
Multiprocessor and Real-

Time Scheduling

Chapter 10

Classifications of

Multiprocessor

Loosely coupled multiprocessor
 each processor has its own memory and I/O

channels

Functionally specialized processors
 such as I/O processor

 controlled by a master processor

Tightly coupled multiprocessing
 processors share main memory

 controlled by operating system

Independent Parallelism

Separate processes running

No synchronization

Example is time sharing

 average response time to users is less

Very Coarse Parallelism

Distributed processing across network
nodes to form a single computing
environment

Good when the interaction among
processes is infrequent

 overhead of network would slow down
communications

Coarse Parallelism

Similar to running many processes on one
processor except it is spread to more
processors

Multiprocessing

Medium Parallelism

Parallel processing or multitasking within
a single application

Single application is a collection of threads

Threads usually interact frequently

Process Scheduling

Single queue for all processes

Multiple queues are used for priorities

All queues feed to the common pool of
processors

Specific scheduling disciplines are less
important with more than one processor

Threads

Each thread executes separately from the
rest of the process

An application can be a set of threads that
cooperate and execute concurrently in the
same address space

Running each thread on a separate
processor yields a dramatic gain in
performance

Multiprocessor Thread

Scheduling

Load sharing

 processes are not assigned to a particular
processor

Gang scheduling

 a set of related threads is scheduled to run
on a set of processors at the same time

Multiprocessor Thread

Scheduling

Dedicated processor assignment

 threads are assigned to a specific processor

Dynamic scheduling

 number of threads can be altered during the
course of execution

Load Sharing

Load is distributed evenly across the
processors

Assures no processor is idle

No centralized scheduler required

Use global queues

Uniprocessor scheduling directly applies to
this case

The most common method

Disadvantages of Load

Sharing

 Central queue needs mutual exclusion
 may be a bottleneck when more than one processor

looks for work at the same time

With global queue, preempted threads are
unlikely to resume execution on the same
processor
 hence local processor cache use is less efficient

 If all threads are in the global queue, eligible
threads cannot gain access to the idle
processors at the same time

Gang Scheduling

Simultaneous scheduling of threads that
make up a single process; assignment of
threads to processors kept until
preempted

Useful for applications where performance
severely degrades when any part of the
application is not running

Rationale: threads often need to
synchronize with each other

Dedicated Processor

Assignment

When application is scheduled, its threads
are assigned to a processor for the
duration of application’s execution

Disadvantage: Some processors may be
idle

Advantage: Avoids process switching

Dynamic Scheduling

Number of threads in a process changes
dynamically (by the application)

Operating system adjusts the processor
load using some of these strategies:
 assign idle processors to new threads

 new arrivals may be assigned to a processor
by taking away a processor from some other
application that uses > 1 processor

 hold request until processor is available

 new arrivals may be given a processor before
existing running applications

Real-Time Systems

Correctness of the system depends not
only on the logical result of the
computation but also on the time at which
the results are produced

Tasks or processes attempt to control or
react to events that take place in the
outside world

These events occur in “real time” and
processes must keep up with them

Real-Time Systems

Control of laboratory experiments

Process control plants

Robotics

Air traffic control

Telecommunications

Characteristics of Real-

Time Operating Systems

Correctness depends not only on the
result produced by computation, but also
by the timing and deadlines

Deterministic
 operations are performed at fixed,

predetermined times or within predetermined
time intervals

 concerned with how long the operating
system delays before acknowledging an
interrupt

Characteristics of Real-

Time Operating Systems

Responsiveness

 how long, after acknowledgment, it takes the
operating system to service the interrupt

 includes amount of time to begin execution of
the interrupt

 includes the amount of time to perform the
interrupt

Characteristics of Real-

Time Operating Systems

User control

 specify paging

 what processes must always reside in main
memory

 rights of processes

Characteristics of Real-

Time Operating Systems

Reliability

 degradation of performance may have
catastrophic consequences

 most critical, high priority tasks execute

Features of Real-Time

Operating Systems

Fast context switch

Small size

Ability to respond to external interrupts
quickly

Multitasking with interprocess
communication tools such as semaphores,
signals, and events

Files that accumulate data at a fast rate

Features of Real-Time

Operating Systems

Preemptive scheduling based on priority

 immediate preemption allows operating
system to respond to an interrupt quickly

Minimization of intervals during which
interrupts are disabled

Delay tasks for fixed amount of time

Special alarms and timeouts

Real-Time Scheduling

 Static table-driven
 determines statically what the schedule should be;

the schedule tells which tasks to dispatch and when

 Static priority-driven preemptive
 traditional priority-driven scheduler is used

Dynamic planning-based
 Like static, but schedules are periodically recomputed

Dynamic best effort
 No analysis: OS tries to execute each job before its

deadline; a job is aborted, if its deadline is not met

Deadline Scheduling

Real-time applications are not concerned
with speed but with completing tasks

Scheduling tasks with the earliest deadline
minimized the fraction of tasks that miss
their deadlines

 includes new tasks and amount of time
needed for existing tasks

Scheduling of Real-Time

Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

A B

B A

C

C

D

D

E

E

Arrival times

Starting deadline

Requirements

A

A B

B C

C

D

D

E

E (missed)

Arrival times

Service

Starting deadline

Earliest

deadline
A C E D

“A” starts because there is no other job. “B” misses its deadline

Scheduling of Real-Time

Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

A B

B A

C

C

D

D

E

E

Arrival times

Starting deadline

Requirements

A

A B

B C

C

D

D

E

E

Arrival times

Service

Starting deadline

Earliest

deadline

with unforced

idle times

B C E D

Scheduling of Real-Time

Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

A B

B A

C

C

D

D

E

E

Arrival times

Starting deadline

Requirements

A

A B

B C

C

D

D

E

E (missed) (missed)

Arrival times

Service

Starting deadline

First-come

first-served

(FCFS)

A C D

UNIX System V Release 4

Scheduling

 Set of 160 priority levels divided into three
priority classes, each with its queue

 Basic kernel is not preemptive; split with
preemption points to improve processing

Priority

Class

Global

Value

Scheduling

Sequence

Real-time

159

100

first

last

Kernel
99

60

0

59

Time-

 shared .
.
.

.

.

.

.

.

.

.

Windows NT Priority

Relationship

Process

Priority

Thread’s Base

Priority

Thread’s Dynamic

Priority

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

base priority

highest
above normal

normal
below normal

lowest

2 bands of priorities: 0-15 variable, 16-31 real-time. Priorities are fixed in the real-time band

Uses round-robin within each priority level.

Thread’s dynamic

priority goes up, if

thread is interrupted

for I/O. It goes down if

thread hogs CPU

