
CSE306 - Homework2 and Solutions

Note: your solutions must contain enough information to enable the instructor to judge
whether you understand the material or not. Simple yes/no answers do not count. A simple
core dump of everything you remember will not do it either. Take a look at the solutions to
see what level of detail is required.

1. Consider the following snapshot of the system, where P1–4 are processes and R1-4 are
resource types:

processes allocation max-need

------------------------------------------

P0: 0 0 1 2 0 0 1 2

P1: 1 0 0 0 1 7 5 0

P2: 1 3 5 4 2 3 5 6

P3: 0 0 1 4 0 6 5 6

------------------------------------------

R1 R2 R3 R4 R1 R2 R3 R4

------------------------------------------

free: 1 5 2 0

------------------------------------------

Suppose process P1 issues a request for 4 instances of R2 and 2 instances of R3. Will the
situation be safe if OS grants this request? Explain.

2. Write a program using semaphores, where each process represents one dining philosopher
and which coordinates the philosophers in a deadlock-free manner. The solution must
use only as many semaphores as there are philosophers. (Note: this means that the
additional semaphore “room ”, as in the textbook, is not allowed.)

3. Write a monitor that implements an alarm clock . Alarm clock is a system call built
around the hardware timer interrupt, which works like this. A process issues a system
call that sets alarm clock to some specified number of time units. Once the time is up,
the timer interrupt handler calls your monitor routine wakeup, at which point the process
waiting in the monitor wakes up.

4. Suppose it takes 5 ms to service a read/write request, and it takes 10 + 5(N − 1) ms
to move the disk read/write head across N cylinders. Suppose that at time 0 the head
was at cylinder 0, and that new requests for cylinders #5, #20, #30, #15, #25, #50,
#40 had arrived at times 5 ms, 50 ms, 70 ms, 110 ms, 300 ms, 355 ms, and 500 ms,
respectively.

Assuming the LOOK strategy (disk head reverses its course when there are no outstanding
requests in the current direction), what will be the order in which these requests will be
serviced? Show how you arrived at your conclusions.
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5. A DMA module transfers data into the main memory at the rate of 9600 bits/sec. The
CPU can fetch instructions from the main memory at the rate of 1,000,000 instruc-
tions/sec. As you know, DMA and CPU can access main memory simultaneously using
a technique called cycle-stealing (which allows both the CPU and DMA to access main
memory without relying on interrupts).

Explain by how much cycle-stealing due to DMA might slow down the processor. Assume
that DMA has to access main memory to transfer each byte it gets from the external
device.

6. Executable programs are stored in binary files. Someone suggested that in order to save
on the backing store needed to support virtual memory, the OS can try to page programs
right out of the binary files where they are stored. What’s wrong with this idea?

7. Implement a general semaphore using monitors.

8. Suggest how one can implement a monitor using semaphores.

9. Consider the following resource allocation:

Allocated Requests | Available

R1 R2 R3 R4 R1 R2 R3 R4 | R1 R2 R3 R4

P1 0 0 1 0 2 0 0 1 | 2 1 0 0

P2 2 0 0 1 1 0 1 0 |

P3 0 1 2 0 2 1 0 0 |

Use the deadlock detection algorithm to determine if there is a deadlock.

10. Consider RAID disks with and without disk striping (i.e., when individual bytes of the
same file are striped across different disks). Which access patterns favor disk striping and
which do not?

11. Consider a Unix file system. Suppose the file Inode is in the main memory, but nothing
else (pertaining this file) is. How many disk accesses will be required to get to byte
15,423,000 of this file?

Assume these file system characteristics: 12 direct block pointers, 1 singly indirect, one
doubly-indirect, and one triply-indirect pointer per inode. System block size (which is
transfered in one I/O op) is 8K. A disk block pointer takes 8 bytes, so you can assume
that each block of indirection has 8K/8 = 1024 pointers.

12. Consider a file system that uses the chained space allocation method. What are the
disadvantages of this method in terms of reliability and efficiency?

13. What is easier to update (add or delete records): an indexed file or an index-sequential
file? An index-sequential or a hashed file?

14. Which files are best for random access, hashed, indexed, or index-sequential?
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15. As you know, a timer is a special register that gets decremented automatically and when
its value becomes zero, an interrupt occurs. So, when only one process in the system
requests the timer service, the mechanism by which the process gets notification is clear.
However, in reality, there might be many overlaping requests for timer interrups, which
come from different processes. How does the OS manage all these requests with just one
timer register?

16. Consider a real time system with process characteristics depicted in the following table:

Process Arrival Time Execution Time Starting Deadline
A 10 20 100
B 20 20 25
C 40 20 60
D 50 20 80
E 60 20 70

Show how these processes will be scheduled using the non-preemptive Earliest Deadline
First strategy that uses starting deadlines. Next, do the same for the case of unforced
idle times under Earliest Deadline strategy.

