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Separating or collapsing complexity hierarchies has always been one of the

most important problems in complexity theory. For most interesting hierarchies,

however, we have been so far unable to either separate them or collapse them. Among

these unsolvable questions, whether P equals NP is perhaps the most famous one.

In view of the fundamental difficulty of these questions, a less interesting but more

realistic alternative is to consider the question in the relativized form. Although a

separating or collapsing result in the relativized form does not imply directly any

solution to the original unrelativized question, it is hoped that from such results we

do gain more insight into the original questions and develop new proof techniques

toward their solutions. Recent investigation in the theory of relativization shows

some interesting progress in this direction. In particular, some separating results on

the relativized polynomial hierarchy have been found using the lower bound results

on constant-depth circuits [Yao, 1985; Hastad, 1986, 1987]. This new proof technique

turns out to be very powerful, capable of even collapsing the same hierarchy (using,

of course, different oracles) [Ko, 1989].

In this paper, we survey recent separating and collapsing results on several

complexity hierarchies, including the polynomial hierarchy, the probabilistic polyno-

mial hierarchy, the bounded Arthur-Merlin hierarchy, the generalized Arthur-Merlin

hierarchy (or, the interactive proof systems), and the low hierarchy in NP. All these

results rely on the newly developed lower bound results on constant-depth circuits.

1 This paper is based on a lecture presented in the International Symposium on Combina-
torial Optimization, held at Nankai Institute of Mathematics in Tienjing, People’s Republic
of China, August, 1988; research supported in part by the NSF Grant CCR-8801575.
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We show how these new combinatorial proof techniques are combined with the classi-

cal recursion-theoretic proof techniques to construct the desirable oracles. Our focus

is on how the diagonalization and the encoding requirements can be set up without

interference to each other and how such complicated requirements can be simplified

using lower bound results on constant-depth circuits.

In Section 1, we give the formal definitions of the relativized complexity hi-

erarchies mentioned above. We avoid the definitions of different machine models

but use the polynomial length-bounded quantifiers to give simpler definitions. This

allows us to define easily, in Section 2, the related circuits for different complexity hi-

erarchies. In Section 3, the basic proof technique of diagonalization is introduced and

a simple example is given to show how oracles for separation results are constructed

in this standard setting. Section 4 shows how the lower bound results on circuits

can be combined with the diagonalization technique to separate various complexity

hierarchies. In Section 5, the proof technique of encoding is introduced. Examples

are given to show that to collapse hierarchies to a particular level requires both the

diagonalization and the encoding techniques, together with more general lower bound

results on circuits. These results on some hierarchies are given in Section 6. Section

7 deals with less familiar hierarchies as the applications of the standard proof tech-

niques. This includes the generalized Arthur-Merlin hierarchy and the low hierarchy

in NP. The last section lists some open questions in the theory of relativization of

hierarchies related to our approach.

Notation. We will deal with strings over alphabet {0, 1}. For each string x, let

|x| denote its length, and for each finite set A, let ‖A‖ denote its cardinality. We

write A=n, A<n, and A≤n to denote the subsets {x ∈ A| |x| = n}, {x ∈ A| |x| < n}
and {x ∈ A| |x| ≤ n}, respectively, while {0, 1}n denotes all strings over {0, 1} of

length n. We let 〈, · · · , 〉 be a fixed one-to-one pairing function from ∪n≥1({0, 1}∗)n

to {0, 1}∗ such that |xi| < |〈x1, · · · , xn〉| for all i ≤ n if n > 1. All of our use of log

is the logarithm function of base 2.

1. Relativized Complexity Classes

We begin with the formal definitions of relativized complexity classes. We

assume that the reader is familiar with ordinary deterministic Turing machines (TMs)
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and the complexity classes P , NP and PSPACE.2 All the relativized complexity

classes to be considered here, except the class PSPACE (A), can be defined in terms

of polynomial length-bounded quantifiers over polynomial-time predicates. So, we

will only define the deterministic oracle machine and avoid specific machine structures

of nondeterministic, probabilistic and alternating machines.

A (deterministic) oracle TM is an ordinary TM equipped with an extra tape,

called the query tape, and three extra states, called the query state, the yes state and

the no state. The query tape is a write-only tape to be used to communicate with

the oracle set A. The oracle machine M operates in the same way as ordinary TMs

if it is not in the query state. When it enters the query state, the oracle A takes over

and performs the following tasks: it reads the query y from the query tape, cleans

up the query tape, puts the head of the query tape to the original position, and puts

machine M into the yes state if y ∈ A or puts it into the no state if y 6∈ A. All of

these actions made by the oracle count only one step of machine move. Let M be an

oracle machine and A be a set. We write MA to denote the computation of machine

M using A as the oracle and write L(M, A) to denote the set of strings accepted by

MA.

The time and space complexity of an oracle machine is defined in a natural

way. Namely, for any fixed oracle A, MA has time (space) complexity ≤ f(n) if for

all x, MA(x) halts in ≤ f(|x|) moves (or, respectively, if MA(x) halts using ≤ f(|x|)
cells, including the space of the query tape3). We say M has time (space) complexity

≤ f(n) if for all oracles A, MA has time (space) complexity ≤ f(n). M is said to

have a polynomial time (space) complexity if M has time (space) complexity ≤ p(n)

for some polynomial function p. The complexity classes P (A) and PSPACE (A) can

be defined as follows:

P (A) ={L(M, A)| MA has a polynomial time complexity},
PSPACE (A) ={L(M, A)| MA has a polynomial space complexity}.

The class NP(A) may be defined to be the class of sets which are computed

2 See Section 9 for references.
3 The definition of space complexity of an oracle machine can vary depending upon whether
we include the space of the query tape in the space measure. The different definitions may
result in very different types of separation results. See, for example, Buss [1986] and Wilson
[1988] for detailed discussions. In this paper, we are concerned only with polynomial space.
Our definition allows the machine to query only about strings of polynomially-bounded
length which is a natural constraint.
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by nondeterministic oracle machines in polynomial time. Here, we avoid the formal

definition of nondeterministic machines and define this class in terms of polynomial-

time predicates. A predicate σ of a set variable A and a string variable x is called

a polynomial-time predicate, or a P 1-predicate if there exist an oracle TM M and

a polynomial p such that M has time complexity ≤ p(n) and for all sets A and all

strings x, MA accepts x iff σ(A; x) is true. It is clear that B ∈ P (A) iff there exists a

P 1-predicate σ such that for all x, x ∈ B ⇐⇒ σ(A; x) holds. It is well known that

the set NP(A) can be characterized as follows: a set B is in NP (A) iff there exist a P 1-

predicate σ and a polynomial q such that x ∈ B ⇐⇒ (∃y, |y| ≤ q(|x|)) σ(A; 〈x, y〉).
In the rest of the paper, we will write ∃py (or ∀py) to denote (∃y, |y| ≤ q(|x|)) (or,

respectively, (∀y, |y| ≤ q(|x|))), if the polynomial bound q is clear in the context or if

the exact bound is irrelevant. Using this notation, we define a ΣP,1
0 -predicate to be

a P 1-predicate, and a ΣP,1
k -predicate, for k ≥ 1, to be a predicate having the form

τ (A; x) ≡ (∃py1)(∀py2) · · · (Qkyk) σ(A; 〈x, y1, · · ·yk〉),

where σ is a P 1-predicate and Qk = ∃p if k is odd and Qk = ∀p if k is even (this

notation will be used through out the paper). Now the relativized polynomial-time

hierarchy can be defined as follows:

ΣP
k (A) = {L| (∃ΣP,1

k predicate σ)[x ∈ L ⇐⇒ σ(A; x)]},
ΠP

k (A) = {L| L ∈ ΣP
k (A)}, k ≥ 1.

In addition to the polynomial-time hierarchy, we are also interested in com-

plexity classes defined by probabilistic machines. Here we avoid the precise definition

of probabilistic machines but use probabilistic quantifiers to define the related com-

plexity classes. Let q be a polynomial and σ a predicate of a set variable and a

string variable. We write (∃+y, |y| ≤ q(|x|)) σ(A; 〈x, y〉) to denote the predicate

which states that for more than 3/4 of strings y, |y| ≤ q(|x|), σ(A; 〈x, y〉) is true.

When the polynomial q is known or is irrelevant, we use the abbreviation ∃+
p y for

(∃+y, |y| ≤ q(|x|)).
The most important probabilistic complexity classes are the class R of sets

computable by polynomial time probabilistic machines with one-sided errors and

the class BPP of sets computable by polynomial time probabilistic machines with

bounded two-sided errors. The class BPP can be naturally generalized to the BP

operator. Namely, for every complexity class C, we may define BPC as follows: a set

L is in BPC if there exists a set B ∈ C such that for all x, x ∈ L⇒(∃+
p y)[〈x, y〉 ∈ B]
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and x 6∈ L⇒(∃+
p y)[〈x, y〉 6∈ B]. In particular, we are interested in the following

relativized probabilistic polynomial hierarchy:

R(A) = {L| (∃P 1 predicate σ)[x ∈ L⇒(∃+
p y) σ(A; 〈x, y〉)]

and [x 6∈ L⇒(∀py) not σ(A; 〈x, y〉)]}.
BPΣP

k (A) = {L| (∃ΣP,1
k predicate σ)[x ∈ L⇒(∃+

p y) σ(A; 〈x, y〉)]
and [x 6∈ L⇒(∃+

p y) not σ(A; 〈x, y〉)]}, k ≥ 0.

We let BPH (A) = ∪∞
k=0BPΣP

k (A). It is clear that for all oracles P (A) ⊆
R(A) ⊆ ΣP

1 (A), and ΣP
k (A) ⊆ BPΣP

k (A) ⊆ ΠP
k+1(A) for all k ≥ 0. Figure 1 shows

the relations between these classes. In Section 4, we will prove some separation

results to show that most of these relations are the best we know to hold for all

oracles.

The above complexity classes are formed by adding an ∃+
p -quantifier to the

alternating ∃p- and ∀p-quantifiers over polynomial predicates. We may also consider

the hierarchy formed by alternating the ∃+
p -quantifiers with the ∃p-quantifiers over

polynomial predicates. The resulting hierarchy is the Arthur-Merlin hierarchy of

Babai [1985] or, equivalently, the interactive proof systems of Goldwasser, Micali

and Rackoff [1985]. We will follow the literature and use the term “Arthur-Merlin.”

AMk(A) ={L| (∃P 1 predicate σ)

[x ∈ L⇒(∃+
p y1)(∃py2) · · · (Q′

kyk) σ(A; 〈x, y1, y2, · · · , yk〉) and

[x 6∈ L⇒(∃+
p y1)(∀py2) · · · (Q′′

kyk) σ(A; 〈x, y1, y2, · · · , yk〉)},
MAk(A) ={L| (∃P 1 predicate σ)

[x ∈ L⇒(∃py1)(∃+
p y2) · · · (Q′

k+1yk) σ(A; 〈x, y1, y2, · · · , yk〉) and

[x 6∈ L⇒(∀py1)(∃+
p y2) · · · (Q′′

k+1yk) σ(A; 〈x, y1, y2, · · · , yk〉)},

where Q′
k is ∃+

p if k is odd and is ∃p if k is even, and Q′′
k is ∃+

p if k is odd and is

∀p if k is even. This hierarchy is one of the very few that were known to collapse.

It is known that AM1(A) = BPP (A), MA1(A) = NP(A), MA2(A) ⊆ AM2(A),

and AMk(A) = MAk(A) = AM2(A) = BPΣP
1 (A) for all oracles A if k ≥ 3. For

more discussions about the complexity classes definable by the ∃+
p quantifier and the

AM -hierarchy, see Zachos [1986].

It is well known that the class PSPACE(A) can also be defined using al-

ternating ∃p- and ∀p-quantifiers. That is, a set L is in PSPACE(A) iff there

exist a polynomial q and a P 1-predicate σ such that for all x, x ∈ L iff
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Figure 1. Polynomial and probabilistic polynomial hierarchies.

(∃py1)(∀py2) · · · (Qq(|x|)yq(|x|)) σ(A; 〈x, y1, y2, · · ·yq(|x|)〉). This suggests that if we

replace the fixed integer k by a fixed polynomial bound q(n) where n is the length

of the input, then we obtain a generalized polynomial hierarchy which locates be-

tween the polynomial hierarchy and PSPACE (A). More formally, we define, for any

function f(n) such that f(n) ≤ q(n) for some polynomial q, the following class:

ΣP
f(n)(A) ={L| (∃P 1 predicate σ)(∀x)[x ∈ L ⇐⇒

(∃py1)(∀py2) · · · (Qf(|x|)yf(|x|)) σ(A; 〈x, y1, · · ·yf(|x|)〉)]}.

Similar generalization can be done on the AM -hierarchy. However, the equivalence

between the generalization by quantifiers and the generalization by machine models

is no longer trivial. We postpone this definition to Section 7.

2. Oracle Computation and Circuits

The construction of oracles separating or collapsing hierarchies usually in-

volves counting arguments about the computation of oracle machines. When a

complex machine model, such as the nondeterministic machine or the alternating

machine, is used, the computation tree is often too complicated to be comprehended.

Mathematical induction has been used to simplify the arguments about the compu-

tation trees. Still, from time to time, the computation trees become so complicated

that they seem beyond our understanding (cf. Baker and Selman [1979]). In addition

to the mathematical induction, an important progress on simplifying the arguments
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about computation trees of oracle machines is to view the oracle computation tree as

a circuit. This technique translates unstructured oracle computation trees into more

structured, more uniform circuit computation trees, and facilitates the lower bound

arguments. We illustrate this technique in this section.

A circuit is usually defined as a directed acyclic graph. For our purpose, we

simply define it as a rooted tree. Each interior node of the tree is attached with a

gate, and has an unlimited number of child nodes. Three types of gates will be used

here: the AND gate, the OR gate and the MAJ gate (standing for “majority”). The

MAJ gate outputs 1 if at least 3/4 of inputs are 1, outputs 0 if at least 3/4 of inputs

are 0, and is undefined otherwise (for convenience, we say the undefined output is

?). Each leaf is attached with a constant 0, a constant 1, a variable x, or a negated

variable x̄. That is, all negation gates are moved down to the bottom by De Morgan’s

law. Each circuit C having only OR and AND gates has a dual circuit C̃ which can

be defined inductively as follows: the dual of a constant or a variable is its negation,

the dual of a circuit C which is an OR (or, AND) of n children Ci, 1 ≤ i ≤ n, is the

AND (or, respectively, OR) of C̃i, 1 ≤ i ≤ n.

