
Java Threads and Synchronization

Overview

The Class Thread

 Several ways to create threads.

 Using the class Thread

 Using the interface Runnable

 Runnable is more complex, but also more
flexible (sometimes the simple method is
insufficient).

 Here we describe only the simple method that
uses the class Thread.

Issues

 Two issues:

 Creation of threaded code:

 Note: in OSP-2, you were only managing threads, i.e.,
doing only what the OS does.

 Here we are talking about the programmer's point of
view:

 creation of threaded code, which runs as a bunch of threads.

 Synchronization:

 synchronizing different pieces of code in Java.

 based on the idea of monitors

Threaded Code

 Create a class that extends Thread. As many
classes as the application needs.

 class Consumer extends Thread

 class Producer extends Thread

 Put the code that is supposed to run as threads
inside the method run().

 This method overrides what is inherited from class
Thread.

 Application classes (such as Consumer &
Producer) can have other methods as well.

Threaded Code

public class ConsumerProducer {

 private static Vector buffer = new Vector();

 public static void main(String args[]) {

 Consumer c1, c2;

 Producer p1, p2, p3;

 c1 = new Consumer(“Bob”);

 c2 = new Consumer(“Alice”);

 p1 = new Producer(“Acme”);

 c1.start();

 c2.start();

 p1.start();

 }

}

// shared buffer

 public static void put(Object obj) {

 buffer.add(obj);

 }

 public static Object take() {

 while (buffer.size() == 0) { };

 return

 buffer.remove();

 }

 Have another class that drives the application. It creates instances of the

threads and starts them.

Driver code
Code to be called
by threads

Threaded Producer & Consumer

 with Infinite Buffer

public class Producer extends Thread {

 public void run() {

 while (true) {

 ConsumerProducer.put(getNewItem())‏

 }

 }

 MyItem getNewItem() {

 MyItem item = new MyItem();

 ... put stuff in item ...

 return item;

 }

}

public class Consumer extends Thread {

 public void run() {

 while (true) {

 ConsumerProducer.take();

 }

 }

}

Problems With Our Code

 If buffer.size() == 0, take() loops - bad.

 In case of concurrent consumers, several can
fall through the loop

 while (buffer.size() == 0) { };

 If a producer puts 1 item in the buffer, the first
concurrent consumer executes

 remove()‏

 but the second will cause an error.

Solution: Java Monitors

 Change the put/take methods as follows:

public synchronized static void put(Object obj) {

 buffer.add(obj);

}

public synchronized static Object take() {

 while (buffer.size() == 0) { };

 return buffer.remove();

}

 Busy wait is still a problem!

Declare put/take as mutex
entry points into a monitor.
The monitor here is the
ConsumerProducer class

Eliminating Busy Wait: wait/notify()‏

 Change put/take methods as follows:
public synchronized void put(Object obj) {

 buffer.add(obj);

 ConsumerProducer.class.notify();

}

public synchronized Object take() {

 try {

 if (buffer.size() == 0) ConsumerProducer.class.wait();

 return buffer.remove();

 } catch (InterruptedException ie) {

 System.err.println(“Someone‏interrupted‏my‏work”);

 }

}

wait/notify() can operate
 on any object. Here on
 ConsumerProducer.class
notify() notifies the first
 waiting thread.
notifyAll() notifies all
 waiting threads.

Additional Features

 The previous technique uses ConsumerProducer as a

monitor and calls wait()/notify() on this class-object.

 In general, wait/notify can work on any object.

 Thus, objects act as conditional variables of monitors.

 Our monitor is rather coarse – the entire class
ConsumerProducer.

 Java lets one declare pretty arbitrary blocks of code as
belonging to the same named monitor.