17. Describe a situation where strategies with unforced idle time are practical.
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1. If the request is granted, then the state will become:

processes allocation max-need

------------------------------------------

P0: 0 0 1 2 0 0 1 2

P1: 1 4 2 0 1 7 5 0

P2: 1 3 5 4 2 3 5 6

P3: 0 0 1 4 0 6 5 6

------------------------------------------

R1 R2 R3 R4 R1 R2 R3 R4

------------------------------------------

free: 1 1 0 0

------------------------------------------

In this situation, all processes can run to completion. Indeed, P0 has all the resources it
needs and it can run to completion. The state then will become:

processes allocation max-need

------------------------------------------

P1: 1 4 2 0 1 7 5 0

P2: 1 3 5 4 2 3 5 6

P3: 0 0 1 4 0 6 5 6

------------------------------------------

R1 R2 R3 R4 R1 R2 R3 R4

------------------------------------------

free: 1 1 1 2

------------------------------------------

Next, P2 can run to completion, since it needs one instance of R1 and two of R4, and
these resources are available. This leads to the following state:

processes allocation max-need

------------------------------------------

P1: 1 4 2 0 1 7 5 0

P3: 0 0 1 4 0 6 5 6

------------------------------------------

R1 R2 R3 R4 R1 R2 R3 R4

------------------------------------------

free: 2 4 6 6

------------------------------------------

Next, P1 can complete:
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processes allocation max-need

------------------------------------------

P3: 0 0 1 4 0 6 5 6

------------------------------------------

R1 R2 R3 R4 R1 R2 R3 R4

------------------------------------------

free: 3 8 8 6

------------------------------------------

Finally, P3 can complete.

2. Here is a solution:

#define NumberOfPhilosophers 4;

main () {

binary semaphore fork[NumberOfPhilosophers];

/* initialize semaphore */

for (i=0; i < NumberOfPhilosophers; i++) fork[i].value = 1;

parbegin

philosopher(1);

philosopher(2);

philosopher(3);

philosopher(4);

parend

}

philosopher (int i) {

while (1) {

if odd(i) { /* odd philosopher picks up left fork first */

wait(fork[i]);

wait(fork[(i+1) mod NumberOfPhilosophers]);

} else { /* even philosophers picks up right fork first*/

wait(fork[(i+1) mod NumberOfPhilosophers]);

wait(fork[i]);

}

<eat>

signal(fork[i]);

signal(fork[(i+1) mod NumberOfPhilosophers]);

<think>

}

}
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This program is deadlock-free. Indeed, suppose p(i) needs and cannot get a fork. Assume
i is odd. Then p(i) must already hold fork i (the left fork of p(i)) and needs fork i+1
(mod NumberOfPhilosophers). If fork i+1 is unavailable, p(i+1) must be holding it. But
i+1 is even, so p(i+1) can get fork i+1 only after it already has fork i+2. Thus, p(i+1)
has all the forks it needs. When p(i+1) finishes, p(i) can get fork i+1 and proceed. Thus,
p(i) cannot be involved in a deadlock.

A similar argument shows that p(i) cannot be deadlocked if i is even.

3. The monitor can be specified as follows:

monitor Alarm

{

condition timer; /* condition variable */

extern current_time();

/* monitor entry points */

public sleep(int interval) { // interval to sleep

/* Note: the argument to wait is priority assigned to the calling

** process in the wait queue. Processes are waken up according to their

** priority. */

timer.wait(current_time() + interval);

}

public wakeup() {

timer.signal;

}

}

Each process then looks like this:

...

Alarm.sleep(how_long);

...

6



4. The following table shows how I/O requests will be scheduled:

Track# 0 5 15 20 25 30 40 50

I/O request time - 5 110 50 300 70 500 355

Head arrived at 0 35 130 190

I/O request done - 40 135 195

Head leaves 5 50 135 195

Head arrived at 275 355 490

I/O request done 280 360 495

Head leaves 300 360 500

Head arrived at 555

I/O request done 560

Head leaves -

Thus, the order of the served requests will be: 5, 20, 30, 15 25, 50, 40.

5. The DMA module transfers 1200 bytes/sec, so it needs a memory cycle every 1/1200 sec.
The CPU needs a memory cycle every 1/1000000 sec. Thus, CPU must loose a memory
cycle every (1/1200)/(1/1000000) = 833 cycle. Thus, the slow-down is 100% x (1/833)
= 0.12%.

