
Concurrency: Deadlock

and Starvation

Chapter 6

Deadlock

Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

Involve conflicting needs for resources by
two or more processes

Example of Deadlock

Progress

of Q

Release

A

Release

B

Get A

Get B

Get A Get B Release A Release B

Progress

of P

A

Required

B Required

A

Required

B

Required

deadlock

inevitable

1 2

3

4

5

6

P and Q

want B

P and Q

want A

Example of No Deadlock

Progress

of Q

Release

A

Release

B

Get A

Get B

Get A Release A Get B Release B

Progress

of P

A

Required

B Required

A

Required

B

Required

1 2 3

4

5

6

P and Q

want A

P and Q

want B

Reusable, Nonsharable

Resources

Used by one process at a time and not
depleted by that use

Processes obtain resources that they later
release for reuse by other processes

Processor time, I/O channels, main and
secondary memory, files, databases, and
semaphores

Deadlock occurs if each process holds one
resource and requests the other

Example of Deadlock

Space is available for allocation of 200K
bytes, and the following sequence of
events occur

Deadlock occurs if both processes
progress to their second request

P1

. . .

. . .
Request 80K bytes;

Request 60K bytes;

P2

. . .

. . .
Request 70K bytes;

Request 80K bytes;

Consumable Resources

Created (produced) and destroyed
(consumed) by a process

Interrupts, signals, messages, and
information in I/O buffers

Deadlock may occur if a Receive message
is blocking

May take a rare combination of events to
cause deadlock

Example of Deadlock

Deadlock occurs if receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2);

P2

. . .

. . .
Receive(P1);

Send(P1);

Conditions for Deadlock

Mutual exclusion
 only one process may use a resource at a

time

Hold-and-wait
 a process is allowed to hold allocated

resources while awaiting assignment of
others

No preemption
 no resource can be forcibly removed from a

process holding it

Conditions for Deadlock

Circular wait

 A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

 Necessary for deadlock to happen

 Sufficient under certain circumstances

Other conditions are necessary but not sufficient
for deadlock

Circular Wait

Resource

B

Resource

A

Process

P1

Process

P2

Deadlock Prevention

Disallowing “Mutual Exclusion”
 cannot be achieved, due to the nature of non-

sharable resources

Disallowing “Hold-and-Wait”
Require that a process request all its

required resources at once
 Block the process until all requests can be

granted simultaneously

 Problem:
o process can be held up for a long time waiting for all

its requests
o starvation is possible

Deadlock Prevention

Disallowing “No Preemption”
 If a process is denied a further request, the

process must release the original resources

 If a process cannot obtain a resource, the
process may have to release the resources it
already holds. Process must have capability
to restore these resources to current state.

 Practical only only when the state can be
easily saved and restored later, such as the
CPU or main memory.

Deadlock Prevention

Disallowing “Circular Wait”

 define a linear ordering for resources

 once a resource is obtained, only those
resources that have id number higher can be
obtained (if a process requests a resource with lower id

number than what it has obtained so far, that request is denied)

 Problem: may deny resources for no reason
other than the “wrong” id number. Low
resource utilization.

Deadlock Avoidance

Do not start a process if its demands
might lead to deadlock

Do not grant an incremental resource
request to a process if this allocation
might lead to deadlock

Not necessary to preempt and rollback
processes

Deadlock Avoidance

Maximum resource requirement must be
stated in advance

Processes under consideration must be
independent; no synchronization
requirements

There must be a fixed number of
resources to allocate

No process may exit while holding
resources

Deadlock Avoidance: The Banker’s

Algorithm

 Assume: M resources R1, …, RM

o system has several identical copies of each
resource: Q1, …, QM (maximums/resource)

oa process can ask for several copies of each
resource type; doesn’t care which specific copies
are given as long as they are of the requested
type

 State: a particular allocation of resources to
processes:

 P1 P2 P3 P4

R1
Q1=9

3 0 1 2

R2
Q2=7

2 4 0 1

R3
Q3=4

0 0 1 2

processes

resources

Deadlock Avoidance: Banker’s

Algorithm

 Safe state:

 state where we
can order the
remaining
processes so they
can run to
completion without
a deadlock.

A safe state test:
// Let L be the list of unfinished processes

while L is non-empty do

 if can find process P in L whose
outstanding requests can be satisfied
using available resources then {

 delete P from L

 add all resources held by P

 to the pool of available

 resources

 } else return(unsafe)
return (safe)

 This is only a sufficient - not a
necessary, condition for safety!

