File Management

Chapter 12

Files

✓ Used for:

- input to a program
- Program output saved for long-term storage

Terms Used with Files

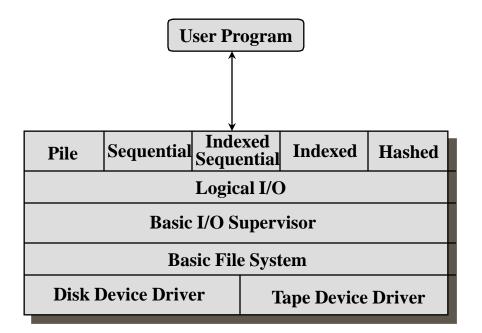
- basic element of data
- contains a single value
- characterized by its length and data type

√ <u>Record</u>

- collection of related fields
- treated as a unit
 - Example: employee record

Terms Used with Files

- collection of similar records
- treated as a single entity
- have unique file names
- may restrict access


✓ <u>Database</u>

- collection of related data
- relationships exist among elements

File Management System

- Controls the way a user of application may access files
- Controls how data are stored (where, memory allocation, recovery techniques, etc.)
- Programmer does not need to develop file management software

File System Software Architecture

Device Drivers

- Lowest level in storage management hierarchy
- Communicates directly with peripheral devices
- Responsible for starting I/O operations on a device
- Processes the completion of an I/O request

Basic File System

- ✓ Physical I/O
- ✓ Deals with exchanging blocks of data
- Concerned with the placement of blocks
 Concerned with buffering blocks in main memory

Basic I/O Supervisor

- Responsible for file I/O initiation and termination (at a higher level than device drivers)
- Maintains control structures
- Concerned with disk access scheduling, to optimize performance
- Part of the operating system

Logical I/O

- Allows users and applications to access records
- Maintains basic data about file
- Knows about <u>access methods:</u>
 - I.e. the various file structures
 - the different ways to store and process data

Functions of File Management

Identify and locate a selected file

- Use a directory to describe the location of all files plus their attributes
- On a shared system do user access control
- Blocking for access to files (to avoid corruption due to simultaneous access)

Allocate files to free blocks

Manage free storage for available blocks

Criteria for File Organization

Rapid access

- needed when accessing a single record
- not needed for batch mode

Ease of update

- file on CD-ROM will not be updated, so this is not a concern
- files on hard disks are frequently updated

Criteria for File Organization

Economy of storage

- should be minimum redundancy in the data
- redundancy (such as indexing) can be used to speed access
- Simple maintenance

Reliability

✓ The <u>*Pile*</u>

- data are collected in the order they arrive
- purpose is to accumulate a data and save it
- records may have different # of fields
- no structure
- record access is by exhaustive search

The Pile:an example

Rec 1						
Rec 2						
Rec 3						
Rec 4	Rec 5					
Rec 6						
Re	Rec 7					

✓ The <u>Sequential</u> File

- fixed format used for records
- records have the same length
- all fields are the same (order and length)
 - hence: field names & lengths are attributes of the file
- one field can be the <u>key</u> field

 uniquely identifies the record
 records can be stored in key sequence

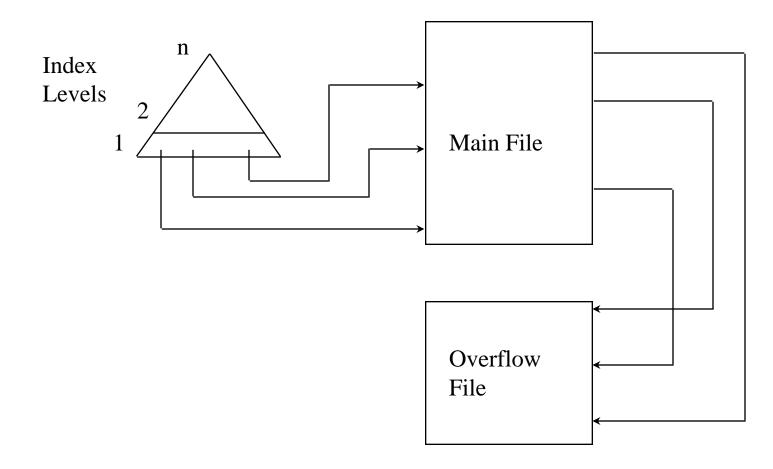
The Sequential File

- new records are placed in a log file or transaction file
- batch update is performed to merge the log file with the master file
- Why such indirection?