6. This idea is feasible, in principle, provided that the programs are reentrant, i.e., their
execution does not modify their code. For instance, static variables in C would not be
allowed. Besides, storage for the program code is not the whole story. When program
executes, it has a run-time stack that contains the current values of local (non-static)
variables. This stack needs to be saved somewhere in virtual memory, and this place
must be different from where the program binary is located. (Why?) So, even with
reentrant programs, it is not possible to completely avoid additional backing storage for
virtual memory.
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7. monitor genSemaphore {

int value;

condition empty;

public set(int value) {

value = v;

}

public wait () {

value--;

if (value < 0) empty.wait;

}

public signal () {

value++;

if (value =< 0) empty.signal;

}

}

8. Use one binary semaphore, monMutex, to control mutual exclusion inside the monitor.
For every conditional variable (say, condvar) in the monitor, use a binary semaphore
condvarMutex. Then, each procedure in the monitor should look like this:

public whatever (...) {

monMutex.wait;

.............

monMutex.signal;

}

The operation condvar.wait should be implemented as “condvarWait();”. the opera-
tion condvar.signal should be implemented as “return condvarSignal();”, where:

condvarWait() {

monMutex.signal

condvarMutex.wait;

monMutex.wait

}

condvarSignal() {

condvarMutex.signal;

monMutex.signal;

}
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9. P3’s requests can be satisfied. When this process is finished, the row of available resources
will become: (2,2,2,0). This means that P2’s requests can be satisfied. Thus, there is no
deadlock.

10. Disk striping helps when concurrency is low and each process issues I/O requests for
large chunks of data. In this case, striping can help parallelize each individual I/O
request. On the other hand, when concurrency level is high, striping might be a bad idea,
since it prevents simultaneous scheduling of separate I/O requests coming from different
processes.

11. Since each block pointer takes 8 bytes, we have 8K/8 = 1K pointers per block. The 12
direct pointers cover 12*8K = 96K of the file. The first indirect block covers 1K pointers
* 8K = 8MB. The second indirect block covers 1K*1K*8K = 8G. Since we are requesting
access within 15M range, this clearly falls within the range of the doubly-indirect block.
Thus, we need two disk accesses to get through double indirection plus one access to get
to the actual data. Three disk I/Os in all.

12. Reliability: if one link is corrupted, the rest of the file is lost.
Efficiency: no easy way to efficiently access a given byte within a file directly (without
the sequential scan of the file). No simple way to scan backwards (unless the chain of
blocks is doubly linked).

13. Updating an indexed file always involves changing the index as well (if the search key of
the record is changed). With index-sequential files, the index does not need to be changed
each time (only sometimes). With hashed files, no auxiliary structures need to be changed
at all. Thus, hashed files are the easiest to update, then comes index-sequential, then
indexed. If the update does not involve changing the search key of the record then there
is no difference among these methods efficiency-wise.

14. Hashed files take the least number of I/O. Index-sequential files might take fewer disk
accesses than indexed files, because they require smaller indices than indexed files.

15. The OS maintains a queue of timer request blocks. Each block should contain an id of the
requesting process and the time interval (since the previously scheduled timer interrupt)
when the interrupt must occur. When a new timer request comes in, the corresponding
request block is inserted into the queue in the right place (possibly resetting the timer
[if the newly requested interrupt is to occur prior to the current value of the timer] and
adjusting the time interval in the next request block).

When timer interrupt occurs, the next request block is pulled out of the timer queue and
the timer is reset to the value specified in that request block.

timer RB1: pid=453 RB2: pid=59848 RB3: pid=980

curr val=100 interval=25 interval=40 interval=10

current RB: pid=98

interval=600
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In the above situation, the timer is processing the current request coming from process
98. The request was for 600 ms, and there are 100 ms left before the interrupt. When
this interrupt occurs, RB1 is snatched and the timer is reset to 25ms. Thus, the second
interrupt will occur in 125ms. Likewise, the third interrupt will occur in 165ms, etc.

Suppose that RB1 arrived 100 ms ago and RB2 arrived 200 ms ago. What were the
wakeup intervals specified in those requests (relative to the time when these requests
were issued)?

Since RB1 arrived 100ms ago and its requested interrupt is due 125ms from now, the
requested wakeup interval must have been 225ms. For RB2, it must have been 365ms.

16. Each letter corresponds to 10 ticks of execution of the corresponding process. “?” means
that CPU is idle during the corresponding 10 tick interval:

Earliest deadline: AA?CCEEDD

Note that B misses its starting deadline of 30, because A is executing between the ticks
10 and 30 and the scheduling strategy is non-preemptive.

Unforced Earliest Deadlines: ??BBCCEEDDAA

Here, A is not scheduled immediately because its deadline is far away.

17. In real time systems with periodic tasks the system can predict future times of job arrival.
In such a case, the scheduler can make global analysis and create a schedule with deliber-
ately arranged idle times and better service characteristics (as in the previous problem).
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