Each circuit computes a function on its variables. In this paper, each variable

is represented by vz for some string z ∈ {0, 1}∗. Let V be the set of variables occurred

in a circuit C. Then a restriction ρ of C is a mapping from V to {0, 1, ∗}. For each

restriction ρ of C, Cdρ denotes the circuit C ′ obtained from C by replacing each

variable x with ρ(x) = 0 by 0 and each y with ρ(y) = 1 by 1. Assume that ρ′ is a

restriction of Cdρ. We write Cdρρ′ to denote (Cdρ)dρ′ . We also write ρρ′ to denote

the combined restriction on C with values ρρ′(x) = ρ(x) if ρ(x) 6= ∗ and with values

ρρ′(x) = ρ′(x) if ρ(x) = ∗. If a restriction ρ of C maps no variable to ∗, then we

say ρ is an assignment of C. Let ρ be a restriction of C, we say that ρ completely

determines C if Cdρ computes a constant function 0 or 1. An assignment ρ of C

always completely determines the circuit C. Note that we represent each variable

vz by a string z ∈ {0, 1}∗. Therefore, for every set A ⊆ {0, 1}∗, there is a natural

assignment ρA on all variables vz, z ∈ {0, 1}∗: ρA(vz) = 1 if z ∈ A and ρA(vz) = 0 if

z 6∈ A.

Let M be a polynomial time-bounded deterministic oracle TM, and let x be an

input string to M . Without knowing the answers from the oracle A, we can represent

the computation of MA(x) as a tree, where each computation path corresponds to a

sequence of possible answers to some queries made by M . Since the runtime of M is
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bounded by a polynomial p, each path consists of at most p(|x|) many queries, and

there are at most 2p(|x|) many paths. Each path ends after p(|x|) moves and either

accepts or rejects x. For each accepting path π, let Yπ = {y| y is queried in the path

π and receives the yes answer}, and Nπ = {y| y is queried in the path π and receives

the no answer}. Then, for any oracle A, Yπ ⊆ A and Nπ ⊆ A imply MA(x) accepts.

More precisely, MA(x) accepts iff there exists an accepting path π such that Yπ ⊆ A

and Nπ ⊆ A.

Now define the circuit CM,x as follows. Assume that the computation tree of

MA(x) has r accepting paths. Then, CM,x has a top OR gate with r children, each

being an AND gate and corresponding to an accepting path of the computation tree

of MA(x). For each path π, the corresponding AND gate has the following children:

{vy| y ∈ Yπ} ∪ {vy| y ∈ Nπ}. Then, circuit CM,x satisfies the following property:

CM,xdρA outputs 1 iff MA(x) accepts. In summary, we have

Lemma 2.1. Let M be an oracle TM with runtime ≤ p(n). Then, for each x, there

is a depth-2 circuit C = CM,x satisfying the following properties:

(a) C is an OR of ANDs,

(b) the top fanin of C is ≤ 2p(|x|) and the bottom fanin of C is ≤ p(|x|), and

(c) for any set A, CdρA= 1 iff MA(x) accepts.

Remark 2.2. The above also holds if we require that the circuit C be an AND of

ORs. This can be seen by considering the machine M ′ which computes the com-

plement of L(M, A), and noting that the dual circuit of the circuit CM ′,x satisfies

properties (b) and (c).

From the above basic relation, we can derive relations regarding other com-

plexity classes. Let τ be a ΣP,1
k -predicate; that is, τ (A; x) ≡ (∃py1) · · · (Qkyk)

σ(A; 〈x, y1, · · · , yk〉) for some P 1-predicate σ. Let q be a polynomial bounding the

length of yi, 1 ≤ i ≤ k, as well as the runtime of the oracle machine for σ. When

translating this predicate into a circuit, it is natural to identify an AND gate with a

∀p-quantifier and an OR gate with an ∃p-quantifier. We call a depth-(k + 1) circuit

a Σk-circuit if it has alternating OR and AND gates, starting with a top OR gate.

A Σk-circuit is called a Σk(m)-circuit if its fanins are ≤ 2m and the bottom fanins

are ≤ m. (Note that a Σk-circuit has depth k + 1 rather than k, because a ΣP,1
k -

predicate corresponds to a depth-(k +1) circuit.) A Πk-circuit is the dual circuit of a

Σk-circuit and a Πk(m)-circuit is the dual circuit of a Σk(m)-circuit. Then we have

the following relations.
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Lemma 2.3. Let k ≥ 1. For every ΣP,1
k -predicate τ there is a polynomial q such that

for every x, there exists a Σk(q(|x|))-circuit Cτ,x, having the property that for any set

A, Cτ,xdρA= 1 iff τ (A; x) is true. The similar relation holds between ΠP,1
k -predicates

and Πk-circuits.

Note that the depth of the above circuit is k + 1 rather than k + 2 because

the gate corresponding to the last quantifier can always be combined with the top

gate of the circuit C = Cσ,〈x,y1,···yk〉: depending upon whether the last quantifier is

an ∃p (when k is odd) or a ∀p (when k is even), the circuit C may be made to be an

OR of ANDs (as in Lemma 2.1) or an AND of ORs (as in Remark 2.2), respectively.

Also note that in Lemma 2.3, the circuit Cτ,x exists for every x, therefore we may

let the parameter k be a function of x. In other words, the above lemma generalizes

immediately to the generalized polynomial hierarchy ΣP
f(n)(A).

We can also extend the above lemma to the BP -hierarchy. For each ∃+
p -

quantifier, the natural corresponding gate is a MAJ gate. Hence, we have the follow-

ing relation between circuits with MAJ gates and probabilistic complexity classes. A

circuit C is a BPΣk(m)-circuit if it is an MAJ gate having ≤ 2m many Σk(m)-circuits

as children.

Lemma 2.4. For every BPΣP,1
k -predicate τ there is a polynomial q such that for

every x, there exists a BPΣk(q(|x|))-circuit Cτ,x, having the property that for any

set A, Cτ,xdρA= 1 if τ (A; x) is true and Cτ,xdρA= 0 if τ (A; x) is false.

3. Diagonalization

Let C1 and C2 be two complexity classes. A standard proof technique of

constructing oracles A to separate C1 from C2 (so that C1(A) 6⊆ C2(A)) is the technique

of diagonalization. In a proof by diagonalization, we consider a set LA ∈ C1(A)

against all sets in C2(A) and, at each stage, extend set A on a finite number of

strings so that LA is not equal to the specific set in C2(A) under consideration in this

stage. Therefore, after we considered all sets in C2(A), it is established that LA is

not in C2(A). We illustrate this technique in this section.

We begin by looking at a simple example: separating the class C1 = NP = ΣP
1

from the class C2 = co NP = ΠP
1 . First, we need to enumerate all sets in co NP(A).

We do it by considering an enumeration of all ΣP,1
1 -predicates {σi}. We assume that
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the ith ΣP,1
1 -predicate σi(A; x) is of the form (∃y, |y| ≤ q(|x|))τi(A; 〈x, y〉) such that

τi is a P 1-predicate whose runtime is bounded by the ith polynomial pi(|x|) and that

q(n) ≤ pi(n). Let

LA = {0n| (∃y, |y| = n) y ∈ A}.
Then, for all A, LA ∈ NP(A). We will construct set A by stages such that in stage

n, the following requirement Rn is satisfied:

Rn: (∃xn) [xn ∈ LA ⇐⇒ σn(A; xn)].

Observe that for every set B ∈ ΠP
1 (A), there must be a ΣP,1

1 -predicate σi

such that for all x, x ∈ B iff not σi(A; x). Now, if requirement Ri is satisfied then

xi ∈ LA ⇐⇒ σi(A; xi) ⇐⇒ xi 6∈ B, and hence LA 6= B. Thus, if all requirements

Rn are satisfied, then LA 6∈ ΠP
1 (A).

We now describe the construction of set A. Set A will be constructed by

stages. In each stage, we will reserve some strings for set A and some strings for set

A. We let A(n) and A′(n) be sets containing those strings reserved for A and A,

respectively, up to stage n. We begin with sets A(0) = A′(0) = ∅. In stage n, we try

to satisfy requirement Rn. Assume that before stage n we have defined t(n−1) such

that A(n − 1) ∪ A′(n − 1) ⊆ Σ≤t(n−1). We let m be the least integer greater than

t(n − 1) such that 2m > pn(m), and let xn = 0m. Now we consider the computation

tree generated by σn(A; xn), with the following modification: if the tree contains a

query “y ∈?A” with |y| < m , then prune the no child if y ∈ A(n) and prune the

yes child if y 6∈ A(n). Thus we obtain a computation tree of queries “y ∈?A” only if

|y| ≥ m. Consider two cases:

Case 1. There exists an accepting path π in the tree. Then, this accepting

path π is of length at most pn(m) and hence asks at most pn(m) many queries about

strings y of length m. Since 2m > pn(m), there must be at least one string z of length

m not being queried in the path π. We fix such a string z0. Also, let B0 = {y| y

is queried and answered no in path π}, and B1 = {y| y is queried and answered yes

in path π}. We define A(n) = A(n − 1) ∪ B1 ∪ {z0} and A′(n) = A′(n − 1) ∪ B0.

Note that requirement Rn is satisfied by set A(n) and string xn: xn ∈ LA(n) because

|z0| = m and z0 ∈ A(n), and σn(A(n); xn) because B1 ⊆ A(n) and B0 ∩ A(n) = ∅
imply that the computation of σn(A(n); xn) follows the path π and accepts.

Case 2. All paths in the tree reject. Then, consider the path π all of whose

queries “y ∈?A” receive the answer no. Let B0 = {y| y is queried in the path π}.
We let A(n) = A(n − 1) and A′(n) = A′(n − 1) ∪ B0. Note that requirement Rn is
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satisfied by set A(n) and string xn: xn 6∈ LA(n) because A(n)∩{0, 1}m = ∅, and not

σn(A(n); xn) because B0 ∩ A(n) = ∅ implies that the computation of σn(A(n); xn)

follows the path π and rejects.

Finally we complete stage n by letting t(n) = pn(m). Note that for all y in

A(n) ∪A′(n), |y| ≤ t(n) (assuming pn(m) > m).

We define set A to be ∪∞
n=0A(n). Note that the set A has the property that

A≤t(n) = A(n). Thus, the requirement Rn is satisfied by set A and string xn because

both computations of xn ∈ LA and σn(A; xn) involve only with strings of length

≤ t(n) and so A≤t(n) = A(n) implies that requirement Rn is satisfied by A and xn.

In the above we have described in detail the construction of a set A such that

NP(A) 6= co NP (A). Now we re-examine the construction and make the following

observations about its general properties.

(1) We need an enumeration of sets in C2. This is usually simple. For

the classes we defined in Section 1, all of them have simple representations by a

number of polynomial length-bounded quantifiers followed by P 1-predicates. Since

the class of all P 1-predicates have a simple enumeration, we can enumerate these

classes accordingly. Namely, we may assume, for any sequence of polynomial length-

bounded quantifiers Q′
1, · · · , Q′

k, an enumeration {σi} of predicates of the form

(Q′
1y1) · · · (Q′

kyk) τ (A; 〈x, y1, · · · , yk〉) such that both the runtime of the P 1-predicate

τ and the length of yj ’s are bounded by the ith polynomial pi.

(2) The requirement C1(A) 6⊆ C2(A) is divided into an infinite number of

requirements:

Rn: (∃xn)[xn ∈ LA ⇐⇒ not σn(A; xn)],

where LA is a fixed set in C1(A) and σn is the nth predicate in our enumeration of

sets in C2(A).

(3) Assume that A(n) = A≤t(n) and let D(n) = {y| t(n − 1) < |y| ≤ t(n)}.
We call set D(n) the diagonalization region for stage n. Then, sets D(n) and A(n)

satisfy

(a) xn ∈ LA ⇐⇒ xn ∈ LA(n) ⇐⇒ xn ∈ LA∩D(n), and

(b) σn(A; xn) ⇐⇒ σn(A(n); xn) ⇐⇒ σn(A(n − 1) ∪ (A ∩ D(n)); xn).

Therefore, in stage n we essentially only need to satisfy the following simpler require-

ment R′
n, instead of Rn.

R′
n: (∃xn)(∃B ⊆ D(n))[xn ∈ LB ⇐⇒ not σn(A(n − 1) ∪B; xn)].

11



(4) Inside the diagonalization region D(n), we need to show that requirement

R′
n can be satisfied, usually by a counting argument. We observe that the count-

ing argument used in the above example is essentially equivalent to a lower bound

argument for Σ1(m)-circuits versus Π1(pn(m))-circuits. More precisely, in stage n,

the computation tree of σn(A; xn), after pruning to remove queries about strings of

length less than m, can be translated to a Σ1(pn(m))-circuit C (Lemma 2.3). Let

C̃ be its dual circuit. Then C̃ is a Π1(pn(m))-circuit. Also, the question of whether

x ∈ LA is equivalent to the predicate (∃z, |z| = m)[z ∈ A] and hence can be expressed

by a simple Σ1(m)-circuit C0: C0 is the OR of 2m variables vz, |z| = m. Now observe

that the counting argument in the above example essentially establishes that there

is an assignment ρ on variables such that C0dρ 6= C̃dρ.

In general, we can see that the requirement R′
n can be reduced to the require-

ment R′′
n about circuits:

R′′
n: (∃xn)(∃B ⊆ D(n))[xn ∈ LB ⇐⇒ CdρB= 0],

where C is the circuit corresponding to predicate σn(A; xn), with each variable vy

having |y| ≤ t(n − 1) replaced by value χA(n−1)(y). Depending upon which class

C1 is, the predicate xn ∈ LB may also be represented by a circuit C0. In this case,

requirement R′′
n states that (∃xn)(∃B ⊂ D(n))[C0dρB 6= CdρB ].

The above discussion shows that whenever possible, the diagonalization pro-

cess is reduced to a lower bound problem about circuits. In the next section, we will

see more examples using the above setting of diagonalization.

4. Separation Results

In this section, we use the general setting of diagonalization discussed in Sec-

tion 3 to separate some complexity hierarchies defined in Section 1 by oracles.

4.1. Separating PSPACE from PH

First, we consider the case when C1 = PSPACE and C2 = ΣP
k , for arbitrary k ≥ 1.

We set up the following items:

(a) LA = {0n| ‖A=n‖ is odd} ∈ PSPACE (A).

