
Dynamic Suffix Array with Polylogarithmic Queries and Updates∗

Dominik Kempa

Stony Brook University

Stony Brook, New York, USA

kempa@cs.stonybrook.edu

Tomasz Kociumaka
†

University of California

Berkeley, California, USA

kociumaka@mimuw.edu.pl

ABSTRACT
The suffix array SA[1. .𝑛] of a text𝑇 of length 𝑛 is a permutation of

{1, . . . , 𝑛} describing the lexicographical ordering of suffixes of 𝑇

and is considered to be one of the most important data structures for

string processing, with dozens of applications in data compression,

bioinformatics, and information retrieval. One of the biggest draw-

backs of the suffix array is that it is very difficult to maintain under

text updates: even a single character substitution can completely

change the contents of the suffix array. Thus, the suffix array of a

dynamic text is modelled using suffix array queries, which return

the value SA[𝑖] given any 𝑖 ∈ [1. .𝑛].
Prior to this work, the fastest dynamic suffix array implementa-

tions were by Amir and Boneh, who showed how to answer suffix

array queries in Õ(𝑘) time, where 𝑘 ∈ [1. .𝑛] is a trade-off parame-

ter, with Õ(𝑛/𝑘)-time text updates [ISAAC 2020]. In a very recent

preprint, they also provided a solution with O(log5 𝑛)-time queries

and Õ(𝑛2/3)-time updates [arXiv 2021].

We propose the first data structure that supports both suffix

array queries and text updates in O(polylog𝑛) time (achieving

O(log4 𝑛) and O(log3+𝑜 (1) 𝑛) time, respectively). Our data struc-

ture is deterministic and the running times for all operations are

worst-case. In addition to the standard single-character edits (char-

acter insertions, deletions, and substitutions), we support (also in

O(log3+𝑜 (1) 𝑛) time) the “cut-paste” operation that moves any (arbi-

trarily long) substring of 𝑇 to any place in 𝑇 . To achieve our result,

we develop a number of new techniques which are of independent

interest. This includes a new flavor of dynamic locally consistent

parsing, as well as a dynamic construction of string synchroniz-

ing sets with an extra local sparsity property; this significantly

generalizes the sampling technique introduced at STOC 2019. We

complement our structure by a hardness result: unless the Online

Matrix-Vector Multiplication (OMv) Conjecture fails, no data struc-

ture with O(polylog𝑛)-time suffix array queries can support the

“copy-paste” operation in O(𝑛1−𝜀) time for any 𝜀 > 0.

∗
A full version of this paper is available at arxiv.org/abs/2201.01285 [43]. Proofs of the

claims marked with ♠ are presented only in the full version.

†
Partially supported by NSF 1652303, 1909046, and HDR TRIPODS 1934846 grants,

and an Alfred P. Sloan Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00

https://doi.org/10.1145/3519935.3520061

CCS CONCEPTS
• Theory of computation → Pattern Matching; Data structures
design and analysis; Cell probe models and lower bounds; Problems,

reductions and completeness.

KEYWORDS
Suffix array, text indexing, pattern matching, string synchronizing

sets, dynamic data structures

ACM Reference Format:
Dominik Kempa and Tomasz Kociumaka. 2022. Dynamic Suffix Array with

Polylogarithmic Queries and Updates. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing (STOC ’22), June 20–24,
2022, Rome, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3519935.3520061

1 INTRODUCTION
For a text𝑇 of length𝑛, the suffix array SA[1. .𝑛] stores the permuta-

tion of {1, . . . , 𝑛} such that 𝑇 [SA[𝑖] . .𝑛] is the 𝑖th lexicographically

smallest suffix of𝑇 . The original application of SA [49] was to solve

the text indexing problem: construct a data structure such that, given

a pattern 𝑃 [1. .𝑚] (typically with𝑚 ≪ 𝑛), we can quickly count

(and optionally list) all occurrences of 𝑃 in 𝑇 . Since the sought

set of positions occupies a contiguous block SA[𝑏. .𝑒) (for some

𝑏, 𝑒 ∈ [1. .𝑛 + 1]) and since, given 𝑗 ∈ [1. .𝑛], we can in O(𝑚) time

check if the value SA[𝑗] is before, inside, or after this block, the
indices 𝑏 and 𝑒 can be computed in O(𝑚 log𝑛) time with binary

search. If 𝑏 < 𝑒 , we can then report all occurrences of 𝑃 in 𝑇 at the

extra cost of O(𝑒−𝑏). Soon after the discovery of SA it was realized

that a very large set of problems on strings is essentially solved (or

at least becomes much easier) once we have a suffix array (often

augmented with the LCP array [39, 49]). This includes, for example,

the following problems (see also the textbook of Gusfield [34]):

• finding repeats (e.g., MaximalRepeats, LongestRepeated-

Factor, TandemRepeats);

• computing special subwords (e.g., MinimalAbsentWord,

ShortestUniqeSubstring);

• sequence comparisons (e.g., LongestCommonSubstring,

MaximalUniqeMatches); and

• data compression (e.g., LZ77Factorization, BWTCompres-

sion).

This trend continues in more recent textbooks [47, 53, 59], with

the latest suffix array representations (such as FM-index [24], com-
pressed suffix array [32], and 𝑟 -index [28]) as central data structures.

There are even textbooks such as [1] solely dedicated to the appli-

cations of suffix arrays and the closely related Burrows–Wheeler

transform (BWT) [12].

The power of suffix array comes with one caveat: It is very

difficult to maintain it for a text undergoing updates. For example,

1657

https://arxiv.org/abs/2201.01285
https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1145/3519935.3520061

STOC ’22, June 20–24, 2022, Rome, Italy Dominik Kempa and Tomasz Kociumaka

for𝑇 = b𝑛 (symbol b repeated 𝑛 times) we have SA𝑇 = [𝑛, . . . , 2, 1],
whereas for𝑇 ′ = b𝑛−1c (obtained from𝑇 with a single substitution),

it holds SA𝑇 ′ = [1, 2, . . . , 𝑛], i.e., the complete reversal. Even worse,

if 𝑛 = 2𝑚 + 1 and 𝑇 ′′ = b𝑚ab𝑚 (again, a single substitution), then

SA𝑇 ′′ = [𝑚+1, 𝑛,𝑚, 𝑛 − 1,𝑚 − 1, . . . ,𝑚 + 2, 1], i.e., the near-perfect
interleaving of two halves of SA𝑇 . In general, even a single character

substitution may permute SA in a very complex manner. Thus, if

one wishes to maintain the suffix array of a dynamic text, its entries

cannot be stored in plain form but must be obtained by querying

a data structure. The quest for such dynamic suffix array is open

since the birth of suffix array over three decades ago. We thus pose

our problem:

Problem 1.1. Can we support efficient SA queries for a dynami-

cally changing text?

Previous Work. One of the first attempts to tackle the above

problem is due to Salson, Lecroq, Léonard, andMouchard [63]. Their

dynamic suffix array achieves good practical performance on real-

world texts (including English text and DNA), but its update takes

Θ(𝑛) time in the worst-case. A decade later, Amir and Boneh [5]

proposed a structure that, for any parameter 𝑘 ∈ [1. .𝑛], supports
SA and SA

−1
queries in Õ(𝑘) time and character substitutions

in Õ(𝑛/𝑘) time. This implies the first nontrivial trade-off for the

dynamic suffix array, e.g., Õ(
√
𝑛)-time operations. Very recently,

Amir and Boneh [6] described a dynamic suffix array that supports

updates (insertions and deletions) in the text in Õ(𝑛2/3) time and SA

queries in O(log5 𝑛) time. They also gave a structure that supports

substitutions in Õ(𝑛1/2) time and SA
−1

queries in O(log4 𝑛) time.

A separate line of research focused on the related problem of

dynamic text indexing introduced by Gu, Farach, and Beigel [33].

This problem aims to design a data structure that permits up-

dates to the text 𝑇 and pattern searches (asking for all occurrences

of a given pattern 𝑃 in 𝑇). As noted in [5], the solution in [33]

achieves Õ(
√
𝑛)-time updates to text and Õ(𝑚

√
𝑛 + occ log𝑛) pat-

tern search query (where occ is the number of occurrences of 𝑃

in 𝑇). Sahinalp and Vishkin [62] then proposed a solution based

on the idea of locally consistent parsing that achieves O(log3 𝑛)-
time update and O(𝑚 + occ) pattern searching time. The update

time was later improved by Alstrup, Brodal, and Rauhe [3] to

O(log2 𝑛 log log𝑛 log∗ 𝑛) at the expense of the slightly slower query
O(𝑚 + occ + log𝑛 log log𝑛). This last result was achieved by build-

ing on techniques for the dynamic string equality problem proposed

by Mehlhorn, Sundar, and Uhrig [51]. This was improved in [29] to

O(log2 𝑛)-time update andO(𝑚+occ)-time search. A slightly differ-

ent approach to dynamic text indexing, based on dynamic position
heaps was proposed in [23]. It achieves O(𝑚 log𝑛 + occ) amortized

search, but the updates take Θ(𝑛) time in the worst case. There is

also work on dynamic compressed text indexing. Chan, Hon, Lam,

and Sadakane [13] proposed an index that uses O(1𝜀 (𝑛𝐻0 (𝑇) + 𝑛))
bits of space (where 𝐻0 (𝑇) is the zeroth order empirical entropy of

𝑇), searches inO(𝑚 log
2 𝑛(log𝜀 𝑛+log𝜎)+occ log1+𝜀 𝑛) time (where

𝜎 is the alphabet size), and performs updates in O(
√
𝑛 log2+𝜀 𝑛)

amortized time, where 0 < 𝜀 ≤ 1. Recently, Nishimoto, I, Inenaga,

Bannai, and Takeda [58] proposed a faster index for a text 𝑇 with

LZ77 factorization of size 𝑧. Assuming for simplicity 𝑧 log𝑛 log∗ 𝑛 =

O(𝑛) and 𝑧 = Ω(log𝑛 log∗ 𝑛), their index occupiesO(𝑧 log𝑛 log∗ 𝑛)
space, performs updates in amortized O((log𝑛 log∗ 𝑛)2 log 𝑧) time

(in addition to edits, they also support the “cut-paste” operation that

moves a substring of 𝑇 from one place to another), and searches in

time O(𝑚 ·min{log log𝑛 log log 𝑧/log log log𝑛,
√︁
log 𝑧/log log 𝑧} +

log 𝑧 log𝑚 log
∗ 𝑛(log𝑛 + log𝑚 log

∗ 𝑛) + occ log𝑛).
We point out that although the (compressed) dynamic text index-

ing problem [33, 58] discussed above is related to dynamic suffix

array, it is not the same. Assuming one accepts additional log fac-

tors, the dynamic suffix array problem is strictly harder: it solves

dynamic indexing (by simply adding binary search on top), but

no converse reduction is known; such a reduction would compute

values of SA in O(polylog𝑛) time using searches for short patterns.

Thus, the many applications of SA listed above cannot be solved

with these indexes. Unfortunately, due to lack of techniques, the

dynamic suffix array problem has seen very little progress; as noted

by Amir and Boneh [5], “(. . .) although a dynamic suffix array algo-

rithm would be extremely useful to automatically adapt many static

pattern matching algorithms to a dynamic setting, other techniques

had to be sought”. They remark, however, that “Throughout all this

time, an algorithm for maintaining the suffix tree or suffix array

of a dynamically changing text had been sought”. To sum up, until

now, the best dynamic suffix arrays have been those of [5], taking

Õ(𝑘) time to answer SA and SA
−1

queries and Õ(𝑛/𝑘) time for

substitutions, and [6], taking Õ(𝑛2/3) time for insertions/deletions

and O(log5 𝑛) time for SA queries, or Õ(𝑛1/2) time for substitutions

and O(log4 𝑛) time for SA
−1

queries. No solution with polylog𝑛-

time queries and updates (even amortized or expected) was known,

not even for character substitutions only.

Our Results. We propose the first dynamic suffix array with all

operations (queries and updates) taking only O(polylog𝑛) time.

Our data structure is deterministic and the complexities of both

queries and updates are worst-case. Thus, we leap directly to a

solution satisfying the commonly desired properties on the query

and update complexity for this over thirty-years old open prob-

lem. In addition to single-character edits, our structure supports

the powerful “cut-paste” operation, matching the functionality of

state-of-the-art indexes [3, 58]. More precisely, our structure sup-

ports the following operations (the bounds below are simplified

overestimates; see Theorem 6.7):

• We support SA queries (given 𝑖 ∈ [1. .𝑛], return SA[𝑖]) in
O(log4 𝑁) time.

• We support SA
−1

queries (given 𝑗 ∈ [1. .𝑛], return SA
−1 [𝑗])

in O(log5 𝑁) time.

• We support updates (insertion and deletion of a single symbol

in 𝑇 as well as the “cut-paste” operation, moving any block

of 𝑇 to any other place in 𝑇) in O(log3+𝑜 (1) 𝑁) time.

Here, 𝑁 = 𝑛𝜎 is the product of the current text length and the size

of the alphabet Σ = [0. .𝜎).
The above result may leave a sense of incompleteness regard-

ing further updates such as “copy-paste”. We show that, despite

its similarity with “cut-paste”, supporting this operation in the dy-

namic setting is most likely very costly. More precisely, we prove

that, unless the Online Matrix-Vector Multiplication (OMv) Conjec-

ture [37] fails, no data structure that supports SA or SA
−1

queries

in O(polylog𝑛) time can support the “copy-paste” operation in

O(𝑛1−𝜀) time for any 𝜀 > 0. In fact, we prove the following more

general result (which can be easily extended to SA queries; see [43]):

1658

Dynamic Suffix Array with PolylogarithmicQueries and Updates STOC ’22, June 20–24, 2022, Rome, Italy

Theorem 1.2 (♠). For all constants 𝛼, 𝛽 > 0 with 𝛼 + 𝛽 < 1, the
OMv Conjecture implies that there is no dynamic algorithm that
preprocesses a text 𝑇 in time polynomial in |𝑇 |, supports copy-pastes
in O(|𝑇 |𝛼) time, and inverse suffix array queries in O(|𝑇 |𝛽) time,
with each answer correct with probability at least 2

3
.

Thus, the trade-off similar to the one achieved by Amir and

Boneh [5] (Õ(𝑘)-time query and Õ(𝑛/𝑘)-time update) may still

be possible for a dynamic suffix array with copy-pastes; we leave

proving such upper bound as a possible direction for future work.

Technical Contributions. To achieve our result, we develop new

techniques and significantly generalize several existing ones. Our

first novel technique is the notion of locally sparse synchroniz-

ing sets. String synchronizing sets [40] have recently been intro-

duced in the context of efficient construction of BWT and LCE

queries for “packed strings” (where a single machine word stores

multiple characters). Since then, they have found many other ap-

plications [2, 4, 14, 41, 42]. Loosely speaking (a formal definition

follows in Section 2), for any fixed 𝜏 ≥ 1, a set S ⊆ [1. .𝑛] is a
𝜏-synchronizing set of a string 𝑇 ∈ Σ𝑛 if S samples positions of 𝑇

consistently (i.e., whether 𝑖 ∈ [1. .𝑛] is sampled depends only on the

length-Θ(𝜏) context of 𝑖 in 𝑇) and samples everywhere in 𝑇 except

in highly periodic fragments (the so-called density condition). In all

prior applications utilizing synchronizing sets, the goal is to ensure

that S is sparse on average, i.e., that the size |S| is minimized. In this

paper, we prove that at the cost of increasing the size of |S| by a

mere factor O(log∗ (𝜏𝜎)), we can additionally ensure that S is also

locally sparse. We then show that such S can be maintained dynam-

ically using a new construction of S from the signature parsing (a

technique introduced in [51] and used, for example, in [3, 58]). The

crucial benefit of local sparsity is that any auxiliary structure that

depends on the length-Θ(𝜏) contexts of positions in S, including
S itself, can be updated efficiently. Another result of independent

interest is the first dynamic construction of string synchronizing

sets. For this, we internally represent some substrings of𝑇 using the

abstraction of dynamic strings [3, 30, 51, 61]. The problem with all

existing variants of dynamic strings, however, is that they rely on

representing the strings using a hierarchical representation whose

only goal is to ensure the string shrinks by a constant factor at each

level. This, however, is not sufficient for our purpose: in order to

satisfy the density condition for the resulting synchronizing set,

we also need all symbols at any given level to have some common

upper bound on the expansion length. The notion of such “bal-

anced” parsing is known [11, 61], but has only been implemented

in static settings. We show the first variant of dynamic strings that

maintains a “balanced” parsing at every level, and consequently lets

us dynamically maintain a locally sparse string synchronizing set.

The mainstay among data structures for pattern matching or SA

queries is the use of (typically 2D) orthogonal range searching [16].

Example indexes include nearly all indexes based on LZ77 [7–9,

18, 27, 38, 45, 58], context-free grammars [10, 19, 20, 26, 50, 64,

65], and some recent BWT-based indexes [17, 42, 52]. Nearly all

these structures maintain a set of points corresponding to some

set of suffixes of 𝑇 (identified with their starting positions P ⊆
[1. .𝑛]) ordered lexicographically. The problem with adapting this

to the dynamic setting is that once we modify 𝑇 near the end, the

order of (potentially all) elements in P changes. We overcome this

obstacle as follows. Rather than on sampling of suffixes, we rely

on log𝑛 levels of sampling of substrings (identified by the set S𝑘 of

the starting positions of their occurrences) of length roughly 2
𝑘
,

where 𝑘 ∈ [0. .⌈log𝑛⌉), implemented using dynamic locally sparse

synchronizing sets. With such structure, we can efficiently update

the sets S𝑘 and the associated geometric structures, but we lose the

ability to easily compare suffixes. In Section 5, we show that even

with such partial sampling, we can nevertheless still implement SA

queries. In log𝑛 steps, our query algorithm successively narrows the

range of SA to contain only suffixes prefixed with𝑇 [SA[𝑖] . .SA[𝑖] +
ℓ), while also maintaining the starting position of some arbitrary

suffix in the range, where ℓ = 2
𝑘
is the current prefix length. In

the technical overview, we sketch the main ideas of this reduction,

but we remark that the details of this approach are nontrivial and

require multiple technical results (see [43]).

