
Concurrency: Deadlock 

and Starvation 

Chapter 6 



Deadlock 

Permanent blocking of a set of processes 
that either compete for system resources 
or communicate with each other 

Involve conflicting needs for resources by 
two or more processes 
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Example of No Deadlock 
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Reusable, Nonsharable 

Resources 

Used by one process at a time and not 
depleted by that use 

Processes obtain resources that they later 
release for reuse by other processes 

Processor time, I/O channels, main and 
secondary memory, files, databases, and 
semaphores 

Deadlock occurs if each process holds one 
resource and requests the other 



Example of Deadlock 

Space is available for allocation of 200K 
bytes, and the following sequence of 
events occur 

 

 

 

Deadlock occurs if both processes 
progress to their second request 

P1 

. . . 

. . . 
Request 80K bytes; 

Request 60K bytes; 

P2 

. . . 

. . . 
Request 70K bytes; 

Request 80K bytes; 



Consumable Resources 

Created (produced) and destroyed 
(consumed) by a process 

Interrupts, signals, messages, and 
information in I/O buffers 

Deadlock may occur if a Receive message 
is blocking 

May take a rare combination of events to 
cause deadlock 



Example of Deadlock 

Deadlock occurs if receive is blocking 

P1 

. . . 

. . . 
Receive(P2); 

Send(P2); 

P2 

. . . 

. . . 
Receive(P1); 

Send(P1); 



Conditions for Deadlock 

Mutual exclusion 
 only one process may use a resource at a 

time 

Hold-and-wait 
 a process is allowed to hold allocated 

resources while awaiting assignment of 
others 

No preemption 
 no resource can be forcibly removed from a 

process holding it 



Conditions for Deadlock 

Circular wait 

 A closed chain of processes exists, such that 
each process holds at least one resource 
needed by the next process in the chain 

 Necessary for deadlock to happen 

 Sufficient under certain circumstances 

Other conditions are necessary but not sufficient 
for deadlock 
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Deadlock Prevention 

Disallowing “Mutual Exclusion” 
 cannot be achieved, due to the nature of non-

sharable resources 

Disallowing “Hold-and-Wait”  
Require that a process request all its 

required resources at once 
   Block the process until all requests can be 

granted simultaneously 

  Problem:  
o process can be held up for a long time waiting for all 

its requests 
o starvation is possible 



Deadlock Prevention 

Disallowing “No Preemption” 
 If a process is denied a further request, the 

process must release the original resources 

 If a process cannot obtain a resource, the 
process may have to release the resources it 
already holds.  Process must have capability 
to restore these resources to current state. 

  Practical only only when the state can be 
easily saved and restored later, such as the 
CPU or main memory. 



Deadlock Prevention 

Disallowing “Circular Wait” 

 define a linear ordering for resources 

 once a resource is obtained, only those 
resources that have id number higher can be 
obtained (if a process requests a resource with lower id 

number than what it has obtained so far, that request is denied) 

  Problem: may deny resources for no reason 
other than the “wrong” id number. Low 
resource utilization. 



Deadlock Avoidance 

Do not start a process if its demands 
might lead to deadlock 

Do not grant an incremental resource 
request to a process if this allocation 
might  lead to deadlock 

Not necessary to preempt and rollback 
processes 



Deadlock Avoidance 

Maximum resource requirement must be 
stated in advance 

Processes under consideration must be 
independent; no synchronization 
requirements 

There must be a fixed number of 
resources to allocate 

No process may exit while holding 
resources 



Deadlock Avoidance: The Banker’s 

Algorithm 

 Assume: M resources R1, …, RM 

o system has several identical copies of each 
resource: Q1, …, QM   (maximums/resource) 

oa process can ask for several copies of each 
resource type; doesn’t care which specific copies 
are given as long as they are of the requested 
type 

 State: a particular allocation of resources to 
processes: 

 P1 P2 P3 P4 

R1 
Q1=9 

3 0 1 2 

R2 
Q2=7 

2 4 0 1 

R3 
Q3=4 

0 0 1 2 
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resources 



Deadlock Avoidance: Banker’s 

Algorithm 

 Safe state:  

 state where we 
can order the 
remaining 
processes so they 
can run to 
completion without 
a deadlock. 

A safe state test: 
// Let L be the list of unfinished processes 

while L is non-empty do 

  if can find process P  in L whose 
outstanding requests can be satisfied 
using available resources  then { 

      delete P from L 

           add all resources held by P 

              to the pool of available  

      resources 

  }  else return(unsafe) 
return (safe) 

 

 This is only a sufficient - not a 
necessary, condition for safety! 