The Sequential File

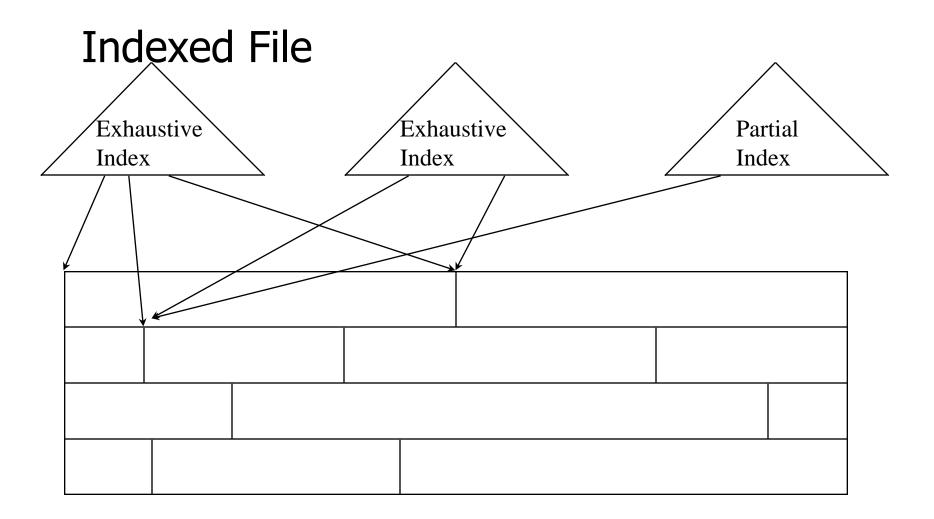
Key Field

√ <u>Indexed Sequential</u> File


- index provides a lookup capability to quickly reach the vicinity of the desired record
 - o contains key field and a pointer to the main file
 - o index files are <u>sorted</u> by the key field value
 - index is searched to find highest key value that is equal or less than the desired key value
 - search continues in the main file at the location indicated by the pointer
 - o main file is also sorted on the key field

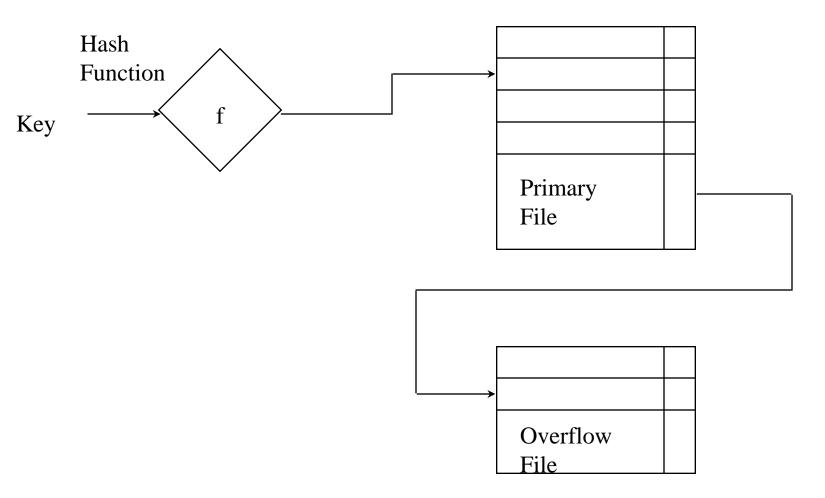
- Comparison of sequential and indexed sequential
 - Example: a file contains 1 million records
 - On average 500,000 accesses are required to find a record in a sequential <u>unsorted</u> file
 - 20 = log₂1,000,000 accesses, if the file is sorted (<u>Why</u>?)
 - If an index contains 50,000 entries (1 entry per 20 records, which fit into a block), it will take on average <u>16 accesses</u> (log₂50,000) to find the key followed by 1 access in the main file. Now on average it is 17 accesses