Finally, we remark that, even though (as noted earlier), dynamic

suffix array is a strictly harder problem that text indexing (since one

can be reduced to the other, but not the otherway around), our result

has implications even for the text indexing problem. The existing

dynamic text indexes with fast queries and updates (such as [29,

58]) can only list all 𝑘 occurrences of any pattern. One, however,

cannot obtain the number of occurrences (which is the standard

operation supported by most of the static indexes [54]) in time that

is always bounded by O(𝑚 polylog𝑛) (since 𝑘 can be arbitrarily

large).
1
Our dynamic suffix array, on the other hand, implements

counting seamlessly: it suffices to perform the standard binary

search [49] over SA for the pattern 𝑃 , resulting in the endpoints of

range SA[𝑏. .𝑒) of suffixes of 𝑇 prefixed with 𝑃 , and return 𝑒 − 𝑏.

Related Work. Chan, Hon, Lam, and Sadakane [13] introduced

a problem of indexing text collections, which asks to store a dy-

namically changing collection C of strings (under insertions and

deletions of entire strings) so that pattern matching queries on C can

be answered efficiently. Although the resulting data structures are

also called dynamic full-text indexes [48] or dynamic suffix trees [60],
we remark that they are solving a different problem that what, by

analogy to dynamic suffix array, we would mean by “dynamic suffix

tree”. Observe that we cannot simulate the insertion of a symbol in

the middle of 𝑇 using a collection of strings. Maintaining symbols

of 𝑇 as a collection of length-1 strings will not work because the

algorithms in [13, 48, 60] only report occurrences entirely inside

one of the strings. Since the insertion of a string 𝑆 of length𝑚 into

C takes Ω(𝑚) time in [13, 48, 60] (similarly for deletion), one also

cannot efficiently use C to represent the entire text 𝑇 as a single

element of C.
Related to the problem of text indexing is also the problem of

sequence representation [55], where we store a string 𝑆 [1. .𝑛] un-
der character insertions and deletions and support the access to

𝑆 , rank(𝑖, 𝑐) (returning |{ 𝑗 ∈ [1. .𝑖] : 𝑆 [𝑗] = 𝑐}|) and select(𝑖, 𝑐)
(returning the 𝑖th occurrence of 𝑐 in 𝑆). A long line of research,

including [31, 36, 48, 56], culminated with the work of Navarro and

Nekrich, who achieved O(log𝑛/log log𝑛) time for all operations

1
Efficient counting for indexes relying on orthogonal range searching is a technically

challenging problem that has been solved only recently for the static case [18]. It

is possible that these ideas can be combined with [29] or [58], but the result will

nevertheless be significantly more complicated than counting using the suffix array.

1659

STOC ’22, June 20–24, 2022, Rome, Italy Dominik Kempa and Tomasz Kociumaka

$
a$
aababa$
aababababaababa$
aba$
abaababa$
abaababababaababa$
ababa$
ababaababa$
abababaababa$
ababababaababa$
ba$
baababa$
baababababaababa$
baba$
babaababa$
babaababababaababa$
bababaababa$
babababaababa$
bbabaababababaababa$

𝑇 [SA[𝑖] . .𝑛]
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

𝑖

20

19

14

5

17

12

3

15

10

8

6

18

13

4

16

11

2

9

7

1

SA[𝑖]

Figure 1: The suffix array of 𝑻 = bbabaababababaababa$ along
with a sorted list of the suffixes of 𝑻 .

(amortized for updates), while using space close to 𝑛𝐻0 (𝑆), where
𝐻0 is the zeroth order empirical entropy.

Finally, there is a line of research focusing on storing a text 𝑇

under updates so that we can support efficient longest common
extension queries LCE𝑇 (𝑖, 𝑗) that return the length of the longest

common prefix of𝑇 [𝑖 . .|𝑇 |] and𝑇 [𝑗 . .|𝑇 |]. The research was initiated
with the seminal work in [3, 51] (recently improved in [30]). More

recently, a solution working in the compressed space (achieving

similar runtimes as the index in [58]) was proposed in [57].

2 PRELIMINARIES
A string is a finite sequence of characters from some set Σ called the

alphabet. We denote the length of a string 𝑆 as |𝑆 |. For any index

𝑖 ∈ [1. .|𝑆 |],2 we denote the 𝑖th character of 𝑆 as 𝑆 [𝑖]. A string of the

form 𝑆 [𝑖 . . 𝑗) = 𝑆 [𝑖]𝑆 [𝑖 + 1] . . . 𝑆 [𝑗 − 1], where 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑆 | + 1 is

called a fragment of 𝑆 . If 𝑆 is known, we will encode 𝑆 [𝑖 . . 𝑗) in O(1)
space as a pair (𝑖, 𝑗). Fragments of the form 𝑆 [1. . 𝑗) and 𝑆 [𝑖 . .|𝑆 |] are
called prefixes and suffixes, respectively. By 𝑆 we denote the reverse
of 𝑆 , i.e., 𝑆 = 𝑆 [|𝑆 |] . . . 𝑆 [2]𝑆 [1]. The concatenation of two strings

𝑈 and 𝑉 is denoted 𝑈𝑉 or 𝑈 · 𝑉 . Moreover, 𝑆𝑘 =
⊙𝑘

𝑖=1 𝑆 is the

concatenation of 𝑘 copies of 𝑆 ; note that 𝑆0 = 𝜀 is the empty string.
An integer 𝑝 ∈ [1. .|𝑆 |] is a called a period of 𝑆 if 𝑆 [1. .|𝑆 | − 𝑝] =

𝑆 [1 + 𝑝. .|𝑆 |]; we denote the shortest period of 𝑆 as per(𝑆). We use

⪯ to denote the order on Σ, extended to the lexicographic order
on Σ∗ (the set of strings over Σ) so that 𝑈 ,𝑉 ∈ Σ∗ satisfy 𝑈 ⪯ 𝑉

if and only if either 𝑈 is a prefix of 𝑉 , or 𝑈 [1. .𝑖) = 𝑉 [1. .𝑖) and
𝑈 [𝑖] ≺ 𝑉 [𝑖] holds for some 𝑖 ∈ [1. .min(|𝑈 |, |𝑉 |)].

Throughout, we consider a string (called the text) 𝑇 of length

𝑛 ≥ 1 over an integer alphabet Σ = [0. .𝜎). We assume that𝑇 [𝑛] = $
(where $ = min Σ) and $ does not occur in 𝑇 [1. .𝑛).

The suffix array SA[1. .𝑛] of 𝑇 is a permutation of [1. .𝑛] such
that 𝑇 [SA[1] . .𝑛] ≺ 𝑇 [SA[2] . .𝑛] ≺ · · · ≺ 𝑇 [SA[𝑛] . .𝑛], i.e., SA[𝑖]
is the starting position of the lexicographically 𝑖th smallest suffix

2
For 𝑖, 𝑗 ∈ Z, denote [𝑖 . . 𝑗] = {𝑘 ∈Z : 𝑖 ≤ 𝑘 ≤ 𝑗 }, [𝑖 . . 𝑗) = {𝑘 ∈Z : 𝑖 ≤ 𝑘 < 𝑗 }, and
(𝑖 . . 𝑗] = {𝑘 ∈Z : 𝑖 < 𝑘 ≤ 𝑗 }.

of 𝑇 ; see Fig. 1 for an example. The inverse suffix array SA
−1 [1. .𝑛]

is the inverse permutation of SA, i.e., SA
−1 [𝑗] = 𝑖 holds if and

only if SA[𝑖] = 𝑗 . By lcp(𝑈 ,𝑉) we denote the length of the longest

common prefix of𝑈 and𝑉 . For 𝑗1, 𝑗2 ∈ [1. .𝑛], we let LCE𝑇 (𝑗1, 𝑗2) =
lcp(𝑇 [𝑗1 . .],𝑇 [𝑗2 . .]).

The rotation operation rot(·), given a string 𝑆 ∈ Σ+, moves the

last character of 𝑆 to the front so that rot(𝑆) = 𝑆 [|𝑆 |] · 𝑆 [1. .|𝑆 | − 1].
We use the word RAM model of computation [35] with 𝑤-bit

machine words, where𝑤 ≥ log𝑛.

Definition 2.1 (𝜏-synchronizing set [40]). Let 𝑇 ∈ Σ𝑛 be a string

and let 𝜏 ∈ [1. .⌊𝑛
2
⌋] be a parameter. A set S ⊆ [1. .𝑛−2𝜏+1] is called

a 𝜏-synchronizing set of 𝑇 if it satisfies the following consistency
and density conditions:

(1) If 𝑇 [𝑖 . .𝑖 + 2𝜏) = 𝑇 [𝑗 . . 𝑗 + 2𝜏), then 𝑖 ∈ S holds if and only if

𝑗 ∈ S (for 𝑖, 𝑗 ∈ [1. .𝑛 − 2𝜏 + 1]),
(2) S∩[𝑖 . .𝑖+𝜏) = ∅ if and only if 𝑖 ∈ R(𝜏,𝑇) (for 𝑖 ∈ [1. .𝑛−3𝜏+2]),

where

R(𝜏,𝑇) := {𝑖 ∈ [1. .|𝑇 | − 3𝜏 + 2] : per(𝑇 [𝑖 . .𝑖 + 3𝜏 − 2]) ≤ 1

3
𝜏}.

In most applications, we want to minimize |S|. The density con-

dition imposes a lower bound |S| = Ω(𝑛𝜏) for strings of length
𝑛 ≥ 3𝜏 − 1 that do not contain highly periodic substrings of length

3𝜏 − 1. Hence, in the worst case, we cannot hope to improve upon

the following bound.

Theorem 2.2 ([40, Proposition 8.10]). For every 𝑇 ∈ Σ𝑛 and
𝜏 ∈ [1. .⌊𝑛

2
⌋], there exists a 𝜏-synchronizing set S of size |S| = O

(
𝑛
𝜏

)
.

Such S can be deterministically constructed in O(𝑛) time.

3 TECHNICAL OVERVIEW
We derive our dynamic suffix array gradually. We start (Section 4),

by introducing the auxiliary tools. In the first part of the paper

(Section 5) we prove that if we have Θ(log𝑛) synchronizing sets

for values of 𝜏 spanning across the whole range [1. .𝑛], and we can

support some set of queries (stated as “assumptions”) concerning

either positions in those synchronizing sets, gaps across successive

elements, or their length-Θ(𝜏) contexts in 𝑇 , then we can support

SA queries on 𝑇 . In the second part of the paper (Section 6) we

then show how to satisfy these assumptions for text supporting

update operations. This approach lets us separate the clean (combi-

natorial) details concerning SA queries from (more algorithmic and

technical) details concerning the maintenance of the underlying

synchronizing sets and the associated structures. This also lets us

for now treat 𝑇 as well as each of the synchronizing sets as static,

since the reduction works for any collection of such sets, and thus

if after the update these sets (and the associated structures) change,

the query algorithm is unaffected.

To give an overview of Section 5, we first introduce the key

notation. Let ℓ ≥ 1. For any 𝑗 ∈ [1. .𝑛], we define

Occℓ (𝑗) = { 𝑗 ′ ∈ [1. .𝑛] : 𝑇∞ [𝑗 ′ . . 𝑗 ′ + ℓ) = 𝑇∞ [𝑗 . . 𝑗 + ℓ)},
RBegℓ (𝑗) = |{ 𝑗 ′ ∈ [1. .𝑛] : 𝑇 [𝑗 ′ . .𝑛] ≺ 𝑇 [𝑗 . .𝑛] ∧ LCE𝑇 (𝑗, 𝑗 ′) < ℓ}|,
REndℓ (𝑗) = RBegℓ (𝑗) + |Occℓ (𝑗) |,
where 𝑇∞

is defined by 𝑇∞ [𝑖] = 𝑇 [1 + (𝑖 − 1) mod 𝑛] (𝑖 ∈ Z). In
particular,𝑇∞ [1. .𝑛] = 𝑇 . Note that if 𝑃 = 𝑇∞ [𝑗 . . 𝑗+ℓ), then {SA[𝑖] :
𝑖 ∈ (RBegℓ (𝑗). .REndℓ (𝑗)]} = {𝑖 ∈ [1. .𝑛] : 𝑇∞ [𝑖 . .𝑖 + |𝑃 |) = 𝑃}.

1660

Dynamic Suffix Array with PolylogarithmicQueries and Updates STOC ’22, June 20–24, 2022, Rome, Italy

Moreover, for any 𝑗 ∈ [1. .𝑛], we define

Posℓ (𝑗) = { 𝑗 ′∈[1. .𝑛] : 𝑇 [𝑗 ′ . .𝑛] ≺ 𝑇 [𝑗 . .𝑛] ∧ ℓ ≤ LCE𝑇 (𝑗, 𝑗 ′) < 2ℓ},
Pos

′
ℓ (𝑗) = { 𝑗 ′∈[1. .𝑛] : 𝑇 [𝑗 ′ . .𝑛] ≻ 𝑇 [𝑗 . .𝑛] ∧ ℓ ≤ LCE𝑇 (𝑗, 𝑗 ′) < 2ℓ}.

We denote 𝛿ℓ (𝑗) := |Posℓ (𝑗) | and 𝛿 ′ℓ (𝑗) := |Pos′
ℓ
(𝑗) |. Observe, that

it holds

(RBeg
2ℓ (𝑗), REnd2ℓ (𝑗)) =

(RBegℓ (𝑗) + 𝛿ℓ (𝑗), RBegℓ (𝑗) + 𝛿ℓ (𝑗) + |Occ2ℓ (𝑗) |),
(RBeg

2ℓ (𝑗), REnd2ℓ (𝑗)) =
(REndℓ (𝑗) − 𝛿 ′ℓ (𝑗) − |Occ2ℓ (𝑗) |, REndℓ (𝑗) − 𝛿 ′ℓ (𝑗)) .

The main idea of our algorithm is as follows. Suppose that

we have obtained (RBeg
16
(SA[𝑖]), REnd16 (SA[𝑖])) and some 𝑗 ∈

Occ16 (SA[𝑖]) (Assumption 5.1). Then, for 𝑞 = 4, . . . , ⌈log𝑛⌉ − 1,

denoting ℓ = 2
𝑞
, we compute (RBeg

2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖]))
and some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]), by using as input some position

𝑗 ∈ Occℓ (SA[𝑖]) and the pair (RBegℓ (SA[𝑖]), REndℓ (SA[𝑖])), i.e.,
the output of the earlier step. This lets us compute SA[𝑖], since even-
tually we obtain some 𝑗 ′ ∈ Occ

2
⌈log𝑛⌉ (SA[𝑖]), and for any 𝑘 ≥ 𝑛,

Occ𝑘 (SA[𝑖]) = {SA[𝑖]}, i.e., we must have 𝑗 ′ = SA[𝑖].
Our goal is to show how to implement a single step of the above

process. Let ℓ ∈ [16. .𝑛) and 𝑖 ∈ [1. .𝑛]. Suppose that we are given
(𝑏, 𝑒) = (RBegℓ (SA[𝑖]), REndℓ (SA[𝑖])) and some 𝑗 ∈ Occℓ (SA[𝑖])
as input. We aim to show that under specific assumptions about

the ability to perform some queries, we can compute some 𝑗 ′ ∈
Occ2ℓ (SA[𝑖]) and the pair (RBeg

2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖])).
Let 𝜏 := ⌊ ℓ

3
⌋. Our algorithm works differently, depending on

whether it holds SA[𝑖] ∈ R(𝜏,𝑇) or SA[𝑖] ∈ [1. .𝑛] \ R(𝜏,𝑇). Thus,
we first need to efficiently implement this check. Observe that

whether or not it holds 𝑗 ∈ R(𝜏,𝑇) depends only on 𝑇 [𝑗 . . 𝑗 + 3𝜏 −
1). Therefore, by 3𝜏 − 1 ≤ ℓ , if 𝑗 ∈ Occℓ (SA[𝑖]) then SA[𝑖] ∈
R(𝜏,𝑇) holds if and only if 𝑗 ∈ R(𝜏,𝑇). Consequently, we can

determine if SA[𝑖] ∈ R(𝜏,𝑇) (such SA[𝑖] is called periodic) or
SA[𝑖] ∈ [1. .𝑛] \ R(𝜏,𝑇) (i.e., the position SA[𝑖] is nonperiodic)
using any 𝑗 ∈ Occℓ (SA[𝑖]).

The Nonperiodic Positions. Assume SA[𝑖] ∈ [1. .𝑛] \ R(𝜏,𝑇). We

proceed in two steps. First, we show how to compute |Posℓ (SA[𝑖]) |
and |Occ2ℓ (SA[𝑖]) | assuming we have some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]). By
the earlier observation, this yields (RBeg

2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖])).
We then explain how to find 𝑗 ′.

Let 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]). By 𝑇∞ [𝑗 ′ . . 𝑗 ′ + 2ℓ) = 𝑇∞ [SA[𝑖] . .SA[𝑖] +
2ℓ), we have that |Posℓ (SA[𝑖]) | = |Posℓ (𝑗 ′) |, |Occ2ℓ (SA[𝑖]) | =

|Occ2ℓ (𝑗 ′) |, and 𝑗 ′ ∈ [1. .𝑛] \ R(𝜏,𝑇). We can thus focus on com-

puting |Posℓ (𝑗 ′) | and |Occ2ℓ (𝑗 ′) |. Let S be any 𝜏-synchronizing set

of 𝑇 . First, observe that by 𝑗 ′ ∉ R(𝜏,𝑇), the position 𝑠′ = succS (𝑗 ′)
(see Section 5.2 for the definition of succS) satisfies 𝑠

′ − 𝑗 ′ < 𝜏 .

Thus, by the consistency of S and 3𝜏 ≤ ℓ , all 𝑗 ′′ ∈ Posℓ (𝑗 ′) share a
common offset 𝛿S = 𝑠′− 𝑗 ′ such that 𝑗 ′′+𝛿S = min(S∩[𝑗 ′′ . . 𝑗 ′′+𝜏))
and hence the relative lexicographical order between 𝑇 [𝑗 ′′ . .𝑛] and
𝑇 [𝑗 ′ . .𝑛] is the same as between 𝑇 [𝑗 ′′ + 𝛿S . .𝑛] and 𝑇 [𝑗 ′ + 𝛿S . .𝑛].
Thus, to compute |Posℓ (𝑗 ′) | it suffices to count 𝑠′′ ∈ S that are:

(1) Preceded in 𝑇 by the string 𝑇 [𝑗 ′ . .𝑠′), and
(2) For which it holds 𝑇 [𝑠′′ . .𝑛] ≺ 𝑇 [𝑠′ . .𝑛] and LCE𝑇 (𝑠′′, 𝑠′) ∈

[ℓ − 𝛿S . .2ℓ − 𝛿S).

