
Concurrency: Deadlock

and Starvation

Chapter 6

Deadlock

Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

Involve conflicting needs for resources by
two or more processes

Example of Deadlock

Progress

of Q

Release

A

Release

B

Get A

Get B

Get A Get B Release A Release B

Progress

of P

A

Required

B Required

A

Required

B

Required

deadlock

inevitable

1 2

3

4

5

6

P and Q

want B

P and Q

want A

Example of No Deadlock

Progress

of Q

Release

A

Release

B

Get A

Get B

Get A Release A Get B Release B

Progress

of P

A

Required

B Required

A

Required

B

Required

1 2 3

4

5

6

P and Q

want A

P and Q

want B

Reusable, Nonsharable

Resources

Used by one process at a time and not
depleted by that use

Processes obtain resources that they later
release for reuse by other processes

Processor time, I/O channels, main and
secondary memory, files, databases, and
semaphores

Deadlock occurs if each process holds one
resource and requests the other

Example of Deadlock

Space is available for allocation of 200K
bytes, and the following sequence of
events occur

Deadlock occurs if both processes
progress to their second request

P1

. . .

. . .
Request 80K bytes;

Request 60K bytes;

P2

. . .

. . .
Request 70K bytes;

Request 80K bytes;

Consumable Resources

Created (produced) and destroyed
(consumed) by a process

Interrupts, signals, messages, and
information in I/O buffers

Deadlock may occur if a Receive message
is blocking

May take a rare combination of events to
cause deadlock

Example of Deadlock

Deadlock occurs if receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2);

P2

. . .

. . .
Receive(P1);

Send(P1);

Conditions for Deadlock

Mutual exclusion
 only one process may use a resource at a

time

Hold-and-wait
 a process is allowed to hold allocated

resources while awaiting assignment of
others

No preemption
 no resource can be forcibly removed from a

process holding it

Conditions for Deadlock

Circular wait

 A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

 Necessary for deadlock to happen

 Sufficient under certain circumstances

Other conditions are necessary but not sufficient
for deadlock

Circular Wait

Resource

B

Resource

A

Process

P1

Process

P2

Deadlock Prevention

Disallowing “Mutual Exclusion”
 cannot be achieved, due to the nature of non-

sharable resources

Disallowing “Hold-and-Wait”
Require that a process request all its

required resources at once
 Block the process until all requests can be

granted simultaneously

 Problem:
o process can be held up for a long time waiting for all

its requests
o starvation is possible

Deadlock Prevention

Disallowing “No Preemption”
 If a process is denied a further request, the

process must release the original resources

 If a process cannot obtain a resource, the
process may have to release the resources it
already holds. Process must have capability
to restore these resources to current state.

 Practical only only when the state can be
easily saved and restored later, such as the
CPU or main memory.

Deadlock Prevention

Disallowing “Circular Wait”

 define a linear ordering for resources

 once a resource is obtained, only those
resources that have id number higher can be
obtained (if a process requests a resource with lower id

number than what it has obtained so far, that request is denied)

 Problem: may deny resources for no reason
other than the “wrong” id number. Low
resource utilization.

Deadlock Avoidance

Do not start a process if its demands
might lead to deadlock

Do not grant an incremental resource
request to a process if this allocation
might lead to deadlock

Not necessary to preempt and rollback
processes

Deadlock Avoidance

Maximum resource requirement must be
stated in advance

Processes under consideration must be
independent; no synchronization
requirements

There must be a fixed number of
resources to allocate

No process may exit while holding
resources

Deadlock Avoidance: The Banker’s

Algorithm

 Assume: M resources R1, …, RM

o system has several identical copies of each
resource: Q1, …, QM (maximums/resource)

oa process can ask for several copies of each
resource type; doesn’t care which specific copies
are given as long as they are of the requested
type

 State: a particular allocation of resources to
processes:

 P1 P2 P3 P4

R1
Q1=9

3 0 1 2

R2
Q2=7

2 4 0 1

R3
Q3=4

0 0 1 2

processes

resources

Deadlock Avoidance: Banker’s

Algorithm

 Safe state:

 state where we
can order the
remaining
processes so they
can run to
completion without
a deadlock.

A safe state test:
// Let L be the list of unfinished processes

while L is non-empty do

 if can find process P in L whose
outstanding requests can be satisfied
using available resources then {

 delete P from L

 add all resources held by P

 to the pool of available

 resources

 } else return(unsafe)
return (safe)

 This is only a sufficient - not a
necessary, condition for safety!