Deadlock Avoidance: Banker’s 

Algorithm 

 Request granting algorithm  req(P,Qty,Rsrc): 

 

 if Qty+allocated(P,Rsrc) > limit(Rsrc) then 

     abort P; 

  tentatively allocate request; 

  if safe(resulting state) then 

  grant request; 

  else 

  suspend P on Rsrc; 



Deadlock Detection 

Operating system checks for deadlock 

When: 

 Check at resource request time 

oearly detection of deadlock 

o frequent checks consume processor time 

 Check periodically 

odeadlocks stay undetected between checks 



Strategies once Deadlock 

Detected 

Abort all deadlocked processes 

Back up each deadlocked process to some 
previously defined checkpoint, and restart 
all processes 
 original deadlock may occur once again 

Successively abort deadlocked processes 
until deadlock no longer exists 

Successively preempt resources until 
deadlock no longer exists (if resource 
preemption is feasible and cost-effective) 



Selection Criteria 

Deadlocked Processes 

Least amount of processor time consumed 
so far (so the least amount of work will be wasted) 

Least number of lines of output produced 
so far (so cheaper to preempt file resources) 

Most estimated time remaining (presumably, 

this process is most deadlock-prone) 

Least total resources allocated so far 

Lowest priority 



Deadlock Detection Algorithms 

Single instance  of each resource 
 draw a resource request graph  as follows: 

oarc Proc --> Res exists if Proc requested Res 

oarc Proc <-- Res exists if Proc holds Res 

 The system has a deadlock iff the resource 
request graph has a cycle 
oWhy? 
oMultiple resource instances: 

• is the cycle condition necessary for the existence of a 
deadlock? 

• Is it sufficient? 



Deadlock Detection Algorithms 

Multiple resource instances 

similar to the safety test: 
 
// Let L be the list of all unfinished processes 
while nonempty(L) do{ 
 if found a process P in L all of whose requests 
  can be satisfied with available resources do { 
  delete P from L; 
  add all resources held by P to the pool 
   of available resources; 
  } else return(deadlock); 
} 
return(nodedlock); 

 
 The algorithm ensures that if none of the processes 

issues additional resource requests, then there is no 
deadlock. 



Dining Philosophers 

Problem 

Illustrates: 

 -deadlocks 
 -starvation 



Dining Philosophers Solutions 

With starvation & deadlock: 
 

 repeat 

  <think> 

  wait(fork[I]); 

  wait(fork[(I+1)mod 5]); 

 <eat>  

  signal(fork[I]); 

  signal(fork[(I+1)mod 5]); 

 forever 

 

 Give a scenario for deadlock.   

 Give a scenario for starvation. 

No starvation or deadlock: 
 

 repeat 

  <think> 

  wait(room); 

  wait(fork[I]); 

  wait(fork[(I+1)mod 5]); 

 <eat>  

  signal(fork[(I+1)mod 5]); 

  signal(fork[I]); 

  signal(room); 

 forever 

 

// 5 philosophers 
// & forks 

semaphore  fork[4]; 

// at most 4 out of 5  

//  philosophers eat simultaneously 

semaphore  room = 4; 



Interprocess Concurrency 

Mechanisms 

Pipes 
 buffer allowing two processes to communicate 
 queue written by one process and read by 

another 
 operating system enforces mutual exclusion for 

writing and reading the pipe 
 write requests are immediately executed if there 

is room in the pipe, otherwise the process is 
blocked 

 read request is blocked if attempts to read more 
bytes than currently available in the pipe 



Inter-process Concurrency 

Mechanisms 

Messages 
 block of text with accompanying type 

 receiver can either retrieve messages in FIFO 
order or by type 

 process suspends when trying to send a 
message to a queue that is full 

 process suspends when reading from an 
empty queue 

 process trying to read a certain type of 
messages fails, not suspended 



Inter-process Concurrency 

Mechanisms 

Shared memory 

 common block of virtual memory shared by 
multiple processes 

 fast form of interprocess communication 

 mutual exclusion must be provided by the 
processes, not the operating system 



Inter-process Concurrency 

Mechanisms 

Semaphores 
 wait and signal and much more 

 operating system handles all these requests 

Signals (UNIX-derived OS only) 

 software mechanism that informs a process 
of the occurrence of asynchronous events 

 e.g. interrupt process, quit process, kill process, 

floating point exception, ... 



Solaris Thread 

Synchronization Primitives 

Mutual exclusion lock 

 prevents more than one thread from proceeding 
when the lock is acquired 

 Semaphores 

 used for incrementing and decrementing 

 

  Unlike the general synchronization primitives (which operate on 
resources shared by all threads of a process), these synchronization 
resources aren’t shared by threads in the same process! 



Solaris Thread 

Synchronization Primitives 

Multiple readers, single writer locks 

 multiple threads have simultaneous read-only 
access 

 only one thread has access for writing 

Condition variables 

 used to wait until a particular condition is true 



Windows NT Concurrency 

Mechanisms 

 Synchronization Objects 
 process 
 thread 
 file 
 console input 
 file change notification 
 mutex 
 semaphore (counting) 
 event 
 waitable timer 

 Each synchronization 
object can be in either 
signaled  or un-signaled 
state 

 Un-signaled state: 
thread can be suspended 

on synchronization objects 
that are un-signaled 

 Signaled state: 
when object is in signaled 

state, all threads waiting 
on this object wake up  


