
Java Threads and Synchronization

Overview

The Class Thread

 Several ways to create threads.

 Using the class Thread

 Using the interface Runnable

 Runnable is more complex, but also more
flexible (sometimes the simple method is
insufficient).

 Here we describe only the simple method that
uses the class Thread.

Issues

 Two issues:

 Creation of threaded code:

 Note: in OSP-2, you were only managing threads, i.e.,
doing only what the OS does.

 Here we are talking about the programmer's point of
view:

 creation of threaded code, which runs as a bunch of threads.

 Synchronization:

 synchronizing different pieces of code in Java.

 based on the idea of monitors

Threaded Code

 Create a class that extends Thread. As many
classes as the application needs.

 class Consumer extends Thread

 class Producer extends Thread

 Put the code that is supposed to run as threads
inside the method run().

 This method overrides what is inherited from class
Thread.

 Application classes (such as Consumer &
Producer) can have other methods as well.

Threaded Code

public class ConsumerProducer {

 private static Vector buffer = new Vector();

 public static void main(String args[]) {

 Consumer c1, c2;

 Producer p1, p2, p3;

 c1 = new Consumer(“Bob”);

 c2 = new Consumer(“Alice”);

 p1 = new Producer(“Acme”);

 c1.start();

 c2.start();

 p1.start();

 }

}

// shared buffer

 public static void put(Object obj) {

 buffer.add(obj);

 }

 public static Object take() {

 while (buffer.size() == 0) { };

 return

 buffer.remove();

 }

 Have another class that drives the application. It creates instances of the

threads and starts them.

Driver code
Code to be called
by threads

Threaded Producer & Consumer

 with Infinite Buffer

public class Producer extends Thread {

 public void run() {

 while (true) {

 ConsumerProducer.put(getNewItem())

 }

 }

 MyItem getNewItem() {

 MyItem item = new MyItem();

 ... put stuff in item ...

 return item;

 }

}

public class Consumer extends Thread {

 public void run() {

 while (true) {

 ConsumerProducer.take();

 }

 }

}

Problems With Our Code

 If buffer.size() == 0, take() loops - bad.

 In case of concurrent consumers, several can
fall through the loop

 while (buffer.size() == 0) { };

 If a producer puts 1 item in the buffer, the first
concurrent consumer executes

 remove()

 but the second will cause an error.

Solution: Java Monitors

 Change the put/take methods as follows:

public synchronized static void put(Object obj) {

 buffer.add(obj);

}

public synchronized static Object take() {

 while (buffer.size() == 0) { };

 return buffer.remove();

}

 Busy wait is still a problem!

Declare put/take as mutex
entry points into a monitor.
The monitor here is the
ConsumerProducer class

Eliminating Busy Wait: wait/notify()

 Change put/take methods as follows:
public synchronized void put(Object obj) {

 buffer.add(obj);

 ConsumerProducer.class.notify();

}

public synchronized Object take() {

 try {

 if (buffer.size() == 0) ConsumerProducer.class.wait();

 return buffer.remove();

 } catch (InterruptedException ie) {

 System.err.println(“Someoneinterruptedmywork”);

 }

}

wait/notify() can operate
 on any object. Here on
 ConsumerProducer.class
notify() notifies the first
 waiting thread.
notifyAll() notifies all
 waiting threads.

Additional Features

 The previous technique uses ConsumerProducer as a

monitor and calls wait()/notify() on this class-object.

 In general, wait/notify can work on any object.

 Thus, objects act as conditional variables of monitors.

 Our monitor is rather coarse – the entire class
ConsumerProducer.

 Java lets one declare pretty arbitrary blocks of code as
belonging to the same named monitor.