Deadlock Avoidance: Banker’s

Algorithm

 Request granting algorithm req(P,Qty,Rsrc):

 if Qty+allocated(P,Rsrc) > limit(Rsrc) then

 abort P;

 tentatively allocate request;

 if safe(resulting state) then

 grant request;

 else

 suspend P on Rsrc;

Deadlock Detection

Operating system checks for deadlock

When:

 Check at resource request time

oearly detection of deadlock

o frequent checks consume processor time

 Check periodically

odeadlocks stay undetected between checks

Strategies once Deadlock

Detected

Abort all deadlocked processes

Back up each deadlocked process to some
previously defined checkpoint, and restart
all processes
 original deadlock may occur once again

Successively abort deadlocked processes
until deadlock no longer exists

Successively preempt resources until
deadlock no longer exists (if resource
preemption is feasible and cost-effective)

Selection Criteria

Deadlocked Processes

Least amount of processor time consumed
so far (so the least amount of work will be wasted)

Least number of lines of output produced
so far (so cheaper to preempt file resources)

Most estimated time remaining (presumably,

this process is most deadlock-prone)

Least total resources allocated so far

Lowest priority

Deadlock Detection Algorithms

Single instance of each resource
 draw a resource request graph as follows:

oarc Proc --> Res exists if Proc requested Res

oarc Proc <-- Res exists if Proc holds Res

 The system has a deadlock iff the resource
request graph has a cycle
oWhy?
oMultiple resource instances:

• is the cycle condition necessary for the existence of a
deadlock?

• Is it sufficient?

Deadlock Detection Algorithms

Multiple resource instances

similar to the safety test:

// Let L be the list of all unfinished processes
while nonempty(L) do{
 if found a process P in L all of whose requests
 can be satisfied with available resources do {
 delete P from L;
 add all resources held by P to the pool
 of available resources;
 } else return(deadlock);
}
return(nodedlock);

 The algorithm ensures that if none of the processes

issues additional resource requests, then there is no
deadlock.

Dining Philosophers

Problem

Illustrates:

 -deadlocks
 -starvation

Dining Philosophers Solutions

With starvation & deadlock:

 repeat

 <think>

 wait(fork[I]);

 wait(fork[(I+1)mod 5]);

 <eat>

 signal(fork[I]);

 signal(fork[(I+1)mod 5]);

 forever

 Give a scenario for deadlock.

 Give a scenario for starvation.

No starvation or deadlock:

 repeat

 <think>

 wait(room);

 wait(fork[I]);

 wait(fork[(I+1)mod 5]);

 <eat>

 signal(fork[(I+1)mod 5]);

 signal(fork[I]);

 signal(room);

 forever

// 5 philosophers
// & forks

semaphore fork[4];

// at most 4 out of 5

// philosophers eat simultaneously

semaphore room = 4;

Interprocess Concurrency

Mechanisms

Pipes
 buffer allowing two processes to communicate
 queue written by one process and read by

another
 operating system enforces mutual exclusion for

writing and reading the pipe
 write requests are immediately executed if there

is room in the pipe, otherwise the process is
blocked

 read request is blocked if attempts to read more
bytes than currently available in the pipe

Inter-process Concurrency

Mechanisms

Messages
 block of text with accompanying type

 receiver can either retrieve messages in FIFO
order or by type

 process suspends when trying to send a
message to a queue that is full

 process suspends when reading from an
empty queue

 process trying to read a certain type of
messages fails, not suspended

Inter-process Concurrency

Mechanisms

Shared memory

 common block of virtual memory shared by
multiple processes

 fast form of interprocess communication

 mutual exclusion must be provided by the
processes, not the operating system

Inter-process Concurrency

Mechanisms

Semaphores
 wait and signal and much more

 operating system handles all these requests

Signals (UNIX-derived OS only)

 software mechanism that informs a process
of the occurrence of asynchronous events

 e.g. interrupt process, quit process, kill process,

floating point exception, ...

Solaris Thread

Synchronization Primitives

Mutual exclusion lock

 prevents more than one thread from proceeding
when the lock is acquired

 Semaphores

 used for incrementing and decrementing

 Unlike the general synchronization primitives (which operate on
resources shared by all threads of a process), these synchronization
resources aren’t shared by threads in the same process!

Solaris Thread

Synchronization Primitives

Multiple readers, single writer locks

 multiple threads have simultaneous read-only
access

 only one thread has access for writing

Condition variables

 used to wait until a particular condition is true

Windows NT Concurrency

Mechanisms

 Synchronization Objects
 process
 thread
 file
 console input
 file change notification
 mutex
 semaphore (counting)
 event
 waitable timer

 Each synchronization
object can be in either
signaled or un-signaled
state

 Un-signaled state:
thread can be suspended

on synchronization objects
that are un-signaled

 Signaled state:
when object is in signaled

state, all threads waiting
on this object wake up