Observe, that for any𝑞 ≥ 2ℓ , Condition 1 is equivalent to position 𝑠′′

having a reversed left length-𝑞 context in the lexicographical range

[𝑋 ..𝑋 ′), where 𝑋 = 𝑇 [𝑗 ′ . .𝑠′) and 𝑋 ′ = 𝑋𝑐∞ (where 𝑐 = max Σ),
and Condition 2 is equivalent to position 𝑠′′ having a right length-𝑞
context in [𝑌 ..𝑌 ′), where𝑌 = 𝑇∞ [𝑠′ . . 𝑗 ′+ℓ) and𝑌 ′ = 𝑇∞ [𝑠′ . . 𝑗 ′+2ℓ)
(Lemma 5.2). Consequently, the only queries needed to compute

|Posℓ (𝑗 ′) | are succS and range queries on a labelled set of points

P = {(𝑇∞ [𝑠′ − 𝑞. .𝑠′),𝑇∞ [𝑠′ . .𝑠′ + 𝑞), 𝑠′) : 𝑠′ ∈ S}. Since 𝜏 = ⌊ ℓ
3
⌋

and ℓ ≥ 16, it suffices to choose 𝑞 = 7𝜏 to satisfy 𝑞 ≥ 2ℓ . Thus,

under Assumption 5.3, we can efficiently compute |Posℓ (𝑗 ′) | =
|Posℓ (SA[𝑖]) |.

The intuition for |Occ2ℓ (𝑗 ′) | is similar, except we observe that

Condition 2 is that 𝑠′′ satisfies LCE𝑇 (𝑠′′, 𝑠′) ≥ 2ℓ − 𝛿S, which is

equivalent to 𝑠′′ having a right length-𝑞 context in [𝑌 ′ . .𝑌 ′𝑐∞).
Thus, we can also count such 𝑠′′ (and consequently, compute the

value |Occ2ℓ (SA[𝑖]) |) using P.

The above reductions are proved in Lemmas 5.5 and 5.6 and lead

to the following result.

Proposition 3.1. Let 𝑖 ∈ [1. .𝑛] be such that SA[𝑖] ∈ [1. .𝑛] \
R(𝜏,𝑇). Under Assumption 5.3, given a position 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]),
we can efficiently compute |Posℓ (SA[𝑖]) | and |Occ2ℓ (SA[𝑖]) |.

It remains to show how to find some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]). For
this, observe that if we sort all 𝑗 ′′ ∈ Occℓ (SA[𝑖]) by their right

length-2ℓ context in 𝑇∞
then for the 𝑘th position 𝑗 ′′ in this order

we have 𝑇∞ [𝑗 ′′ . . 𝑗 ′′ + 2ℓ) = 𝑇∞ [SA[𝑏 + 𝑘] . .SA[𝑏 + 𝑘] + 2ℓ), since
SA(𝑏. .𝑒] also contains all 𝑗 ′′ ∈ Occℓ (SA[𝑖]) sorted by their length-

2ℓ right context, although potentially in a different order. Note,

however, that 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]) only requires 𝑇∞ [𝑗 ′ . . 𝑗 ′ + 2ℓ) =
𝑇∞ [SA[𝑖] . .SA[𝑖] +2ℓ). Thus, the ability to find the (𝑖−𝑏)th element

in the sequence of all 𝑗 ′′ ∈ Occℓ (SA[𝑖]) sorted by𝑇∞ [𝑗 ′′ . . 𝑗 ′′ + 2ℓ)
(with ties resolved arbitrarily) is all we need to compute some

𝑗 ′ ∈ Occ2ℓ (SA[𝑖]). Recall, that to show a common offset 𝛿S, we used

the fact that suffixes shared a prefix of length at least 3𝜏 . By 3𝜏 ≤ ℓ ,

here we also have that all 𝑗 ′′ ∈ Occℓ (SA[𝑖]) share a common offset

𝛿S = succS (SA[𝑖])−SA[𝑖] such that 𝑗 ′′+𝛿S = min(S∩[𝑗 ′′ . . 𝑗 ′′+𝜏)).
Consequently, to find 𝑗 ′ we take some 𝑞 ≥ 2ℓ and:

(1) First, letting 𝛿S = succS (SA[𝑖]) − SA[𝑖], we compute the

number𝑚 of positions 𝑠′ ∈ S that have their reversed left

length-𝑞 context in the lexicographic range [𝑋 ..𝑋 ′) (where
𝑋 = 𝑇 [SA[𝑖] . .SA[𝑖] +𝛿S) and 𝑋 ′ = 𝑋𝑐∞) and right length-𝑞

context in [𝜀. .𝑌) (where 𝑌 = 𝑇∞ [SA[𝑖] + 𝛿S . .SA[𝑖] + ℓ)).
(2) Then, for any 𝑘 ∈ [1. .|Occℓ (SA[𝑖]) |], the (𝑚 + 𝑘)th element

𝑠′ in the sequence of all positions from S sorted by the length-
𝑞 right context that simultaneously have their reversed left

length-𝑞 context in [𝑋 ..𝑋 ′), satisfies 𝑇∞ [𝑠′ − 𝛿S . .𝑠
′ − 𝛿S +

2ℓ) = 𝑇∞ [SA[𝑏 + 𝑘] . .SA[𝑏 + 𝑘] + 2ℓ). In particular, the po-

sition 𝑠′ for 𝑘 = 𝑖 − 𝑏 satisfies 𝑇∞ [𝑠′ − 𝛿S . .𝑠
′ − 𝛿S + 2ℓ) =

𝑇∞ [SA[𝑖] . .SA[𝑖] + 2ℓ), i.e., 𝑠′ − 𝛿S ∈ Occ2ℓ (SA[𝑖]). Thus,
finding 𝑗 ′ reduces to a range selection query on P.

The above reduction is proved in Lemma 5.9. One last detail is

that we need 𝑋 , 𝑌 , and 𝛿S. We note, however, that they all depend

only on 𝑇∞ [SA[𝑖] . .SA[𝑖] + ℓ), and thus can be computed using

𝑗 ∈ Occℓ (SA[𝑖]) (which we have as input). We have thus proved the

following result, which combined with Proposition 3.1 concludes

the description of the SA query for nonperiodic SA[𝑖].

1661

STOC ’22, June 20–24, 2022, Rome, Italy Dominik Kempa and Tomasz Kociumaka

Proposition 3.2. Let 𝑖 ∈ [1. .𝑛] be such that SA[𝑖] ∈ [1. .𝑛] \
R(𝜏,𝑇). Under Assumption 5.3, given 𝑖 and 𝑗 ∈ Occℓ (SA[𝑖]) as well
as the pair (RBegℓ (SA[𝑖]), REndℓ (SA[𝑖])), we can efficiently find
some position 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]).

The Periodic Positions. Assume SA[𝑖] ∈ R(𝜏,𝑇). The standard

way to introduce structure among periodic positions (see, e.g., [40])

is as follows. Note that if 𝑗, 𝑗+1 ∈ R(𝜏,𝑇), then per(𝑇 [𝑗 . . 𝑗+3𝜏−1)) =
per(𝑇 [𝑗+1. . 𝑗+1+3𝜏−1)). This implies that any maximal block of

positions in R(𝜏,𝑇) defines a highly periodic fragment of 𝑇 (called

a “run”) with an associated period 𝑝 . To compare runs, we “anchor”

each run 𝑇 [𝑟𝑏 . .𝑟𝑒) by selecting some 𝐻 ∈ Σ𝑝 , called its root, so
that 𝑇 [𝑟𝑏 . .𝑟𝑒) is a substring of 𝐻∞

and no nontrivial rotation of

𝐻 is selected for other runs. Then, every sufficiently long right-

maximal fragment 𝑇 [𝑗 . . 𝑗 ′) of some run can be uniquely written

as 𝑇 [𝑗 . . 𝑗 ′) = 𝐻 ′𝐻𝑘𝐻 ′′
, where 𝐻 is some root, 𝑘 ≥ 1, and 𝐻 ′

(resp.

𝐻 ′′
) is a proper suffix (resp. prefix) of 𝐻 . The value 𝑘 is called

the exponent of 𝑗 , and is denoted exp(𝑗) = 𝑘 . We then classify

type(𝑗) = −1 if 𝑇 [𝑗 ′] ≺ 𝑇 [𝑗 ′ − |𝐻 |] and type(𝑗) = +1 otherwise.
The first major challenge in the periodic case is selecting roots

efficiently. An easy solution in the static case (e.g. [40, 42]) is to

choose the lexicographically smallest rotation of 𝐻 (known as the

Lyndon root). This seems very difficult in the dynamic case, how-

ever. We instead show a construction that exploits the presence of

symmetry-breaking component in the signature parsing (i.e., the

deterministic coin tossing [21]) to develop a custom computation

of roots.

Recall that 𝑏 = RBegℓ (SA[𝑖]) and 𝑒 = REndℓ (SA[𝑖]), and ob-

serve that all 𝑖′ ∈ (𝑏. .𝑒] with type(SA[𝑖′]) = −1 precede those

with type(SA[𝑖′]) = +1. Moreover, the values exp(SA[𝑖′]) among

those with type(SA[𝑖′]) = −1 (resp. type(SA[𝑖′]) = +1) are non-
decreasing (resp. non-increasing) as we increase 𝑖′. This structure
has led to a relatively straightforward processing of periodic posi-

tions in previous applications (e.g., the BWT construction in [40]),

where the positions were first grouped by the type, and then by the

exponent. In our case, however, we need to exclude the positions

with very small and very large exponents. We thus employ the fol-

lowing modification to the above scheme: Rather than computing

|Posℓ (SA[𝑖]) | in one step, we prove that Posℓ (SA[𝑖]) can be ex-

pressed as a combination of three sets, Pos
low

ℓ
(SA[𝑖]) (containing

exponents “truncated” at length ℓ), Pos
high

ℓ
(SA[𝑖]) (where trun-

cation occurs for length 2ℓ), and Pos
mid

ℓ
(SA[𝑖]) (all exponents in

between); see Fig. 2 for an example. In a sequence of steps, we then

compute the following values: type(SA[𝑖]), the size |Poslow
ℓ

(SA[𝑖]) |,
the exponent exp(SA[𝑖]), the size |Posmid

ℓ
(SA[𝑖]) |, a position 𝑗 ′ ∈

Occ2ℓ (SA[𝑖]), the size |Poshigh
ℓ

(SA[𝑖]) |, and the size |Occ2ℓ (SA[𝑖]) |
(the details are described in the full version of this paper [43]).

Finally, we derive |Posℓ (SA[𝑖]) |, which equals |Poslow
ℓ

(SA[𝑖]) | +
|Posmid

ℓ
(SA[𝑖]) | − |Poshigh

ℓ
(SA[𝑖]) | if type(SA[𝑖]) = −1, as well

as RBeg
2ℓ (SA[𝑖]) = RBegℓ (SA[𝑖]) + |Posℓ (SA[𝑖]) | and, lastly, the

value REnd2ℓ (SA[𝑖]) = RBeg
2ℓ (SA[𝑖]) + |Occ2ℓ (SA[𝑖]) |. The case

of type(SA[𝑖]) = +1 is symmetric: we then compute |Pos′
ℓ
(SA[𝑖]) |

instead of |Posℓ (SA[𝑖]) |.

Dynamic Text Implementation. In the second part of the paper

(Section 6), we develop a data structure that maintains a dynamic

text (subject to updates listed below) and provides efficient imple-

mentation of the auxiliary queries specified in the assumptions of

Section 5.

Definition 3.3. We say that a dynamic text over an integer al-

phabet Σ (with $ = min Σ) is a data structure that maintains a text

𝑇 ∈ Σ+ subject to the following updates:

initialize(𝜎): Given the alphabet size 𝜎 , initialize the data structure,

setting 𝑇 := $;
insert(𝑖, 𝑎): Given 𝑖 ∈ [1. .|𝑇 |] and 𝑎 ∈ Σ \ {$}, set 𝑇 := 𝑇 [1. .𝑖) · 𝑎 ·

𝑇 [𝑖 . .|𝑇 |].
delete(𝑖): Given 𝑖 ∈ [1. .|𝑇 |), set 𝑇 := 𝑇 [1. .𝑖) ·𝑇 (𝑖 . .|𝑇 |].
swap(𝑖, 𝑗, 𝑘): Given 𝑖, 𝑗, 𝑘 ∈ [1. .|𝑇 |] with 𝑖 ≤ 𝑗 ≤ 𝑘 , set 𝑇 :=

𝑇 [1. .𝑖) ·𝑇 [𝑗 . .𝑘) ·𝑇 [𝑖 . . 𝑗) ·𝑇 [𝑘. .|𝑇 |].

Observe that our interface does not directly support character

substitutions; this is because substitute(𝑖, 𝑎) can be implemented as

delete(𝑖) followed by insert(𝑖, 𝑎). Moreover, note that the interface

enforces the requirement of Section 5 that {𝑖 ∈ [1. .|𝑇 |] : 𝑇 [𝑖] =

$} = {|𝑇 |}.
Various components of our data structure, described in Section 6,

maintain auxiliary information associated to individual positions of

the text𝑇 (such as whether the position belongs to a synchronizing

set). Individual updates typically alter the positions of many charac-

ters in𝑇 (for example, insertion moves the character at position 𝑗 to

position 𝑗 + 1 for each 𝑗 ∈ [𝑖 . .|𝑇 |]), so addressing the characters by

their position is volatile. To address this issue, we use a formalism of

labelled strings, where each character is associated to a unique label

that is fixed throughout character’s lifetime. This provides a clean

realization of the concept of pointers to characters, introduced in [3]

along with O(log𝑛)-time conversion between labels (pointers) and

positions.

The main challenge that arises in our implementation of a dy-

namic text is to maintain synchronizing sets. As for the succS
queries alone, we could generate synchronizing positions at query

time. Since, however, Assumption 5.3 also entails supporting range

queries over a set of points in one-to-one correspondence with the

synchronizing positions, we cannot evade robust maintenance.

Dynamic Synchronizing Sets. By the consistency condition in

Definition 2.1, whether a position 𝑗 belongs to a synchronizing set

S is decided based on the right context 𝑇 [𝑗 . . 𝑗 + 2𝜏). This means

that the entire synchronizing set can be described using a family

F ⊆ Σ2𝜏 such that 𝑗 ∈ S if and only if 𝑇 [𝑗 . . 𝑗 + 2𝜏) ∈ F . The

construction algorithms in [40] select such F adaptively (based

on the contents of 𝑇) to guarantee that |S| is small. In a dynamic

scenario, we could either select F non-adaptively and keep it fixed;

or adaptively modify F as the text 𝑇 changes.

The second approach poses a very difficult task: the procedure

maintaining F does not know the future updates, yet it needs

to be robust against any malicious sequence of updates that an

adversary could devise. This is especially hard in the deterministic

setting, where we cannot hide F from the adversary. Thus, we

aim for non-adaptivity, which comes at the price of increasing the

synchronizing set size by a factor of O(log∗ (𝜎𝜏)). On the positive

side, a non-adaptive choice of F means that S only undergoes

local changes; for example, a substitution of 𝑇 [𝑖] may only affect

S ∩ (𝑖 − 2𝜏 . .𝑖]. Moreover, since F yields small synchronizing sets

1662

Dynamic Suffix Array with PolylogarithmicQueries and Updates STOC ’22, June 20–24, 2022, Rome, Italy

Pos
high

ℓ
(SA[𝑖])

Posℓ (SA[𝑖])

Pos
mid

ℓ
(SA[𝑖])

Pos
low

ℓ
(SA[𝑖])

𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻 𝐻
𝐻 𝐻

ℓ ℓ

Figure 2: An example showing the sets Posℓ (SA[𝒊]), Poslowℓ (SA[𝒊]), Posmid
ℓ (SA[𝒊]), and Poshighℓ (SA[𝒊]). Note that |Posℓ (SA[𝒊]) | =

|Poslowℓ (SA[𝒊]) | + |Posmid
ℓ (SA[𝒊]) | − |Poshighℓ (SA[𝒊]) |. The suffix 𝑻 [SA[𝒊]. .𝒏] is highlighted in bold. The sets Occℓ (SA[𝒊]) and

Occ2ℓ (SA[𝒊]) are marked with blue and red (respectively).

for all strings, this is in particular true for all substrings 𝑇 [𝑖 . . 𝑗),
whose synchronizing sets are in one-to-one correspondence with

S ∩ [𝑖 . . 𝑗 − 2𝜏]. This means that S is locally sparse and that each

update incurs O(log∗ (𝜎𝜏)) changes to S.
The remaining challenge is thus to devise a non-adaptive syn-

chronizing set construction. Although all existing constructions

are adaptive, Birenzwige, Golan, and Porat [11] provided a non-

adaptive construction of a related notion of partitioning sets. While

partitioning sets and synchronizing sets satisfy similar consistency

conditions, the density condition of synchronizing sets is signif-

icantly stronger, which is crucial for a clean separation between

periodic and nonperiodic positions. Thus, we strengthen the con-

struction of [11] so that it produces synchronizing sets. This boils

down to ‘fixing’ the set in the vicinity of positions in R(𝜏,𝑇).

Dynamic Strings over Balanced Signature Parsing. Unfortunately,
the approach of [11] only comes with a static implementation. Thus,

we need to dive into their techniques and provide an efficient dy-

namic implementation. Their central tool is a locally consistent

parsing algorithm that iteratively parses the text using determinis-

tic coin tossing [21] to determine phrase boundaries. Similar tech-

niques have been used many times (see e.g. [3, 51, 58, 61, 62]), but

the particular flavor employed in [11] involves a mechanism that,

up to date, has not been adapted to the dynamic setting. Namely,

as subsequent levels of the parsing provide coarser and coarser

partitions into phrases, the procedure grouping phrases into blocks

(to be merged in the next level) takes into account the lengths of

the phrases, enforcing very long phrases to form single-element

blocks. This trick makes the phrase lengths much more balanced,

which is crucial in controlling the context size that governs the local

consistency of the synchronizing sets derived from the parsing.

We thus proceed as follows. First, we develop balanced signature
parsing: a version of signature parsing (originating from the early

works on dynamic strings [3, 51]) that involves the phrase balancing

mechanism. Then, we provide a dynamic strings implementation

based on the balanced signature parsing. The main difference com-

pared to the previous work [3, 30, 51] stems from the fact that the

size of the context-sensitive part of the parsing (that may change de-

pending on the context surrounding a given substring) is bounded

in terms of the number of individual letters rather than the number

of phrases at the respective level of the parsing. Due to this, we need

to provide new (slightly modified) implementations of the basic

operations (such as updates and longest common prefix queries).

