
Multiprocessor and Real-

Time Scheduling

Chapter 10

Classifications of

Multiprocessor

Loosely coupled multiprocessor
 each processor has its own memory and I/O

channels

Functionally specialized processors
 such as I/O processor

 controlled by a master processor

Tightly coupled multiprocessing
 processors share main memory

 controlled by operating system

Independent Parallelism

Separate processes running

No synchronization

Example is time sharing

 average response time to users is less

Very Coarse Parallelism

Distributed processing across network
nodes to form a single computing
environment

Good when the interaction among
processes is infrequent

 overhead of network would slow down
communications

Coarse Parallelism

Similar to running many processes on one
processor except it is spread to more
processors

Multiprocessing

Medium Parallelism

Parallel processing or multitasking within
a single application

Single application is a collection of threads

Threads usually interact frequently

Process Scheduling

Single queue for all processes

Multiple queues are used for priorities

All queues feed to the common pool of
processors

Specific scheduling disciplines are less
important with more than one processor

Threads

Each thread executes separately from the
rest of the process

An application can be a set of threads that
cooperate and execute concurrently in the
same address space

Running each thread on a separate
processor yields a dramatic gain in
performance

Multiprocessor Thread

Scheduling

Load sharing

 processes are not assigned to a particular
processor

Gang scheduling

 a set of related threads is scheduled to run
on a set of processors at the same time

Multiprocessor Thread

Scheduling

Dedicated processor assignment

 threads are assigned to a specific processor

Dynamic scheduling

 number of threads can be altered during the
course of execution

Load Sharing

Load is distributed evenly across the
processors

Assures no processor is idle

No centralized scheduler required

Use global queues

Uniprocessor scheduling directly applies to
this case

The most common method

Disadvantages of Load

Sharing

 Central queue needs mutual exclusion
 may be a bottleneck when more than one processor

looks for work at the same time

With global queue, preempted threads are
unlikely to resume execution on the same
processor
 hence local processor cache use is less efficient

 If all threads are in the global queue, eligible
threads cannot gain access to the idle
processors at the same time

Gang Scheduling

Simultaneous scheduling of threads that
make up a single process; assignment of
threads to processors kept until
preempted

Useful for applications where performance
severely degrades when any part of the
application is not running

Rationale: threads often need to
synchronize with each other

Dedicated Processor

Assignment

When application is scheduled, its threads
are assigned to a processor for the
duration of application’s execution

Disadvantage: Some processors may be
idle

Advantage: Avoids process switching

Dynamic Scheduling

Number of threads in a process changes
dynamically (by the application)

Operating system adjusts the processor
load using some of these strategies:
 assign idle processors to new threads

 new arrivals may be assigned to a processor
by taking away a processor from some other
application that uses > 1 processor

 hold request until processor is available

 new arrivals may be given a processor before
existing running applications

Real-Time Systems

Correctness of the system depends not
only on the logical result of the
computation but also on the time at which
the results are produced

Tasks or processes attempt to control or
react to events that take place in the
outside world

These events occur in “real time” and
processes must keep up with them

Real-Time Systems

Control of laboratory experiments

Process control plants

Robotics

Air traffic control

Telecommunications

Characteristics of Real-

Time Operating Systems

Correctness depends not only on the
result produced by computation, but also
by the timing and deadlines

Deterministic
 operations are performed at fixed,

predetermined times or within predetermined
time intervals

 concerned with how long the operating
system delays before acknowledging an
interrupt

Characteristics of Real-

Time Operating Systems

Responsiveness

 how long, after acknowledgment, it takes the
operating system to service the interrupt

 includes amount of time to begin execution of
the interrupt

 includes the amount of time to perform the
interrupt

Characteristics of Real-

Time Operating Systems

User control

 specify paging

 what processes must always reside in main
memory

 rights of processes

Characteristics of Real-

Time Operating Systems

Reliability

 degradation of performance may have
catastrophic consequences

 most critical, high priority tasks execute

Features of Real-Time

Operating Systems

Fast context switch

Small size

Ability to respond to external interrupts
quickly

Multitasking with interprocess
communication tools such as semaphores,
signals, and events

Files that accumulate data at a fast rate

Features of Real-Time

Operating Systems

Preemptive scheduling based on priority

 immediate preemption allows operating
system to respond to an interrupt quickly

Minimization of intervals during which
interrupts are disabled

Delay tasks for fixed amount of time

Special alarms and timeouts

Real-Time Scheduling

 Static table-driven
 determines statically what the schedule should be;

the schedule tells which tasks to dispatch and when

 Static priority-driven preemptive
 traditional priority-driven scheduler is used

Dynamic planning-based
 Like static, but schedules are periodically recomputed

Dynamic best effort
 No analysis: OS tries to execute each job before its

deadline; a job is aborted, if its deadline is not met

Deadline Scheduling

Real-time applications are not concerned
with speed but with completing tasks

Scheduling tasks with the earliest deadline
minimized the fraction of tasks that miss
their deadlines

 includes new tasks and amount of time
needed for existing tasks

Scheduling of Real-Time

Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

A B

B A

C

C

D

D

E

E

Arrival times

Starting deadline

Requirements

A

A B

B C

C

D

D

E

E (missed)

Arrival times

Service

Starting deadline

Earliest

deadline
A C E D

“A” starts because there is no other job. “B” misses its deadline

Scheduling of Real-Time

Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

A B

B A

C

C

D

D

E

E

Arrival times

Starting deadline

Requirements

A

A B

B C

C

D

D

E

E

Arrival times

Service

Starting deadline

Earliest

deadline

with unforced

idle times

B C E D

Scheduling of Real-Time

Tasks

0 10 20 30 40 50 60 70 80 90 100 110 120

A B

B A

C

C

D

D

E

E

Arrival times

Starting deadline

Requirements

A

A B

B C

C

D

D

E

E (missed) (missed)

Arrival times

Service

Starting deadline

First-come

first-served

(FCFS)

A C D

UNIX System V Release 4

Scheduling

 Set of 160 priority levels divided into three
priority classes, each with its queue

 Basic kernel is not preemptive; split with
preemption points to improve processing

Priority

Class

Global

Value

Scheduling

Sequence

Real-time

159

100

first

last

Kernel
99

60

0

59

Time-

 shared .
.
.

.

.

.

.

.

.

.

Windows NT Priority

Relationship

Process

Priority

Thread’s Base

Priority

Thread’s Dynamic

Priority

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

base priority

highest
above normal

normal
below normal

lowest

2 bands of priorities: 0-15 variable, 16-31 real-time. Priorities are fixed in the real-time band

Uses round-robin within each priority level.

Thread’s dynamic

priority goes up, if

thread is interrupted

for I/O. It goes down if

thread hogs CPU

