
Concurrency: Mutual

Exclusion and

Synchronization

Chapter 5

Concurrency

Communication among processes

Sharing resources

Synchronization of multiple processes

Allocation of processor time

Difficulties with

Concurrency

Sharing global resources

Management of allocation of resources

Programming errors difficult to locate

A Simple Example

Process 1 Process 2

 input(in, keyboard); ...

 ... input(in,keyboard);

 out = in; ...

 ... out = in;

 output(out, display) ...

 ... output(out, display);

 What is the problem here?

Operating System

Concerns

 Keep track of active processes

Allocate and deallocate resources
 processor time

 memory

 files

 I/O devices

 Protect data and resources

 Result of process execution must be independent of
the speed of execution and timings of events, since
other processes share the processor time

Process Interaction Types

Processes completely unaware of each
other

Processes indirectly aware of each other

Process directly aware of each other

Competition Among

Processes for Resources

 Execution of one process may affect the
behavior of competing processes

 If two processes wish to access the same non-
sharable resource, one process will be allocated
the resource and the other will have to wait

Non-sharable means: can’t be used
simultaneously by different processes

 The blocked process might never get access to the

resource and never terminate

Control Problems

Mutual Exclusion

 achieved using critical sections
oonly one program at a time is allowed in its critical

section

oexample only one process at a time is allowed to
send command to the printer

Deadlock

Starvation

Cooperation Among Processes by

Sharing Non-sharable Resources

Processes use and update shared data
such as shared variables, files, and data
bases (Note: as resources, these items
are treated as non-sharable!)

Writing must be mutually exclusive

Critical sections are used to provide
mutual exclusion on data

Cooperation Among Processes by

Communication

Communication provides a way to
synchronize, or coordinate, the various
activities

Possible to have deadlock
 each process might be waiting for a message

from the other process

Possible to have starvation
 two processes sending message to each other

while another process waits for a message

Requirements for Mutual

Exclusion

Only one process at a time is allowed in
the critical section for a resource

If a process halts in its critical section, it
must not lock out other processed forever

A process requiring the critical section
must not be delayed indefinitely---no
deadlock or starvation

Requirements for Mutual

Exclusion

A process must not be delayed access to a
critical section when there is no other
process using it

No assumptions are made about relative
process speeds or number of processes

A process remains inside its critical section
for a finite amount of time only

Busy-Waiting

Example:

 Igloo has small entrance so only one process at
a time may enter to check a value written on
the blackboard. If the value on the blackboard
is the same as the process, the process may
proceed to the critical section.

 If the value on the blackboard is not the value
of the process, the process leaves the igloo to
wait. From time to time, the process reenters
the igloo to check the blackboard.

Igloo in Formal Terms

Process 0
. . .

while turn != 0 do { }

<critical section>

turn = 1;

...

Process 1
. . .

while turn != 1 do { }

<critical section>

turn = 0;

...

 binary turn; // binary type is enum{0,1}

Busy-Waiting Problems

Processes must strictly alternate in their
use of their critical section

If one process fails, the other process is
permanently blocked

Each process should have its own key to
the critical section so if one process is
eliminated, the other can still access its
critical section

Busy-Waiting: Second

Attempt

 Each process can examine the other’s status but
cannot alter it

When a process wants to enter the critical
section is checks the other processes first

 If no other process is in the critical section, it
sets its status for the critical section

Busy Waiting: Second Attempt

Process 0
. . .
while flag[1] do { }
flag[0] = true;

<critical section>

flag[0] = false;

...

Process 1
. . .
while flag[0] do { }
flag[1] = true

<critical section>

flag[1] = false;

...

 boolean flag[2]; // initially all false

 This method does not guarantee mutual exclusion:
 Each process can check the flags and then
 proceed to enter the critical section at the same time

Busy-Waiting Third

Attempt

Set flag to enter critical section before
checking other processes

If another process is in the critical section
when the flag is set, the process is
blocked until the other process releases
the critical section

Busy Waiting: Third Attempt

Process 0
. . .
flag[0] = true;

while flag[1] do { }
 <critical section>

flag[0] = false;

...