However, we also benefit from this feature, obtaining faster running

times for more advanced queries, such as the period queries (which

we utilize to retrieve R(𝜏,𝑇)) compared to solutions using existing

dynamic strings implementations [15].

4 GENERALIZED RANGE COUNTING AND
SELECTION QUERIES

In this section we introduce generalized range counting and selec-

tion queries. The generalization lies in the fact that the “coordinates”

of points can come from any ordered set. In particular, coordinates

of points in some of our structures will be elements of Σ∗ (i.e., the
strings over alphabet Σ). Furthermore, the points in our data struc-

tures are labelled with distinct integer identifiers; we allow multiple

points with the same coordinates, though.

The section is organized as follows. We start with the definition

of range counting/selection queries. We then present an instance

of the problem that will be of interest to us.

Let X and Y be some linearly ordered sets (we denote the order

on both sets using ≺ or ⪯). Let P ⊆ X × Y × Z be a finite set of
points with distinct integer labels. We define the notation for range
counting and range selection queries as follows.

Range counting query: Given 𝑋𝑙 , 𝑋𝑢 ∈ X and 𝑌𝑢 ∈ Y, return

r-countP (𝑋𝑙 , 𝑋𝑢 , 𝑌𝑢) := |{(𝑋,𝑌, ℓ) ∈ P : 𝑋𝑙 ⪯ 𝑋 ≺ 𝑋𝑢 and

𝑌 ≺ 𝑌𝑢 }|. We denote r-countincP (𝑋𝑙 , 𝑋𝑢 , 𝑌𝑢) := |{(𝑋,𝑌, ℓ) ∈
P : 𝑋𝑙 ⪯ 𝑋 ≺ 𝑋𝑢 and 𝑌 ⪯ 𝑌𝑢 }| and r-countP (𝑋𝑙 , 𝑋𝑢) :=

|{(𝑋,𝑌, ℓ) ∈ P : 𝑋𝑙 ⪯ 𝑋 ≺ 𝑋𝑢 }|.
Range selection query: Given 𝑋𝑙 , 𝑋𝑢 ∈ X and an integer 𝑟 ∈

[1. .r-countP (𝑋𝑙 , 𝑋𝑢)], return any ℓ ∈ r-selectP (𝑋𝑙 , 𝑋𝑢 , 𝑟) :=
{ℓ ∈ Z : (𝑋,𝑌, ℓ) ∈ P,𝑋𝑙 ⪯ 𝑋 ≺ 𝑋𝑢 , and 𝑌 = 𝑌𝑢 } for𝑌𝑢 ∈ Y
satisfying 𝑟 ∈ (r-countP (𝑋𝑙 , 𝑋𝑢 , 𝑌𝑢) . .r-countincP (𝑋𝑙 , 𝑋𝑢 , 𝑌𝑢)].

1663

STOC ’22, June 20–24, 2022, Rome, Italy Dominik Kempa and Tomasz Kociumaka

Theorem 4.1. Suppose that the elements of X and Y can be com-
pared in O(𝑡) time. Then, there is a deterministic data structure that
maintains a set P ⊆ X × Y × [0. .2𝑤) of size 𝑛, with insertions in
O((𝑡+log𝑛) log𝑛) time and deletions in O(log2 𝑛) time so that range
queries are answered in O((𝑡 + log

2 𝑛) log𝑛) time.

Proof. The setP is stored in a data structure of [46] (see also [16,

66]) for dynamic range counting queries; this component supports

updates and queries in O(log2 𝑛) assuming O(1)-time comparisons.

As for range selection queries, we resort to binary search with range

counting queries as an oracle (the universe searched consists of

the second coordinates of all points in P). Thus, range selection

queries cost O(log3 𝑛) time.

In order to substantiate the assumption on constant comparison

time, we additionally maintain P in two instances of the order-

maintenance data structure [22, 44], with points (𝑋,𝑌, ℓ) ordered
according to𝑋 in the first instance and according to𝑌 in the second

instance (ties are resolved arbitrarily). This allows for O(1)-time

comparisons between points in P. The overhead for deletions is

O(1), but insertions to the order-maintenance structure require

specifying the predecessor of the newly inserted element; we find

the predecessor in O(𝑡 log𝑛) time using binary search. Similarly, at

query time, we temporarily add the query coordinates (𝑋𝑙 , 𝑋𝑢 , and,

if specified, 𝑌𝑢) to the appropriate order-maintenance structure,

also at the cost of an extra O(𝑡 log𝑛) term in the query time. □

A String-String Instance. We now present an instance of the

above problem that will be used in our structure.

Definition 4.2. Let 𝑇 ∈ Σ𝑛 . For any 𝑞 ∈ Z+ and P ⊆ [1. .𝑛], let
Points𝑞 (𝑇, P) := {(𝑇∞ [𝑝 −𝑞 . . 𝑝),𝑇∞ [𝑝 . . 𝑝 +𝑞), 𝑝) : 𝑝 ∈ P}.

In other words, Points𝑞 (𝑇, P) is the collection of string-pairs

(𝑋,𝑌) composed of reversed length-𝑞 left context and a length-

𝑞 right context (in 𝑇∞
) of every 𝑝 ∈ P, and for any (𝑋,𝑌, ℓ) ∈

Points𝑞 (𝑇, P), the label ℓ ∈ P is the underlying position. Equiva-

lently, Points𝑞 (𝑇, P) can be interpreted as a set of labelled points

(𝑋,𝑌, ℓ) with coordinates 𝑋,𝑌 and an integer label ℓ , where the

order on the X = Σ∗ and Y = Σ∗ axis is lexicographical.
Next, we define the problem of supporting range counting and

selection queries on Points𝑞 (𝑇, P) for some special family of queries

that can be succinctly represented as substrings of 𝑇∞
or 𝑇∞

.

Problem 4.3 (String-String Range Queries). Let 𝑇 ∈ Σ𝑛 , 𝑞 ∈
[1. .3𝑛], and P ⊆ [1. .𝑛] be a set satisfying |P| = 𝑚. Denote P =

Points𝑞 (𝑇, P) and 𝑐 = max Σ. Provide efficient support for the fol-

lowing queries:

(1) Given a position 𝑖 ∈ [1. .𝑛] and 𝑞𝑙 , 𝑞𝑟 ∈ [0. .2𝑛], return
r-countP (𝑋𝑙 , 𝑋𝑢 , 𝑌𝑙) and r-countP (𝑋𝑙 , 𝑋𝑢 , 𝑌𝑢), where 𝑋𝑙 =
𝑇∞ [𝑖 − 𝑞𝑙 . .𝑖), 𝑋𝑢 = 𝑋𝑙𝑐

∞
, 𝑌𝑙 = 𝑇∞ [𝑖 . .𝑖 + 𝑞𝑟), and 𝑌𝑢 = 𝑌𝑙𝑐

∞
,

(2) Given 𝑖 ∈ [1. .𝑛], 𝑞𝑙 ∈ [0. .2𝑛], and 𝑟 ∈ [1. .r-countP (𝑋𝑙 , 𝑋𝑢)]
(where 𝑋𝑙 =𝑇

∞ [𝑖 −𝑞𝑙 . .𝑖) and 𝑋𝑢 = 𝑋𝑙𝑐
∞
), return some posi-

tion 𝑝 ∈ r-selectP (𝑋𝑙 , 𝑋𝑢 , 𝑟).

5 SA QUERY ALGORITHM
Let 𝑇 ∈ Σ𝑛 . In this section we show that under some small set of

assumptions about the ability to perform queries on string synchro-

nizing sets [40], we can perform SA queries for 𝑇 .

Assumption 5.1. For any 𝑖 ∈ [1. .𝑛], we can compute some 𝑗 ∈
Occ16 (SA[𝑖]) and the pair (RBeg

16
(SA[𝑖]), REnd16 (SA[𝑖])) inO(𝑡)

time.

Let us fix some ℓ ∈ [16. .𝑛). As outlined in Section 3, to answer

the SA query, we need to show how given 𝑖 ∈ [1. .𝑛] along with

some 𝑗 ∈ Occℓ (SA[𝑖]) and the pair (RBegℓ (SA[𝑖]), REndℓ (SA[𝑖]))
as input, to compute some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]) as well as the pair
(RBeg

2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖])). Due to space constraints, we will
present the algorithm only for nonperiodic positions, i.e., SA[𝑖] ∈
[1. .𝑛] \ R(⌊ ℓ

3
⌋,𝑇) (Section 5.2). Handling of periodic positions is

described in the full version of this paper [43] (see also Remark 5.13).

All steps of the query algorithms are put together in Section 5.3.

5.1 Preliminaries
We start with a combinatorial result showing the three fundamental

reductions. In the first and second, we show an equivalence between

LCE queries for suffixes of 𝑇 and comparisons of substrings of

𝑇 . These results are used to characterize the set Posℓ (𝑗) and its

components. In the third reduction, we show an equivalence, where

LCE queries are replaced with substring equalities. This is used to

characterize the set Occ2ℓ (𝑗).

Lemma 5.2 (♠). Let 𝑗 ∈ [1. .𝑛] and 𝑐 = max Σ. Then:

(1) If 0 ≤ ℓ1 < ℓ2 ≤ ℓ3, then, for any 𝑗 ′ ∈ [1. .𝑛], the conjunction
𝑇 [𝑗 ′ . .𝑛] ≺ 𝑇 [𝑗 . .𝑛] and LCE𝑇 (𝑗, 𝑗 ′) ∈ [ℓ1 . .ℓ2) holds if and
only if 𝑇∞ [𝑗 . . 𝑗 + ℓ1) ⪯ 𝑇∞ [𝑗 ′ . . 𝑗 ′ + ℓ3) ≺ 𝑇∞ [𝑗 . . 𝑗 + ℓ2).

(2) If 0 ≤ ℓ1 ≤ ℓ2, then, for any 𝑗 ′ ∈ [1. .𝑛], the disjunction
𝑇 [𝑗 ′ . .𝑛] ⪰ 𝑇 [𝑗 . .𝑛] or LCE𝑇 (𝑗, 𝑗 ′) ≥ ℓ1 holds if and only if
𝑇∞ [𝑗 ′ . . 𝑗 ′ + ℓ2) ⪰ 𝑇∞ [𝑗 . . 𝑗 + ℓ1).

(3) If 0 ≤ ℓ1 ≤ ℓ2, then, for any 𝑗 ′ ∈ [1. .𝑛], 𝑇∞ [𝑗 ′ . . 𝑗 ′ + ℓ1) =

𝑇∞ [𝑗 . . 𝑗 + ℓ1) holds if and only if𝑇∞ [𝑗 . . 𝑗 + ℓ1) ⪯ 𝑇∞ [𝑗 ′ . . 𝑗 ′ +
ℓ2) ≺ 𝑇∞ [𝑗 . . 𝑗 + ℓ1)𝑐∞.

5.2 The Nonperiodic Positions
Let 𝜏 = ⌊ ℓ

3
⌋. In this section, we show that assuming that for some

𝜏-synchronizing set S of𝑇 we can efficiently perform succS queries

(with succS (𝑖) := min{ 𝑗 ∈ S ∪ {𝑛 − 2𝜏 + 2} : 𝑗 ≥ 𝑖} for any

𝑖 ∈ [1. .𝑛 − 2𝜏 + 1]), and support some string-string range queries

(Assumption 5.3), given a position 𝑖 ∈ [1. .𝑛] satisfying SA[𝑖] ∈
[1. .𝑛] \ R(𝜏,𝑇), along with the pair (RBegℓ (SA[𝑖]), REndℓ (SA[𝑖]))
and some 𝑗 ∈ Occℓ (SA[𝑖]) as input, we can efficiently compute the

pair (RBeg
2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖])) and some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]).

Assumption 5.3. For some 𝜏-synchronizing set S of 𝑇 (where
𝜏 = ⌊ ℓ

3
⌋) the queries succS (𝑖) (where 𝑖 ∈ [1. .𝑛 − 3𝜏 + 1] \ R(𝜏,𝑇))

and the string-string range queries (Problem 4.3) for text 𝑇 , integer
𝑞 = 7𝜏 , and the set of positions P = S can be supported in O(𝑡) time.

Remark 5.4. Note that by ℓ < 𝑛 and 3𝜏 ≤ ℓ , the value 𝑞 = 7𝜏 ≤
2ℓ + 𝜏 < 3𝑛 in the above assumption satisfies the requirement

of Problem 4.3. Note also that 𝜏 = ⌊ ℓ
3
⌋ ≤ ⌊ ℓ

2
⌋ ≤ ⌊𝑛

2
⌋, i.e., S is

well-defined (see Definition 2.1).

The section is organized into three parts. First, we show how

under Assumption 5.3 to combine the properties of synchronizing

sets with reductions in Lemma 5.2 to compute the sizes of sets

Posℓ (𝑗) and Occ2ℓ (𝑗) (Section 5.2.1). Then, in Section 5.2.2, we

1664

Dynamic Suffix Array with PolylogarithmicQueries and Updates STOC ’22, June 20–24, 2022, Rome, Italy

show how under the same assumptions to efficiently compute some

𝑗 ′ ∈ Occ2ℓ (SA[𝑖]). In Section 5.2.3, we put everything together.

5.2.1 Computing the Size of Posℓ (𝑗) and Occ2ℓ (𝑗). Let 𝑗 ∈ [1. .𝑛] \
R(𝜏,𝑇). In this section, we show how under Assumption 5.3 to

efficiently compute the values |Posℓ (𝑗) | and |Occ2ℓ (𝑗) |.
The section is organized as follows. First, we present two combi-

natorial results (Lemmas 5.5 and 5.6) characterizing the sets Posℓ (𝑗)
andOcc2ℓ (𝑗) using the string synchronizing set S.We then use these

characterizations to prove a formula for the cardinality of these

sets (Lemma 5.7). We conclude with Proposition 5.8 showing how

under Assumption 5.3, to utilize this formula to quickly compute

values |Posℓ (𝑗) | and |Occ2ℓ (𝑗) | given position 𝑗 .

Lemma 5.5. Let 𝑗 ∈ [1. .𝑛 − 3𝜏 + 1] \R(𝜏,𝑇) and 𝑠 = succS (𝑗). Let
𝑋 ∈ Σ∗ and 𝑌,𝑌 ′ ∈ Σ+ be such that 𝑋 = 𝑇 [𝑗 . .𝑠), 𝑇∞ [𝑗 . . 𝑗+ℓ) = 𝑋𝑌 ,
and 𝑇∞ [𝑗 . . 𝑗+2ℓ) = 𝑋𝑌 ′. Then, for any 𝑗 ′ ∈ [1. .𝑛], letting 𝑠′ =

𝑗 ′ + |𝑋 |, it holds
𝑗 ′ ∈ Posℓ (𝑗) if and only if

𝑠′ ∈ S, 𝑌 ⪯𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺𝑌 ′, and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 .

Proof. By the uniqueness of 𝑇 [𝑛] = $, it holds per(𝑇 [𝑛 − 3𝜏 +
2. .𝑛]) = 3𝜏 − 1 and hence S ∩ [𝑛 − 3𝜏 + 2. .𝑛 − 2𝜏 + 2) ≠ ∅. Thus, by
𝑗 < 𝑛− 3𝜏 + 2, 𝑠 = succS (𝑗) satisfies 𝑠 ∈ S. Moreover, by 𝑗 ∉ R(𝜏,𝑇),
it holds S ∩ [𝑗 . . 𝑗 + 𝜏) ≠ ∅. Therefore, we have |𝑋 | = 𝑠 − 𝑗 < 𝜏 ≤ ℓ ,

and hence the strings 𝑌 and 𝑌 ′
(of length ℓ − |𝑋 | and 2ℓ − |𝑋 |,

respectively) are well-defined and nonempty.

Let 𝑗 ′ ∈ Posℓ (𝑗), i.e., 𝑇 [𝑗 ′ . .𝑛] ≺ 𝑇 [𝑗 . .𝑛] and LCE𝑇 (𝑗, 𝑗 ′) ∈
[ℓ . .2ℓ). This implies 𝑗 ≠ 𝑗 ′ and𝑇 [𝑗 ′ . . 𝑗 ′+ ℓ) = 𝑇 [𝑗 . . 𝑗 + ℓ). Therefore,
by ℓ − (𝑠 − 𝑗) ≥ ℓ − 𝜏 ≥ 2𝜏 and the consistency of the string

synchronizing set S (Definition 2.1) applied for positions 𝑗1 = 𝑗 + 𝑡

and 𝑗2 = 𝑗 ′ + 𝑡 , where 𝑡 ∈ [0. .|𝑋 |), we obtain succS (𝑗 ′) − 𝑗 ′ =

succS (𝑗) − 𝑗 (or equivalently, succS (𝑗 ′) = 𝑗 ′ + (𝑠 − 𝑗) = 𝑠′) and
𝑠′ ∈ S. Next, by 𝑇 [𝑗 ′ . . 𝑗 ′ + ℓ) = 𝑇 [𝑗 . . 𝑗 + ℓ) and |𝑋 | < 𝜏 ≤ ℓ , it

holds LCE𝑇 (𝑗, 𝑗 ′) = |𝑋 | + LCE𝑇 (𝑠, 𝑠′). Thus, LCE𝑇 (𝑠, 𝑠′) ∈ [ℓ −
|𝑋 |. .2ℓ − |𝑋 |). By Lemma 5.2(1) (with parameters ℓ1 = |𝑌 | = ℓ − |𝑋 |,
ℓ2 = |𝑌 ′ | = 2ℓ − |𝑋 |, and ℓ3 = 7𝜏) and 2ℓ ≤ 7𝜏 (holding for ℓ ≥
16), this implies 𝑌 ⪯ 𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺ 𝑌 ′

. Finally, the equality

𝑇∞ [𝑗 ′ . . 𝑗 ′ + ℓ) = 𝑇∞ [𝑗 . . 𝑗 + ℓ) = 𝑋𝑌 implies 𝑇∞ [𝑠′ − |𝑋 |. .𝑠′) =

𝑇∞ [𝑗 ′ . .𝑠′) = 𝑋 .

For the opposite implication, assume 𝑠′ ∈ S, 𝑌 ⪯ 𝑇∞ [𝑠′ . .𝑠′ +
7𝜏) ≺ 𝑌 ′

, and𝑇∞ [𝑠′− |𝑋 |. .𝑠′) = 𝑋 . By Lemma 5.2(1) (with the same

parameters as above) and 2ℓ ≤ 7𝜏 , this implies 𝑇 [𝑠′ . .𝑛] ≺ 𝑇 [𝑠 . .𝑛]
and LCE𝑇 (𝑠, 𝑠′) ∈ [ℓ− |𝑋 |. .2ℓ− |𝑋 |). Since𝑇 [𝑗 . .𝑠) = 𝑋 and by 𝑠 ∈ S
we have 𝑠 < 𝑛, 𝑋 does not contain the symbol $, and hence 𝑗 ′ ≥ 1.