12



(b) For each n, let m be a sufficiently large integer greater than t(n−1) (exact

bound for m to be determined later). Let xn = 0m and t(n) = pn(m), and recall

that D(n) = {y| t(n − 1) < |y| ≤ t(n)}.
(c) For each n, let σn be the nth ΣP,1

k -predicate and let Cn be the Σk(pn(m))-

circuit such that for all sets B ⊆ D(n), CndρB = 1 iff σn(A(n− 1)∪B; xn). (That is,

Cn is obtained from predicate σn(A; xn) by Lemma 2.3 with the modification that

each variable vy is assigned value χA(n−1)(y) if |y| < m.)

Now the separation problem for PSPACE versus ΣP
k is reduced to the following

requirement:

R′′
n: (∃B ⊆ D(n)) [‖B=m‖ is odd ⇐⇒ CndρB = 0].

Or, equivalently, it is reduced to the following lower bound result on parity circuits.

For each k ≥ 1, let sk(n) be the minimum size r of a depth-k circuit4 which has size r

and bottom fanin ≤ log r and computes the (odd) parity of n variables. Requirement

R′′
n states that the function sk(n) grows faster than the functions 2(log n)k

for all k. In

the following we show an even stronger result: sk(n) is greater than an exponential

function on n. This is the main breakthrough in the theory of relativization.

Theorem 4.1 [Yao, 1985; Hastad, 1987]. For sufficiently large n, sk(n) ≥
2(1/10)n1/(k−1)

.

Since the proof of this theorem is quite involved, we will only include a sketch

of the main ideas here. The interested reader is referred to Hastad [1987] for the

complete proof.

Proof of Theorem 4.1. The proof is done by induction on k. A stronger statement

is easier to use in the induction proof. More precisely, we are going to show the

following stronger form of the theorem:

Induction statement. Let k ≥ 2 and δ = 1/10. Let Cn be a depth-k circuit hav-

ing ≤ 2δn1/(k−1)

gates not at the bottom level and having bottom fanin ≤ δn1/(k−1).

Then, for sufficiently large n, Cn does not compute the parity of n variables.

The base case of k = 2 is very easy to see as no depth-2 circuit having bottom

fanin ≤ n − 1 computes the parity of n variables.

For the inductive step, assume that k > 2. By way of contradiction, we

assume that there exists a circuit Cn of the above form that computes the parity of

4 In this and the next subsections, all circuits are circuits that have only OR and AND
gates.
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n variables. To apply the inductive hypothesis, we need to show that there exists a

restriction ρ such that it leaves m variables v unassigned (i.e., ρ(v) = ∗) but makes

circuit Cndρ to be equivalent to a depth-(k − 1) circuit having ≤ 2δm1/(k−1)

gates not

at the bottom level and having bottom fanin ≤ δm1/(k−1). Then, the assumption

that Cn computes the parity of n variables implies that Cndρ (or its dual circuit)

computes the parity of m variables, which leads to a contradiction to the inductive

hypothesis.

To this end, we consider the following probability space Rp of restrictions on

the n variables: a random restriction ρ from Rp satisfies that Pr[ρ(v) = ∗] = p and

Pr[ρ(v) = 0] = Pr[ρ(v) = 1] = (1 − p)/2, where p is a parameter, 0 ≤ p ≤ 1. Then,

we consider the circuit Cndρ resulted from applying a random restriction ρ from Rp

to Cn.

If we take p, for instance, to be n−1/(k−1), then the expected number of

variables assigned with ∗ by ρ is n(k−2)/(k−1). Therefore, for probability ≥ 1/3,

a random restriction ρ will leave more than n(k−2)/(k−1) variables unassigned. To

apply the inductive hypothesis, we need only to show that the probability is greater

than 2/3 that the circuit Cndρ is equivalent to a depth-(k − 1) circuit having ≤ 2δr

many gates not at the bottom level and having bottom fanin ≤ δr, where r =

(n(k−2)/(k−1))1/(k−2) = n1/(k−1), and ρ is a random restriction from Rp with p =

n−1/(k−1). This is the consequence of the following Switching lemma:

Lemma 4.2 (Switching Lemma I). Let G be a depth-2 circuit such that G is the

AND of ORs with bottom fanin ≤ t and ρ a random restriction from Rp. Then, the

probability that Gdρ is not equivalent to an OR of ANDs with bottom fanin ≤ s is

bounded by αs, where α satisfies α ≤ 5pt. The above also holds if G is an OR of

ANDs to be converted to a circuit of AND of ORs.

The proof of the Switching Lemma is too complicated to be included here.

We omit it and continue the induction proof for Theorem 4.1. Without loss of

generality, assume that k is odd and so the bottom gate of Cn is an OR gate. Let

s = t = δn1/(k−1). Note that Cn has ≤ 2s many depth-2 subcircuits. From the

Switching Lemma, the probability that every bottom depth-2 subcircuit G of Cndρ

(which is an AND of ORs) is equivalent to a depth-2 circuit of OR of ANDs, with

bottom fanins ≤ s, is

≥ (1 − αs)2
s ≥ 1 − (2α)s.

Now, α < 5pt = 1/2 and so limn→∞(2α)s = 0. In particular, there exists an integer
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nk such that if n > nk then (2α)s < 1/3. (This integer nk depends only on k.) Thus,

for sufficiently large n, the probability is greater than 1 − (2α)s ≥ 2/3 that Cndρ is

equivalent to a depth-(k−1) circuit having ≤ 2δn1/(k−1)

gates not at the bottom level

and having bottom fanin ≤ δn1/(k−1). This completes the proof of Theorem 4.1. tu
Remark 4.3. The above gave the lower bound sk(n) ≥ 2(1/10)n1/(k−1)

on the size

r of Σk-circuits C for parity if C must have bottom fanin ≤ log r. We may treat a

Σk-circuit as a Σk+1-circuit with bottom fanin 1, and so we obtain the lower bound

s′k(n) ≥ 2(1/10)n1/k

on the size of any Σk-circuit for parity. Hastad [1987] has pointed

out that we may also first apply the Switching Lemma to shrink the bottom fanin to

log r and so obtain a better bound s′k(n) ≥ 2εn1/(k−1)

, where ε = 10−k/(k−1).

From Theorem 4.1, it is clear that if we choose integer m to be large enough

such that Theorem 4.1 holds for sk(2m) and that (1/10)2m/(k−1) > k · pn(m) (note

that 2k·pn(m) bounds the size of a Σk(pn(m))-circuit), then requirement R′′
n can be

satisfied. By dovetailing the enumeration of ΣP,1
k -predicates for all k ≥ 1, we obtain

the following theorem.

Theorem 4.4. There exists an oracle A such that for every k ≥ 1, PSPACE (A) 6=
ΣP

k (A).

Let ⊕P (A) (read “parity-P (A)) be the complexity class defined as follows:

a set L is in ⊕P (A) iff there exists a P 1-predicate σ such that for all x, x ∈ L iff

the number of y, |y| ≤ q(|x|), such that σ(A; 〈x, y〉) holds is odd. It is easy to see

that ⊕P (A) ⊆ PSPACE (A) for all A, but it is not known whether NP ⊆ ⊕P or

⊕P ⊆ ΣP
k for any k ≥ 1. It is easy to see that the set LA in the above proof is in

⊕P (A). That is, we have actually established a stronger separation result.

Corollary 4.5. There exists a set A such that ⊕P (A) 6⊆ ΣP
k (A) for all k ≥ 0.

4.2. Separating PH

In this subsection, we show that there is an oracle A such that PH(A) is an infinite

hierarchy. It is sufficient to find, for each k > 0, a set LA ∈ ΣP
k (A) such that

LA 6∈ ΠP
k (A). Then, by dovetailing the diagonalization for each k > 0, the oracle A

can be constructed so that ΣP
k (A) 6= ΠP

k (A) for all k.

Let k > 0 be fixed. Define

LA = {0(k+1)n| (∃y1, |y1| = n)(∀y2, |y2| = n) · · · (Qkyk, |yk| = n) 0ny1y2 · · ·yk ∈ A}.
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Then, clearly, LA ∈ ΣP
k (A). The setup for m, t(n) and D(n) is similar to that in

Section 4.1. (In particular, m must be sufficiently large.) From the general setting

discussed in Section 3, we only need to satisfy the requirements

R′′
n: (∃xn = 0m)(∃B ⊆ D(n))[0m ∈ LB ⇐⇒ CdρB= 0],

where C is a Πk(pn(|m|))-circuit corresponding to the nth ΠP,1
k -predicate σn(A; 0m),

with all variables vy having |y| ≤ t(n − 1) replaced by the constant χA(n−1)(y).

We note that the predicate 0m ∈ LB is a ΣP,1
k -predicate. That is, there is a

depth-k circuit C0 having the following properties:

(a) C0 has alternating OR and AND gates, starting with a top OR gate,

(b) all the fanins of C0 are exactly 2m/(k+1),

(c) each leaf of C0 has a unique positive variable vz with |z| = m, and

(d) for all B ⊆ D(n), C0dρB = 1 ⇐⇒ 0m ∈ LB .

So, the requirement R′′
n is reduced to the following problem on circuits: there

exists a set B ⊆ D(n) such that C0dρB 6= CdρB . We restate it in the lower bound form.

Let D be a depth-k circuit having the following properties: (a) it has alternating OR

and AND gates, with a top OR gate, (b) all its fanins are exactly n, except the

bottom fanins which are exact
√

n, and (c) each leaf of D has a unique positive

variable. We let the function fn
k be the function computed by D. (Note that C0

contains a subcircuit computing a function f2m/(k+1)

k .) Let sk(n) be the minimum r

of a Πk-circuit computing a function fn
k that has size ≤ r and bottom fanin ≤ log r.

The new requirement R′′
n is satisfied by the following lower bound on sk(n).

Theorem 4.6. For sufficiently large n, sk(n) ≥ 2(1/12)n1/3

.

Sketch of proof. Again, we prove it by induction. The induction is made easier on

the following stronger form.

Induction statement. Let k ≥ 1 and δ = 1/12. Let Cn be a Πk-circuit having

≤ 2δn1/3

gates not at the bottom level and having bottom fanin ≤ δn1/3. Then, for

sufficiently large n, Cn does not compute the function fn
k .

The base step of the induction involves two circuits: Cn is an AND of ORs

with small bottom fanins (≤ δn1/3), and C0 (which computes the function fn
1 ) is an

OR of n1/2 variables. We need to show that Cn does not compute the same function

as C0. But this is exactly what we proved in the example of Section 3.

For the inductive step, consider k > 1. We define two new probability spaces

of restrictions: R+
q,B and R−

q,B, where B = {Bj}r
j=1 is a partition of variables and q a
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value between 0 and 1. To define a random restriction ρ in R+
q,B, first, for each Bj ,

1 ≤ j ≤ r, let sj = ∗ with probability q and sj = 0 with probability 1 − q; 5 and

then, independently, for each variable x ∈ Bj , let ρ(x) = sj with probability q and

ρ(x) = 1 with probability 1 − q. Next, define, for each ρ ∈ R+
q,B, a restriction g(ρ):

for all Bj with sj = ∗, let Vj be the set of all variables in Bj which are given value ∗
by ρ; g(ρ) selects one variable y in Vj and gives value ∗ to y and value 1 to all others

in Vj . The probability space R−
q,B and g(ρ) are defined by interchanging the roles

played by 0 and 1.

Now let B = {Bj} be the partition of variables in C0 such that each Bj is

the set of all variables leading to a bottom gate in C0. Let q = n−1/3. If k is even,

then apply a random restriction ρ from R+
q,B; otherwise, apply a random restriction

ρ from R−
q,B.

In order to apply the inductive hypothesis, we need to verify that (a) with a

high probability, Cdρg(ρ) is equivalent to a Πk−1-circuit having ≤ 2δn1/3

gates not at

the bottom level and having bottom fanin ≤ δn1/3, and (b) with a high probability,

C0dρg(ρ) contains a subcircuit computing the function fn
k−1. We give sketches of these

facts.

To prove part (a), we need a new version of the Switching Lemma.

Lemma 4.7 (Switching Lemma II). Let G be an AND of ORs with bottom fanin

≤ t, and B = {Bj} be a partition of variables in G. Then, for a random restriction ρ

from R+
q,B, the probability that Gdρg(ρ) is not equivalent to a circuit of OR of ANDs

with bottom fanin ≤ s is bounded by αs, where α < 6qt. The above also holds with

R+
q,B replaced by R−

q,B, or with G being an OR of ANDs to be converted to a circuit

of an AND of ORs.

We again omit the proof of the second Switching Lemma; the interested reader

is referred to Hastad [1987] for details.

Without loss of generality, assume that k is even. From Lemma 4.7, if we

choose s = t = δn1/3, then we have α < 6qt = 1/2, and so limn→∞(2α)s = 0.

Therefore, the probability that every bottom depth-2 subcircuit Gdρg(ρ) (which is an

AND of ORs) of Cdρg(ρ) is equivalent to a depth-2 circuit of OR of ANDs is

≥ (1 − αs)2
s ≥ 1 − (2α)s ≥ 2/3,

5 Do not confuse the sj here (which is a value in {0, 1, ∗}) with the size function sk(n).
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for sufficiently large n. The above proved part (a). The following lemma proves part

(b).

Lemma 4.8. For sufficiently large n, the probability that C0dρg(ρ) contains a sub-

circuit for fn
k−1 is greater than 2/3.

Sketch of proof. We want to show that q1q2 ≥ 2/3, where q1 is the probability that all

bottom AND gates Hjdρg(ρ) (corresponding to block Bj) of C0dρg(ρ) takes the value

sj , and q2 is the probability that all OR gates at level 2 from bottom of C0dρg(ρ)

have ≥ n1/2 many child nodes Hjdρg(ρ) of AND gates having value sj = ∗.
To estimate probability q1, we note that for a fixed j,

Pr[Hjdρg(ρ) has value 6= sj ] = Pr[all inputs to Hjdρg(ρ) are 1]

= (1 − q)n1/2

= (1 − n−1/3)n1/2

< e−n1/6

,

for sufficiently large n. Since C0 has nk−1 many bottom gates Hj, we obtain q1 ≥
(1 − e−n1/6

)nk−1 ≥ 5/6, for sufficiently large n.

To estimate probability q2, let G be a bottom depth-2 subcircuit of C0, and

let r` be the probability that Gdρg(ρ) has exactly ` many child nodes Hjdρg(ρ) having

values sj = ∗. Then,

r` =

(

n

`

)

q`(1 − q)n−`.

Note that for sufficiently large n, if ` ≤ 2
√

n then r` ≤ 1/2 and r` ≥ 2r`−1. So,
√

n
∑

`=0

r` ≤ r√n ·
√

n
∑

`=0

2−` ≤ 2 · r√n ≤ 2 · 2−
√

n · r2
√

n ≤ 2−
√

n.