Indexed Sequential File


- new records are added to an overflow file
- record in main file that precedes it is updated to contain a pointer to the new record
- the overflow is merged with the main file during a batch update
- multiple indexes for the same key field can be set up to increase efficiency

Indexed Sequential File

✓ <u>Indexed</u> File


- uses multiple indexes for different key fields
- may contain an exhaustive index that contains one entry for every record in the main file
- may contain a partial index

The <u>Direct</u>, or <u>Hashed</u>, File

- directly access a block at a known address
- key field required for each record

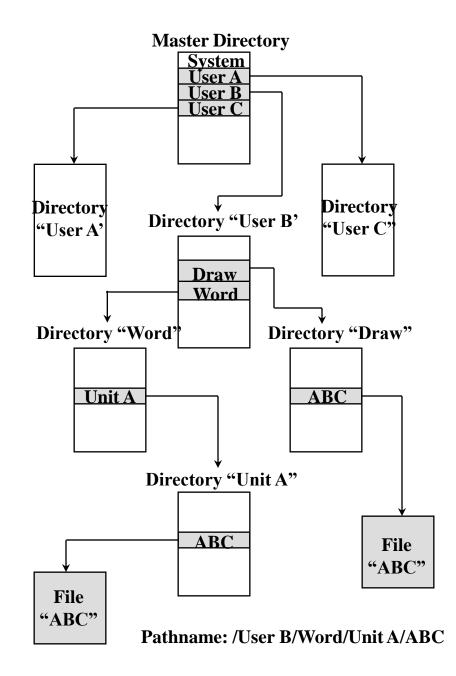
The Direct, or Hashed, File

File Directories

Contains information about files

- attributes
- Iocation
- ownership
- Directory itself is a file manipulated by the operating system
- Provides mapping between file names and the files themselves

Simple Structure for a Directory


- List of entries, one for each file
- Sequential file with the name of the file serving as the key
- Provides no help in organizing the files
- Forces user to be careful not to use the same name for two different files

Two-level Directory Scheme

- One directory for each user and a master directory
- Master directory contains entry for each user
 - provides address and access control information
- Each user directory is a simple list of files for that user
- Still provides no help in structuring collections of files

Hierarchical, or Tree-Structured Directory

- Master directory with user directories underneath it
- Each user directory may have subdirectories and files as entries

Hierarchical, or Tree-Structured Directory

 Files can be located by following a path from the root, or master, directory down various branches

this is the <u>pathname</u> for the file

 Can have several files with the same file name as long as they have unique path names

Hierarchical, or Tree-Structured Directory

Current directory is the working directory
 Files are referenced relative to the working directory

File Sharing

 Way to control access to a particular file
 Users or groups of users are granted certain access rights to a file

Access Rights

✓None

- user may not know of the existence of the file
- user is not allowed to read the user directory that includes the file
- ✓ Knowledge
 - user can only determine that the file exists and who its owner is

Access Rights

Execution

- the user can load and execute a program but cannot copy it
- Reading
 - the user can read the file for any purpose, including copying and execution

Appending

 the user can add data to the file but cannot modify or delete any of the file's contents

Access Rights

Updating

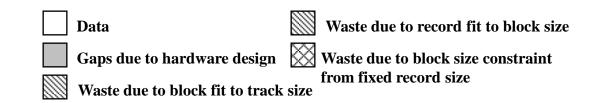
- the user can modify, deleted, and add to the file's data. This includes creating the file, rewriting it, and removing all or part of the data
- Changing protection
- user can change access rights granted to other users