Thus,𝑇∞ [𝑗 ′ . .𝑠′) = 𝑋 implies𝑇 [𝑗 . .𝑠) = 𝑇 [𝑗 ′ . .𝑠′), and consequently,
𝑇 [𝑗 ′ . .𝑛] ≺ 𝑇 [𝑗 . .𝑛] and LCE𝑇 (𝑗, 𝑗 ′) = |𝑋 | + LCE𝑇 (𝑠, 𝑠′) ∈ [ℓ . .2ℓ).
Thus, 𝑗 ′ ∈ Posℓ (𝑗). □

Lemma 5.6. Let 𝑗 ∈ [1. .𝑛 − 3𝜏 + 1] \ R(𝜏,𝑇), 𝑠 = succS (𝑗), and
𝑑 ∈ [ℓ . .2ℓ]. Let 𝑋 ∈ Σ∗ and 𝑌 ′ ∈ Σ+ be such that 𝑋 = 𝑇 [𝑗 . .𝑠) and
𝑇∞ [𝑗 . . 𝑗+𝑑) = 𝑋𝑌 ′. Then, for any 𝑗 ′ ∈ [1. .𝑛], letting 𝑠′ = 𝑗 ′ + |𝑋 |
and 𝑐 = max Σ, it holds

𝑗 ′ ∈ Occ𝑑 (𝑗) if and only if

𝑠′ ∈ S, 𝑌 ′ ⪯𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺𝑌 ′𝑐∞, and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 .

Proof. Similarly as in Lemma 5.5, we first observe that by 𝑗 <

𝑛 − 3𝜏 + 2, 𝑠 = succS (𝑗) satisfies 𝑠 ∈ S. Moreover, by 𝑗 ∉ R(𝜏,𝑇), it

holds S ∩ [𝑗 . . 𝑗 + 𝜏) ≠ ∅. Therefore, |𝑋 | = 𝑠 − 𝑗 < 𝜏 ≤ ℓ , and hence

the string 𝑌 ′
(of length 𝑑 − |𝑋 |) is well-defined and nonempty.

Let 𝑗 ′ ∈ Occ𝑑 (𝑗), i.e., 𝑇∞ [𝑗 ′ . . 𝑗 ′ + 𝑑) = 𝑇∞ [𝑗 . . 𝑗 + 𝑑). To show

𝑠′ ∈ S, we consider two cases. If 𝑗 = 𝑗 ′ then 𝑠′ = 𝑠 ∈ S holds by

definition. Otherwise, by 𝑇∞ [𝑗 . . 𝑗 + 𝑑) = 𝑇∞ [𝑗 ′ . . 𝑗 ′ + 𝑑) and the

uniqueness of 𝑇 [𝑛] = $, we must have 𝑇 [𝑗 . . 𝑗 + ℓ) = 𝑇 [𝑗 ′ . . 𝑗 ′ + ℓ).
Thus, by ℓ − (𝑠 − 𝑗) ≥ ℓ − 𝜏 ≥ 2𝜏 and the consistency of S (applied

as in the proof of Lemma 5.5) for 𝑗1 = 𝑗 + 𝑡 and 𝑗2 = 𝑗 ′ + 𝑡 , where

𝑡 ∈ [0. .|𝑋 |), we obtain succS (𝑗 ′) = 𝑠′ ∈ S. Next, by𝑇∞ [𝑠′ . . 𝑗 ′+𝑑) =
𝑇∞ [𝑠 . . 𝑗 + 𝑑) and 𝑑 ≤ 2ℓ ≤ 7𝜏 , we obtain from Lemma 5.2(3) (with

parameters ℓ1 = |𝑌 ′ | = 𝑑 − |𝑋 | and ℓ2 = 7𝜏) that 𝑌 ′ ⪯ 𝑇∞ [𝑠′ . .𝑠′ +
7𝜏) ≺ 𝑌 ′𝑐∞. Finally, 𝑇∞ [𝑗 ′ . . 𝑗 ′ + 𝑑) = 𝑇∞ [𝑗 . . 𝑗 + 𝑑) = 𝑋𝑌 ′

implies

𝑇∞ [𝑠′ − |𝑋 |. .𝑠′) = 𝑇∞ [𝑗 ′ . .𝑠′) = 𝑋 , i.e., the third condition.

For the opposite implication, assume 𝑠′ ∈ S, 𝑌 ′ ⪯ 𝑇∞ [𝑠′ . .𝑠′ +
7𝜏) ≺ 𝑌 ′𝑐∞, and 𝑇∞ [𝑠′ − |𝑋 |. .𝑠′) = 𝑋 . By Lemma 5.2(3) (with

the same parameters as above) and 𝑑 ≤ 2ℓ ≤ 7𝜏 , this implies

𝑇∞ [𝑠′ . . 𝑗 ′ +𝑑) = 𝑇∞ [𝑠 . . 𝑗 +𝑑). Combining this with the assumption

𝑇∞ [𝑗 ′ . .𝑠′) = 𝑋 = 𝑇∞ [𝑗 . .𝑠), we obtain𝑇∞ [𝑗 ′ . . 𝑗 ′+𝑑) = 𝑇∞ [𝑗 . . 𝑗+𝑑),
i.e., 𝑗 ′ ∈ Occ𝑑 (𝑗). □

Lemma 5.7. Let 𝑗 ∈ [1. .𝑛 − 3𝜏 + 1] \ R(𝜏,𝑇) and 𝑠 = succS (𝑗).
Let 𝑋 ∈ Σ∗ and 𝑋 ′, 𝑌 , 𝑌 ′ ∈ Σ+ be such that 𝑋 = 𝑇 [𝑗 . .𝑠), 𝑋 ′ = 𝑋𝑐∞

(with 𝑐 = max Σ), 𝑇∞ [𝑗 . . 𝑗+ℓ) = 𝑋𝑌 , and 𝑇∞ [𝑗 . . 𝑗+2ℓ) = 𝑋𝑌 ′. Then,
letting 𝑞 = 7𝜏 and P = Points𝑞 (𝑇, S), it holds:

(1) |Posℓ (𝑗) | = r-countP (𝑋,𝑋 ′, 𝑌 ′) − r-countP (𝑋,𝑋 ′, 𝑌) and
(2) |Occ2ℓ (𝑗) | = r-countP (𝑋,𝑋 ′, 𝑌 ′𝑐∞) − r-countP (𝑋,𝑋 ′, 𝑌 ′).

Proof. 1. By Lemma 5.5, we can write Posℓ (𝑗) = {𝑠′ − |𝑋 | : 𝑠′ ∈
S, 𝑌 ⪯ 𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺ 𝑌 ′, and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }. On the

other hand, by Definition 4.2 and the definition of the rcount query:

r-countP (𝑋,𝑋 ′, 𝑌)

= |{𝑠′∈S : 𝑇∞ [𝑠′ . .𝑠′+7𝜏)≺𝑌 and 𝑋 ⪯ 𝑇∞ [𝑠′−7𝜏 . .𝑠′) ≺ 𝑋 ′}|

= |{𝑠′∈S : 𝑇∞ [𝑠′ . .𝑠′+7𝜏)≺𝑌 and 𝑋 is a prefix of 𝑇∞ [𝑠′−7𝜏 . .𝑠′)}|

= |{𝑠′∈S : 𝑇∞ [𝑠′ . .𝑠′+7𝜏)≺𝑌 and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }|.

Analogously, r-countP (𝑋,𝑋 ′, 𝑌 ′) = |{𝑠′ ∈ S : 𝑇∞ [𝑠′ . .𝑠′+7𝜏) ≺
𝑌 ′

and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }|. Since any position 𝑠′ ∈ S that sat-

isfies 𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺ 𝑌 also satisfies 𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺ 𝑌 ′
, we

obtain r-countP (𝑋,𝑋 ′, 𝑌 ′) − r-countP (𝑋,𝑋 ′, 𝑌) = |{𝑠′ ∈ S : 𝑌 ⪯
𝑇∞ [𝑠′ . .𝑠′+7𝜏) ≺ 𝑌 ′

and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }|. The cardinality of

this set is clearly the same as the earlier set characterizing Posℓ (𝑗).
Thus, r-countP (𝑋,𝑋 ′, 𝑌 ′) − r-countP (𝑋,𝑋 ′, 𝑌) = |Posℓ (𝑗) |.

2. By Lemma 5.6, we have Occ2ℓ (𝑗) = {𝑠′ − |𝑋 | : 𝑠′ ∈ S, 𝑌 ′ ⪯
𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺ 𝑌 ′𝑐∞, and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }. On the other

hand, by Definition 4.2 and the definition of rcount queries, we
also have that r-countP (𝑋,𝑋 ′, 𝑌 ′) = |{𝑠′ ∈ S : 𝑇∞ [𝑠′ . .𝑠′+7𝜏) ≺
𝑌 ′

and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }| and r-countP (𝑋,𝑋 ′, 𝑌 ′𝑐∞) = |{𝑠′ ∈
S : 𝑇∞ [𝑠′ . .𝑠′+7𝜏) ≺ 𝑌 ′𝑐∞ and 𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }|. Since any

position 𝑠′ ∈ S that satisfies 𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺ 𝑌 ′
also satisfies

𝑇∞ [𝑠′ . .𝑠′ + 7𝜏) ≺ 𝑌 ′𝑐∞, we thus obtain r-countP (𝑋,𝑋 ′, 𝑌 ′𝑐∞) −
r-countP (𝑋,𝑋 ′, 𝑌 ′) = |{𝑠′ ∈ S : 𝑌 ′ ⪯ 𝑇∞ [𝑠′ . .𝑠′+7𝜏) ≺ 𝑌 ′𝑐∞ and

𝑇∞ [𝑠′−|𝑋 |. .𝑠′) = 𝑋 }|. The cardinality of this set is clearly the

same as the earlier set characterizing Occ2ℓ (𝑗). We therefore obtain

r-countP (𝑋,𝑋 ′, 𝑌 ′𝑐∞) − r-countP (𝑋,𝑋 ′, 𝑌 ′) = |Occ2ℓ (𝑗) |. □

1665

STOC ’22, June 20–24, 2022, Rome, Italy Dominik Kempa and Tomasz Kociumaka

Proposition 5.8. Under Assumption 5.3, given a position 𝑗 ∈
[1. .𝑛] \ R(𝜏,𝑇), we can compute |Posℓ (𝑗) | and |Occ2ℓ (𝑗) | in O(𝑡)
time.

Proof. We first check if 𝑗 > 𝑛 − 3𝜏 + 1. If yes, then by the

uniqueness of 𝑇 [𝑛] = $, it holds |Occℓ (𝑗) | = 1. By Occ2ℓ (𝑗) ≠ ∅,
Occ2ℓ (𝑗) ⊆ Occℓ (𝑗), we can therefore return |Posℓ (𝑗) | = 0 and

|Occ2ℓ (𝑗) | = 1. Let us thus assume 𝑗 ≤ 𝑛 − 3𝜏 + 1 and recall from

the proof of Lemma 5.5 that then 𝑠 = succS (𝑗) satisfies 𝑠 ∈ S.
Using Assumption 5.3 we compute 𝑠 . Let 𝑋 ∈ Σ∗ and 𝑋 ′, 𝑌 , 𝑌 ′ ∈
Σ+ be such that 𝑋 = 𝑇 [𝑗 . .𝑠), 𝑋 ′ = 𝑋𝑐∞, 𝑇∞ [𝑗 . . 𝑗+ℓ) = 𝑋𝑌 , and

𝑇∞ [𝑗 . . 𝑗+2ℓ) = 𝑋𝑌 ′
. Then:

(1) By Lemma 5.7, we have |Posℓ (𝑗) | = r-countP (𝑋,𝑋 ′, 𝑌 ′) −
r-countP (𝑋,𝑋 ′, 𝑌) (where P = Points7𝜏 (𝑇, S)) which under

Assumption 5.3 we can efficiently compute using the query

arguments (𝑖, 𝑞𝑙 , 𝑞𝑟) = (𝑠, 𝑠 − 𝑗, 2ℓ − (𝑠 − 𝑗)) and then with

arguments (𝑖, 𝑞𝑙 , 𝑞𝑟) = (𝑠, 𝑠 − 𝑗, ℓ − (𝑠 − 𝑗)) (see Problem 4.3).

By 𝑗 ∉ R(𝜏,𝑇) and the density property of S, we have 𝑠 − 𝑗 <

𝜏 ≤ ℓ < 𝑛. On the other hand, 𝑞𝑟 ≤ 2ℓ − (𝑠 − 𝑗) ≤ 2ℓ < 2𝑛.

Thus, the arguments 𝑞𝑙 and 𝑞𝑟 of both queries satisfy the

requirements in Problem 4.3.

(2) By Lemma 5.7, we have |Occ2ℓ (𝑗) |=r-countP (𝑋,𝑋 ′, 𝑌 ′𝑐∞)−
r-countP (𝑋,𝑋 ′, 𝑌 ′) (where P is defined as above), which

under Assumption 5.3 we can compute using the query ar-

guments (𝑖, 𝑞𝑙 , 𝑞𝑟) = (𝑠, 𝑠 − 𝑗, 2ℓ − (𝑠 − 𝑗)) (see Problem 4.3).

As noted above, these arguments satisfy the requirements in

Problem 4.3.

By Assumption 5.3, the query takes O(𝑡) time in total. □

5.2.2 Computing a Position in Occ2ℓ (SA[𝑖]). Assume that 𝑖 ∈
[1. .𝑛] satisfies SA[𝑖] ∈ [1. .𝑛] \ R(𝜏,𝑇). In this section, we show

how under Assumption 5.3, given the index 𝑖 along with values

RBegℓ (SA[𝑖]), REndℓ (SA[𝑖]), and some position 𝑗 ∈ Occℓ (SA[𝑖]),
to efficiently compute some position 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]).

The section is organized as follows. First, we present a combi-

natorial result (Lemma 5.9) that reduces the computation of 𝑗 ′ ∈
Occ2ℓ (SA[𝑖]) to a generalized range selection query (see Section 4).

We then use this reduction to present the query algorithm for the

computation of some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]) in Proposition 5.10.

Lemma 5.9. Assume 𝑖 ∈ [1. .𝑛] is such that SA[𝑖] ∈ [1. .𝑛 − 3𝜏 +
1] \ R(𝜏,𝑇). Denote 𝑏 = RBegℓ (SA[𝑖]), 𝑑 = |Occℓ (SA[𝑖]) |, and
𝑠 = succS (SA[𝑖]). Let 𝑋 ∈ Σ∗ and 𝑋 ′, 𝑌 ∈ Σ+ be such that 𝑋 =

𝑇 [SA[𝑖] . .𝑠), 𝑋 ′ = 𝑋𝑐∞ (with 𝑐 = max Σ), and 𝑇∞ [SA[𝑖] . .SA[𝑖] +
ℓ) = 𝑋𝑌 . Let also P = Points7𝜏 (𝑇, S),𝑚 = r-countP (𝑋,𝑋 ′, 𝑌), and
𝑚′ = r-countP (𝑋,𝑋 ′). Then,𝑚 + 𝑑 ≤ 𝑚′. Moreover:

(1) For 𝛿 ∈ [1. .𝑑], any position 𝑝 ∈ r-selectP (𝑋,𝑋 ′,𝑚 + 𝛿)
satisfies 𝑇∞ [𝑝 − |𝑋 |. .𝑝 − |𝑋 | + 2ℓ) = 𝑇∞ [SA[𝑏 + 𝛿] . .SA[𝑏 +
𝛿] + 2ℓ).

(2) For 𝛿 = 𝑖−𝑏, any position 𝑝 ∈ r-selectP (𝑋,𝑋 ′,𝑚+𝛿) satisfies
𝑝 − |𝑋 | ∈ Occ2ℓ (SA[𝑖]).

Proof. By the uniqueness of 𝑇 [𝑛] = $, it holds per(𝑇 [𝑛 − 3𝜏 +
2. .𝑛]) = 3𝜏 − 1 and hence S ∩ [𝑛 − 3𝜏 + 2. .𝑛 − 2𝜏 + 2) ≠ ∅. Thus,
by SA[𝑖] < 𝑛 − 3𝜏 + 2, 𝑠 = succS (SA[𝑖]) satisfies 𝑠 ∈ S. Denote
𝑞 = |S|. Let (𝑎 𝑗) 𝑗∈[1. .𝑞] be a sequence containing all positions 𝑝 ∈ S
ordered according to the string 𝑇∞ [𝑝. .𝑝 + 7𝜏). In other words, for

any 𝑗, 𝑗 ′ ∈ [1. .𝑞], 𝑗 < 𝑗 ′ implies𝑇∞ [𝑎 𝑗 . .𝑎 𝑗+7𝜏) ⪯ 𝑇∞ [𝑎 𝑗 ′ . .𝑎 𝑗 ′+7𝜏).
Note, that the sequence (𝑎 𝑗) 𝑗∈[1. .𝑞] is not unique. Since {𝑎 𝑗 : 𝑗 ∈
[1. .𝑞]} = S, it holds |{𝑎 𝑗 − |𝑋 | : 𝑗 ∈ [1. .𝑞] and 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) =
𝑋 }| = |{ 𝑗 ∈ [1. .𝑞] : 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) = 𝑋 }| = |{𝑝 ∈ S : 𝑇∞ [𝑝 −
|𝑋 |. .𝑝) = 𝑋 }| =𝑚′

, where the last equality follows by Lemma 5.2(3)

and the definition of r-countP (𝑋,𝑋 ′) (see Section 4). By the same

argument (utilizing the definition of r-countP (𝑋,𝑋 ′, 𝑌) instead
of r-countP (𝑋,𝑋 ′)), we have |{𝑎 𝑗 − |𝑋 | : 𝑗 ∈ [1. .𝑞], 𝑇∞ [𝑎 𝑗 −
|𝑋 |. .𝑎 𝑗) = 𝑋, and 𝑇∞ [𝑎 𝑗 . .𝑎 𝑗 + 7𝜏) ≺ 𝑌 }| = |{ 𝑗 ∈ [1. .𝑞] : 𝑇∞ [𝑎 𝑗 −
|𝑋 |. .𝑎 𝑗) = 𝑋 and 𝑇∞ [𝑎 𝑗 . .𝑎 𝑗 + 7𝜏) ≺ 𝑌 }| = 𝑚. By Lemma 5.6, for

any 𝑗 ∈ [1. .𝑛], it holds 𝑗 ∈ Occℓ (SA[𝑖]) if and only if 𝑗 + |𝑋 | ∈ S,
𝑇∞ [𝑗 . . 𝑗 + |𝑋 |) = 𝑋 , and 𝑌 ⪯ 𝑇∞ [𝑗 + |𝑋 |. . 𝑗 + |𝑋 | + 7𝜏) ≺ 𝑌𝑐∞.

