
I/O Management and Disk

Scheduling

Chapter 11

Categories of I/O Devices

Human readable

 used to communicate with the user

 video display terminals

 keyboard

 mouse

 printer

Categories of I/O Devices

Machine readable

 used to communicate with electronic
equipment

 disk drives

 tape drives

 controllers

 actuators

Categories of I/O Devices

Communication

 used to communicate with remote devices

 digital line drivers

 modems

Differences in I/O Devices

Data Transfer Rate

 Application-specific

 disk used to store files must have file-management
software

 disk used to store virtual memory pages depends on
virtual memory hardware; I/O ops may be scheduled
differently than for disks used for file storage

 terminal used by system administrator may have a
higher priority

Differences in I/O Devices

Complexity of control

Unit of transfer

 data may be transferred as a stream of bytes
for a terminal or in larger blocks for a disk

Data representation

 encoding schemes: character encoding, parity
may be different

Error conditions

 devices respond to errors differently

Techniques for Performing

I/O

Programmed I/O

 process is busy-waiting for the operation to
complete

Interrupt-driven I/O

 I/O command is issued

 processor continues executing instructions

 I/O module sends an interrupt when done

Techniques for Performing

I/O

Direct Memory Access (DMA)

 DMA module controls exchange of data
between main memory and the I/O device

 processor interrupted only after entire block
has been transferred

Evolution of the I/O

Function

Processor directly controls a peripheral
device

Controller or I/O module is added

 processor uses programmed I/O without
interrupts

 processor does not need to handle details of
external devices

Evolution of the I/O

Function

Controller or I/O module with interrupts

 processor does not spend time waiting for an
I/O operation to be performed

Direct Memory Access

 blocks of data are moved into memory
without involving the processor

 processor involved at beginning and end only

Evolution of the I/O

Function

I/O channel

 I/O module is a separate processor

 Uses computer’s main memory

I/O processor

 I/O module is a processor with its own local
memory

 It’s a computer in its own right

Direct Memory Access

Takes control of the system form the CPU
to transfer data to and from memory over
the system bus

Cycle stealing is used to transfer data on
the system bus

The instruction cycle is suspended so
data can be transferred

The CPU pauses one bus cycle

No interrupts occur
 does not need to save context

Typical DMA Block

Diagram

Data

Count

Data

Register

Address

Register

Control

Logic

Data Lines

Address Lines

DMA Request

DMA Acknowledge

Interrupt

Read

Write

Device Main system

Direct Memory Access

Cycle stealing causes the CPU to execute
more slowly

Number of required busy cycles can be
cut by integrating the DMA and I/O
functions

Try to use path between DMA module and
I/O module that does not include the
system bus

DMA and Interrupt

Breakpoints

Time

Instruction Cycle

Processor

Cycle

Processor

Cycle

Processor

Cycle

Processor

Cycle

Processor

Cycle

Processor

Cycle

Fetch
Instruct-

ion

Decode
Instruct-

ion

Fetch

Operand

Execute
Instruct-

ion

Store

Result
Process

 Interrupt

DMA

Breakpoints

Interrupt

Breakpoint

Breakpoints where CPU can be suspended to let the DMA module use the buss

Single-bus, Detached DMA

Processor DMA I/O I/O Memory . . .

Single-bus, Integrated

DMA-I/O

Processor DMA Memory

I/O I/O

DMA

I/O

I/O Bus

Processor DMA Memory

I/O I/O I/O

System Bus

I/O Bus

Operating System Design

Objectives

 I/O is extremely slow compared to main
memory

Use of multiprogramming allows that some
processes will be waiting on I/O while another
process executes

 I/O cannot keep up with processor speed

 Swapping is used to bring in additional Ready
processes, which is an I/O operation

 Efficiency of I/O is an important issue, since this
is a bottleneck

Operating System Design

Objectives

Desirable to handle all I/O devices in a
uniform manner

Hide most of the details of device I/O in
lower-level routines so that processes and
upper levels see devices in general terms
such as Read, Write, Open, and Close

Generality is an important issue

A Model of I/O Organization

Scheduling

& Control

Device

I/O

Scheduling

& Control

Scheduling

& Control

Local peripheral device

Communications port

Device with a File System Device

I/O

Device

I/O

Hardware Hardware Hardware

User

Processes

User

Processes

User

Processes

Logical

I/O

Comm.