✓ Deletion

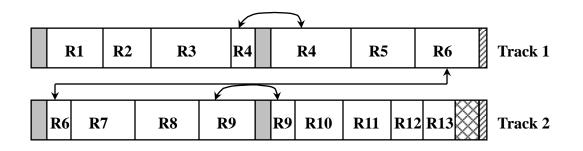
user can delete the file

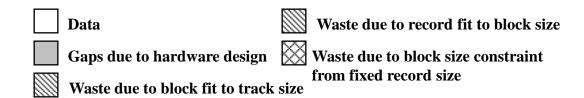
Access Rights

✓Owners

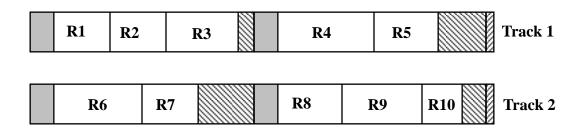

- has all rights previously listed
- may grant rights to others using the following classes of users:
 - o specific user
 - o user groups
 - o all users

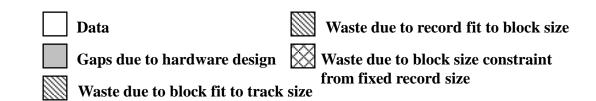
Simultaneous Access


- User may lock entire file when it is to be updated
- User may lock the individual records during the update
- Mutual exclusion and deadlock are issues for shared access


Record Blocking Methods -Fixed Blocking

	R5	R6	\otimes	R7	R8		Track 2
--	----	----	-----------	-----------	-----------	--	---------




Record Blocking Methods -Variable Blocking: Spanned

Record Blocking Methods -Variable Blocking: UnSpanned

Secondary Storage Management

- Space must be allocated to files
- Must keep track of the space available for allocation
- Space is allocated as one or more contiguous units or portions

Preallocation Method

Disadvantages

- Needs to know the maximum size for the file at the time of creation
- Difficult to reliably estimate the maximum potential size of the file
- Tend to overestimated file size so as not to run out of space, hence waste of space

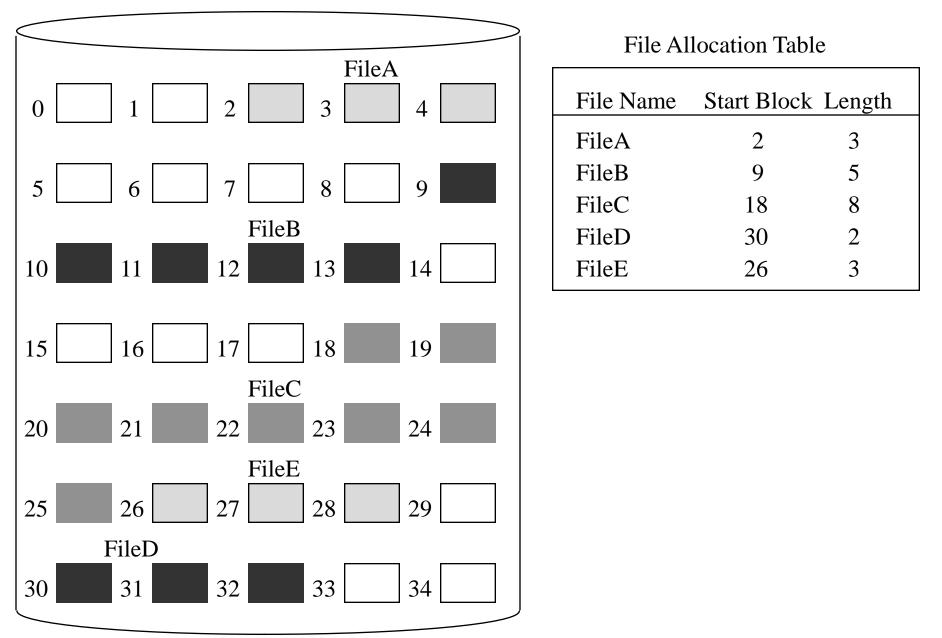
Advantages

 Used in specialized systems to make sure a file gets contiguous chunk of disk space (to improve performance)

Portion Size Considerations

Contiguity of space increases performance

- Large number of small portions increases the size of tables needed to keep track of the different portions of files
- Fixed-size portions simplify the process of reallocation of space
- Variable-size portions minimize waste of unused storage