In other words, Occℓ (SA[𝑖]) = {𝑎 𝑗 − |𝑋 | : 𝑗 ∈ [1. .𝑞], 𝑇∞ [𝑎 𝑗 −
|𝑋 |. .𝑎 𝑗) = 𝑋, and 𝑌 ⪯ 𝑇∞ [𝑎 𝑗 . .𝑎 𝑗 + 7𝜏) ≺ 𝑌𝑐∞}. The latter set

(whose cardinality is equal to 𝑑) is clearly a subset of {𝑎 𝑗 − |𝑋 | :
𝑗 ∈ [1. .𝑞] and 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) = 𝑋 } (whose cardinality, as shown
above, is equal to𝑚′

). Thus, 𝑑 ≤ 𝑚′
. On the other hand, the set

{𝑎 𝑗 − |𝑋 | : 𝑗 ∈ [1. .𝑞], 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) = 𝑋, and 𝑇∞ [𝑎 𝑗 . .𝑎 𝑗 +7𝜏) ≺
𝑌 } (whose cardinality, as shown above, is𝑚) is also clearly a subset

of {𝑎 𝑗 − |𝑋 | : 𝑗 ∈ [1. .𝑞] and 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) = 𝑋 }. Thus,𝑚 ≤ 𝑚′
.

Since 𝑗 ∈ [1. .𝑞] cannot simultaneously satisfy𝑇∞ [𝑎 𝑗 . .𝑎 𝑗 + 7𝜏) ≺ 𝑌

and𝑌 ⪯ 𝑇∞ [𝑎 𝑗 . .𝑎 𝑗+7𝜏), these subsets are disjoint. Hence, it follows
that𝑚 + 𝑑 ≤ 𝑚′

.

1. As shown above, |{ 𝑗 ∈ [1. .𝑞] : 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) = 𝑋 }| =𝑚′
.

Let (𝑏 𝑗) 𝑗∈[1. .𝑚′] be a subsequence of (𝑎 𝑗) 𝑗∈[1. .𝑞] containing all

elements of {𝑎 𝑗 : 𝑗 ∈ [1. .𝑞] and 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) = 𝑋 } (in the

same order as they appear in the sequence (𝑎 𝑗) 𝑗∈[1. .𝑞]). Our proof
consists of three steps:

(i) Let 𝑗 ∈ [1. .𝑚′]. We start by showing that it holds 𝑏 𝑗 ∈
r-selectP (𝑋,𝑋 ′, 𝑗). Let 𝑄,𝑄 ′

be such that 𝑄 = 𝑇∞ [𝑏 𝑗 − 7𝜏 . .𝑏 𝑗)
and 𝑄 ′ = 𝑇∞ [𝑏 𝑗 . .𝑏 𝑗 + 7𝜏). Let

𝑟
beg

= |{𝑎𝑡 : 𝑡 ∈ [1. .𝑞], 𝑇∞ [𝑎𝑡 − |𝑋 |. .𝑎𝑡) = 𝑋, and

𝑇∞ [𝑎𝑡 . .𝑎𝑡 + 7𝜏) ≺ 𝑄 ′}|;

𝑟
end

= |{𝑎𝑡 : 𝑡 ∈ [1. .𝑞], 𝑇∞ [𝑎𝑡 − |𝑋 |. .𝑎𝑡) = 𝑋, and

𝑇∞ [𝑎𝑡 . .𝑎𝑡 + 7𝜏) ⪯ 𝑄 ′}|.

If 𝑡 ∈ [1. .𝑞] satisfies𝑇∞ [𝑎𝑡 − |𝑋 |. .𝑎𝑡) = 𝑋 , then 𝑎𝑡 ∈ {𝑏1, . . . , 𝑏𝑚′ }.
Moreover, since for any 𝑡, 𝑡 ′ ∈ [1. .𝑚′], 𝑡 < 𝑡 ′ implies 𝑇∞ [𝑏𝑡 . .𝑏𝑡 +
7𝜏) ⪯ 𝑇∞ [𝑏𝑡 ′ . .𝑏𝑡 ′ + 7𝜏), any 𝑡 ∈ [1. .𝑞] that additionally satisfies

𝑇∞ [𝑎𝑡 . .𝑎𝑡 +7𝜏) ≺ 𝑇∞ [𝑏 𝑗 . .𝑏 𝑗 +7𝜏), also satisfies 𝑎𝑡 ∈ {𝑏1, . . . , 𝑏 𝑗−1}.
Thus, 𝑟

beg
< 𝑗 . On the other hand, every 𝑡 ∈ [1. . 𝑗] satisfies

𝑇∞ [𝑏𝑡 − |𝑋 |. .𝑏𝑡) = 𝑋 and𝑇∞ [𝑏𝑡 . .𝑏𝑡 + 7𝜏) ⪯ 𝑇∞ [𝑏 𝑗 . .𝑏 𝑗 + 7𝜏). Thus,
𝑗 ≤ 𝑟

end
. Altogether, 𝑗 ∈ (𝑟

beg
. .𝑟

end
]. Recall now the definition P =

Points7𝜏 (𝑇, S) (Definition 4.2) and note that by Lemma 5.2(3), we

have 𝑟
beg

= r-countP (𝑋,𝑋 ′, 𝑄′) and 𝑟
end

= r-countincP (𝑋,𝑋 ′, 𝑄′).
Therefore, 𝑗 ∈ (r-countP (𝑋,𝑋 ′, 𝑄′) . .r-countincP (𝑋,𝑋 ′, 𝑄′)]. On
the other hand, (𝑄,𝑄 ′, 𝑏 𝑗) ∈ P and 𝑇∞ [𝑏 𝑗 − |𝑋 |. .𝑏 𝑗) = 𝑋 , so

𝑏 𝑗 ∈ r-selectP (𝑋,𝑋 ′, 𝑗) holds as claimed.

(ii) Let 𝑗 ∈ [1. .𝑚′]. We show that𝑇∞ [𝑝− |𝑋 |. .𝑝+7𝜏) = 𝑇∞ [𝑏 𝑗 −
|𝑋 |. .𝑏 𝑗 + 7𝜏) holds for any 𝑝 ∈ r-selectP (𝑋,𝑋 ′, 𝑗). By Item (i)

and the definition of r-selectP (𝑋,𝑋 ′, 𝑗), the choice of 𝑝 implies

𝑇∞ [𝑝. .𝑝 + 7𝜏) = 𝑇∞ [𝑏 𝑗 . .𝑏 𝑗 + 7𝜏). Moreover, letting 𝑄 be such

that 𝑄 = 𝑇∞ [𝑝 − 7𝜏 . .𝑝), it also implies 𝑋 ⪯ 𝑄 ≺ 𝑋 ′
. Thus,

1666

Dynamic Suffix Array with PolylogarithmicQueries and Updates STOC ’22, June 20–24, 2022, Rome, Italy

by Lemma 5.2(3), 𝑝 is preceded by 𝑋 in 𝑇 . Since by definition of

(𝑏 𝑗) 𝑗∈[1. .𝑚′] , the position 𝑏 𝑗 is also preceded by 𝑋 in 𝑇 , we obtain

𝑇∞ [𝑝 − |𝑋 |. .𝑝 + 7𝜏) = 𝑇∞ [𝑏 𝑗 − |𝑋 |. .𝑏 𝑗 + 7𝜏).
(iii) We are now ready to prove the main claim. As observed

above, Occℓ (SA[𝑖]) = {𝑎 𝑗 − |𝑋 | : 𝑗 ∈ [1. .𝑞], 𝑇∞ [𝑎 𝑗 − |𝑋 |. .𝑎 𝑗) =

𝑋, and 𝑌 ⪯ 𝑇∞ [𝑎 𝑗 . .𝑎 𝑗 + 7𝜏) ≺ 𝑌𝑐∞}. Note, that since the positions
𝑘 in the sequence (𝑎 𝑗) 𝑗∈[1. .𝑞] are sorted by 𝑇∞ [𝑘. .𝑘 + 7𝜏), we can
simplify the second condition. Denoting 𝑗

skip
= |{ 𝑗 ∈ [1. .𝑞] :

𝑇∞ [𝑎 𝑗 . .𝑎 𝑗 + 7𝜏) ≺ 𝑌 }|, we have

Occℓ (SA[𝑖]) =
{
𝑎 𝑗 − |𝑋 | : 𝑗∈ (𝑗skip . .𝑞], 𝑇

∞ [𝑎 𝑗−|𝑋 | . .𝑎 𝑗)=𝑋,

and𝑇∞ [𝑎 𝑗 . .𝑎 𝑗+7𝜏)≺𝑌𝑐∞
}
.

Let us now estimate |{ 𝑗 ∈ [1. . 𝑗
skip

] : 𝑇∞ [𝑎 𝑗 −|𝑋 |. .𝑎 𝑗) = 𝑋 }|. Any 𝑗

in this set satisfies 𝑗 ∈ [1. .𝑞],𝑇∞ [𝑎 𝑗−|𝑋 |. .𝑎 𝑗) = 𝑋 , and𝑇∞ [𝑎 𝑗 . .𝑎 𝑗+
7𝜏) ≺ 𝑌 . Earlier we observed that the number of such 𝑗 is precisely

𝑚. Combining this fact with the above formula for Occℓ (SA[𝑖]) and
the definition of (𝑏 𝑗) 𝑗∈[1. .𝑚′] , we have Occℓ (SA[𝑖]) = {𝑏 𝑗 − |𝑋 | :
𝑗 ∈ (𝑚..𝑚+𝑑]}. On the other hand, we have 𝑏+𝑑 = RBegℓ (SA[𝑖])+
|Occℓ (SA[𝑖]) | = REndℓ (SA[𝑖]). Therefore, Occℓ (SA[𝑖]) = {SA[𝑗] :
𝑗 ∈ (𝑏. .𝑏 + 𝑑]}. We now observe:

• Let 𝑗1, 𝑗2 ∈ (𝑚..𝑚 +𝑑] and assume 𝑗1 < 𝑗2. Since the elements of

(𝑏 𝑗) occur in the same order as in (𝑎 𝑗), and positions 𝑝 in (𝑎 𝑗)
are sorted by 𝑇∞ [𝑝. .𝑝 + 7𝜏), it follows that 𝑇∞ [𝑏 𝑗1 . .𝑏 𝑗1 + 7𝜏) ⪯
𝑇∞ [𝑏 𝑗2 . .𝑏 𝑗2 + 7𝜏). On the other hand, by definition of (𝑏 𝑗), both
positions 𝑏 𝑗1 and 𝑏 𝑗2 are preceded in 𝑇 by the string 𝑋 . Thus,

𝑇∞ [𝑏 𝑗1 − |𝑋 |. .𝑏 𝑗2 + 7𝜏) ⪯ 𝑇∞ [𝑏 𝑗2 − |𝑋 |. .𝑏 𝑗2 + 7𝜏).
• On the other hand, by definition of lexicographical order, for

any 𝑗1, 𝑗2 ∈ [1. .𝑑], the assumption 𝑗1 < 𝑗2 implies 𝑇∞ [SA[𝑏 +
𝑗1] . .SA[𝑏+ 𝑗1] + |𝑋 | +7𝜏) ⪯ 𝑇∞ [SA[𝑏+ 𝑗2] . .SA[𝑏+ 𝑗2] + |𝑋 | +7𝜏).

We have shown that the sequences SA[𝑏 + 1], . . . , SA[𝑏 + 𝑑] and
𝑏𝑚+1 − |𝑋 |, . . . , 𝑏𝑚+𝑑 − |𝑋 | both contain the same set of positions

Occℓ (SA[𝑖]) ordered according to the length-(|𝑋 | + 7𝜏) right con-
text in 𝑇∞

. Therefore, regardless of how ties are resolved in each

sequence, for any 𝛿 ∈ [1. .𝑑], we have

𝑇∞ [SA[𝑏 + 𝛿] . .SA[𝑏 + 𝛿] + |𝑋 | + 7𝜏)
= 𝑇∞ [𝑏𝑚+𝛿 − |𝑋 |. .𝑏𝑚+𝛿 + 7𝜏).

To finalize the proof of the claim, take any 𝑝 ∈ r-selectP (𝑋,𝑋 ′,𝑚 +
𝛿). By Item (ii), for 𝑗 = 𝑚 + 𝛿 , we have 𝑇∞ [𝑝 − |𝑋 |. .𝑝 + 7𝜏) =

𝑇∞ [𝑏𝑚+𝛿 −|𝑋 |. .𝑏𝑚+𝛿 +7𝜏) = 𝑇∞ [SA[𝑏+𝛿] . .SA[𝑏+𝛿] + |𝑋 | +7𝜏). In
particular, by 2ℓ ≤ 7𝜏 ≤ 7𝜏+|𝑋 |, we obtain𝑇∞ [𝑝−|𝑋 |. .𝑝−|𝑋 |+2ℓ) =
𝑇∞ [SA[𝑏 + 𝛿] . .SA[𝑏 + 𝛿] + 2ℓ), i.e., the claim.

2. Applying Item 1 for 𝛿 = 𝑖 − 𝑏, we conclude that any position

𝑝 ∈ r-selectP (𝑋,𝑋 ′,𝑚 + 𝛿), satisfies 𝑇∞ [𝑝 − |𝑋 |. .𝑝 − |𝑋 | + 2ℓ) =
𝑇∞ [SA[𝑏+𝛿] . .SA[𝑏+𝛿]+2ℓ) = 𝑇∞ [SA[𝑖] . .SA[𝑖]+2ℓ), i.e., 𝑝−|𝑋 | ∈
Occ2ℓ (SA[𝑖]). □

Proposition 5.10. Let 𝑖 ∈ [1. .𝑛] be such that SA[𝑖] ∈ [1. .𝑛] \
R(𝜏,𝑇). Under Assumption 5.3, given the values 𝑖 , RBegℓ (SA[𝑖]),
REndℓ (SA[𝑖]), and some 𝑗 ∈ Occℓ (SA[𝑖]) as input, we can compute
some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]) in O(𝑡) time.

Proof. We start by calculating |Occℓ (SA[𝑖]) | = REndℓ (SA[𝑖])−
RBegℓ (SA[𝑖]) using the input arguments. If |Occℓ (SA[𝑖]) | = 1, then

by Occ2ℓ (SA[𝑖]) ≠ ∅ and Occ2ℓ (SA[𝑖]) ⊆ Occℓ (SA[𝑖]) we have

RBeg
2ℓ (SA[𝑖]) = RBegℓ (SA[𝑖]), REnd2ℓ (SA[𝑖]) = REndℓ (SA[𝑖])

and Occ2ℓ (SA[𝑖]) = Occℓ (SA[𝑖]). Thus, we return 𝑗 ′ := 𝑗 . Let us

thus assume |Occℓ (SA[𝑖]) | > 1, and observe that by the uniqueness

of 𝑇 [𝑛] = $, 3𝜏 − 1 ≤ ℓ , and 𝑇∞ [SA[𝑖] . .SA[𝑖] + ℓ) = 𝑇∞ [𝑗 . . 𝑗 +
ℓ), this implies SA[𝑖], 𝑗 ∈ [1. .𝑛 − 3𝜏 + 1]. Moreover, by SA[𝑖] ∉

R(𝜏,𝑇), we also have 𝑗 ∉ R(𝜏,𝑇). Therefore, as noted in the proof

of Lemma 5.5, 𝑠 = succS (𝑗) satisfies 𝑠 ∈ S and using Assumption 5.3

we can compute 𝑠 in O(𝑡) time. Let 𝑋 ∈ Σ∗ and 𝑋 ′, 𝑌 ∈ Σ+ be

such that 𝑋 = 𝑇 [𝑗 . .𝑠), 𝑋 ′ = 𝑋𝑐∞, and𝑇∞ [𝑗 . . 𝑗+ℓ) = 𝑋𝑌 (where 𝑐 =

max Σ). By𝑇∞ [𝑗 . . 𝑗 +ℓ) = 𝑇∞ [SA[𝑖] . .SA[𝑖] +ℓ) and the consistency
condition of S (Definition 2.1), for any 𝑡 ∈ [0. .𝜏), SA[𝑖] + 𝑡 ∈ S
holds if and only if 𝑗 + 𝑡 ∈ S. Thus, by S ∩ [SA[𝑖] . .SA[𝑖] + 𝜏) ≠ ∅,
denoting 𝑠′ = succS (SA[𝑖]), it holds 𝑠′−SA[𝑖] = 𝑠− 𝑗 . Consequently,
𝑇∞ [SA[𝑖] . .𝑠′) = 𝑇∞ [𝑗 . .𝑠) = 𝑋 and 𝑇∞ [𝑠′ . .SA[𝑖] + ℓ) = 𝑇∞ [𝑠 . . 𝑗 +
ℓ) = 𝑌 . We can thus apply Lemma 5.9 without knowing the values

of SA[𝑖] or 𝑠′ (we only need to know |𝑋 | and the starting position of
some occurrence of𝑋𝑌 in𝑇). First, using Item 1 of Problem 4.3 with

the query arguments (𝑖, 𝑞𝑙 , 𝑞𝑟) = (𝑠, 𝑠 − 𝑗, ℓ − (𝑠 − 𝑗)) we compute

in O(𝑡) time (which is possible under Assumption 5.3) the value

𝑚 := r-countP (𝑋,𝑋 ′, 𝑌) (the arguments satisfy the requirements

of Problem 4.3 since 𝑞𝑙 = 𝑠 − 𝑗 < 𝜏 ≤ ℓ < 𝑛 and 𝑞𝑟 = ℓ − (𝑠 − 𝑗) ≤
ℓ < 𝑛). We then calculate 𝛿 = 𝑖 − RBegℓ (SA[𝑖]) and using Item 2 of

Problem 4.3 with the query arguments (𝑖, 𝑞𝑙 , 𝑟) = (𝑠, 𝑠 − 𝑗,𝑚+𝛿) we
compute in O(𝑡) time some position 𝑝 ∈ r-selectP (𝑋,𝑋 ′,𝑚+𝛿) (𝑞𝑙
satisfies the requirements of Problem 4.3 by the argument as above).