Thus, q2 ≥ (1−2−
√

n)nk−2

> 5/6, for sufficiently large n. This shows that q1·q2 ≥ 2/3

and completes the proof for Lemma 4.8 and hence Theorem 4.6. tu
Theorem 4.6 implies that requirement R′′

n can be satisfied if we choose integer

m to be so large that Theorem 4.6 holds for sk(2m/(k+1)) and that (1/12)2m/3(k+1) >

k · pn(m).

Theorem 4.9. There exists an oracle A such that for all k > 0, ΣP
k (A) 6= ΠP

k (A).

4.3. Separating BPH from PH

We now consider the hierarchy BPH (A) = ∪∞
k=0BPΣP

k (A). Since ΣP
k (A) ⊆

BPΣP
k (A) ⊆ ΠP

k+1(A), it follows immediately that BPΣP
k+1(A) = BPΣP

k (A) im-

plies that the polynomial hierarchy PH(A) collapses to BPΣP
k (A). Therefore, there
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exists an oracle A such that BPH (A) is infinite. What we are going to show in this

section is instead that there exists an oracle A such that BPΣP
k (A) 6⊆ ΣP

k+1(A); or,

in other words, the two hierarchies PH(A) and BPH (A) are completely separated.

We let LA = {0(k+2)n| (∃+y0, |y0| = n)(∃y1, |y1| = n)(∀y2, |y2| =

n) · · · (Qkyk, |yk| = n)0ny0y1 · · · yk ∈ A}. Then, obviously, LA ∈ BPΣP
k (A). Also, for

stage n, we set up xn = 0m for appropriate value m and let C be the Σk+1(pn(m))-

circuit corresponding to the nth ΣP,1
k+1-predicate σn(A; 0m) with variables vy assigned

value χA(n−1)(y) if |y| < m. To satisfy the requirement

R′′
n: (∃xn = 0m)(∃B ⊆ D(n))[0m ∈ LA ⇐⇒ CdρB= 0],

we only need a lower bound result like that in Section 4.2. More precisely, let Ci,

1 ≤ i ≤ n, be circuits computing functions fn
k , and let C0 be a depth-(k + 1) circuit

with a top MAJ gate and having C1, · · · , Cn as its n children. Then, we need to

show that the minimum size r of a Σk+1-circuit that has bottom fanin ≤ log r and

is equivalent to C0 is at least 2(1/12)n1/3

. If we treat the top MAJ gate of C0 as an

AND gate, then the proof for this lower bound result is almost identical to the proof

given in Section 4.2. The only difference is that the base step of the induction proof

is no longer simple. In fact, it needs a more complicated counting argument. We

state it as a separate lemma.

Lemma 4.10. Let C0 be a depth-2 circuit having a top MAJ gate with n children,

each being an OR of n1/2 many variables, and let C be a Σ3(m)-circuit, where

m = (1/12)n1/3. Then, for sufficiently large n, there exists an assignment ρ such

that C0dρ 6=? and C0dρ 6= Cdρ.

Proof. Note that we cannot apply a random restriction ρ from R−
q,B to the circuits

and use the second Switching Lemma to simplify the circuits, because such a random

restriction ρ would oversimplify circuit C into one that computes a constant 1 because

the majority (more than 3/4 many) of the OR gates in Cdρ would have value sj = 1.

Instead of using a random restriction to simplify circuits, we make a direct ad hoc

counting argument to show that circuit C cannot simulate circuit C0. This counting

argument was first used by Baker and Selman [1979] to construct an oracle A such

that ΣP
2 (A) 6= ΠP

2 (A). We give a sketch here.

Assume, by way of contradiction, that for all assignments ρ, C0dρ 6=? implies

C0dρ= Cdρ. Let V be the set of variables in C0. Without loss of generality, assume
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that all variables in C are in V . Let

K = {ρ| (∀ OR gate H of C0)(∃ unique z in H) ρ(z) = 1}.

Then, ‖K‖ = nn/2 = 2(n logn)/2. For each ρ ∈ K, C0dρ= 1, and hence one of AND

gate D of C has Ddρ= 1. Note that there are ≤ 2m AND gates in C. So, there exists

an AND gates D of C such that Ddρ= 1 for at least 2(n log n)/2−m many ρ in K. Fix

this AND gate D. Let K0 = {ρ ∈ K| Ddρ= 1}, and Q0 = ∅. We note that K0 and

Q0 satisfy the following properties:

(i) ‖Kµ‖ ≥ 2(n/2−µ/3) logn−cµ−m, where c = log12,

(ii) ‖Qµ‖ = µ,

(iii) ρ ∈ Kµ⇒[ρ ∈ K0 and ρ(w) = 1 for all w ∈ Qµ].

We claim that we can find sets Kµ and Qµ satisfying the above proper-

ties for µ = 0, · · · , n/4. Then, we have ‖Kn/4‖ ≥ 2(n/2−n/12)log n−cn/4−m =

2(5/12)n logn−cn/4−m. However, from property (iii), all ρ ∈ Kn/4 have the same value

1 on n/4 many variables, and there are only (n1/2)3n/4 = 2(3/8)n logn many such ρ’s.

This gives a contradiction.

To prove the claim, we assume that Kµ and Qµ have been constructed satisfy-

ing the above properties, with µ < n/4. Now, we define Kµ+1 and Qµ+1 inductively

as follows: First, define ρµ by ρµ(v) = 0 if v ∈ V − Qµ and ρµ(v) = 1 if v ∈ Qµ.

Then, by property (ii), ‖Qµ‖ = µ < n/4 implies that Cdρµ= C0dρµ= 0 and hence

Ddρµ= 0. So, one of the OR gates G in D has Gdρµ= 0. Fix this gate G.

Since each ρ in Kµ has Ddρ= 1, we have Gdρ= 1, and so ρµ differs from

each ρ ∈ Kµ at at least one variable in G. This variable u must be in V − Qµ

and ρµ(u) = 0 and ρ(u) = 1. Choose such a variable u in G that maximizes the

size of the set {ρ ∈ Kµ| ρµ(u) = 0, ρ(u) = 1}. Define Qµ+1 = Qµ ∪ {u} and

Kµ+1 = {ρ ∈ Kµ| ρ(u) = 1}. Then it can be verified that Kµ+1 and Qµ+1 satisfy

properties (i)—(iii). (In particular, G has ≤ m = (1/12)n1/3 variables, and so

‖Kµ+1‖ ≥ ‖Kµ‖/m ≥ 2(n/2−µ/3) logn−cµ−m/2(1/3) logn+c

= 2(n/2−(µ+1)/3) log n−c(µ+1)−m.)

The claim, and hence the lemma, is proven. tu
Theorem 4.11. There exists an oracle A such that for every k > 0, BPΣP

k (A) 6⊆
ΣP

k+1(A).

Corollary 4.12. There exists an oracle A such that MA2(A) ⊂
6= AM2(A).
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Proof. It is known that for all oracles A, MA2(A) ⊆ ΣP
2 (A) [Zachos, 1986]. tu

5. Encoding and Diagonalization

In order to collapse a hierarchy to a fixed level, a common technique is to

encode the information about sets in higher levels into the oracle set A so that it can

be decoded using a lower level machine. If the complexity class in the higher level has

a complete set,6 then we need to encode only one set instead of infinitely many sets.

For example, Baker, Gill and Solovay [1975] showed that if A is PSPACE-complete

then NP (A) = P (A) (in fact, PSPACE (A) = P (A)). Moreover, when we need to

collapse a hierarchy to a fixed level and, using the same oracle, to separate classes

below that level, the technique of encoding is used together with diagonalization, and

this may create many new problems in constructing the oracle. We illustrate this

technique in this section.

We first consider a simple example: collapsing NP to NP ∩ co NP , but keeps

P 6= NP . That is, we need an oracle A such that P (A) 6= NP(A) = co NP(A). First,

we follow the general setup in Section 3 for the diagonalization against all sets in P .

Namely, we enumerate all P 1-predicate σn(A; x) and choose appropriate witnesses

xn and diagonalization regions D(n) so that the following requirements are to be

satisfied:

Rn,0: (∃xn)(∃B ⊆ D(n))[xn ∈ LB ⇐⇒ not σn(A(n − 1) ∪ B; xn)],

where LA = {02n| (∃y, |y| = n)[0ny ∈ A]} ∈ NP(A).

In the meantime, consider a complete set K(A) for NP(A). For example, let

K(A) = {〈0i, a, 0j〉| (∃b, |b| ≤ j)[σi(A; 〈a, b〉) is true and decidable in j moves]}. It is

important to note that whether an instance x = 〈0i, a, 0j〉 is in K(A) depends only on

the set A<|x| because in j moves the machine for σi on input a can only query about

strings in A<|x|. To satisfy NP (A) = co NP(A), we need to make K(A) ∈ co NP(A),

or, K(A) ∈ NP (A). We consider a specific ΣP,1
1 -predicate τ (A; x) ≡ (∃y, |y| =

|x|) 1xy ∈ A, and require that for all x, x 6∈ K(A) ⇐⇒ τ (A; x). To fit this

requirement into the stage construction for requirements Rn,0, we divide it into an

infinite number of requirements:

6 A set B is complete for a class C if B ∈ C and for all sets C ∈ C there exists a polynomial-
time computable function f such that for all x, x ∈ C iff f(x) ∈ B.
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Rn,1: (∀x, |x| = n)[x 6∈ K(A) ⇐⇒ τ (A; x)].

Now we describe the construction of set A. In stage n, we will satisfy require-

ment Rn,0 by choosing xn = 0m, where m is even, m > t(n − 1) and 2m/2 > pn(m).

Also in stage n, we will satisfy requirements Ri,1, for all i, t(n − 1) < 2i + 1 ≤ t(n)

(again, t(n) = pn(m)).

More precisely, stage n consists of four steps. In Step 1, we determine the

integer m, and let t(n) = pn(m). In Step 2, we determine the memberships in

A or A for strings x of length t(n − 1) < |x| < m, and satisfy requirements Ri,1,

t(n−1) < 2i+1 < m. This is done in m−t(n−1)−1 many substeps: Substeps t(n−
1)+1, · · · , m−1. To begin, we let X(t(n−1)) = A(n−1) and X ′(t(n−1)) = A′(n−1).

At Substep j, where j is even, do nothing: X(j) = X(j − 1) and X ′(j) = X ′(j − 1).

At Substep j, where j is odd, determine, for each string x of length (j − 1)/2,

whether x ∈ K(X(j − 1)). If x ∈ K(X(j − 1)), then let Yx = Y ′
x = ∅; otherwise, let

Yx = {1xy| |y| = |x|} and Y ′
x = ∅. Define X(j) = X(j − 1) ∪ (∪|x|=(j−1)/2Yx) and

X ′(j) = X ′(j−1)∪ (∪|x|=(j−1)/2Y
′
x). Note that by the end of Substep m−1, we have

x 6∈ K(X(m − 1)) ⇐⇒ τ (X(m − 1); x) for all x, t(n − 1) < 2|x| + 1 < m, because

the question of whether x ∈ K(A) depends only on A<|x| and hence x ∈ K(X(2|x|))
iff x ∈ K(X(m − 1)).

In Step 3, we need to satisfy Rn,0, and also make sure that requirements Ri,1,

m ≤ 2i + 1 ≤ t(n), can be satisfied in Step 4. We consider the computation tree T

of σn(A; 0m), with each query “y ∈?A” answered by χX(m−1)(y) if |y| < m. We also

consider the following circuits:

(1) the Σ1-circuit C0 corresponding to the predicate “0m ∈ LA”, and

(2) for each x, m ≤ 2|x|+ 1 ≤ t(n), the circuit Cx corresponding to the predicate

τ (A; x).

Let D′(n) = {y| m ≤ |y| ≤ t(n)}. To satisfy requirement Rn,0, and in the meantime,

allowing requirements Ri,1, m ≤ 2i + 1 ≤ t(n), to be satisfied later, we need to find

sets B0, B1 such that B0∪B1 ⊆ D′(n), B0∩B1 = ∅, and that the following properties

(a), (b) and (c) hold. Let ρ = ρB0 ,B1 be the restriction such that ρ(vz) = 1 if z ∈ B1,

ρ(vz) = 0 if z ∈ B0, and ρ(vz) = ∗ if z 6∈ B0 ∪ B1.

(a) The computation tree T always accepts or always rejects, if all queries z ∈ B1

are answered yes and all queries z ∈ B0 are answered no (and other queries

remained unanswered). We abuse the notation and write that T dρ 6= ∗.
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(b) The circuit C0dρ is completely determined , and C0dρ 6= T dρ.

(c) The circuits Cxdρ, for all x such that m ≤ 2|x|+ 1 ≤ t(n), are undetermined.

The above conditions (a) and (b) together satisfy requirement Rn,0 and con-

dition (c) leaves Cxdρ undetermined so that all requirements Ri,1, m ≤ 2i+1 ≤ t(n),

can be satisfied in Step 4. Since variables in C0 are those vy’s with |y| being even

and variables in Cx’s are those vy’s with |y| = 2|x| + 1, we can further simplify the

above conditions (a), (b) and (c) into the following requirement:

R′
n: (∃xn)(∃B0, B1 ⊆ D′(n))[B0 ∩ B1 = ∅, T dρB0 ,B1

6= ∗, and C0dρB0,B1
=

CxdρB0,B1
= ∗ for all x such that m ≤ 2|x|+ 1 ≤ t(n)].

To see that requirement R′
n can be satisfied, we let π be the fixed computation

path in T in which all queries are answered no. Let B0 = {y| y is queried in path

π} and B1 = ∅. Then, obviously, T dρB0,B1
6= ∗. We note that m is chosen such that

2m/2 > pn(m), and so ‖B0‖ ≤ pn(m) < 2m/2. Therefore, ρB0 ,B1 cannot determine

circuit C0, nor any Cx, m ≤ 2|x|+1 ≤ t(n), since each of these circuits needs at least

one positive value or at least 2m/2 negative values to be completely determined.

Now, from requirement R′
n, if T dρB0,B1

= 0, then we choose one variable vz in

C0 such that z 6∈ B0, let X(m − 1) = X(m − 1) ∪ {z}, and if T dρB0 ,B1
= 1 then do

nothing. This satisfies requirement Rn,0 with respect to set X(m − 1).