Process 1
. . .
flag[1] = true

while flag[0] do { }
<critical section>

flag[1] = false;

...

 boolean flag[2];

(initially all false)

 Deadlock is possible
 when two process set their flags to enter the critical section.
 Now each process must wait for the other process
 to release the critical section

Busy-Waiting Fourth

Attempt

A process sets its flag to true to indicate
the desire to enter its critical section, but
is prepared to reset the flag

Other processes are checked. If they are
in the critical region, the flag is reset back
to false and later is set to indicate the
desire to enter the critical region.

This is repeated until the process can
enter the critical region.

Busy Waiting: Fourth Attempt

Process 0
. . .
flag[0] = true;

while flag[1] do {
 flag[0]= false;

 <random delay>

 flag[0]=true;

 }
<critical section>

flag[0] = false;

...

Process 1
. . .
flag[1] = true

while flag[0] do {
 flag[1]= false;

 <random delay>

 flag[1]=true;

 }
<critical section>

flag[1] = false;

...

 It is possible for each process to set their flag,

 check other processes, and reset their flags.

 Neither process waits for the other to finish -- it is not a deadlock.

 It is a livelock ! Still, undesirable

Busy-Waiting: Correct

Solution

Each process gets a turn at the critical
section

If a process wants the critical section, it
sets its flag and may have to wait for its
turn

Must combine the turn and flag
variables

 Read about Decker’s and Peterson’s
algorithms (which provide the correct solutions)
in the textbook!

Mutual Exclusion -

Interrupt Disabling

 A process runs until it invokes an operating-
system service or until it is interrupted

Disabling interrupts guarantees mutual
exclusion

 Problems:
 Limits the processor in its ability to interleave

programs

 Efficiency of execution could be noticeably degraded

 Multiprocessing:

odisabling interrupts on just one processor will not
guarantee mutual exclusion (Why?)

Mutual Exclusion Machine

Instructions

One special machine instruction is used to
update a memory location so other
instructions cannot interfere

This can be used for single and multiple
processors

Can be used for multiple critical sections

Test and Set Machine Instruction

Test and Set:

bool testNset (int i)

{

 if i == 0 then {

 i = 1;

 return(true)

 }

 return (false)

}

This must be done

 atomically !

Each process:

int mutex = 0; // shared var

repeat {} until testNset(mutex)

<critical section>

mutex = 0;

<rest of the process>

A process can enter critical section only

 when mutex becomes 0 and that

 process gets to execute testNset

(Only one process can do that!)

Mutual Exclusion Machine

Instructions

Disadvantages
 Other processes must use busy-waiting while trying

to execute test-and-set

 Starvation is possible: when a process leaves a
critical section and more than one process is waiting,
the next processor to execute test-and-set is chosen
randomly by hardware

 Deadlock is possible: If a low priority process P1 is in
the critical region and a higher priority process P2
needs CPU, P2 will obtain the processor. If P2 now
wants to enter the critical section, it’ll be blocked
because P1 is still in its critical region

Semaphores

Special variable called a semaphore is
used for signaling

If a process is waiting for a signal, it is
suspended until that signal is sent

wait and signal operations cannot be

interrupted

Queue is used to hold processes waiting
on the semaphore

Semaphores

General semaphore:
// Let P denote current process
struct{ int count,

 queue procqueue} s
wait(s):

 s.count--;

 if (s.count < 0){

 <put P in s.procqueue>

 <block P>

 }

signal(s):

 s.count++;

 if (s.count =< 0){

 <remove P from s.procqueue>

 <put P in ready queue>

 }

Binary semaphore:

struct{ binary value,
 queue procqueue} s

wait(s):
if (s.value == 1)

 s.value=0;

else {

 <put P in s.procqueue>

 <block P>

 }

signal(s):
if (!empty(s.procqueue)){
 <remove P from s.procqueue>

 <put P in ready queue>

}

s.value=1

Use of Binary Semaphores

Each process:

 binary semaphore s = 1;

 repeat

 wait(s);

 <critical section>

 signal(s);

 <rest>

 forever

Implementing Semaphores

Using Test and Set

wait(s):

 repeat {}

 until testNset(s.flag);

 s.count--;

 if (s.count<0) {

 <put current process

 in s.procqueue>

 s.flag=0

 <block this process>

 }

 //enable other testNset ops

 if (s.flag != 0) s.flag=0

signal(s):

 repeat {}

 until testNset(s.flag);

 s.count++;

 if (s.count=<0) {

 <remove some process P

 from s.procqueue>

 s.flag=0

 <place P in ready queue>

 }

 //enable other testNset ops

 if (s.flag != 0) s.flag=0

Why is it OK to busy-loop?