By Lemma 5.9, for 𝑗 ′ := 𝑝 − 𝑞𝑙 we then have 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]). In
total, we spend O(𝑡) time. □

5.2.3 The Data Structure. By combining the above results, we ob-

tain that under Assumption 5.3, given an index 𝑖 ∈ [1. .𝑛] satisfying
SA[𝑖] ∈ [1. .𝑛] \ R(𝜏,𝑇), along with RBegℓ (SA[𝑖]), REndℓ (SA[𝑖])
and some 𝑗 ∈ Occℓ (SA[𝑖]) as input, we can efficiently compute

(RBeg
2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖])) and some 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]).

Proposition 5.11. Let 𝑖 ∈ [1. .𝑛] be such that SA[𝑖] ∈ [1. .𝑛] \
R(𝜏,𝑇). Under Assumption 5.3, given the index 𝑖 along with values
RBegℓ (SA[𝑖]), REndℓ (SA[𝑖]), and some position 𝑗 ∈ Occℓ (SA[𝑖]),
we can compute (RBeg

2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖])) and some position
𝑗 ′ ∈ Occ2ℓ (SA[𝑖]) in O(𝑡) time.

Proof. First, using Proposition 5.10, we compute some 𝑗 ′ ∈
Occ2ℓ (SA[𝑖]). This takes O(𝑡) time and all the required values (𝑖 ,

RBegℓ (SA[𝑖]), REndℓ (SA[𝑖]), and some 𝑗 ∈ Occℓ (SA[𝑖])) are given
as input. We now observe that since for 𝑗 ′ we have𝑇∞ [𝑗 ′ . . 𝑗 ′+2ℓ) =
𝑇∞ [SA[𝑖] . .SA[𝑖] + 2ℓ), we have 𝑗 ′′ ∈ Occ2ℓ (SA[𝑖]) if and only if

𝑗 ′′ ∈ Occ2ℓ (𝑗 ′). Thus, Occ2ℓ (SA[𝑖]) = Occ2ℓ (𝑗 ′). On the other

hand, by Lemma 5.2(1), we have 𝑗 ′′ ∈ Posℓ (SA[𝑖]) if and only if

𝑇∞ [SA[𝑖] . .SA[𝑖] + ℓ) ⪯ 𝑇∞ [𝑗 ′′ . . 𝑗 ′′ + 2ℓ) ≺ 𝑇∞ [SA[𝑖] . .SA[𝑖] + 2ℓ),
i.e., whether 𝑗 ′′ ∈ Posℓ (SA[𝑖]) depends only on𝑇∞ [SA[𝑖] . .SA[𝑖] +
2ℓ). Therefore, 𝑗 ′ ∈ Occ2ℓ (SA[𝑖]) implies Posℓ (SA[𝑖]) = Posℓ (𝑗 ′).
Thus, in the second step of the query, using Proposition 5.8 we

compute in O(𝑡) time the values

𝛿 := |Posℓ (𝑗 ′) | = |Posℓ (SA[𝑖]) | and
𝑚 := |Occ2ℓ (𝑗 ′) | = |Occ2ℓ (SA[𝑖]) |.

Letting𝑏 = RBegℓ (SA[𝑖]), then (RBeg
2ℓ (SA[𝑖]), REnd2ℓ (SA[𝑖])) =

(𝑏 + 𝛿, 𝑏 + 𝛿 +𝑚). □

1667

STOC ’22, June 20–24, 2022, Rome, Italy Dominik Kempa and Tomasz Kociumaka

5.3 The Final Data Structure
Proposition 5.12. Under Assumption 5.1 and Assumption 5.3

for ℓ = 2
𝑞 , where 𝑞 ∈ [4. .⌈log𝑛⌉), given any index 𝑖 ∈ [1. .𝑛] \⋃⌈log𝑛⌉−1

𝑞=4
R(⌊ 2𝑞

3
⌋,𝑇), we can compute SA[𝑖] in O(𝑡 log𝑛) time.

Proof. First, using Assumption 5.1, compute (RBeg
16
(SA[𝑖]),

REnd16 (SA[𝑖])) and some 𝑗 ∈ Occ16 (SA[𝑖]) in O(𝑡) time. Then,

for 𝑞 = 4, . . . , ⌈log𝑛⌉ − 1, we use Proposition 5.11 with ℓ = 2
𝑞
to

compute in O(𝑡) time the pair (RBeg
2
𝑞+1 (SA[𝑖]), REnd

2
𝑞+1 (SA[𝑖]))

and some 𝑗 ′ ∈ Occ
2
𝑞+1 (SA[𝑖]), given index 𝑖 along with the pair

(RBeg
2
𝑞 (SA[𝑖]), REnd2𝑞 (SA[𝑖])) and some 𝑗 ∈Occ2𝑞 (SA[𝑖]) as in-

put. After executing all steps, we get (RBegℓ (SA[𝑖]), REndℓ (SA[𝑖]))
and some 𝑗 ′ ∈ Occℓ (SA[𝑖]), where ℓ = 2

⌈log𝑛⌉ ≥ 𝑛. Since for

any 𝑘 ≥ 𝑛, we have Occ𝑘 (SA[𝑖]) = {SA[𝑖]}, we finally return

SA[𝑖] = 𝑗 ′. In total, the query takes O(𝑡 log𝑛) time. □

Remark 5.13. In the full version [43], we show how to generalize

Proposition 5.11 to also handle the case SA[𝑖] ∈ R(𝜏,𝑇), leading to

a version of Proposition 5.12 holding for all 𝑖 ∈ [1. .𝑛]. For this, we
develop a component (the index “core”) that, given any 𝑖 ∈ [1. .𝑛],
lets us efficiently check if SA[𝑖] ∈ R(𝜏,𝑇). Positions satisfying
SA[𝑖] ∉ R(𝜏,𝑇) are handled exactly as in Section 5.2. The case

SA[𝑖] ∈ R(𝜏,𝑇) is processed using a separate component.

6 DYNAMIC SUFFIX ARRAY
In this section, we obtain our main result, a dynamic suffix array,

using the abstract query algorithm of Section 5 on top of a data

structure that maintains a dynamic text 𝑇 ∈ Σ+ (see Definition 3.3).

Due to space constraints, our discussion of the dynamic text data

structure is limited to a specification of the supported operations –

a complete implementation is provided in the full version [43].

We define a labelled string over an alphabet Σ to be a string over

Σ × Z≥0. For 𝑐 := (𝑎, ℓ) ∈ Σ × Z≥0, we say that val(𝑐) := 𝑎 is the

value of 𝑐 and label(𝑐) := ℓ is the label of 𝑐 . For a labelled string

𝑆 ∈ (Σ×Z≥0)∗, we define the set of labels 𝐿(𝑆) = {label(𝑆 [𝑖]) : 𝑖 ∈
[1. .|𝑆 |]} and the string of values val(𝑆) = val(𝑆 [1]) · · · val(𝑆 [|𝑆 |]).

Instead of maintaining a single labelled string representing 𝑇 ,

our data structure internally allows maintaining multiple labelled

strings (with character labels unique across the entire collection).

This lets us decompose each update into smaller building blocks; for

example, a swap (cut-paste) operation can be implemented using

three splits followed by three concatenations. This internal interface

matches the setting often considered in the literature [3, 30, 51].

For a finite family L ⊆ (Σ × Z≥0)∗, we set 𝐿(L) = ⋃
𝑆∈L 𝐿(𝑆)

and ∥L∥ =
∑
𝑆∈L |𝑆 |. We say L is uniquely labelled if |𝐿(L)| =

∥L∥; equivalently, for each label ℓ ∈ 𝐿(L) there exist unique 𝑆 ∈ L
and 𝑖 ∈ [1. .|𝑆 |] such that ℓ = label(𝑆 [𝑖]).

Lemma 6.1 (♠). There is a data structure maintaining a uniquely
labelled family L ⊆ (Σ × Z≥0)+ using the following interface, where
label(𝑆 [1]) is used as a reference to any string 𝑆 ∈ L:

concat(𝑅, 𝑆): Given distinct 𝑅, 𝑆 ∈ L, set L := L\ ({𝑅, 𝑆}) ∪ {𝑅 ·𝑆}.
split(𝑆, 𝑖): Given 𝑆 ∈ L and 𝑖 ∈ [1. .|𝑆 |), set L := L \ ({𝑆}) ∪

{𝑆 [1. .𝑖], 𝑆 (𝑖 . .|𝑆 |]}.
insert(𝑎, ℓ): Given 𝑎 ∈ Σ and ℓ ∈ Z≥0 \ 𝐿(L), set L := L ∪ {(𝑎, ℓ)}.
delete(𝑆): Given 𝑆 ∈ L with |𝑆 | = 1, set L := L \ {𝑆}.
label(𝑆, 𝑖): Given 𝑆 ∈ L and 𝑖 ∈ [1. .|𝑆 |], return label(𝑆 [𝑖]).

val(𝑆, 𝑖): Given 𝑆 ∈ L and 𝑖 ∈ [1. .|𝑆 |], return val(𝑆 [𝑖]).
unlabel(ℓ): Given ℓ ∈ 𝐿(L), return (𝑆, 𝑖), where 𝑆 ∈ L and 𝑖 ∈

[1. .|𝑆 |] are such that ℓ = label(𝑆 [𝑖]).
In the word RAM model with word size𝑤 satisfying 𝐿(L) ⊆ [0. .2𝑤),
each of these operations can be implemented in O(log ∥L∥) time.

A simple extension of Lemma 6.1 allows for efficient random

access to a dynamic text; it is also rather easy to implement the

queries of Assumption 5.1 without any overhead in the update time.

Corollary 6.2 (♠). A dynamic text 𝑇 ∈ Σ𝑛 can be implemented
so that initialization takes O(1) time, updates take O(log𝑛) time,
and the following access(𝑖) queries take O(log𝑛) time:

access(𝑖): given 𝑖 ∈ [1. .𝑛], return 𝑇 [𝑖].

Proposition 6.3 (♠). A dynamic text𝑇 ∈ Σ𝑛 can be implemented
so that initialization takes O(1) time, updates take O(log𝑛) time,
and the queries of Assumption 5.1 take O(log𝑛) time.

The remaining operations use balanced signature parsing on

top of the basic data structure of Lemma 6.1 (see Section 3 for

an overview of this technique). We aim for a deterministic im-

plementation of balanced signature parsing, which requires using

deterministic dynamic dictionaries and, with current state of the

art [25], incurs a multiplicative overhead of O(log
2
log𝑚

log log log𝑚
), where

𝑚 is the dictionary size. Henceforth, we denote 𝑑 (𝑥) := log
2
log𝑥

log log log𝑥
.

Lemma 6.4 (♠). A dynamic text 𝑇 ∈ Σ𝑛 can be implemented so
that initialization takes O(𝑑 (𝑚) · log∗𝑚) time, updates take O(log𝑛 ·
𝑑 (𝑚) · log∗𝑚) time, and any two fragments of 𝑇 can be compared
lexicographically in O(log𝑛 · 𝑑 (𝑚) · log∗𝑚) time, where𝑚 = 𝜎 + 𝑡

and 𝑡 is the total number of instruction that the data structure has
performed so far.

Proposition 6.5 (♠). For any fixed ℓ ∈ Z+, a dynamic text𝑇 ∈ Σ𝑛

can be implemented so that initialization takes O(𝑑 (𝑚) · log∗𝑚) time,
updates take O(log2 𝑛 · 𝑑 (𝑚) · (log∗𝑚)2) time, and the queries of
Assumption 5.3 take O(log3 𝑛 + log

2 𝑛 · 𝑑 (𝑚) · log∗𝑚) time, where
𝑚 = |Σ| + 𝑡 and 𝑡 is the total number of instructions that the data
structure has performed so far.

We are now ready to describe the main result of our work: a dy-

namic text implementation that can answer suffix array queries. We

start with a version with a bounded lifespan: it takes an additional

parameter 𝑁 at initialization time, and it is only able to handle 𝑁

operations. Then, we use this solution as a black box to develop an

‘everlasting’ dynamic suffix array.

Proposition 6.6 (♠). For any given integer 𝑁 ≥ 𝜎 , a dynamic text
𝑇 ∈ [0. .𝜎)+ can be implemented so that initialization takes O(log𝑁 ·
𝑑 (𝑁) · log∗ 𝑁) time, updates take O(log3 𝑁 ·𝑑 (𝑁) · (log∗ 𝑁)2) time,
the suffix array queries take O(log4 𝑁) time, and the inverse suffix
array queries take O(log5 𝑁) time, provided that the total number of
updates and queries does not exceed 𝑁 .

Proof sketch. We maintain 𝑇 using data structures of Propo-

sition 6.3 and Lemma 6.4, as well as several instances of the data

structures of Proposition 6.5 for ℓ = 2
𝑞
, where 𝑞 ∈ [4. .⌈log𝑁 ⌉).

The initialization and each update operation needs to be replicated

in all these components.

1668

Dynamic Suffix Array with PolylogarithmicQueries and Updates STOC ’22, June 20–24, 2022, Rome, Italy

The suffix queries are implemented using a procedure developed

in Section 5. Proposition 5.12 provides such a procedure under

some restrictions on the allowed queries and, due to the fact that

|𝑇 | ≤ 𝑁 , the components maintained are sufficient to satisfy the

assumption required in Proposition 5.12. In the complete proof (in

the full version [43]), we use a variant of Proposition 5.12 supporting

arbitrary queries, and this requires additional components.

As for the inverse suffix array queries, we perform binary search.

In each of the O(log |𝑇 |) = O(log𝑁) steps, we compare the spec-

ified suffix 𝑇 [𝑗 . .|𝑇 |] with the suffix 𝑇 [SA[𝑖] . .|𝑇 |]; here, we use a
suffix array query of to determine SA[𝑖] and the lexicographic

comparison (of Lemma 6.4) to compare the two suffixes.

Recall that the running times of all the components are expressed

in terms of parameters 𝑛 = |𝑇 | (which does not exceed 𝑁) and𝑚 =

𝜎 +𝑡 , where 𝑡 is the total number of instructions performed so far by

the respective component. This value may differ across components,

but we bound it from above by the total number of instructions

performed so far by all the components; let us call this value 𝑀 .

Note that each update and query costs O(logO(1) (𝑁 +𝑀)) time,

which means that 𝑀 = O(𝜎 + 𝑁 log
O(1) 𝑁) = O(𝑁 log

O(1) 𝑁),
where the last step follows from the assumption 𝑁 ≥ 𝜎 .

Consequently, the initialization takes O(log𝑁 ·𝑑 (𝑀) · log∗𝑀) =
O(log𝑁 ·𝑑 (𝑁) · log∗ 𝑁) time and the updates take O(log𝑁 · log2 𝑛 ·
𝑑 (𝑀) · (log∗𝑀)2) = O(log3 𝑁 · 𝑑 (𝑁) · (log∗ 𝑁)2) time. By Propo-

sition 5.12, suffix queries take O(log𝑛 · (log3 𝑛 + log
2 𝑛 · 𝑑 (𝑀) ·

log
∗𝑀)) = O(log4 𝑁) time. The inverse suffix array queries cost

O(log𝑁 · (log4 𝑁 + log𝑛 · 𝑑 (𝑀) · log∗𝑀)) = O(log5 𝑁) time. □

Theorem 6.7. A dynamic text 𝑇 ∈ [0. .𝜎)𝑛 can be implemented
so that initialization takes O(log𝜎 · 𝑑 (𝜎) · log∗ 𝜎) time, updates
take O(log3 (𝑛𝜎) ·𝑑 (𝑛𝜎) · (log∗ (𝑛𝜎))2) time, the suffix array queries
take O(log4 (𝑛𝜎)) time, and the inverse suffix array queries take

O(log5 (𝑛𝜎)) time, where 𝑑 (𝑥) = log
2
log𝑥

log log log𝑥
.

Proof. We first describe an amortized-time solution which per-

forms a reorganization every Ω(𝑛) operations. This reorganization
takes O(𝑛 · log3 (𝑛𝜎) · 𝑑 (𝑛𝜎) · (log∗ (𝑛𝜎))2) time.

The text 𝑇 is stored using the data structures of Corollary 6.2

and Proposition 6.6. Moreover, we maintain a counter 𝑡 represent-

ing the number of operations that can be performed before reor-

ganization. At initialization time, we set 𝑡 = 1 and initialize both

components, setting 𝑁 = 𝜎 for Proposition 6.6. The updates and

queries are forwarded to the component of Proposition 6.6, but

we first perform reorganization (if 𝑡 = 0) and decrement 𝑡 (uncon-

ditionally). As for the reorganization, we set 𝑡 = ⌈ 1
2
|𝑇 |⌉, discard

the component of Proposition 6.6, and initialize a fresh copy using

𝑁 = max(𝜎, ⌈ 3
2
|𝑇 |⌉ − 1); we then insert characters of 𝑇 one by one

using access of Corollary 6.2 and insert of Proposition 6.6.

To prove that this implementation is correct, we must argue

that each instance of Proposition 6.6 performs no more than 𝑁

operations. The instance created at initialization time is limited

to a single operation, which is no more than the allowance of

𝑁 = 𝜎 operations. On the other hand, an instance created during a

reorganization performs |𝑇 |−1 insertions during the reorganization,
and is then limited to ⌈ 1

2
|𝑇 |⌉ operations. In total, this does not

exceed the allowance of 𝑁 = max(𝜎, ⌈ 3
2
|𝑇 |⌉ − 1) operations.

It remains to analyze the time complexity. For this, we observe

that, if 𝑁 > 𝜎 , then |𝑇 | ≥ |𝑇 | − 𝑡 ≥ ⌊ 1
3
𝑁 ⌋ is preserved as an

invariant. This means that 𝑁 = O(max(𝜎, |𝑇 |)) = O(𝜎 |𝑇 |), and
thus the operation times of Proposition 6.6 can be expressed using

𝑛𝜎 instead of 𝑁 . This also applies to the cost of reorganization,

which uses initialization and 𝑛 − 1 updates.