Finally, in Step 4, we satisfy requirements Ri,1 for all i such that m ≤ 2i+1 ≤
t(n). Again, we divide this step into t(n) − m + 1 many substeps. In each Substep

j, j = m, · · · , t(n), we consider all strings x of length (j − 1)/2 to see whether

x ∈ K(X(j − 1)). If x ∈ K(X(j − 1)), then let Yx = Y ′
x = ∅; otherwise, find a string

z = 1xy, |y| = |x|, such that z 6∈ B0 and let Yx = {z} and Y ′
x = ∅ (such a string

z must exist as guaranteed by condition (c) of Step 3). Define X(j) = X(j − 1) ∪
(∪|x|=(j−1)/2Yx) and X ′(j) = X ′(j − 1) ∪ (∪|x|=(j−1)/2Y

′
x). Let A(n) = X(t(n)) and

A′(n) = X ′(t(n)). This completes stage n.

The above stage n defined set A(n), or A≤t(n) if we let A = ∪∞
n=1A(n). Note

that we have, in Step 3 of stage n, satisfied requirement Rn,0 with respect to set

X(m−1). Note that our construction of A always keep A to be an extension of X(j)

and X ′(j) within stage n in the sense that X(j) ⊆ A and X ′(j) ⊆ A. Therefore,

requirement Rn,0 is also satisfied with respect to set A. Similarly, requirements Ri,1,

for all i such that t(n − 1) < 2i + 1 ≤ t(n), are satisfied in stage n with respect to

X(2i + 1) and X ′(2i + 1), and so they are satisfied with respect to set A.
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In summary, our construction of set A which collapses class C3 to class C1 but

still separates C1 from C2 uses the following general setting:

(1) The diagonalization setting for C1 against C2 includes (a) the enumeration

of predicates σn(A; x) in C2, (b) defining a fixed set LA ∈ C1(A) such that the question

of whether x ∈ LA depends only on set A ∩ W (x), where W (x) is a window usually

contained in {0, 1}|x|, (c) setting the requirement

Rn,0: (∃xn)[xn ∈ LA ⇐⇒ not σn(A; xn)],

and (d) defining t(n) such that diagonalization occurs in the region D′(n) = {y| |xn| ≤
|y| ≤ t(n)}.

(2) To collapse the class C3 to C1, we need a complete set K(A) for C3(A),

which has the following property: whether a string x is in K(A) depends only on

set A<|x|; or, equivalently, A<|x| = B<|x| implies that x ∈ K(A) ⇐⇒ x ∈ K(B).

Then we need a fixed a predicate τ (A; x) in C1 which has the property that whether

τ (A; x) holds or not depends only on set A ∩ W ′(x), where W ′(x) is a window such

that all windows W ′(x) and W (y) are pairwisely disjoint. W ′(x) is often defined

to be a subset of {0, 1}g(|x|) for some function g. (In the above example, we had

W ′(x) = {1xy| |y| = |x|}, and g(n) = 2n + 1.) The new requirements are

Rn,1: (∀x, |x| = n)[x ∈ K(A) ⇐⇒ τ (A; x)].

(3) Inside the diagonalization region D(n), we need to satisfy requirement Rn,0

as well as Ri,1 for all i, t(n − 1) < g(i) ≤ t(n). Requirements Ri,1, t(n− 1) < g(i) <

|xn|, will be done first in a straightforward way. Let X(|xn| − 1) be the resulting

extension of set A(n − 1). Then, requirement Rn,0 will be strengthened to

R′
n: (∃B0, B1 ⊆ D′(n))[B0 ∩ B1 = ∅ and CdρB0,B1

6= ∗ and C0dρB0,B1
=

CxdρB0,B1
6= ∗, for all x, |xn| ≤ g(|x|) ≤ t(n)],

where C0 is the circuit corresponding to the predicate “xn ∈ LA”, Cx is the circuit

corresponding to the predicate τ (A; x), and C is the circuit corresponding to the

predicate σn(A; xn), with the variables vy replaced by the value χX(|xn |−1)(y), if

|y| < |xn|, and ρB0 ,B1 is the restriction defined above. Observe that the variables in

C0 are those vy’s such that y ∈ W (xn), and the variables in Cx are those vy’s such

that y ∈ W ′(x). So, all circuits except circuit C have pairwisely disjoint variables.

This verifies that R′
n implies Rn,0. Also note that now Rn,0 is, again, reduced to a

lower bound requirement on circuits—this time a little more complex than the lower

bound requirements defined in Sections 3 and 4.
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Finally, when R′
n is satisfied, requirements Ri,1, |xn| ≤ g(i) ≤ t(n), can be

satisfied since we have left CxdρB0 ,B1
undertimed for all x of length i.

6. Collapsing Results

In this section, we demonstrate how to apply the general setting of Section

5 to collapse some hierarchy to a fixed level, while keeping other classes separated.

This task is generally more complex than the separation results. In particular, when

the classes to be separated are not of an apparently simpler structure than the classes

to be collapsed, some different types of encoding techniques must be used. These

special techniques are presented in Sections 6.2 and 6.3.

6.1. Collapsing PSPACE to PH

We first construct an oracle A such that PSPACE (A) = ΣP
k (A) 6= ΣP

k−1(A), where k

is an arbitrary but fixed integer greater than 0.

Following the setting given in Section 5, we let

LA ={0(k+1)n| (∃y1, |y1| = n) · · · (Qkyk, |yk| = n) 0ny1 · · · yk ∈ A},
τ (A; x) ≡(∃y1, |y1| = |x|) · · ·(Qkyk, |yk| = |x|) [1xy1 · · ·yk ∈ A], and

Q(A) ={〈0i, a, 0j〉| the ith TM Mi accepts a using ≤ j cells}.

In the above definition for Q(A), the space used by the query tape of ma-

chine Mi is included in the space measure. Therefore, set Q(A) is complete for

PSPACE (A), and whether x is in Q(A) depends only on set A<|x|. In addition, let

W (0m) = {0m/(k+1)z| |z| = km/(k + 1)} and W ′(x) = {1xz| |z| = k|x|}. Then,

the question of whether 0m ∈ LA depends only on set A∩ W (0m) and the predicate

τ (A; x) depends only on set A ∩ W ′(x). Also, all windows W (0m) and W ′(x) are

pairwisely disjoint. Let g(i) = (k + 1)i + 1.

In stage n, we choose a sufficiently large m such that m is a multiple of k + 1

and is greater than t(n − 1). Let xn = 0m and t(n) = pn(m). As in Section 5,

we first perform Steps 1 and 2 and define set X(n − 1). Then, let C be the circuit

corresponding to the nth ΣP,1
k−1-predicate σn(A; xn), with the variables vy replaced

by the value χX(m−1)(y), if |y| < m, C0 be the circuit corresponding to the predicate

“0m ∈ LA”, and Cx be the circuit corresponding to the predicate τ (A; x). From

25



the discussion in Section 5, our construction in stage n is reduced to the following

requirement (if k ≥ 2):

R′
n: (∃B0, B1 ⊆ D′(n))[B0 ∩ B1 = ∅ and CdρB0,B1

6= ∗ and C0dρB0,B1
=

CxdρB0,B1
6= ∗, for all x, m ≤ g(|x|) ≤ t(n)],

where ρB0,B1 is the restriction defined by making all vz to be 1 if z ∈ B1 and all vz

to be 0 if z ∈ B0. (Note that when k = 1, the construction is almost identical to

that given in Section 5, with the NP-complete set K(A) replaced by the PSPACE-

complete set Q(A).)

It is clear that C is a Σk−1(pn(m))-circuit, while each of C0 and Cx contains a

subcircuit computing a function f2m/(k+1)

k . This allows us to show that requirement

R′
n can be satisfied by showing the following generalization of the lower bound results

of Theorem 4.6.

Theorem 6.1. Let {Ci}t
i=1 be t circuits, each computing a function fn

k , with pair-

wisely disjoint variables. Let C be a Σk−1-circuit having size ≤ r and bottom fanin

≤ log r. If t ≤ 2δn1/6

and r ≤ 2δn1/3

, with δ = 1/12, then for sufficiently large n,

there exists a restriction ρ such that Cdρ 6= ∗ and Cidρ= ∗ for all i = 1, · · · , t.
Proof. The proof is very similar to that of Theorem 4.6. First, for the purpose of

induction, we change the induction statement to a stronger form that the theorem

holds if C satisfies the weaker constraint that it has at most r gates not at the bottom

level.

The base step of the induction proof, with k = 2, is trivial. We leave it to

the reader. For the inductive step, we define probability spaces R+
q,B and R−

q,B as in

the proof of Theorem 4.6, where B is the partition of variables such that all variables

leading to a bottom gate in any Ci form a block. We need to show

(a) for a random restriction ρ, the probability that Cdρ is equivalent to a Σk−2-

circuit having ≤ r gates not at the bottom level and having bottom fanin

≤ log r is big, and

(b) for a random restriction ρ, the probability that each Cidρ, 1 ≤ i ≤ t, contains

a subcircuit computing a function fn
k−1 is big.

Part (a) follows exactly from the proof of Theorem 4.6. Part (b) can be

proved by a slight modification of the proof of Lemma 4.8. Namely, we let q1 be

the probability that bottom AND gates Hjdρg(ρ) of Cidρg(ρ), 1 ≤ i ≤ t, takes the

value sj , and let q2 be the probability that all OR gates at level 2 from bottom of all
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Cidρg(ρ) , 1 ≤ i ≤ t, have ≥ √
n many child nodes Hjdρg(ρ) having value sj = ∗. Note

that in the proof of Lemma 4.8, the estimation for q1 was

q1 ≥ (1 − e−n1/6

)nk−1

,

because there were nk−1 many bottom gates in C0. Here, we have t such circuits,

each having nk−1 many bottom gates, so

q1 ≥ (1 − e−n1/6

)nk−1 ·t ≥ 1 − e−n1/6 · nk−1 · 2δn1/6 ≥ 5/6,

if n is sufficiently large.

Similarly, we modify the estimation for probability q2 and obtain

q2 ≥ (1 − 2−n1/2

)nk−2·t > 5/6,

for sufficiently large n. tu
Theorem 6.2. For every k ≥ 1, there exists a set A such that PSPACE (A) =

ΣP
k (A) 6= ΣP

k−1(A).

Proof. There are ≤ 2t(n) = 2pn(m) many circuits Cx, each having a subcircuit com-

puting a function f2m/(k+1)

k . To satisfy requirement R′
n, all we need is to choose

m so large that Theorem 6.1 holds with respect to the function f2m/(k+1)

k and that

(1/12)2m/6(k+1) > k · pn(m). tu

6.2. Collapsing PH but Keeping PSPACE Seperated from PH

In this section, we construct an oracle A such that PSPACE (A) 6= ΣP
k+1(A) =

ΣP
k (A) 6= ΣP

k−1(A) for an arbitrary k ≥ 1.

The separation part consists of two requirements: PSPACE (A) 6= ΣP
k (A) and

ΣP
k (A) 6= ΣP

k−1(A). Let

LA = {0m| ‖A=n‖ is odd} ∈ PSPACE (A),

and

L′
A = {0(k+1)n| (∃y1, |y1| = n) · · · (Qkyk, |yk| = n)0ny1 · · ·yk ∈ A} ∈ ΣP

k (A).

These requirements may be divided into an infinite number of requirements:

R2n,0: (∃x2n)[x2n ∈ LA ⇐⇒ not σ
(k)
n (A; x2n)],

R2n+1,0: (∃x2n+1)[x2n+1 ∈ L′
A ⇐⇒ not σ

(k−1)
n (A; x2n+1)],

where σ
(h)
n is the nth ΣP,1

h -predicate.
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The collapsing part requires that ΣP
k+1(A) = ΣP

k (A). We assume the existence

of a ΣP
k+1(A)-complete set Kk+1(A) which has the property that the question of

whether x ∈ Kk+1(A) depends only on set A<|x|. Next we let τ (A; x) be a fixed

ΣP,1
k -predicate:

τ (A; x) ≡ (∃y1, |y1| = |x|) · · ·(Qkyk, |yk| = |x|) 1xy1 · · ·yk ∈ A.

We divide the requirement of ΣP
k+1(A) = ΣP

k (A) into the following requirements:

Ri,1: (∀x, |x| = i) [x ∈ Kk+1(A) ⇐⇒ τ (A; x)].

We now describe the construction of set A. In stage 2n + 1, we will satisfy

requirements R2n+1,0, as well as requirements Ri,1, for all i such that t(n−1) < g(i) ≤
t(n), where t(n− 1) and t(n) are the bounds for the diagonalization region described

in Sections 3 and 5, and g(i) = (k + 1)i + 1. The construction is almost identical to

the stage n of the construction in Section 6.1. The only difference is that we now

are working with the complete set Kk+1(A) instead of the PSPACE (A)-complete set

Q(A).

In stage 2n, we will satisfy requirement R2n,0, as well as requirements Ri,1,

for all i such that t(n − 1) < g(i) ≤ t(n). Following the setting of Section 5, we let

x2n = 0m, with m being a multiple of k+1 and is sufficiently large. We now consider

the following circuits:

(a) the circuit C corresponding to the predicate σ
(k)
n (A; 0m), with all variables vy

replaced by χA(n−1)(y) if |y| < t(n − 1),

(b) for each x, t(n − 1) < g(|x|) ≤ t(n), the circuit Cx corresponding to the

predicate τ (A; x).

We need a restriction ρ on variables such that Cdρ 6= ∗, Cxdρ= ∗ for all x,

t(n− 1) < g(|x|) ≤ t(n), and the set {y| |y| = m, ρ(vy) = ∗} is nonempty. (Note that

none of the variables vy in Cx’s is of length m.) Inspecting the structure of these

circuits, we learn that C is a Σk(pn(m))-circuit and each Cx is a Σk(|x|)-circuit.

Thus, such a restriction ρ does not seem to exist (e.g., circuit C may simulate a

particular Cx). Our solution to this problem is to modify these requirements so that

the requirements Ri,1, even for g(i) ≥ m, can be satisfied before the requirement R2n,0

is satisfied. The price we pay is that the circuit C would become more complicated—

though still not complicated enough to be able to compute the parity of A=m.

We now describe how this tradeoff between the structure of circuits C and

Cx’s is done. First, we replace each requirement Ri,1 by a simpler requirement R′
i,1
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(only for those i such that t(n − 1) < g(i) ≤ t(n)):

R′
i,1: (∀x, |x| = i)[x ∈ Kk+1(A)⇒(∀z, |z| = ki)1xz ∈ A] and [x 6∈

Kk+1(A)⇒(∀z, |z| = ki)1xz 6∈ A].