Implementing Semaphores

Using Interrupts

Wait(s):
 // Let P be current process

 inhibit interrupts;

 s.count--;

 if s.count<0 {

 <put P in s.procqueue>

 allow interrupts

 <block P>

 }

allow interrupts;

Signal(s):

 inhibit interrupts;

 s.count++;

 if s.count=<0 {

 <remove some process P

 from s.procqueue>

 allow interrupts

 <place P in ready queue>

 }

 allow interrupts;

*Should really disable interrupts on all processors

Producer/Consumer Problem
(binary & general semaphores)

One or more producers are generating items
and place them in a buffer

 A single consumer is taking items out of the
buffer, one at time

Only one producer or consumer can access the
buffer at any one time

 Two semaphores are used:
 one represents the # of items in the buffer (to guard against

over/under-flow)

 one signals that it is all right to use the buffer (to ensure mutual
exclusion when producer & consumers access the buffer)

Producer & Consumer Functions

producer:

repeat

 <produce item v>

 in++;

 buffer[in] = v;

forever;

consumer:

repeat

 while in <= out do {};

 w = buffer[out];

 out++;

 <consume item w>

forever;

Parbegin

 producer;

 consumer;

parend

Main program:

Infinite Buffer

b[2] b[3] b[4]

out in

b[1] b[5]

Note: shaded area indicates the portion of the buffer that is occupied

Producer / Consumer Synchronization

With Infinite Buffer

producer:

repeat

 <produce item v>

 wait(mutex);

 in++;

 buffer[in] = v;

 signal(mutex);

 signal(numOfItems);

forever;

consumer:

repeat

 wait(numOfItems);

 wait(mutex);

 w = buffer[out];

 out++;

 signal(mutex);

 <consume item w>

forever;

binary semaphore mutex; int in, out = 0

semaphore numOfItems

Producer & Consumer with Circular

Buffer

Producer:

repeat
 <produce item v>

 while(in+1 mod n==out)do{};

 buffer[in] = v;

 in =(in+1)mod n;

forever;

Consumer:

repeat
 while (in==out)do {};

 w = buffer[out];

 out = (out+1) mod n;

 <consume item w>

forever;

 To synchronize, we need to sprinkle this with semaphores.
 Solution is in the textbook.

Parbegin

 producer; … producer;

 consumer; … consumer;

parend

Main program:
One cell in circular

buffer always stays

unused

The Barbershop

Entrance

Standing

room

area
Sofa

Barber chairs

Cashier

Exit

3 barbers

1 cashier

4 seats on sofa

20 standing places

Customer Process

semaphore standing = 20;

semaphore sofa = 4;

semaphore barbChair = 3;

binary semaphore

 custReady = 0,

 barbDone = 0,

 leaveChair = 0,

 payment = 0,

 receipt = 0;

Customer:

 wait(standing);

 <enter shop>

 wait(sofa);

 <sit on sofa>

 signal(standing);

 wait(barbChair);

 <get up from sofa>

 signal(sofa);

 <sit in barber chair>

 signal(custReady);

 wait(barbDone);

 <leave barber chair>

 signal(leaveChair);

 signal(payment);

 <pay>

 wait(receipt);

 <exit shop>

Barber & Cashier

Barber:
 wait(custReady);

 <cut hair>

 signal(barbDone);

 wait(leaveChair);

 signal(barbChair);

Cashier:

 wait(payment);

 <accept pay>

 signal(receipt);

Main program:

 parbegin

 customer(1); customer(2); ... ; customer(100);

 barber(1); barber(2); barber(3);

 cashier;

 parend

Monitors

Much higher-level synchronization
constructs than semaphores.