Architecture

Directory

Management

File

System

Physical

Organization

I/O Buffering

Reasons for buffering: to find a solution to
these problems:

 Processes must wait for I/O to complete
before proceeding

 Certain pages must remain in main memory
during I/O – interferes with page replacement

I/O Buffering

Block-oriented

 information is stored in fixed sized blocks

 transfers are made a block at a time

 used for disks and tapes

Stream-oriented

 transfer information as a stream of bytes

 used for terminals, printers, communication
ports, mouse, and most other devices that
are not secondary storage

No Buffering

Operating System User Process

No buffering

I/O Device
In

Single Buffer

Operating system assigns a buffer in main
memory for an I/O request

Block-oriented

 input transfers are made to buffer

 block moved to user space when needed

 another block is moved into the buffer

o read ahead

Operating System User Process

Single buffering

I/O Device
In Move

Single Buffer

Block-oriented I/O:
 user process can work on one block of data

while next block is being read in

 process waiting for I/O can be swapped out,
since input is taking place in system memory,
not user memory

 operating system keeps track of assignment
of system buffers to user processes

 output is accomplished by the user process
writing a block to the buffer and later actually
written out

Single Buffer

Stream-oriented:

 used one line at a time

 user input from a terminal is one line at a
time with carriage return signaling the end of
the line

 output to the terminal is one line at a time

Double Buffer

Use two system buffers instead of one

A process can transfer data to or from one
buffer while the operating system empties
or fills the other buffer

I/O Device
In Move

Operating System
User Process

Double buffering

Circular Buffer

More than two buffers are used

Each individual buffer is one unit in a
circular buffer

Used when I/O operation must keep up
with process

I/O Device
In Move

Operating System User Process

Circular buffering

.

.

Disk Data Layout

Inter-sector gap

Sectors Tracks

Inter-track gap

Disk Layout Using

Constant Angular Velocity

Track 2, Sector 7 Track 0, Sector 0

Disk Performance

Parameters

To read or write, the disk head must be
positioned at the desired track and at the
beginning of the desired sector

Seek time

 time it takes to position the head at the
desired track

Rotational delay or rotational latency

 time its takes until desired sector is rotated to
line up with the head

Disk Performance

Parameters

Access time

 sum of seek time and rotational delay

 the time it takes to get in position to read or
write

Data transfer occurs as the sector moves
under the head

Data transfer for an entire file is faster
when the file is stored in the same
cylinder and in adjacent sectors

Disk Scheduling Policies

Seek time is the main reason for
differences in performance

For a single disk there can be a number of
outstanding I/O requests

If requests are selected randomly, we will
get the worst possible performance

The goal of disk scheduling is to process
these requests so as to lower seek time

Disk Scheduling Policies

First-in, first-out (FIFO)

 process requests sequentially

 fair to all processes

 approaches random scheduling in
performance, if there are many processes

Disk Scheduling Policies

Priority

 goal is not to optimize disk use but to meet
other objectives

 short batch jobs may have higher priority

 provide good interactive response time

Disk Scheduling Policies

Last-in, first-out

 good for transaction processing systems

o the device is given to the most recent user so
there should be little arm movement

 possibility of starvation since a job may never
regain the head of the line

Disk Scheduling Policies

Shortest Service Time First (SSTF)

 select the disk I/O request that requires the
least movement of the disk arm from its
current position

 always choose the minimum Seek time

Disk Scheduling Policies

SCAN

 arm moves in one direction only, satisfying all
outstanding requests until it reaches the last
track in that direction

 direction is reversed

Disk Scheduling Policies

C-SCAN

 restricts scanning to one direction only

 when the last track has been visited in one
direction, the arm is returned to the opposite
end of the disk and the scan begins again