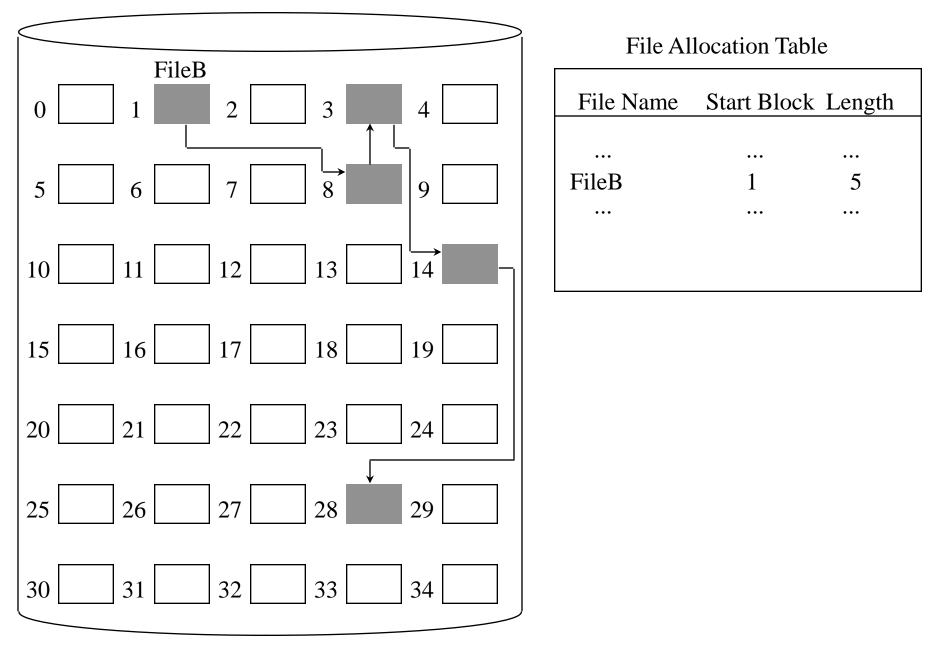

Methods of File Allocation

Contiguous allocation

- single set of blocks is allocated to a file at the time of creation
- only a single entry in the file allocation table
 o starting block and length of the file
- Fragmentation will occur (due to file deletion)

 With time, it'll become difficult to find contiguous blocks of sufficient length for new files

