic Partitioning

Placement Algorithm

Operating system must decide which free
block to allocate to a process

Best-fit algorithm
 chooses the block that is closest in size to the

request

 worst performer overall (must scan the entire
list of free blocks)

 tends to leave small chunks of free space
around; hence memory compaction must be
done more often

Dynamic Partitioning

Placement Algorithm

First-fit algorithm

 starts scanning memory from the beginning
and chooses the first available block that is
large enough.

 fastest

 may have many processes loaded in the front
end of memory that must be searched over
when trying to find a free block

Dynamic Partitioning

Placement Algorithm

Next-fit
 starts scanning memory from the location of

the last placement and chooses the next
available block that is large enough

 more often allocates a block of memory at
the end of memory where the largest block is
found

 the largest block of memory is broken up into
smaller blocks

 compaction is required to obtain a large block
at the end of memory

Dynamic Partitioning

Placement Algorithm

Last

allocated

block (14K)

Before
After

8K 8K

12K 12K

22K

18K

6K 6K

8K 8K

14K 14K

6K

2K

36K
20K

Next Fit

Free block

Allocated block

Best Fit

First Fit

16K
Find a place for

a new job

Relocation

When program is loaded into memory, the
actual (absolute) memory locations are
determined

A process may occupy different partitions,
which means different absolute memory
locations during execution (due to
swapping)

Compaction might also cause a program
to occupy a different absolute memory
location

Addresses

Logical
 reference to memory locations is independent

of the current assignment of data to memory

 translation must be made to the physical
address

Relative
 address is expressed as a location relative to

some known point

Physical
 the absolute address or actual location

Hardware Support for

Program Relocation

Interrupt to

operating system

Process image in

main memory

Relative address

Absolute

address

Process Control

 Block

Program

Data

Stack

Adder

Comparator

Base Register

Bounds Register

Base + Relative > Bounds register

Registers Used during

Execution

Base register

 starting address for the process

Bounds register

 ending location of the process

These values are set when the process is
loaded and when the process is swapped
in

Registers Used during

Execution

The value of the base register is added to
a relative address to produce an absolute
address

The resulting address is compared with
the value in the bounds register

If the address is not within bounds, an
interrupt is generated to the operating
system

Paging

 Partition memory into small equal-size chunks
and divide each process into the same size
chunks

 The chunks of a process are called pages and
chunks of memory are called frames

Operating system maintains a page table for
each process

 page table contains the frame location for each
page in the process

 memory address within the program consist of a
page number and offset within the page

Paging
Frame

Number

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

A.0

A.1

A.2

A.3

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

 A.0

 A.1

 A.2

 A.3

B.0

B.1

B.2

Paging

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

 A.0

 A.1

 A.2

 A.3

B.0

B.1

B.2

 C.0

 C.1

 C.2

 C.3

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

A.0

A.1

A.2

A.3

C.0

C.1

C.2

C.3

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

 A.0

 A.1

 A.2

 A.3

 C.0

 C.1

 C.2

 C.3

D.0

D.1

D.2

D.3

D.4

Not

Contiguous!!

Page Tables 0

1

2

3

Process A

0

1

2

3

0

1

2

Process B

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

 A.0

 A.1

 A.2

 A.3

 C.0

 C.1

 C.2

 C.3

D.0

D.1

D.2

D.3

D.4

Not

Contiguous!!

0

1

2

3

Process C

7

8

9

10

0

1

2

3

4

4

5

6

11

12

Process D

Free Frame List

13

14

Segmentation

Segments of the programs do not have to
be of the same length

There is a maximum segment length

Addressing consist of two parts - a
segment number and an offset

Since segments are not equal,
segmentation is similar to dynamic
partitioning

Segmentation

Segments may or may not be contiguous

 A non-contiguous segment can be organized
using paging (each segment will then have a
page table)

Segment table: gives starting address and
length to each segment

Segment Table

Segment 2

Segment 1

Segment 3

0

10

12

24

26

30

Segment# Base Length

1

2

3

--

12

0

26

12

10

4