Disk Scheduling Policies

N-step-SCAN
 segments the disk request queue into

subqueues of length N

 subqueues are processed one at a time, using
SCAN

 new requests added to other queues when
the current queue is processed

FSCAN
 two queues

 one queue is used for new requests

RAID 0 (non-redundant)

strip 0

strip 4

strip 8

strip 12

strip 1

strip 5

strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11

strip 15

Several strips can be transferred in 1 I/O request

Performance:

I/O request rate: Excellent

 Data transfer rate: Excellent

RAID 1 (mirrored)

strip 0

strip 4

strip 8

strip 12

strip 1

strip 5

strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11

strip 15

strip 0

strip 4

strip 8

strip 12

strip 1

strip 5

strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11

strip 15

Mirroring improves

Fault Tolerance

Performance:
 I/O request rate: good

 Data transfer rate: good

RAID 2 (redundancy

through Hamming code)

f0(b) b2 b1 b0 b2
f1(b) f2(b)

 Hamming code corrects 1-bit errors; detects 2 bit errors

 Disk heads are synchronized, so that they are at the same place on each disk.

All disks are working on the same I/O request, so 1 I/O at a time!

RAID 3 (bit-interleaved

parity)

P(b) b2 b1 b0 b2

Similar to RAID 2, but parity bit is used. Can correct 1-bit errors

RAID 2 & 3: only one I/O request can be performed at a time,
hence poor I/O request rate.

 Very good data transfer rate!

RAID 4 (block-level parity)

block 0

block 4

block 8

block 12

block 1

block 5

block 9

block 13

block 2

block 6

block 10

block 14

block 3

block 7

block 11

block 15

P(0-3)

P(4-7)

P(8-11)

P(12-15)

Parity, like RAID 3

 However, each disk works independently,

 so multiple I/O requests can be processed at the same time

RAID 5 (block-level

distributed parity)

block 0

block 4

block 8

block 12

P(16-19)

block 1

block 5

block 9

P(12-15)

block 16

block 2

block 6

P(8-11)

block 13

block 17

block 3

P(4-7)

block 10

block 14

block 18

P(0-3)

block 7

block 11

block 15

block 19

Like RAID 4, but parity info is distributed across all disks.

 Presumably, avoids bottleneck presented by a single parity disk.

Data Mapping for RAID

Level 0 Array

strip 0

strip 4

strip 8

strip 12

strip 1

strip 5

strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11

strip 15

Physical

Disk 0

Physical

Disk 1

Physical

Disk 2

Physical

Disk 3
strip 0

strip 1

strip 2

strip 3

strip 4

strip 15

strip 14

strip 13

strip 12

strip11

strip 10

strip 9

strip 8

strip 7

strip 6

strip 5

Array

Management

Software

Disk Cache

Buffer in main memory for disk sectors

Contains a copy of some of the sectors on
the disk

Least Recently Used

The block that has been in the cache the
longest with no reference to it is replaced

The cache consists of a stack of blocks

Most recently referenced block is on the
top of the stack

When a block is referenced or brought
into the cache, it is placed on the top of
the stack

Least Recently Used

The block on the bottom of the stack is
removed when a new block is brought in

Blocks don’t actually move around in main
memory

A stack of pointers is used

Least Frequently Used

The block that has experienced the fewest
references is replaced

A counter is associated with each block

Counter is incremented each time block is
accessed

Problem: Some blocks may be referenced
many times in a short period of time and
then not needed any more

Frequency-based

Replacement

Refinement: Use of three sections

MRU

MRU LRU

LRU

New Section Old Section

Re-reference:
 count unchanged

Re-reference:

count := count + 1

 Miss (new block brought in)
count := 1

New Section Middle Section Old Section

. . .

.

. . .

UNIX I/O Structure

Character Dev Block Dev

Device Drivers

Buffer

File Subsystem

Cache

Hardware
Device Drivers

Network
Drivers

File System
Drivers

Cache
Manager

Windows NT 4.0 I/O

Manager

I/O Manager