Deadlock Avoidance: Banker’s

Algorithm

 Request granting algorithm req(P,Qty,Rsrc):

 if Qty+allocated(P,Rsrc) > limit(Rsrc) then

 abort P;

 tentatively allocate request;

 if safe(resulting state) then

 grant request;

 else

 suspend P on Rsrc;

Deadlock Detection

Operating system checks for deadlock

When:

 Check at resource request time

oearly detection of deadlock

o frequent checks consume processor time

 Check periodically

odeadlocks stay undetected between checks

Strategies once Deadlock

Detected

Abort all deadlocked processes

Back up each deadlocked process to some
previously defined checkpoint, and restart
all processes
 original deadlock may occur once again

Successively abort deadlocked processes
until deadlock no longer exists

Successively preempt resources until
deadlock no longer exists (if resource
preemption is feasible and cost-effective)

Selection Criteria

Deadlocked Processes

Least amount of processor time consumed
so far (so the least amount of work will be wasted)

Least number of lines of output produced
so far (so cheaper to preempt file resources)

Most estimated time remaining (presumably,

this process is most deadlock-prone)

Least total resources allocated so far

Lowest priority

Deadlock Detection Algorithms

Single instance of each resource
 draw a resource request graph as follows:

oarc Proc --> Res exists if Proc requested Res

oarc Proc <-- Res exists if Proc holds Res

 The system has a deadlock iff the resource
request graph has a cycle
oWhy?
oMultiple resource instances:

• is the cycle condition necessary for the existence of a
deadlock?

• Is it sufficient?

Deadlock Detection Algorithms

Multiple resource instances

similar to the safety test:

// Let L be the list of all unfinished processes
while nonempty(L) do{
 if found a process P in L all of whose requests
 can be satisfied with available resources do {
 delete P from L;
 add all resources held by P to the pool
 of available resources;
 } else return(deadlock);
}
return(nodedlock);

 The algorithm ensures that if none of the processes

issues additional resource requests, then there is no
deadlock.

Dining Philosophers

Problem

Illustrates:

 -deadlocks
 -starvation

Dining Philosophers Solutions

With starvation & deadlock:

 repeat

 <think>

 wait(fork[I]);

 wait(fork[(I+1)mod 5]);

 <eat>

 signal(fork[I]);

 signal(fork[(I+1)mod 5]);

 forever

 Give a scenario for deadlock.

 Give a scenario for starvation.

No starvation or deadlock:

 repeat

 <think>

 wait(room);

 wait(fork[I]);

 wait(fork[(I+1)mod 5]);

 <eat>

 signal(fork[(I+1)mod 5]);

 signal(fork[I]);

 signal(room);

 forever

// 5 philosophers
// & forks

semaphore fork[4];

// at most 4 out of 5

// philosophers eat simultaneously

semaphore room = 4;

Interprocess Concurrency

Mechanisms

Pipes
 buffer allowing two processes to communicate
 queue written by one process and read by

another
 operating system enforces mutual exclusion for

writing and reading the pipe
 write requests are immediately executed if there

is room in the pipe, otherwise the process is
blocked

 read request is blocked if attempts to read more
bytes than currently available in the pipe

Inter-process Concurrency

Mechanisms

Messages
 block of text with accompanying type

 receiver can either retrieve messages in FIFO
order or by type

 process suspends when trying to send a
message to a queue that is full

 process suspends when reading from an
empty queue

 process trying to read a certain type of
messages fails, not suspended

Inter-process Concurrency

Mechanisms

Shared memory

 common block of virtual memory shared by
multiple processes

 fast form of interprocess communication

 mutual exclusion must be provided by the
processes, not the operating system

Inter-process Concurrency

Mechanisms

Semaphores
 wait and signal and much more

 operating system handles all these requests

Signals (UNIX-derived OS only)

 software mechanism that informs a process
of the occurrence of asynchronous events

 e.g. interrupt process, quit process, kill process,

floating point exception, ...

Solaris Thread

Synchronization Primitives

Mutual exclusion lock

 prevents more than one thread from proceeding
when the lock is acquired

 Semaphores

 used for incrementing and decrementing

 Unlike the general synchronization primitives (which operate on
resources shared by all threads of a process), these synchronization
resources aren’t shared by threads in the same process!

Solaris Thread

Synchronization Primitives

Multiple readers, single writer locks

 multiple threads have simultaneous read-only
access

 only one thread has access for writing

Condition variables

 used to wait until a particular condition is true

Windows NT Concurrency

Mechanisms

 Synchronization Objects
 process
 thread
 file
 console input
 file change notification
 mutex
 semaphore (counting)
 event
 waitable timer

 Each synchronization
object can be in either
signaled or un-signaled
state

 Un-signaled state:
thread can be suspended

on synchronization objects
that are un-signaled

 Signaled state:
when object is in signaled

state, all threads waiting
on this object wake up