Using these simpler requirements, we can modify circuit C to depend only on variables

vy, |y| = m, and so the requirement R2n,0 may be satisfied without worrying about

requirements Ri,1. The modification will make circuit C having depth greater than

k + 1, but within the acceptable size. Let V = {vy| vy occurs in C and y = 1xz

for some x and z, |z| = k|x|, and |y| > t(n − 1)}. For each x of length > (t(n −
1) − 1)/(k + 1), let Dx be the circuit corresponding to the predicate x ∈ Kk+1(A),

with its variables vy replaced by χA(n−1)(y) if |y| < t(n − 1), and replaced by 0 if

|y| 6= m and vy 6∈ V . Note that Dx is a Σk+1-circuit such that all its variables have

the form vx′ , with |x′| < |x|, because the question of “x ∈?Kk+1(A)” depends only

on set A<|x|. In addition, we note that for every set A, if A satisfies

(∗) A≤t(n−1) = A(n − 1), A∩ {y| |y| > t(n − 1), |y| 6= m, vy 6∈ V } = ∅

then DxdρA= 1 iff x ∈ Kk+1(A).

Now we modify circuit C as follows. First, for all variables vy with |y| ≤
t(n− 1), replace vy by χA(n−1)(y). Then, for all variables vy 6∈ V such that |y| 6= m,

replace vy by constant 0. Second, for all variables vy ∈ V , if y = 1xz for some

x and z, |z| = k|x|, then we replace it by circuit Dx (and replace vy by the dual

circuit of Dx). Note that after the modification, we obtain a circuit C1 of depth

≤ 2(k + 1) but each of its variables vy is either of length |y| = m or is in V and of

length |y| < pn(m)/(k + 1). Also note that if we apply a restriction ρA to circuit C1,

then C1dρA= 1 iff σn(A; 0m), provided that requirements R′
i,1 are satisfied by A for

all i such that t(n − 1) < g(i) ≤ t(i), and that A satisfies (∗). This is true because

requirements R′
i,1 imply that for each y = 1xz, |z| = k|x|, x ∈ Kk+1(A) ⇐⇒ y ∈ A

and so DxdρA= 1 ⇐⇒ y ∈ A.

Repeat the above process until the circuit no longer has any variable in V

(thus, all variables vy have length |y| = m). To obtain such a circuit C ′, we need

only to repeat the above modification for at most log(pn(m)) times. Therefore, the

resulting circuit C ′ has depth ≤ log(pn(m)) · (k + 1), and has fanins ≤ 2q(pn(m)),

where q is a polynomial depending on the set Kk+1(A) (i.e., 2q(|x|) bounds the fanins

of circuit Dx). Also, if A satisfies (∗) and requirements R′
i,1 for all i such that

t(n− 1) < g(i) ≤ t(i), then C ′dρA= 1 iff σn(A; 0m). Since C ′ does not have common
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variables with Cx’s, we need only to show that C ′ does not compute the parity of

2m variables. This, again, reduces our diagonalization problem to the lower bound

problem about parity circuits.

Once it is proved that this modified circuit C ′ does not compute the parity of

set A=m, we can complete the stage 2n by finding a subset B ⊆ A=m such that ρB

completely determines C ′ but C ′dρB= 1 iff ‖B‖ is even. Then, we satisfy requirements

R′
i,1 for each i, t(n − 1) < g(i) ≤ t(n), by letting each y = 1xz, |z| = k|x|, be in

A(n) iff x ∈ Kk+1(A) for all x, |x| = i. (More precisely, we do this in t(n)− t(n− 1)

substeps. We let X(t(n− 1)) = A(n− 1) and, in each Substep j, t(n− 1) < j ≤ t(n),

we let strings y = 1xz be in X(j) iff x ∈ Kk+1(X(j − 1)) for all x, g(|x|) = j.

Finally, let A(n) = X(t(n)).) Note that set A(n) satisfies both (∗) and R′
i,1 for all i,

t(n− 1) < g(i) ≤ t(n). It is left to show that circuit C ′ does not compute the parity

of set A=m.

Theorem 6.3. Let s(n) be the minimum size of circuit C of depth k = c log log n

for some c > 0 such that C computes the parity of n variables. Then, for sufficiently

large n, s(n) ≥ 2εn1/(k−1)

for some ε > 0.

Proof. We proved in Theorem 4.1 and Remark 4.3 that for some ε > 0, sk(n) ≥
2εn1/(k−1)

for depth-k parity circuits, if n > nk for some constant nk depending only

on k. In fact, the constant nk can be taken as (n0)
k for some absolute constant n0

which does not depend on k (see Hastad [1987] for details). So, if n > (n0)
c log logn,

then s(n) ≥ 2εn1/(k−1)

. tu
Theorem 6.4. For each k ≥ 1, there exists an oracle A such that PSPACE (A) 6=
ΣP

k+1(A) = ΣP
k (A) 6= ΣP

k−1(A). Also, there exists an oracle B such that

PSPACE (B) 6= NP (B) = P (B).

The above proof actually showed that the set LA = {0m| ‖A=m‖ is odd} is

not in PH(A) even if PH(A) is finite. Therefore, for this set A, ⊕P (A) 6⊆ PH(A).

In fact, all we need above is that LA is not in ΣP
c log n(A) for all c > 0. Thus, the

same proof established the following more general result.

Corollary 6.5. If C is a complexity class such that C(A) 6⊆ ΣP
c logn(A) for some

oracle A, then for every k > 0, there exists an oracle B such that C(B) 6⊆ ΣP
k+1(B) =

ΣP
k (B) 6= ΣP

k−1(B).

It is an interesting question whether there exists an oracle A such that the

class ΣP
log n(A) is outside the polynomial hierarchy PH (A), and PH (A) collapses to

the kth level for some fixed but arbitrary k.
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6.3. Collapsing BPH to PH but Keeping PH Infinite

In Section 4.3, we have shown that there exists an oracle A such that BPΣP
k (A) 6⊆

ΣP
k+1(A) for all k ≥ 1, and hence both hierarchies PH(A) and BPH (A) are infinite

and the two differ at each level. What we want to show now is that relative to some

oracle A the two hierarchies are identical in the sense that BPΣP
k (A) = ΣP

k (A) for

all k ≥ 0 and yet PH(A) is infinite. Note that ΣP
k (A) ⊆ BPΣP

k (A) ⊆ ΠP
k+1(A) for

all oracles A. Therefore our proof needs to collapse BPΣP
k (A) to ΣP

k (A) but keeping

ΠP
k+1(A) separated from ΣP

k (A). Such a proof, like the one in Section 6.2, does not

fit into the general setting of Section 5 (where the setting is designed for separating

classes which lie below in the hierarchy than the classes to be collapsed).

The reader who is familiar with the theory of relativization would notice that

the intended result here is a generalization of Rackoff’s [1982] result that there exists

an oracle A such that P (A) = R(A) 6= NP(A). Rackoff’s result also follows from

Bennett and Gill’s [1981] proof that for a random oracle A, P (A) = R(A) and

P (A) 6= NP(A). We remark that neither of these proofs seems to work for our

generalized result. Rackoff’s constructive proof requires the oracle to be a sparse

set, but from Balcázar, Book and Schöning [1986] and Long and Selman [1986], a

sparse set does not seem to be able to separate ΣP
2 from ΠP

2 (unless ΣP
2 6= ΠP

2 in

the unrelativized form). For the approach of using random oracles, we can see from

Bennett and Gill’s work that BPΣP
k (A) = ΣP

k (A) for random oracles A. However,

it is still an important open question whether the polynomial hierarchy is infinite

relative to a random oracle (cf. Cai [1986], Babai [1987] and Hastad [1987]).

First we simplify our problem to only collapsing BPΣP
k (A) to ΣP

k (A) while

keeping ΣP
k (A) 6= ΣP

k+1(A), for a fixed but arbitrary k > 0. The separation part

can be handled by a usual diagonalization setting. Let LA = {0(k+2)n| (∃y1, |y1| =

n) · · · (Qk+1yk+1, |yk+1| = n) 0ny1 · · ·yk+1 ∈ A} ∈ ΣP
k+1(A). Let σn(A; x) be an

enumeration of all ΣP,1
k -predicates. Our requirements for separation are

Rn,0: (∃xn = 0m)[0m ∈ LA ⇐⇒ not σn(A; 0m)].

For the collapsing part, first recall that BPΣP
k (A) has a simple characteriza-

tion (see, for example, Zachos [1986]): If k ≥ 1 then L ∈ BPΣP
k (A) iff there exists a

ΣP,1
k -predicate σ such that for all x,

x ∈ L⇒∀py σ(A; 〈x, y〉),
x 6∈ L⇒∃+

p y not σ(A; 〈x, y〉).
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We will use this characterization in the following proof.

One of the difficulty in setting the requirements for the collapsing result is

that the class BPΣP
k (A) is not known to possess a complete set. Therefore, the

encoding of information becomes more complicated. Fortunately, we can find a pair

of pseudo-complete sets for BPΣP
k (A):

J1(A) = {〈0i, a, 0j〉| j ≥ pi(|a|), (∀b, |b| = j) σi(A; 〈a, b〉)},
J0(A) = {〈0i, a, 0j〉| j ≥ pi(|a|), (∃ (3/4) · 2j many b, |b| = j) not σi(A; 〈a, b〉)},

where σi is the ith ΣP,1
k -predicate. (We assume further that if σi(A; 〈a, b〉) and b is

an initial segment of b′ then σi(A; 〈a, b′〉).) From the extra condition that j ≥ pi(|a|),
we can see that the question of whether x ∈ J1(A) or x ∈ J0(A) depends only on set

A<|x|. The “reduction” from a set L ∈ BPΣP
k (A) to the pair (J1(A), J0(A)) is easy

to see from the characterization for BPΣP
k (A): For each L ∈ BPΣP

k (A), there exists

an i such that x ∈ L⇒〈0i, x, 0pi(|x|)〉 ∈ J1(A) and x 6∈ L⇒〈0i, x, 0pi(|x|)〉 ∈ J0(A).

This allows us to set up our requirements as

Rn,1: (∀x = 〈0i, a, 0j〉, |x| = n)[x ∈ J1(A) ⇒ τ (A; x) and x ∈ J0(A) ⇒ not

τ (A; x),

where τ is a fixed ΣP,1
k -predicate to be defined as follows.

It is natural to try to use an arbitrary ΣP,1
k -predicate for τ (A; x); e.g., the one

used in Section 6.1: τ (A; x) ≡ (∃y1, |y1| = |x|) · · ·(Qkyk, |yk| = |x|) 1xy1 · · ·yk ∈ A.

Unfortunately, if we use such a predicate τ , then the conflict between the separat-

ing requirements and the encoding requirements would be too much to overcome.

Instead, we let τ (A; x) be a simulation of σi(A; 〈a, b〉) for “random” choices of b

(if x = 〈0i, a, 0j〉). Namely, for each n and i, 0 ≤ i ≤ 2n − 1, let sn,i be the ith

string in {0, 1}n, under the lexicographic order, and for each n and r, 1 ≤ r ≤ n,

let wA
n,r = χA(sn,(r−1)n) · · ·χA(sn,rn−1), i.e., wA

n,1, · · · , wA
n,n are n n-bit strings de-

termined by set A=n. Now let τi(A; x) be true iff σi(A; 〈a, wA
n,r〉) are true for all r,

1 ≤ r ≤ n, where n = 2|x|. It is clear that for all x, x ∈ J1(A)⇒τ (A; x); that is,

requirement Rn,1 is simplified to (∀x, |x| = n) [x ∈ J0(A)⇒not τ (A; x)].

At stage n, we try to satisfy requirement Rn,0, as well as requirements Rj,1

for j such that t(n − 1) < 2j ≤ t(n). The critical step is, of course, to satisfy Rn,0

and still keeps predicates τ (A; x), t(n − 1) < 2|x| ≤ t(n), undetermined. We choose

xn = 0m, where m is a sufficiently large odd integer greater than t(n − 1). Also,

we let t(n) = pn(m). Then, we satisfy all requirements Rj,1 for all j such that
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t(n−1) < 2j < m, by set X(m−1), which is an extension of A(n−1). The existence

of such an extension is nontrivial, but will become clear later (see Remark 6.8).

Next, let C0 be the Σk+1-circuit corresponding to the predicate “0m ∈ LA”.

Then, C0 has a subcircuit computing a function f2m/(k+2)

k+1 . Let C be the Σk(pn(m))-

predicate corresponding to the predicate σn(A; 0m), with all variables vy, |y| < m,

replaced by χX(m−1)(y). In order to perform diagonalization while leaving predicates

τ (A; x) undetermined, we must modify circuit C as we did in Section 6.2. However,

we cannot increase its depth here, because C0 is barely one level deeper than C.

What we will do is to simulate all possible answers for queries “y ∈?A” asked by

σn(A; 0m) if y = si,j , for some even integer i, m ≤ i ≤ pn(m), and for some j,

0 ≤ j ≤ i2 − 1.

Let h(`) =
∑{i2| ` ≤ i ≤ t(n), i even}. We identify each string α of length

h(`) with a subset Bα of E` = {si,j| ` ≤ i ≤ t(n), i even, 0 ≤ j ≤ i2 − 1} such that

α = χBα(s`,0) · · ·χBα(s`,`2−1)χBα(s`+1,0) · · ·χBα (st(n),t(n)2−1) (assuming that both

` and t(n) are even). Now, for each string α of length h(m + 1), let Cα be the circuit

modified from C by (a) replacing all variables vy, y = si,j ∈ Em+1, by χBα(si,j),

and (b) replacing all variables vy, |y| 6= m and y 6∈ Em+1, by constant 0. Then,

each Cα contains only variables vy of length |y| = m. We are ready to reduce our

requirements Rn,0 and Rj,1’s to the lower bound problem on circuits C0 versus Cα’s.

More precisely, we need the following lemma (but postpone the proof).

Lemma 6.6. Let k ≥ 1 and h and q be two polynomial functions. Let Cα, 1 ≤
α ≤ 2h(m+1), be 2h(m+1) many Σk(q(m))-circuits. Let C0 be a circuit computing a

function f2m/(k+2)

k+1 . Then, for sufficiently large m, there exists an assignment ρ on

variables such that ‖{α| Cαdρ 6= C0dρ}‖ ≥ 2h(m+1)−(m+1).

