Concurrency: Deadlock
and Starvation

f—-— R e e Mg = W
" B e " e

Chapter 6

Deadlock

Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

Involve conflicting needs for resources by
twoO Oor more processes

Example of Deadlock

Progress
of Q
A
A 1)\2 ‘
Release
A /
A_ < Release ﬁ
Required (B / : &
\ Get A : '
< | _3_ deadlock
B nevitablg
Required A S
\ GetB] ©
|
l 6:
5 Progress
GetA GetB Release A Release B of P
(- J
A Y
Required \- J

N
B Required

Example of No Deadlock

Progress
of Q
A
A 1 /\2 A3
) Release |
A |
ok “
—— -)
A. < Release ! |
Required (B —
I
1 a
\ Get A ' 1
I
I A |
B |
Required [il el J \ S
\ GetB I ~
|
L 6 R
. Progress
GetA Release A Get B Release B of P
(- J
A Y
Required \- J

N
B Required

Reusable, Nonsharable
Resources

Used by one process at a time and not
depleted by that use

Processes obtain resources that they later
release for reuse by other processes

Processor time, I/O channels, main and
secondary memory, files, databases, and
semaphores

Deadlock occurs if each process holds one
resource and requests the other

Example of Deadlock

Space is available for allocation of 200K
bytes, and the following sequence of

events occur

P1

Request 80K bytes;

Request 60K bytes;

P2

Request 70K bytes;

Request 80K bytes;

Deadlock occurs if both processes
progress to their second request

Consumable Resources

Created (produced) and destroyed
(consumed) by a process

Interrupts, signals, messages, and
information in I/O buffers

Deadlock may occur if a Receive message
IS blocking

May take a rare combination of events to
cause deadlock

Example of Deadlock

Deadlock occurs if receive is blocking

Receive(P2);

Send(P2);

P1

Receive(P1l);

Send(Pl);

P2

Conditions for Deadlock

Mutual exclusion
only one process may use a resource at a
time

Hold-and-wait

a process is allowed to hold allocated
resources while awaiting assignment of
others

No preemption

no resource can be forcibly removed from a
process holding it

Conditions for Deadlock

Circular wait

A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

Necessary for deadlock to happen
Sufficient under certain circumstances

Other conditions are necessary but not sufficient
for deadlock

Circular Wait

/ Resource H,

0esS &

reW

$ ‘

Held By y 4 ‘y
Resource

B

Deadlock Prevention

Disallowing “"Mutual Exclusion”

cannot be achieved, due to the nature of non-
sharable resources

Disallowing “Hold-and-Wait”

Require that a process request all its
required resources gt once

Block the process until all requests can be
granted simultaneously

v" Problem:

process can be held up for a long time waiting for all
Its requests

starvation is possible

Deadlock Prevention

Disallowing "No Preemption”

If a process is denied a further request, the
process must release the original resources

If a process cannot obtain a resource, the
process may have to release the resources it
already holds. Process must have capability
to restore these resources to current state.

= Practical only only when the state can be
easily saved and restored later, such as the
CPU or main memory.

Deadlock Prevention

Disallowing “Circular Wait”
define a linear ordering for resources

once a resource is obtained, only those
resources that have id number higher can be

obtained (if a process requests a resource with lower id
number than what it has obtained so far, that request is denied)

= Problem: may deny resources for no reason
other than the “wrong” id number. Low
resource utilization.

Deadlock Avoidance

Do not start a process if its demands
might lead to deadlock

Do not grant an incremental resource
request to a process if this allocation
might lead to deadlock

Not necessary to preempt and rollback
processes

Deadlock Avoidance

Maximum resource requirement must be
stated in advance

Processes under consideration must be
independent; no synchronization
requirements

There must be a fixed number of
resources to allocate

No process may exit while holding
resources

Deadlock Avoidance: The Banker’s

Algorithm

Assume: M resources Ry, ...

, Rm

system has several identical copies of each
resource: Qi, ..., Qu (maximums/resource)

a process can ask for several copies of each
resource type; doesn’t care which specific copies
are given as long as they are of the requested

type

State: a particular allocation of resources to

processes:

resources {

P1

P2

P3

P4

R1
Q1=9

3

0

1

2

R2
Q2=7

2

4

0

1

R3
Q3=4

0

0

1

2

\" ProCesses

Deadlock Avoidance: Banker’s
Algorithm

A safe state test:

// Let L be the list of unfinished processes
while L is non-empty do

Safe state:

If can find process P in L whose
state where we

outstanding requests can be satisfied

can order the using available resources then {
remaining delete P from L

processes so they add all resources held by P
can run to to the pool of available
completion without FEsources

a deadlock. } else return(unsafe)

return (safe)

v This is only a sufficient - not a
necessary, condition for safety!