Contiguous File Allocation

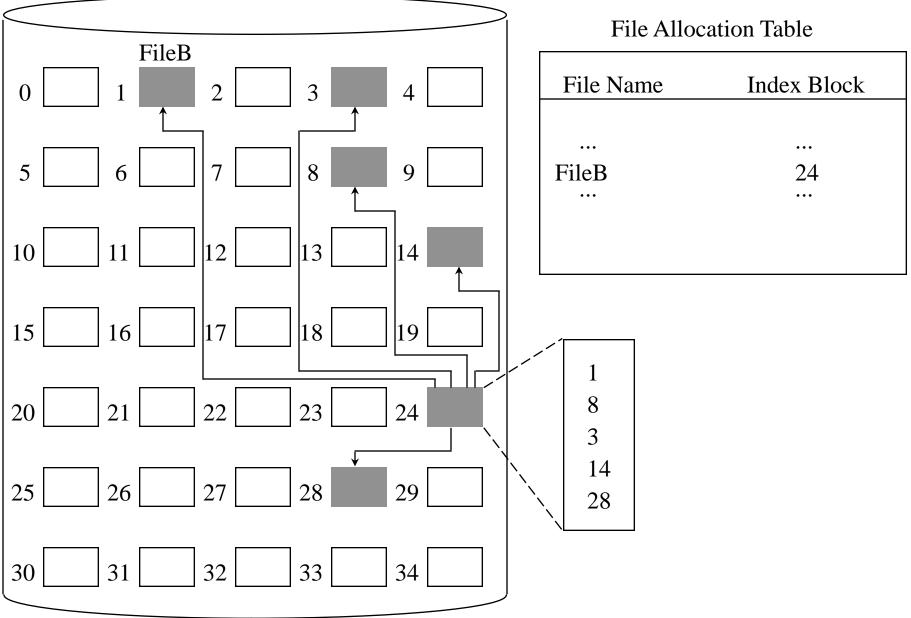


Methods of File Allocation

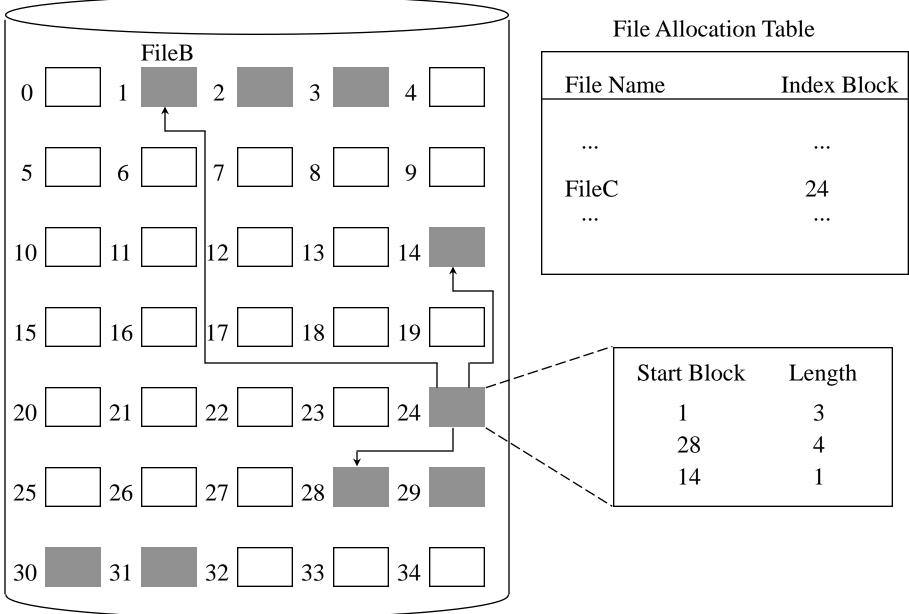
Chained allocation

- allocation on the basis of individual block
- each block contains a pointer to the next block in the chain
- only single entry in the file allocation table
 - starting block and length of file
- No fragmentation
- Any free block can be added to the chain
- <u>No</u> easy way to satisfy the <u>principle of</u> <u>locality</u>

Chained File Allocation



Methods of File Allocation


Indexed allocation

- file allocation table contains a separate onelevel index for each file
- the index has one entry for each portion allocated to the file
- the file allocation table contains block number for the index

Indexed Allocation with Block Portions

Indexed Allocation - Var Length Portions

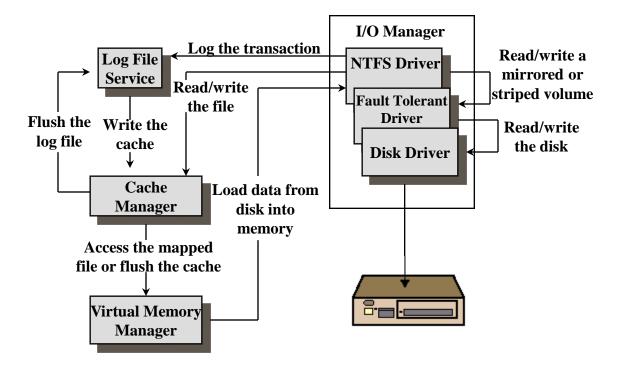
(Traditional) UNIX File Management

Files are streams of bytes

Types of files

- <u>ordinary</u> contents entered by user or program
- <u>directory</u> contains list of file names and pointers to inodes (index nodes)
- special used to access peripheral devices
- <u>named</u> named pipes (communication channels)

UNIX Block Addressing Schema


NTFS: Windows NT/XP File System

Sector - smallest unit of storage on a disk
 Cluster - one or more contiguous sectors
 Volume - logical partition on a disk

NTFS Volume Layout

partition boot sectorMaster File TableSystem Files	File Area
---	-----------

Windows NTFS Components

The *log file* is used to record all changes to the volume (a technique borrowed from database management) to ensure recoverability after crashes.