To see why this lemma is sufficient for our requirements, let us assume that

such an assignment ρ has been chosen , and we let X(m) = X(m − 1) ∪ {y| |y| =

m, ρ(vy) = 1}. Also let T = {α| Cαdρ 6= C0dρ}. Note that ‖T‖ ≥ 2h(m+1)−(m+1). We

claim that we can find a subset Bm+1 ⊆ {sm+1,0, · · · , sm+1,(m+1)2−1} such that

(a) R(m+1)/2,1 is satisfied by X(m) ∪ Bm+1, and

(b) the corresponding string βm+1 = χBm+1 (sm+1,0) · · ·χBm+1 (sm+1,(m+1)2−1)

has the property that the set Tβm+1 =defn {γ ∈ {0, 1}h(m+3)| βm+1γ ∈ T}
has size ‖Tβm+1‖ ≥ 2h(m+3)−(m+2).

To prove this claim, we first state a combinatorial lemma.
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Lemma 6.7. Let ` < 2(m+1)/2. Let D be a `× 2m+1 boolean matrix such that each

row of D has ≥ (3/4) · 2m+1 many 1’s. Then, for a randomly chosen (m + 1)-tuple

(j1, · · · , jm+1), 1 ≤ jr ≤ 2m+1,

Pr[(∀i, 1 ≤ i ≤ `)(∃r, 1 ≤ r ≤ m + 1)D[i, jr] = 1] ≥ 1 − 2−(m+3).

Now we form the matrix D as follows: each row is labeled by a string

x of length (m + 1)/2 and x ∈ J0(X(m)), and each column is labeled by a

string z ∈ {0, 1}m+1. For each x and z, let D[x, z] = 1 iff [x = 〈0i, a, 0j〉 and

σi(X(m); 〈a, z〉) is false]. Then, D satisfies the hypothesis of Lemma 6.7 and hence

the conclusion. That is, the set Sm+1 = {z1 · · ·zm+1| |z1| = · · · = |zm+1| =

m + 1, (∀x ∈ J0(X(m)) ∩ {0, 1}(m+1)/2)(∃j, 1 ≤ j ≤ m + 1)D[x, zj] = 1} has size

‖Sm+1‖ ≥ (1− 2−(m+3))2(m+1)2 . Thus, for any βm+1 ∈ Sm+1, R(m+1)/2,1 is satisfied

by set X(m) ∪ Bm+1 for each corresponding set Bm+1 (i.e., sm+1,j ∈ Bm+1 iff the

jth bit of βm+1 is 1).

Now, it takes a simple counting argument to see that there exists a βm+1 ∈
Sm+1 such that ‖Tβm+1‖ ≥ 2h(m+3)−(m+2) . This proves the claim. tu

We let X(m + 1) = X(m) ∪ Bm+1. The above showed that we can satisfy

requirement Rm+1,1 and yet keep many “good” strings α. It can be checked that the

above process can be repeated for all the requirements Rj,1, m + 1 ≤ 2j ≤ t(n), and

keeping size ‖Tβ2j‖ ≥ 2h(2j+2)−(2j+1). In particular, ‖Tβt(n)−2
‖ ≥ 2t(n)2−(t(n)−1), and

we only need to choose a string βt(n) ∈ Tβt(n)−2
∩St(n) (where St(n) is defined similar to

Sm+1, having size ‖St(n)‖ ≥ (1 − 2−(t(n)+2))2t(n)2). Let β = βm+1βm+3 · · ·βt(n) and

define X(t(n)) accordingly. We note that β ∈ T implies that C0dρ 6= Cβdρ for some

assignment ρ on variables vy, |y| = m. Since Cβ is the circuit C with all variables

vy, |y| 6= m, replaced by χX(t(n))(y), we see that requirement Rn,0 is satisfied by set

X(t(n)). Let A(n) = X(t(n)). This completes the stage n.

Remark 6.8. At this moment, we observe that earlier in stage n, the construction

of set X(m−1) can be done just like the above construction of set X(t(n)). Actually,

we don’t need part (b) of the claim, and hence it is easier.

The only thing left to show is Lemma 6.6.

Proof of Lemma 6.6. We prove it by induction on k.

First consider the case k = 1. We show that the lemma holds even if C0 is

an AND of 2m/2(k+2) variables. Let r = m/2(k + 2). We let the 2r variables be

v1, · · · , v2r, and define 2r +1 assignments ρi, 0 ≤ i ≤ 2r, as follows: ρ0(vj) = 1 for all
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j; and for each i ≥ 1, ρi(vj) = 1 if j 6= i and ρi(vj) = 0 if j = i. Note that C0dρ0= 1

and C0dρi= 0 for all i ≥ 1. For each i, 0 ≤ i ≤ 2r, let

Ei = {α| 1 ≤ α ≤ 2h(m+1), Cαdρi= C0dρi}.

Suppose, by way of contradiction, that the lemma does not hold for a specific

C0. Then each Ei has size ‖Ei‖ ≥ (1 − 2−(m+1))2h(m+1) and hence the intersection

of all Ei’s must be nonempty. Let β be a specific string in the intersection of Ei’s.

We have Cβdρi= C0dρi for all i, 0 ≤ i ≤ 2r. Note that Cβdρ0= 1 implies that Cβ

has a subcircuit D having Ddρ0= 1. However, this subcircuit D is an AND of only

q(m) many inputs. Assume that m is so large that 2r > q(m). There must be some

vj such that neither vj nor vj occurs in D, and hence

Ddρ0= 1⇒Ddρj = 1⇒Cβdρj = 1,

which is a contradiction.

For the inductive step, let k > 1. From the proof of Theorem 6.1, we can find

a restriction ρ such that C0dρ contains a subcircuit computing a f2m/(k+2)

k function,

and for each α, Cαdρ is a Σk−1(q(m))-circuit. By the inductive hypothesis, there

exists an assignment ρ′ such that ‖{α| Cαdρρ′ 6= C0dρρ′}‖ ≥ 2h(m+1)−(m+1). The

combined restriction ρρ′ satisfies our requirement. tu
Theorem 6.9. For every k > 0, there exists an oracle A such that ΣP

k (A) =

BPΣP
k (A) 6= ΣP

k+1(A).

We observe that in the above proof, the collapsing requirement ΣP
k (A) =

BPΣP
k (A) can be satisfied when we diagonalize for separating requirements ΣP

h (A) 6=
ΣP

h+1(A) for different h, even if h < k. By a careful dovetailing of requirements

ΣP
h (A) 6= ΣP

h+1(A) for all h > 0, together with a complete encoding for ΣP
k (A) =

BPΣP
k (A) for all k > 0, we obtain the following result:

Theorem 6.10. There exists an oracle A such that for every k > 0, ΣP
k (A) =

BPΣP
k (A) 6= ΣP

k+1(A).

Corollary 6.11. There exists an oracle A such that co NP (A) 6⊆ AM2(A).

There remains an interesting question of whether the above encoding technique

still works when the polynomial hierarchy collapses to the (k + 1)st level ΣP
k+1(A).

A straightforward way of combining the encoding technique here with the diagonal-

ization technique of Section 4.1 does not seem to work.
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7. Other Hierarchies

In this section, we discuss briefly two other separation results on hierarchies

which use similar proof techniques.

7.1. Generalized AM Hierarchy

In Section 1, we defined generalized polynomial hierarchy ΣP
f(n) by f(n) levels of

alternating ∃p- and ∀p-quantifiers. Instead of ∃p- and ∀p-quantifiers, we can also

define a generalized AM-hierarchy by alternating ∃+
p - and ∃p-quantifiers. However,

it is not clear that the complexity classes AMf(n) defined this way are equivalent to

the languages defined by the f(n)-round AM-game as a generalization of the Arthur-

Merlin game of Babai [1985]. The main difference is that in the Arthur-Merlin game,

it is required that the total accepting probability be either ≥ 3/4 (when Merlin wins)

or ≤ 1/4 (when Merlin loses), while in the definition by ∃+
p - and ∃p-quantifiers, it is

only required that each individual quantifier ∃+
p has a fixed probability bound. For a

constant function f(n) = k, this difference is not substantial as the repetition of the

same probabilistic computation can reduce the error probability (see, for instance,

Zachos [1982]). However, the price to be paid for this reduction of error probability is

the increased message length exchanged between Arthur and Merlin (i.e., the length

of variables quantified by ∃+
p - and ∃p- quantifiers). When f(n) is, for example, a

linear function, the total length increase becomes intolerable (cf. Aiello, Goldwasser

and Hastad [1986]).

Therefore, we define the generalized AM -hierarchy as follows:

AMf(n)(A) ={L| (∃P 1 predicate σ)(∀x)

[x ∈ L⇒(∃++
p y1)(∃py2) · · · (Q′

f(|x|)yf(|x|)) σ(A; 〈x, y1, · · · , yf(|x|)〉) and

[x 6∈ L⇒(∃++
p y1)(∀py2) · · · (Q′′

f(|x|)yf(|x|)) σ(A; 〈x, y1, · · · , yf(|x|)〉)},

where ∃++
p y denotes “for more than (1− 2−n)2q(n) many y ∈ {0, 1}q(n)”, Q′

m = ∃++
p

if m is odd, and = ∃p if m is even, and Q′′
m = ∃++

p if m is odd and = ∀p if m is

even. It is easy to see that for all functions f(n) which are bounded by polynomial

functions, AMf(n)(A) ⊆ ΣP
f(n)(A) for all sets A. On the other hand, the exact

relation between the generalized AM -hierarchy and the polynomial hierarchy and

the generalized polynomial hierarchy is not known. What we do know is that there

exist oracles relative to which (a) the generalized AM -hierarchy does not contain
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the polynomial hierarchy (in fact, it does not even contain the class co-NP) and

(b) each class AMf(n) in the generalized AM -hierarchy is not contained in ΣP
g(n) if

g(n) = o(f(n)). In this section, we give brief outline of these proofs.

Theorem 7.1. Let f and g be two functions such that both are bounded by some

polynomial function q(n), and g(n) = o(f(n)). Then, there exists an oracle A such

that co NP(A) 6⊆ AMf(n)(A) 6⊆ Σg(n)(A).

Corollary 7.2. Let fi be an infinite sequence of functions such that fi(n) =

o(fi+1(n)) for all i and that each fi is bounded by a polynomial function. Then,

there exists an oracle A such that the classes ΣP
fi(n)(A) form a proper infinite hier-

archy between polynomial hierarchy PH(A) and the class PSPACE (A).

For the first part of Theorem 7.1, we need to show that there exists a set A such

that co NP (A) 6⊆ AMf(n)(A). We let LA = {0n| (∀y, |y| = n) 0ny ∈ A} ∈ co NP(A),

and show that LA is not in any class AMf(n)(A).

First, following the approach of Section 2, we describe circuits corresponding

to complexity classes AMf(n)(A). We define a new type of gates called MAJ+ gates

which operate as follows: a MAJ+ gate outputs 1 (or 0) if more than (1 − 2−n)% of

its inputs have value 1 (or 0, respectively), and it outputs ? otherwise. Then, define

a AMf(n)(m)-circuit to be a circuit of depth f(n) + 2 having the following structure:

the top f(n) levels of the circuit are alternating MAJ+ and OR gates beginning with

a top MAJ+ gate, and the bottom two levels are OR of ANDs, and it has fanins

≤ 2m and bottom fanin ≤ m.

The proof of the following lemma is similar to that of Lemma 2.3. Call pred-

icates (τ1, τ2) a pair of AMf(n)-predicates if

τ1(A; x) ≡ (∃++
p y1)(∃py2) · · · (Q′

f(n)yf(n))σ(A; 〈x, y1, · · · , yf(n)〉),

and

τ2(A; x) ≡ (∃++
p y1)(∀py2) · · · (Q′′

f(n)yf(n))σ(A; 〈x, y1, · · · , yf(n)〉),
for some P 1-predicate σ, where n = |x|, Q′

m = ∃++
p if m is odd and Q′

m = ∃p if m

is even, and Q′
m = ∃++

p if m is odd and Q′
m = ∀p if m is even. Note that a pair of

AMf(n)-predicates (τ1, τ2) define a set in AMf(n)(A).

Lemma 7.3. Let f(n) be a polynomially bounded function. For every pair of

AMf(n)-predicates (τ1, τ2) there is a polynomial q such that for every x, there exists

a AMf(n)(q(|x|))-circuit C, having the property that for any set A, CdρA= 1 if

τ1(A; x) holds, and CdρA= 0 if τ2(A; x).
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Following the diagonalization setting of Section 3, we see that the critical part

of the proof is to show that for any set B ∈ AMf(n)(A), there exists a sufficiently

large integer m such that 0m ∈ LA iff 0m 6∈ B. In other words, the following lemma

on circuits suffices.

Lemma 7.4. Let f and q be two polynomial functions. Let C0 be a depth-1 circuit

which is the AND of 2n/2 many variables, and let C be a AMf(n)(q(n))-circuit. Then,

for sufficiently large n, there exists an assignment ρ such that Cdρ 6= C0dρ.

Sketch of proof. The proof is similar to the proof of Lemma 6.6. Let v1, · · · , v2n/2

be the variables of circuit C0. Define assignments ρi, 0 ≤ i ≤ 2n/2, as follows:

ρ0(vj) = 1 for all j, and for each i ≥ 1, let ρi(vj) = 0 iff i = j. We prove by induction

on m = f(n) that there must exist an i, 0 ≤ i ≤ 2n/2, such that Cdρi 6= C0dρi .

First, we consider the case when C has only two levels; i.e., C is the OR of ≤
2q(n) many ANDs, each having≤ q(n) many inputs. Assume, by way of contradiction,

that Cdρi= C0dρi for all i = 0, · · · , 2n/2. Then, C0dρ0= 1 implies Cdρ0= 1 amd that

in turn implies that there is an AND gate D of C having Ddρ0 = 1. However, D has

only ≤ q(n) imputs and so, for sufficiently large n, there is at least one vj such that

neither vj nor its negation vj occurs in D. Therefore, Ddρj = Ddρ0= 1. However,

Ddρj = 1 implies Cdρj = 1 and this provides a contradiction.

Now, assume that C has m > 2 levels with the top gate being a MAJ+ gate.

By way of contradiction, suppose that Cdρi= C0dρi for all i, 0 ≤ i ≤ 2n/2. Then,

for each i, there are at most (2−n)% of the subcircuits D of C having Ddρi 6= C0dρi .

Altogether, there are at most (2−n ·2n/2)% subcircuits computing differently from C0

on at least one assignment ρi. That means that there exists at least one subcircuit

D of C having Ddρi= C0dρi for all i, 0 ≤ i ≤ 2n/2. Note that this subcircuit D has

a top OR gate and that Ddρ0= 1. Therefore, there exists at least one subcircuit G

of D such that Gdρ0= 1. Also, Gdρi= 0 for all i ≥ 1, because Ddρi= 0 for all i ≥ 1.