As for the deamortization, we use the standard technique of

maintaining two instances of the above data structure. At any time,

one them is active (handles updates and queries), whereas the other

undergoes reorganization. The lifetime of the entire solution is

organized into epochs. At the beginning of each epoch, the active

instance is ready to handle 𝑡 ≥ 1

2
𝑛 forthcoming operations, whereas

the other instance needs to be reorganized. The epoch lasts for 𝑡

operations. During the first half of the epoch, the reorganization

is performed in the background and the updates are buffered in

a queue. For each operation in the second half of the epoch, at

most one update in buffered (none if the operation is a query) and

two buffered updates are executed (unless there are already fewer

updates in the buffer). Since the reorganization cost is bounded by

O(𝑡 · log3 𝑡 · 𝑑 (𝑡) · (log∗ 𝑡)2) and since the query cost is larger than

the update cost, the deamortized solution has the same asymptotic

time complexity as the amortized one. □

REFERENCES
[1] Donald Adjeroh, Tim Bell, and Amar Mukherjee. 2008. The Burrows-Wheeler

Transform: Data Compression, Suffix Arrays, and Pattern Matching. Springer,

Boston, MA, USA. https://doi.org/10.1007/978-0-387-78909-5

[2] Shyan Akmal and Ce Jin. 2022. Near-Optimal Quantum Algorithms for String

Problems. In Proc. SODA. 2791–2832. https://doi.org/10.1137/1.9781611977073.109
[3] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. 2000. Pattern matching

in dynamic texts. In Proc. SODA. 819–828. http://dl.acm.org/citation.cfm?id=

338219.338645

[4] Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,

Jakub Radoszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Waleń, and

Wiktor Zuba. 2019. Quasi-Linear-Time Algorithm for Longest Common Circular

Factor. In Proc. CPM. 25:1–25:14. https://doi.org/10.4230/LIPIcs.CPM.2019.25

[5] Amihood Amir and Itai Boneh. 2020. Update Query Time Trade-Off for Dynamic

Suffix Arrays. In Proc. ISAAC. 63:1–63:16. https://doi.org/10.4230/LIPIcs.ISAAC.

2020.63

[6] Amihood Amir and Itai Boneh. 2021. Dynamic Suffix Array with Sub-linear

update time and Poly-logarithmic Lookup Time. arXiv:2112.12678

[7] Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. 2012. Stronger

Lempel-Ziv Based Compressed Text Indexing. Algorithmica 62, 1-2 (2012), 54–
101. https://doi.org/10.1007/s00453-010-9443-8

[8] Djamal Belazzougui, Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Al-

berto Ordóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. 2015. Queries on LZ-

bounded encodings. In Proc. DCC. 83–92. https://doi.org/10.1109/DCC.2015.69

[9] Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj.

2018. Time-space trade-offs for Lempel-Ziv compressed indexing. Theor. Comput.
Sci. 713 (2018), 66–77. https://doi.org/10.1016/j.tcs.2017.12.021

[10] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao

Satti, and Oren Weimann. 2015. Random access to grammar-compressed strings

and trees. SIAM J. Comput. 44, 3 (2015), 513–539. https://doi.org/10.1137/

130936889

[11] Or Birenzwige, Shay Golan, and Ely Porat. 2020. Locally Consistent Parsing for

Text Indexing in Small Space. In Proc. SODA. 607–626. https://doi.org/10.1137/1.

9781611975994.37

[12] Michael Burrows and David J. Wheeler. 1994. A block-sorting lossless data compres-
sion algorithm. Technical Report 124. Digital Equipment Corporation, Palo Alto,

California. http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

[13] Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. 2007.

Compressed indexes for dynamic text collections. ACM Trans. Algorithms 3, 2
(2007), 21. https://doi.org/10.1145/1240233.1240244

[14] Panagiotis Charalampopoulos, Tomasz Kociumaka, Solon P. Pissis, and Jakub

Radoszewski. 2021. Faster Algorithms for Longest Common Substring. In Proc.
ESA. 30:1–30:17. https://doi.org/10.4230/LIPIcs.ESA.2021.30

[15] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. 2020.

Faster Approximate Pattern Matching: A Unified Approach. In Proc. FOCS. 978–
989. https://doi.org/10.1109/FOCS46700.2020.00095

1669

https://doi.org/10.1007/978-0-387-78909-5
https://doi.org/10.1137/1.9781611977073.109
http://dl.acm.org/citation.cfm?id=338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.4230/LIPIcs.CPM.2019.25
https://doi.org/10.4230/LIPIcs.ISAAC.2020.63
https://doi.org/10.4230/LIPIcs.ISAAC.2020.63
https://arxiv.org/abs/2112.12678
https://doi.org/10.1007/s00453-010-9443-8
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.1137/130936889
https://doi.org/10.1137/130936889
https://doi.org/10.1137/1.9781611975994.37
https://doi.org/10.1137/1.9781611975994.37
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1145/1240233.1240244
https://doi.org/10.4230/LIPIcs.ESA.2021.30
https://doi.org/10.1109/FOCS46700.2020.00095

STOC ’22, June 20–24, 2022, Rome, Italy Dominik Kempa and Tomasz Kociumaka

[16] Bernard Chazelle. 1988. A Functional Approach to Data Structures and Its

Use in Multidimensional Searching. SIAM J. Comput. 17, 3 (1988), 427–462.

https://doi.org/10.1137/0217026

[17] Yu-Feng Chien, Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jef-

frey Scott Vitter. 2015. Geometric BWT: Compressed Text Indexing via Sparse

Suffixes and Range Searching. Algorithmica 71, 2 (2015), 258–278. https:

//doi.org/10.1007/s00453-013-9792-1

[18] Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo

Navarro, and Nicola Prezza. 2021. Optimal-Time Dictionary-Compressed Indexes.

ACM Trans. Algorithms 17, 1 (2021), 8:1–8:39. https://doi.org/10.1145/3426473

[19] Francisco Claude and Gonzalo Navarro. 2011. Self-Indexed Grammar-Based

Compression. Fundam. Informaticae 111, 3 (2011), 313–337. https://doi.org/10.

3233/FI-2011-565

[20] Francisco Claude, Gonzalo Navarro, and Alejandro Pacheco. 2021. Grammar-

compressed indexes with logarithmic search time. J. Comput. Syst. Sci. 118 (2021),
53–74. https://doi.org/10.1016/j.jcss.2020.12.001

[21] Richard Cole and Uzi Vishkin. 1986. Deterministic Coin Tossingwith Applications

to Optimal Parallel List Ranking. Inf. Control. 70, 1 (1986), 32–53. https://doi.org/

10.1016/S0019-9958(86)80023-7

[22] Paul F. Dietz and Daniel Dominic Sleator. 1987. Two Algorithms for Maintaining

Order in a List. In Proc. STOC. 365–372. https://doi.org/10.1145/28395.28434

[23] Andrzej Ehrenfeucht, Ross M. McConnell, Nissa Osheim, and Sung-Whan Woo.

2011. Position heaps: A simple and dynamic text indexing data structure. J.
Discrete Algorithms 9, 1 (2011), 100–121. https://doi.org/10.1016/j.jda.2010.12.001

[24] Paolo Ferragina and Giovanni Manzini. 2005. Indexing compressed text. J. ACM
52, 4 (2005), 552–581. https://doi.org/10.1145/1082036.1082039

[25] Johannes Fischer and Paweł Gawrychowski. 2015. Alphabet-Dependent String

Searching with Wexponential Search Trees. In Proc. CPM. 160–171. https://doi.

org/10.1007/978-3-319-19929-0_14

[26] Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Si-

mon J. Puglisi. 2012. A Faster Grammar-Based Self-index. In Proc. LATA. 240–251.
https://doi.org/10.1007/978-3-642-28332-1_21

[27] Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Si-

mon J. Puglisi. 2014. LZ77-Based Self-indexing with Faster Pattern Matching. In

Proc. LATIN. 731–742. https://doi.org/10.1007/978-3-642-54423-1_63

[28] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. 2020. Fully Functional Suffix

Trees and Optimal Text Searching in BWT-Runs Bounded Space. J. ACM 67, 1

(apr 2020), 1–54. https://doi.org/10.1145/3375890

[29] Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and

Piotr Sankowski. 2015. Optimal Dynamic Strings. arXiv:1511.02612

[30] Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and

Piotr Sankowski. 2018. Optimal Dynamic Strings. In Proc. SODA. 1509–1528.
https://doi.org/10.1137/1.9781611975031.99

[31] Rodrigo González and Gonzalo Navarro. 2009. Rank/select on dynamic com-

pressed sequences and applications. Theor. Comput. Sci. 410, 43 (2009), 4414–4422.
https://doi.org/10.1016/j.tcs.2009.07.022

[32] Roberto Grossi and Jeffrey Scott Vitter. 2005. Compressed Suffix Arrays and

Suffix Trees with Applications to Text Indexing and String Matching. SIAM J.
Comput. 35, 2 (2005), 378–407. https://doi.org/10.1137/S0097539702402354

[33] Ming Gu, Martin Farach, and Richard Beigel. 1994. An Efficient Algorithm for

Dynamic Text Indexing. In Proc. SODA. 697–704. http://dl.acm.org/citation.cfm?

id=314464.314675

[34] Dan Gusfield. 1997. Algorithms on Strings, Trees, and Sequences - Computer Science
and Computational Biology. Cambridge University Press. https://doi.org/10.

1017/cbo9780511574931

[35] Torben Hagerup. 1998. Sorting and Searching on the Word RAM. In Proc. STACS.
366–398. https://doi.org/10.1007/BFb0028575

[36] Meng He and J. Ian Munro. 2010. Succinct Representations of Dynamic Strings.

In Proc. SPIRE. 334–346. https://doi.org/10.1007/978-3-642-16321-0_35

[37] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems

via the Online Matrix-Vector Multiplication Conjecture. In Proc. STOC. 21–30.
https://doi.org/10.1145/2746539.2746609

[38] Juha Kärkkäinen. 1999. Repetition-based Text Indexes. Ph. D. Dissertation. Univer-
sity of Helsinki. https://helda.helsinki.fi/bitstream/handle/10138/21348/repetiti.

pdf

[39] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.

2001. Linear-Time Longest-Common-Prefix computation in suffix arrays and its

applications. In Proc. CPM. 181–192. https://doi.org/10.1007/3-540-48194-X_17

[40] Dominik Kempa and Tomasz Kociumaka. 2019. String synchronizing sets:

Sublinear-time BWT construction and optimal LCE data structure. In Proc. STOC.
756–767. https://doi.org/10.1145/3313276.3316368

[41] Dominik Kempa and Tomasz Kociumaka. 2020. Resolution of the Burrows-

Wheeler Transform Conjecture. In Proc. FOCS. 1002–1013. https://doi.org/10.

1109/FOCS46700.2020.00097

[42] Dominik Kempa and Tomasz Kociumaka. 2021. Breaking the O(𝑛)-Barrier in
the Construction of Compressed Suffix Arrays. arXiv:2106.12725

[43] Dominik Kempa and Tomasz Kociumaka. 2022. Dynamic Suffix Array with

Polylogarithmic Queries and Updates. arXiv:2201.01285

[44] Tsvi Kopelowitz. 2012. On-Line Indexing for General Alphabets via Predecessor

Queries on Subsets of an Ordered List. In Proc. FOCS. 283–292. https://doi.org/

10.1109/FOCS.2012.79

[45] Sebastian Kreft and Gonzalo Navarro. 2013. On compressing and indexing

repetitive sequences. Theor. Comput. Sci. 483 (2013), 115–133. https://doi.org/10.

1016/j.tcs.2012.02.006

[46] George S. Lueker and Dan E. Willard. 1982. A Data Structure for Dynamic Range

Queries. Inf. Process. Lett. 15, 5 (1982), 209–213. https://doi.org/10.1016/0020-

0190(82)90119-3

[47] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu.

2015. Genome-scale algorithm design: Biological sequence analysis in the era
of high-throughput sequencing. Cambridge University Press, Cambridge, UK.

https://doi.org/10.1017/cbo9781139940023

[48] Veli Mäkinen and Gonzalo Navarro. 2008. Dynamic entropy-compressed se-

quences and full-text indexes. ACM Trans. Algorithms 4, 3 (2008), 32:1–32:38.

https://doi.org/10.1145/1367064.1367072

[49] Udi Manber and EugeneW. Myers. 1993. Suffix Arrays: A new method for on-line

string searches. SIAM J. Comput. 22, 5 (1993), 935–948. https://doi.org/10.1137/

0222058

[50] Shirou Maruyama, Masaya Nakahara, Naoya Kishiue, and Hiroshi Sakamoto.

2013. ESP-index: A compressed index based on edit-sensitive parsing. J. Discrete
Algorithms 18 (2013), 100–112. https://doi.org/10.1016/j.jda.2012.07.009

[51] Kurt Mehlhorn, R. Sundar, and Christian Uhrig. 1997. Maintaining Dynamic

Sequences under Equality Tests in Polylogarithmic Time. Algorithmica 17, 2

(1997), 183–198. https://doi.org/10.1007/BF02522825

[52] J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. 2020. Text Indexing and

Searching in Sublinear Time. In Proc. CPM. 24:1–24:15. https://doi.org/10.4230/

LIPIcs.CPM.2020.24

[53] Gonzalo Navarro. 2016. Compact data structures: A practical approach. Cambridge

University Press, Cambridge, UK. https://doi.org/10.1017/cbo9781316588284

[54] Gonzalo Navarro and Veli Mäkinen. 2007. Compressed full-text indexes. ACM
Comput. Surv. 39, 1 (2007), 2. https://doi.org/10.1145/1216370.1216372

[55] Gonzalo Navarro and Yakov Nekrich. 2014. Optimal Dynamic Sequence Repre-

sentations. SIAM J. Comput. 43, 5 (2014), 1781–1806. https://doi.org/10.1137/

130908245

[56] Gonzalo Navarro and Kunihiko Sadakane. 2014. Fully Functional Static and

Dynamic Succinct Trees. ACM Trans. Algorithms 10, 3 (2014), 16:1–16:39. https:

//doi.org/10.1145/2601073

[57] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki

Takeda. 2016. Fully Dynamic Data Structure for LCE Queries in Compressed

Space. In Proc. MFCS. 72:1–72:15. https://doi.org/10.4230/LIPIcs.MFCS.2016.72

[58] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki

Takeda. 2020. Dynamic index and LZ factorization in compressed space. Discret.
Appl. Math. 274 (2020), 116–129. https://doi.org/10.1016/j.dam.2019.01.014

[59] Enno Ohlebusch. 2013. Bioinformatics algorithms: Sequence analysis, genome rear-
rangements, and phylogenetic reconstruction. Oldenbusch Verlag, Ulm, Germany.

[60] Luís M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. 2008. Dynamic Fully-

Compressed Suffix Trees. In Proc. CPM. 191–203. https://doi.org/10.1007/978-3-

540-69068-9_19

[61] Süleyman Cenk Sahinalp and Uzi Vishkin. 1994. Symmetry breaking for suffix

tree construction. In Proc. STOC. 300–309. https://doi.org/10.1145/195058.195164

[62] Süleyman Cenk Sahinalp and Uzi Vishkin. 1996. Efficient Approximate and

Dynamic Matching of Patterns Using a Labeling Paradigm (extended abstract).

In Proc. FOCS. 320–328. https://doi.org/10.1109/SFCS.1996.548491

[63] Mikaël Salson, Thierry Lecroq, Martine Léonard, and Laurent Mouchard. 2010.

Dynamic extended suffix arrays. J. Discrete Algorithms 8, 2 (2010), 241–257.

https://doi.org/10.1016/j.jda.2009.02.007

[64] Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. 2014. Improved ESP-

index: A Practical Self-index for Highly Repetitive Texts. In Proc. SEA. 338–350.
https://doi.org/10.1007/978-3-319-07959-2_29

[65] Kazuya Tsuruta, Dominik Köppl, Yuto Nakashima, Shunsuke Inenaga, Hideo

Bannai, and Masayuki Takeda. 2020. Grammar-compressed Self-index with

Lyndon Words. arXiv:2004.05309

[66] Dan E. Willard and George S. Lueker. 1985. Adding Range Restriction Capability

to Dynamic Data Structures. J. ACM 32, 3 (1985), 597–617. https://doi.org/10.

1145/3828.3839

1670

https://doi.org/10.1137/0217026
https://doi.org/10.1007/s00453-013-9792-1
https://doi.org/10.1007/s00453-013-9792-1
https://doi.org/10.1145/3426473
https://doi.org/10.3233/FI-2011-565
https://doi.org/10.3233/FI-2011-565
https://doi.org/10.1016/j.jcss.2020.12.001
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1145/28395.28434
https://doi.org/10.1016/j.jda.2010.12.001
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1007/978-3-319-19929-0_14
https://doi.org/10.1007/978-3-319-19929-0_14
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1145/3375890
https://arxiv.org/abs/1511.02612
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1016/j.tcs.2009.07.022
https://doi.org/10.1137/S0097539702402354
http://dl.acm.org/citation.cfm?id=314464.314675
http://dl.acm.org/citation.cfm?id=314464.314675
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1007/978-3-642-16321-0_35
https://doi.org/10.1145/2746539.2746609
https://helda.helsinki.fi/bitstream/handle/10138/21348/repetiti.pdf
https://helda.helsinki.fi/bitstream/handle/10138/21348/repetiti.pdf
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1109/FOCS46700.2020.00097
https://arxiv.org/abs/2106.12725
https://arxiv.org/abs/2201.01285
https://doi.org/10.1109/FOCS.2012.79
https://doi.org/10.1109/FOCS.2012.79
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1016/0020-0190(82)90119-3
https://doi.org/10.1016/0020-0190(82)90119-3
https://doi.org/10.1017/cbo9781139940023
https://doi.org/10.1145/1367064.1367072
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1016/j.jda.2012.07.009
https://doi.org/10.1007/BF02522825
https://doi.org/10.4230/LIPIcs.CPM.2020.24
https://doi.org/10.4230/LIPIcs.CPM.2020.24
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1137/130908245
https://doi.org/10.1137/130908245
https://doi.org/10.1145/2601073
https://doi.org/10.1145/2601073
https://doi.org/10.4230/LIPIcs.MFCS.2016.72
https://doi.org/10.1016/j.dam.2019.01.014
https://doi.org/10.1007/978-3-540-69068-9_19
https://doi.org/10.1007/978-3-540-69068-9_19
https://doi.org/10.1145/195058.195164
https://doi.org/10.1109/SFCS.1996.548491
https://doi.org/10.1016/j.jda.2009.02.007
https://doi.org/10.1007/978-3-319-07959-2_29
https://arxiv.org/abs/2004.05309
https://doi.org/10.1145/3828.3839
https://doi.org/10.1145/3828.3839

	Abstract
	1 Introduction
	2 Preliminaries
	3 Technical Overview
	4 Generalized Range Counting and Selection Queries
	5 SA Query Algorithm
	5.1 Preliminaries
	5.2 The Nonperiodic Positions
	5.3 The Final Data Structure

	6 Dynamic Suffix Array
	References

