Multiprocessor and Real-
Time Scheduling

f—-— R e e Mg = W
" R e =

Chapter 10

Classifications of
Multiprocessor

Loosely coupled multiprocessor

each processor has its own memory and I/O
channels

Functionally specialized processors
such as I/O processor
controlled by a master processor

Tightly coupled multiprocessing
processors share main memory
controlled by operating system

Independent Parallelism

Separate processes running
No synchronization

Example is time sharing
average response time to users is less

Very Coarse Parallelism

Distributed processing across network
nodes to form a single computing
environment

Good when the interaction among
processes is infrequent

overhead of network would slow down
communications

Coarse Parallelism

Similar to running many processes on one
processor except it is spread to more
Processors

Multiprocessing

Medium Parallelism

Parallel processing or multitasking within
a single application
Single application is a collection of threads

Threads usually interact frequently

Process Scheduling

Single queue for all processes
Multiple queues are used for priorities

All queues feed to the common pool of
Processors

Specific scheduling disciplines are less
important with more than one processor

Threads

Each thread executes separately from the
rest of the process

An application can be a set of threads that
cooperate and execute concurrently in the
same address space

Running each thread on a separate
processor yields a dramatic gain in
performance

Multiprocessor Thread
Scheduling

Load sharing

processes are not assigned to a particular
processor

Gang scheduling

a set of related threads is scheduled to run
on a set of processors at the same time

Multiprocessor Thread
Scheduling

Dedicated processor assignment
threads are assigned to a specific processor

Dynamic scheduling

number of threads can be altered during the
course of execution

Load Sharing

Load is distributed evenly across the
pProcessors

Assures no processor is idle
No centralized scheduler required
Jse global queues

Jniprocessor scheduling directly applies to
this case

The most common method

Disadvantages of Load
Sharing

Central queue needs mutual exclusion

may be a bottleneck when more than one processor
looks for work at the same time
With global queue, preempted threads are

unlikely to resume execution on the same
processor

hence local processor cache use is less efficient
If all threads are in the global queue, eligible

threads cannot gain access to the idle
processors at the same time

Gang Scheduling

Simultaneous scheduling of threads that
make up a single process; assignment of
threads to processors kept until
preempted

Useful for applications where performance
severely degrades when any part of the
application is not running

Rationale: threads often need to
synchronize with each other

Dedicated Processor
Assignment

When application is scheduled, its threads
are assigned to a processor for the
duration of application’s execution

Disadvantage: Some processors may be
idle

Advantage: Avoids process switching

Dynamic Scheduling

Number of threads in a process changes
dynamically (by the application)

Operating system adjusts the processor
load using some of these strategies:

assign idle processors to new threads

new arrivals may be assigned to a processor
by taking away a processor from some other
application that uses > 1 processor

hold request until processor is available

new arrivals may be given a processor before
existing running applications

Real-Time Systems

Correctness of the system depends not
only on the logical result of the
computation but also on the time at which
the results are produced

Tasks or processes attempt to control or
react to events that take place in the
outside world

These events occur in “real time"” and
processes must keep up with them

Real-Time Systems

Control of laboratory experiments
Process control plants

Robotics

Air traffic control
Telecommunications

Characteristics of Real-
Time Operating Systems

Correctness depends not only on the
result produced by computation, but also
by the timing and deadlines

Deterministic

operations are performed at fixed,
predetermined times or within predetermined
time intervals

concerned with how long the operating
system delays before acknowledging an
interrupt

Characteristics of Real-
Time Operating Systems

Responsiveness

how long, after acknowledgment, it takes the
operating system to service the interrupt

includes amount of time to begin execution of
the interrupt

includes the amount of time to perform the
interrupt

Characteristics of Real-
Time Operating Systems

User control

specify paging
what processes must always reside in main
memory

rights of processes

Characteristics of Real-
Time Operating Systems

Reliability
degradation of performance may have
catastrophic consequences

most critical, high priority tasks execute

Features of Real-Time
Operating Systems

Fast context switch
Small size

Ability to respond to external interrupts
quickly
Multitasking with interprocess

communication tools such as semaphores,
signals, and events

Files that accumulate data at a fast rate

Features of Real-Time
Operating Systems

Preemptive scheduling based on priority

immediate preemption allows operating
system to respond to an interrupt quickly

Minimization of intervals during which
interrupts are disabled

Delay tasks for fixed amount of time
Special alarms and timeouts

Real-Time Scheduling

Static table-driven

determines statically what the schedule should be;
the schedule tells which tasks to dispatch and when

Static priority-driven preemptive
traditional priority-driven scheduler is used
Dynamic planning-based
Like static, but schedules are periodically recomputed

Dynamic best effort

No analysis: OS tries to execute each job before its
deadline; a job is aborted, if its deadline is not met

Deadline Scheduling

Real-time applications are not concerned
with speed but with completing tasks

Scheduling tasks with the earliest deadline
minimized the fraction of tasks that miss
their deadlines

includes new tasks and amount of time
needed for existing tasks

Scheduling of Real-Time
Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

Arrival times A
4

B cC D E
Requirements * v * v 5 X X >
Starting deadline B C E D A
Arrival times A B ¢c D E
_ L y
Earliest Service | A c E D
deadline K K x £ >
Starting deadline B (missed) C E D A

i

“A” starts because there is no other job. “B” misses its deadline

Scheduling of Real-Time
Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

« > —

Arrival times B cC D E
Requirements * v * v 5 T X >
Starting deadline B C E D A
Arrival times A B c D E
Earliest _ y ool !
deadline Service | B c # E D R
with unforced A T T 0 r
idle times Starting deadline B C E D A

Scheduling of Real-Time
Tasks

0O 10 20 30 40 50 60 70 80 90 100 110 120
Arrival times A B cC D E
Requirements v ¥ v ¥ >
q A A 0
Starting deadline B C E D A
Arrival times A B c D E
_ _ {1 y
First-come Service | A c D
first-served A 0 T A r
(FCES) Starting deadline B (missed) C E (missed) D A

UNIX System V Release 4
Scheduling

Set of 160 priority levels divided into three
priority classes, each with its queue

Basic kernel is not preemptive; split with
preemption points to improve processing

Priority Global Scheduling
Class Value Sequence

159 first
Real-time
100

99

Kernel
60
59

Time-
shared

0 last

Windows NT Priority
Relationship

2 bands of priorities: 0-15 variable, 16-31 real-time. Priorities are fixed in the real-time band
Uses round-robin within each priority level.

15
14
13
12
11
10

O b N w >l oo ©

abovegnormall

[Dase priority normal _I
below normal

lowest |

Process Thread’s Base

Priority Priority

Thread’s Dynamic
Priority

Thread’s dynamic
priority goes up, if
thread is interrupted
for 1/0O. It goes down if
thread hogs CPU