So, we have shown that there is an AMm−1(q(n))-circuit G such that Gdρi= C0dρi

for all i, 0 ≤ i ≤ 2n/2. This contradicts to the inductive hypothesis. tu
For the second part of Theorem 7.1, we define LA = {0n| (∃++

p y1, |y1| = n)

(∃py2, |y2| = n) · · · (Q′
f(n)yf(n), |yf(n)| = n) [0ny1 · · ·yf(n) ∈ A]}, where Q′

m = ∃++
p if

m is odd and Q′
m = ∃p if m is even. From this definition, we do not know that LA ∈

AMf(n)(A). What we need to do is to construct A to satisfy the additional condition

that x 6∈ LA ⇐⇒ τ (A; x) ≡ (∃++
p y1)(∀py2) · · · (Q′′

f(n)yf(n)) 0ny1 · · ·yf(n) 6∈ A, where

Q′′
m = ∃++

p if m is odd and Q′′
m = ∀p if m is even. In addition, we need to satisfy the
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requirements

Ri: (∃xi = 0m)[0m ∈ LA ⇐⇒ not σi(A; 0m)],

where σi is the ith ΣP,1
g(m)

-predicate. For each m, define the following circuits: (a) C

is the Σg(m)(pi(m))-circuit corresponding to the predicate σi(A; 0m), and (b) C0 is

the AMf(m)-circuit corresponding to the pair of predicates “0m ∈ LA” and τ (A; 0m).

Following the general diagonalization setting of Section 3, the separation problem is

reduced to the following theorem on circuits.

Theorem 7.5. Let C and C0 be defined as above. For sufficiently large m, there

exists an assignment ρ such that Cdρ 6= C0dρ 6=?.

The proof of the theorem again uses the technique of applying random re-

strictions ρ to circuits C and C0 to simplify them. Two new issues arise in this

application. First, a random restriction ρ is not likely to shrink circuit C0 by only

one level (like we had in Section 4.2), because we do not allow the MAJ+ gates in

C0 to output ?. This is resolved by allowing ρ to shrink C0 by k levels, where k is a

constant depending on the degree of the polynomial pi(m) that bounds the bottom

fanins of circuit C. Therefore, after applying random restrictions to these circuits for

g(m) times, circuit C is simplified into a simple depth-2 circuit but circuit C0 still

has f(m) − k · g(m) levels to perform diagonalization.

The second issue is how to define a probability space R of these restriction ρ

such that (a) the Switching Lemma still holds with respect to space R, and (b) with

a high probability, C0dρ has depth at least f(m) − k. Since the circuit C0 contains

the MAJ+ gates and since it is allowed to be shrunk by k levels, the probability space

R is necessarily very complicated. Due to the space limit, we will omit the definition

of the space R, as well as how it can satisfy the above two conditions. The interested

reader should read Aiello, Goldwasser and Hastad [1986] for details.

7.2. The Low Hierarchy in NP

Schöning [1983] defined the high and low hierarchies within NP. It is natural to

generalize it to the following relativized hierarchies. For k ≥ 0, define

HP
k (A) = {L ∈ NP (A)| ΣP

k (L⊕A) = ΣP
k+1(A)},

LP
k (A) = {L ∈ NP (A)| ΣP

k (L⊕A) = ΣP
k (A)},

where ⊕ is the join operator on sets: B⊕C = {0x| x ∈ B} ∪ {1y| y ∈ C}. Let

HH(A) = ∪k≥0H
P
k (A) and LH(A) = ∪k≥0L

P
k (A). It is not hard to see that
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HP
k (A) ⊆ HP

k+1(A) and LP
k (A) ⊆ LP

k+1(A) for all k ≥ 0 and for all A. It is how-

ever not known whether these hierarchies collapse or intersect each other. What

we do know is that for all k ≥ 0, HP
k (A) ∩ LP

k (A) 6= ∅ iff ΣP
k (A) = ΠP

k (A) iff

NP (A) = HP
k (A) = LP

k (A). Other known relations about the hierarchies include:

LP
0 (A) = P (A), LP

1 (A) = NP(A) ∪ co NP (A), HP
0 (A) = {L| L is ≤P

T -complete for

NP (A)}. The interested reader is referred to Schöning [1983] and Ko and Schöning

[1985] for more information about these hierarchies.

In this section, we show how to construct an oracle A such that LP
k (A) 6=

LP
k+1(A) for all k ≥ 0. Similar separation result holds for the high hierarchy HH(A).

It is also possible to collapse both hierarchies to the kth level for any fixed k ≥ 0. All

these results are proven in Ko [1988b]. We only sketch the proof for the separation

of the low hierarchy LH(A).

In order to separate LP
k+1(A) from LP

k (A) for all k ≥ 1, we need to find, for

each k ≥ 0, a set Bk ∈ NP(A) satisfying the following two conditions:

(ak) ΣP
k+1(Bk⊕A) = ΣP

k+1(A) and

(bk) ΣP
k (Bk⊕A) 6= ΣP

k (A).

Note that each Bk is in NP(A) and hence ΣP
k (Bk⊕A) ⊆ ΣP

k+1(A) and ΣP
k+1(Bk⊕A) ⊆

ΣP
k+2(A). This suggests that for condition (bk) we need to separate the (k+1)st level

of the polynomial hierarchy from the kth level, and for condition (ak) we need to

partially collapse the (k+2)nd level of the polynomial hierarchy to the (k+1)st level.

The collapsing part is only a partial collapsing because condition (bk+1) implies the

separation of the (k + 2)nd level of the polynomial hierarchy from the (k + 1)st level.

It is interesting to point out that our goal is only a separation result but our proof

technique is more like the one used in Section 6.2 for collapsing results.

How do we partially collapse the polynomial hierarchy? This involves a careful

choice of diagonalization regions and the witness sets Bk. To satisfy condition (ak),

we would like to make the set Bk to behave like an empty set as much as possible,

and, on the other hand, to satisfy condition (bk), we need to make the set Bk to be

similar to, for instance, the set LA used in Section 3. More precisely, we define it as

follows. First, let e(0) = 1, and e(n + 1) = 22e(n)

for all n > 0. Then, for each k ≥ 0,

let

Bk = {x| |x| = e(〈k, m〉) for some m, and (∃y, |y| = |x|) 0xy ∈ A}.

That is, we predetermine the diagonalization regions for all diagonalization processes
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for condition (bk) for all k (namely, for any k, the corresponding regions locate close

to e(〈k, m〉) for some m), and make Bk to be identical to the empty set outside these

regions.

This definition achieves two important subgoals for our construction. First, it

separates the diagonalization regions for conditions (bk) from that for conditions (bh)

if k 6= h. Second, it satisfies condition (ak) immediately outside the diagonalization

regions for (bk). This allows us to divide and conquer the numerous seemingly

contradictory requirements.

Now we state our requirements as follows. For the separation part, we need

Rk,n,0: (∃xn)[xn ∈ E
(k)
A ⇐⇒ σ

(k)
n (A; xn) is false],

for some set E
(k)
A ∈ ΣP

k (Bk⊕A), where σ
(k)
n is the nth ΣP,1

k -predicate. We simply

let E
(k)
A = {0e(〈k,m〉)| (∃y1, |y1| = r) · · · (Qkyk, |yk| = r) y1 · · ·yk0t ∈ Bk, 0 ≤ t <

k, rk + t = e(〈k, m〉)}.
For the collapsing part, we need

Rk,n,1: (∀x, |x| = n)[x ∈ Kk+1(Bk⊕A) ⇐⇒ τk(A; x)],

for some ΣP,1
k+1-predicate τk. (Recall that Kn(A) is a standard ΣP

k (A)-complete set.)

Note that for each x such that 2e(〈k,m〉) ≤ |x| < e(〈k, m + 1〉) for some m, the

question of whether x ∈ Kk+1(Bk⊕A) can be simulated by a ΣP
k+1-machine using

only A as the oracle: It simulates the computation of x ∈ Kk+1(Bk⊕A) and answer

each query “y ∈?Bk” as follows: if |y| 6= e(〈k, r〉) for any r ≤ m, then answer NO, else

answer YES iff (∃z, |z| = |y|)0yz ∈ A. So, requirements Rk,n,1 need to be satisfied

only if e(〈k, m〉) ≤ n < 2e(〈k,m〉). We let τk(A; x) be the following predicate:

τk(A; x) ≡ (∃u1, |u1| = |x|) · · · (Qk+1uk+1, |uk+1| = |x|) 10k1xu1 · · ·uk+1 ∈ A.

(The heading of 10k1 is used to distinguish between τk and τh when h 6= k.)

Then, in stage n = 〈k, m〉, we find the least i such that requirement Rk,i,0 is not

yet satisfied and try to satisfy it by witness xi = 0e(n) and the diagonalization region

Dk(i) = {y| e(n) ≤ |y| < 2e(n)}. In the meantime, we need to satisfy requirements

Rh,j,1 for all h ≥ 0 and all j, e(n) ≤ j < 2e(n). Observe that if h 6= k then,

2e(〈h,t〉) ≤ j < e(〈h, t + 1〉) for some t if e(n) ≤ j < 2e(n). Therefore, we need only to

worry about requirements Rk,j,1 for e(n) ≤ j < 2e(n).

It is easy to check now that all these preparations lead us to a familiar diago-

nalization setup of Section 6.1: diagonalizing against a ΣP,1
k -predicate while keeping
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some set in ΣP
k+2(A) encoded by a ΣP,1

k+1-predicate. The separation of LH(A) follows

immediately.

Theorem 7.6. There exists an oracle A such that for all k ≥ 0 LP
k+1(A) 6= LP

k (A).

8. Conclusion

In this paper, we have presented a general method of separating or collapsing

hierarchies by oracles. The construction of the oracles usually involves two different

types of proof techniques: the recursion-theoretic one and the combinatorial one.

The simple relations between the computation trees generated by oracle machines

and the circuits with unbounded fanins provide nice reduction of recursion-theoretic

problems to combinatorial problems. For the pure separation results, the recursion-

theoretic part is usually a simple diagonalization, and the main difficulty arises from

finding good lower bounds for circuit complexity. For the collapsing results, both the

recursion-theoretic setup and the combinatorial techniques become more complicated.

It is often necessary, like in Sections 6.2 and 6.3, to use more ad hoc tricks to obtain

the required lower bound results.

Following this point of view, we may continue this research in two directions.

First, we need to make a deeper investigation into the diagonalization and encoding

techniques, particularly how two techniques can be combined to satisfy more seem-

ingly contradictory requirements. Do more powerful recursion-theoretic techniques,

such as the finite-injury method, possibly have interesting applications in this type of

proofs? Are there better forms of encoding of information to provide more free space

in diagonalization regions? Although the diagonalization and encoding techniques

have been examined by many people, many ad hoc techniques still seem beyond our

understanding. (One example is the question posed in Section 6.3: to construct an

oracle A such that BPH (A) collapses to PH (A) and PH (A) collapses to the kth

level.)

Second, in the combinatorial side, we would like to see how far the proof

technique of Yao and Hastad can be stretched. Can we find general conditions on

the probability spaces which allow the Switching Lemma to hold? Are there totally

different approaches (such as the one of Smolensky [1987]) that make lower bound

proofs easier or give better lower bounds? Even more, what is the limit of this types
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of combinatorial arguments? For instance, the question of whether the polynomial

hierarchy is infinite relative to a random oracle is still open. Can we sharpen this

proof technique to solve this problem? or do we really need new ideas?
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Balcázar, J. and Russo, D. [1988], Immunity and simplicity in relativizations of probabilistic
complexity classes, RAIRO Theoret. Inform. and Appl. 22, 227–244.

Bennett, C. and Gill, J. [1981], Relative to a random oracle, P A 6= NPA 6= coNPA with
probability 1, SIAM J. Comput. 10, 96–113.

Boppana, R., Hastad, J. and Zachos, S. [1987], Does co-NP have short interactive proofs?,
Inform. Process. Lett. 25, 127–132.

Buss, J. [1986], Relativized alternation, Proc. Structure in Complexity Theory Conf., Lec-
ture Notes in Computer Science, 223, Springer, 66–76.

Cai, J. [1986], With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy, Proc. 18th ACM Symp. on Theory of Computing,
21–29.

45



Chandra, A., Kozen, D. and Stockmeyer, L. [1981], Alternation, J. Assoc. Comput. Mach.

28, 114–133.

Du, D. [1988], personal communication.

Fortnow, L. and Sipser, M. [1988], Are there interactive protocols for co-NP languages?,
Inform. Process. Lett. 28, 249–252.

Furst, M., Saxe, J. and Sipser, M. [1984], Parity, circuits, and the polynomial time hierarchy,
Math. Systems Theory 17, 13–27.

Garey, M. and Johnson, D. [1979], Computers and Intractability, a Guide to the Theory of

NP-Completeness, Freeman, San Francisco.

Goldwasser, S., Micali, S. and Rackoff, C. [1985], The knowledge complexity of interactive
proof systems, Proc. 17th ACM Symp. on Theory of Computing, 291–304.

Goldwasser, S. and Sipser, M. [1986], Private coins versus public coins in interactive proof
systems, Proc. 18th ACM Symp. on Theory of Computing, 59–68.

Hajnai, A., Maass, W., Pudlak, P., Szegedy, M. and Turan, G. [1987], Threshold circuits
of bounded depth, Proc. 28th IEEE Symp. on Foundations of Computer Science,
99–110.

Hastad, J. [1986], Almost optimal lower bounds for small depth circuits, Proc. of 18th ACM

Symp. on Theory of Computing, 6–20.

Hastad, J. [1987], Computational Limitations for Small-Depth Circuits, (Ph.D. Dissertation,
MIT), MIT Press, Cambridge.

Heller, H. [1984], Relativized polynomial hierarchies extending two levels, Math. Systems

Theory 17, 71–84.

Hopcroft, J. and Ullman, J. [1979], Introduction to Automata Theory, Languages, and Com-

putation, Addison-Wesley, Reading.

Ko, K. [1982], Some observations on probabilistic algorithms and NP-hard problems, Inform.

Process. Lett. 14, 39–43.

Ko, K. [1988a], Separating and collapsing results on the relativized probabilistic polynomial
time hierarchy, preprint.

Ko, K. [1988b], Separating the low and high hierarchies by oracles, preprint.

Ko, K. [1989], Relativized polynomial time hierarchies having exactly k levels, SIAM J.

Comput., in press; also in Proc. 20th ACM Symposium on Theory of Computing

[1988], 245–253.
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