Deadlock Avoidance: Banker’s
Algorithm

Request granting algorithm reqg(P,Qty,Rsrc):

if Qtytallocated (P,Rsrc) > limit (Rsrc) then
abort P;

tentatively allocate request;

1f safe(resulting state) then
grant request;

else

suspend P on Rsrc;

Deadlock Detection

Operating system checks for deadlock

When:

Check at resource request time
early detection of deadlock
frequent checks consume processor time

Check periodically
deadlocks stay undetected between checks

Strategies once Deadlock
Detected

Abort all deadlocked processes

Back up each deadlocked process to some
previously defined checkpoint, and restart
all processes

original deadlock may occur once again

Successively abort deadlocked processes
until deadlock no longer exists

Successively preempt resources until
deadlock no longer exists (if resource
preemption is feasible and cost-effective)

Selection Criteria
Deadlocked Processes

Least amount of processor time consumed
SO far (so the least amount of work will be wasted)

Least number of lines of output produced
so far (so cheaper to preempt file resources)

Most estimated time remaining (presumably,
this process is most deadlock-prone)

Least total resources allocated so far
Lowest priority

Deadlock Detection Algorithms

Single instance of each resource

draw a resource request graph as follows:
arc Proc --> Res exists if Proc requested Res
arc Proc <-- Res exists if Proc holds Res

The system has a deadlock iff the resource
request graph has a cycle

Why?

Multiple resource instances:

is the cycle condition necessary for the existence of a
deadlock?

Is it sufficient?

Deadlock Detection Algorithms

Multiple resource instances
similar to the safety test:

// Let L be the list of all unfinished processes
while nonempty (L) do{
if found a process P in L all of whose requests
can be satisfied with available resources do {
delete P from L;
add all resources held by P to the pool
of availlable resources;
} else return(deadlock);

}

return (nodedlock) ;

v’ The algorithm ensures that if none of the processes

Issues additional resource requests, then there is no
deadlock.

Dining Philosophers
Problem

Ilustrates:

-deadlocks
-starvation

Dining Philosophers Solutions

// 5 philosophers // at most 4 out of 5

// & forks // philosophers eat simultaneously
semaphore fork[4]; semaphore room = 4;

With starvation & deadlock: No starvation or deadlock:

repeat repeat

<think> <think>

walt (fork[I]); walt (room) ;

wait (fork[(I+1)mod 5]); wailt (fork[I]) ;

<eat> wait (fork[(I+1)mod 5]);
signal (fork[I]) <eat>

signal (fork[(I+1)mod 5]); signal (fork[(I+1)mod 57]) ;
forever signal (fork([I]);

signal (room) ;
Give a scenario for deadlock. forever
Give a scenario for starvation.

Interprocess Concurrency
Mechanisms

Pipes
buffer allowing two processes to communicate

gueue written by one process and read by
another

operating system enforces mutual exclusion for
writing and reading the pipe

write requests are immediately executed if there

is room in the pipe, otherwise the process is
blocked

read request is blocked if attempts to read more
bytes than currently available in the pipe

Inter-process Concurrency
Mechanisms

Messages
block of text with accompanying type

receiver can either retrieve messages in FIFO
order or by type

process suspends when trying to send a
message to a queue that is full

process suspends when reading from an
empty queue

process trying to read a certain type of
messages /a/ls, not suspended

Inter-process Concurrency
Mechanisms

Shared memory

common block of virtual memory shared by
multiple processes

fast form of interprocess communication

mutual exclusion must be provided by the
processes, not the operating system

Inter-process Concurrency
Mechanisms

Semaphores
wait and signal and much more

operating system handles all these requests

Signals (UNIX-derived OS only)

software mechanism that informs a process
of the occurrence of asynchronous events

€.g. /interrupt process, quit process, kill process,
floating point exception, ...

Solaris Thread
Synchronization Primitives

Mutual exclusion lock

prevents more than one thread from proceeding
when the lock is acquired

Semaphores
used for incrementing and decrementing

V' Unlike the general synchronization primitives (which operate on
resources shared by all threads of a process), these synchronization
resources aren’t shared by threads in the same process!

Solaris Thread
Synchronization Primitives

Multiple readers, single writer locks

multiple threads have simultaneous read-only
access

only one thread has access for writing

Condition variables
used to wait until a particular condition is true

Windows NT Concurrency

Mechanisms

Synchronization Object

process

thread

file

console input

file change notification
mutex

semaphore (counting)
event

waitable timer

Each synchronization
object can be in either
signaled or un-signaled
state

Un-signaled state:

thread can be suspended
on synchronization objects
that are un-signaled

Signaled state:

when object is in signaled
state, all threads waiting
on this object wake up

