
Threads, SMP, and

Microkernels

Chapter 4

Processes

Resource ownership - process is allocated
a virtual address space to hold the
process image

Dispatched - process is an execution path
through one or more programs
 execution may be interleaved with other

processes

 These two characteristics are treated independently by
the operating system

Processes

Dispatching is referred to as a thread

Resource of ownership is referred to as a
process or task

Multithreading

Operating system supports multiple threads of
execution within a single process

MS-DOS supports just one process and a single
thread

 Traditional UNIX supports multiple user
processes but only one thread per process

Modern Unix (Solaris,Linux,AIX) and Windows
(2000/XP) support multiple threads per process

Threads and Processes

one process

one thread

multiple processes

one thread per process

one process

multiple threads

multiple processes

multiple threads per process

Process Resources

Have a virtual address space which holds
the process image

Protected access to processors,
communication lines to other processes,
files, and I/O resources (devices,
channels)

Thread Resources

 An execution state (running, ready, etc.)

 Saved thread context when not running

An execution stack

 Per-thread static storage for local variables

 Access to the memory and other resources of
the owner-process

 all threads of a process share the resources/memory
of the owner-process

Single Threaded and

Multithreaded Process Models

Thread
Control
Block

User

Stack

User

Stack

Kernel

Stack

Kernel

Stack

User

Address

Space

User

Address

Space

Process
Control
Block

Process

Control

Block

Thread

Single-Threaded

Process Model

Multithreaded

Process Model

Thread
Control
Block

User

Stack

Kernel

Stack

Thread

Thread
Control
Block

User

Stack

Kernel

Stack

Thread

Benefits of Threads

Takes less time to create a new thread
than a process

Less time to terminate a thread than a
process

Less time to switch between two threads
within the same process

Since threads within the same process
share memory and files, they can
communicate with each other without
invoking the kernel

Suspension and

Termination of Threads

Suspending a process involves suspending
all threads of the process since all threads
share the same address space

Termination of a process, terminates all
threads within the process

User-Level Threads

All thread management is done by the
application

The kernel is not aware of the existence
of threads

Thread switching does not require kernel
mode privileges

Scheduling is application specific

Kernel-Level Threads

Windows 2000/XP, Modern UNIXes are
examples of this approach

Kernel maintains context information for
the process and the threads

Switching between threads requires the
kernel

Combined Approaches for

Threads

Example is Solaris (Sun’s Unix)

Thread creation is done in the user space

Bulk of scheduling and synchronization of
threads is done in the user space

Relationship Between

Threads and Processes

Threads:Process Description Example Systems

1:1 Each thread of execution is a

unique process with its own

address space and resources.

Traditional UNIX

implementations

M:1 A process defines an address

space and dynamic resource

ownership. Multiple threads

may be created and executed

within that process.

Linux, Windows XP,

Solaris, OS/2,

OS/390, MACH

Relationship Between

Threads and Processes

Threads:Process Description Example Systems

1:M A thread may migrate from one

process environment to

another. This allows a thread

to be easily moved among

distinct systems.

Ra (Clouds), Emerald

M:M Combines attributes of M:1

and 1:M cases

TRIX

Categories of Computer

Systems

Single Instruction Single Data (SISD)

 single processor executes a single instruction
stream to operate on data stored in a single
memory

Single Instruction Multiple Data (SIMD)

 one instruction is executed on different sets
of data by the different processors

Categories of Computer

Systems

Multiple Instruction Single Data (MISD)

 a sequence of data is transmitted to a set of
processors, each of which executes a
different instruction sequence. Never
implemented

Multiple Instruction Multiple Data (MIMD)

 a set of processors simultaneously execute
different instruction sequences on different
data sets

Symmetric Multiprocessing

Kernel can execute on any processor

Typically each processor does self-
scheduling from the pool of available
processes or threads

Symmetric Multiprocessor

Organization

Main

Memory

Processor Processor Processor

Cache Cache Cache

I/O

Subsystem

. . .

Microkernel

Small operating system core

Contains only essential operating systems
functions

Many services traditionally included in the
operating system are now external
subsystems
 device drivers

 file systems

 virtual memory manager

 windowing system and security services

Benefits of a Microkernel

Organization

Uniform interface to requests made by a
process

 all services are provided by means of
message passing

Extensibility

 allows the addition of new services

Flexibility

 existing features can be subtracted

Benefits of a Microkernel

Organization

Portability

 changes needed to port the system to a new
processor can be limited to the microkernel -
not to the other services

Reliability

 modular design

 small microkernel can be rigorously tested

Benefits of Microkernel

Organization

Distributed system support

 messages are sent without knowing what the
target machine is

Object-oriented operating system

 components are objects with clearly defined
interfaces that can be interconnected to form
software

Microkernel Design

Primitive memory management

 mapping each virtual page to a physical page
frame

Inter-process communication

I/O and interrupt management

MS Windows Processes

Implemented as objects

An executable process may contain one or
more threads

Both process and thread objects have
built-in synchronization capabilities

Windows Process Object

Attributes

Process ID

Security Descriptor

Base priority

Default processor affinity

Quota limits

Execution time

I/O counters

VM operation counters

Exception/debugging ports

Exit status

Windows Thread Object

Attributes

Thread ID

Thread context

Dynamic priority

Base priority

Thread processor affinity

Thread execution time

Alert status

Suspension count

Impersonation token

Termination port

Thread exit status

Windows Thread States

Resource

Available

Unblock/Resume
Resource Available

Unblock,
Resource

Not Available

Block/

Suspend

Terminate

Switch Pick to

Run

Preempted

Transition Waiting Terminated

Ready

Standby

Running

Not Runnable

Runnable

Solaris

Process includes the user’s address space,
stack, and process control block

User-level threads

Lightweight processes

Kernel threads

Solaris User Level Threads

Stop

Stop
Sleep

Dispatch

Stop

Wakeup Continue

Preempt

Stopped

Runnable

Active

Sleeping

Solaris Lightweight

Processes

Timeslice

or Preempt

Wakeup
Stop

Blocking
System

Call

Wakeup Dispatch

Runnable

Running

Active

Stopped

Continue

Stop

Linux Threads

Linux threads appear as processes to the
kernel: it doesn’t distinguish that much
among them

But processes can share the same process
group ID

 Processes with the same group ID share
resources

oMemory

o files