Only one process is allowed to execute
inside the monitor at any given time.
Other processes are suspended while
waiting for the monitor

Processes can be suspended while in the
monitor. In this case, the process
“temporarily leaves” the monitor, so other
processes can enter the monitor.

Monitors

Process enters a monitor by calling one of
the monitor’s procedures

Process leaves a monitor when done or
when suspended on condvar.wait

 (condvar is some conditional variable used
in monitors)

Process can issue condvar.signal
before leaving, which wakes up some
process previously suspended on
condvar (if several waiting, one is
chosen according to some scheduling
strategy)

Producer/Consumer with

Infinite Bufer and Monitors

Consumer:

 take(x);

 <consume x>

Producer:

 <produce x>

 append(x);

take() and append() are procedures defined in the monitor

(shown next)

A Monitor for Infinite Buffers

monitor infiniteBuff;
 int in, out = 0;

 int count = 0;

 char *buffer;

 condition notEmpty;

 append(char *x)

 {

 buffer[in] = x;

 in++; count++;

 notEmpty.signal;

 }

take(char *x)

{

 if (count==0)

 notEmpty.wait;

 x = buffer[out];

 out++;

 count--;

}

end monitor

Conditional variable

Message Passing

Used to:

 Enforce mutual exclusion

 Exchange information

 send (destination, message)

 receive (source, message)

Message Passing -

Synchronization

Sender and receiver may or may not be
blocking (waiting for message). For
instance:

Rendezvous: Blocking send, blocking
receive

 both sender and receiver are blocked until
message is delivered

Message Passing -

Synchronization

Nonblocking send, blocking receive

 sender continues processing such as sending
messages as quickly as possible

 receiver is blocked until the requested
message arrives

Nonblocking send, nonblocking receive

Addressing

Direct addressing
 send-primitive includes a specific identifier of

the destination process: send(dest,msg)

 receive-primitive could know ahead of time
from which process a message is expected:

 receive(sourceProcess123, MsgVar)

 receive-primitive could use source parameter
to return a value when the receive operation
has been performed:
 receive(SourceProcVar, MsgVar)

Addressing

Indirect addressing

 messages are sent to a shared data structure
consisting of queues

 queues are called mailboxes

 one process sends a message to the mailbox
and the other process picks up the message
from the mailbox

 port is a mailbox assigned to a specific
process statically (e.g., ftp port, telnet port)

General Message Format

Message Contents

Header

Body

Message Type

Destination ID

Source ID

Message Length

Control Info.

Readers/Writers Problem

Any number of readers may
simultaneously read the file

Only one writer at a time may write to the
file

When a writer is writing to the file, no
reader may read it

Readers/Writers Using Message Passing

Reader with id = I

send(msg(readrequest,I),

 coordinator);

receive(mailbox(I),Msg);

<read unit>

send(msg(done,I),coordinator);

Writer with id = J

send(msg(writerequest,J),

 coordinator);

receive(mailbox(J), Msg);

<write unit>

send(msg(done,J),coordinator);

 Assume each reader & writer has a unique id and its own mailbox

We also need a coordinating process to receive all these
requests and to decide who gets a reply and when.
(E.g., it can give priority to readers or to writers, etc.)

A Coordinator (writers have priority)
int readerNum = 0;

Boolean writer = NULL;

while (true) {

 case (writer == NULL):

 if (!empty(queue-of-done-msgs-from-readers)) { // Ack readers’ done’s

 receive(done,Id); // Blocking receive

 readerNum--;

 }

 else if (!empty(queue-of-writerequests))

 receive(writerequest,writer); // Now writer != NULL

 else if (!empty(queue-of-readrequests)) {

 receive(readrequest,Id); // Blocking receive

 readerNum++;

 send(Id,ok); // Non-blocking send: grant a reader. No pending writers, done’s

 };

 case (readerNum > 0 && writer != NULL): // If a writer is pending, don’t take new requests

 receive(done,Id);

 readerNum--;

 case (readerNum == 0 && writer != NULL): // Grant the pending writer

 send(writer,ok); // Non-blocking send

 receive(done,writer); // Blocking receive

 writer=NULL;

}

