
String Synchronizing Sets∗
Sublinear-Time BWT Construction and Optimal LCE Data Structure

Dominik Kempa

Department of Computer Science

Centre for Discrete Mathematics and its Applications

University of Warwick

Coventry, United Kingdom

dominik.kempa@warwick.ac.uk

Tomasz Kociumaka

Department of Computer Science

Bar-Ilan University

Ramat Gan, Israel

Institute of Informatics

University of Warsaw

Warsaw, Poland

kociumaka@mimuw.edu.pl

ABSTRACT
Burrows–Wheeler transform (BWT) is an invertible text transforma-

tion that, given a textT of length n, permutes its symbols according

to the lexicographic order of suffixes of T . BWT is one of the most

heavily studied algorithms in data compression with numerous

applications in indexing, sequence analysis, and bioinformatics. Its

construction is a bottleneck in many scenarios, and settling the com-

plexity of this task is one of the most important unsolved problems

in sequence analysis that has remained open for 25 years. Given

a binary string of length n, occupying O (n/ logn) machine words,

the BWT construction algorithm due to Hon et al. (SIAM J. Comput.,

2009) runs inO (n) time andO (n/ logn) space. Recent advancements

(Belazzougui, STOC 2014, and Munro et al., SODA 2017) focus on

removing the alphabet-size dependency in the time complexity, but

they still require Ω(n) time. Despite the clearly suboptimal running

time, the existing techniques appear to have reached their limits.

In this paper, we propose the first algorithm that breaks the

O (n)-time barrier for BWT construction. Given a binary string of

length n, our procedure builds the Burrows–Wheeler transform

in O (n/
√
logn) time and O (n/ logn) space. We complement this

result with a conditional lower bound proving that any further

progress in the time complexity of BWT construction would yield

faster algorithms for the very well studied problem of counting

inversions: it would improve the state-of-the-art O (m
√
logm)-time

solution by Chan and Pǎtraşcu (SODA 2010). Our algorithm is

based on a novel concept of string synchronizing sets, which is

of independent interest. As one of the applications, we show that

this technique lets us design a data structure of the optimal size

O (n/ logn) that answers Longest Common Extension queries (LCE

queries) in O (1) time and, furthermore, can be deterministically

constructed in the optimal O (n/ logn) time.

∗
Dominik Kempa was supported by the EPSRC award EP/N011163/1. Tomasz Kociu-

maka was supported by ISF grants no. 824/17 and 1278/16 and by an ERC grant MPM

under the EU’s Horizon 2020 Research and Innovation Programme (grant no. 683064).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316368

CCS CONCEPTS
• Theory of computation → Pattern Matching; Data com-
pression; Data structures design and analysis; Cell probe models

and lower bounds; Problems, reductions and completeness.

KEYWORDS
Burrows–Wheeler transform, Longest Common Extension queries,

Longest Common Prefix queries, packed strings

ACM Reference Format:
Dominik Kempa and Tomasz Kociumaka. 2019. String Synchronizing Sets:

Sublinear-Time BWT Construction and Optimal LCE Data Structure. In

Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of
Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3313276.3316368

1 INTRODUCTION
The problem of text indexing is to preprocess an input text T so

that given any query pattern P , we can quickly find the occurrences

of P in T (typically in O (|P | + occ) time, where |P | is the length of

P and occ is the number of reported occurrences). Two classical

data structures for this task are the suffix tree [42] and the suffix

array [33]. The suffix tree is a trie containing all suffixes of T with

each unary path compressed into a single edge labeled by a text sub-

string. The suffix array is a list of suffixes of T in the lexicographic

order, with each suffix encoded using its starting position. Both

data structures take Θ(n) words of space, where n is the length of

T . In addition to indexing, they underpin dozens of applications in

bioinformatics, data compression, and information retrieval [2, 17].

While the suffix tree is slightly faster for some operations, the suffix

array is often preferred due to its simplicity and lower space usage.

Nowadays, however, indexing datasets of size close to the capac-

ity of available RAM is often required. Even the suffix arrays are

then prohibitively large, particularly in applications where the text

consists of symbols from some alphabet Σ of small size σ = |Σ| (e.g.,
Σ = {A, C, G, T} and so σ = 4 in bioinformatics). For such collections,

the classical indexes are Θ(logσ n) times larger than the text, which

takes only Θ(n logσ) bits, i.e., Θ(n/ logσ n) machine words, and

thus they prevent many sequence analysis tasks to be performed

without a significant penalty in space consumption.

This situation changed dramatically in early 2000’s, when Fer-

ragina and Manzini [13], as well as Grossi and Vitter [16], indepen-

dently proposed indexes with the capabilities of the suffix array

756

https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3313276.3316368

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dominik Kempa and Tomasz Kociumaka

(incurring only a O (logε n) slowdown in the query time) that take

a space asymptotically equal to that of the text (and with very small

constant factors). These indexes are known as the FM-index and the

compressed suffix array (CSA). The central component and the time

and space bottleneck in the construction of both the FM-index and

CSA
1
is the Burrows–Wheeler transform (BWT) [8]. BWT is an in-

vertible permutation of the text that consists of symbols preceding

suffixes of text in the lexicographic order. Almost immediately after

their discovery, the BWT-based indexes replaced suffix arrays and

suffix trees and the BWT itself has become the basis of almost all

space-efficient algorithms for sequence analysis. Modern textbooks

spend dozens of pages describing its applications [32, 38, 39], and

BWT-indexes are widely used in practice; in bioinformatics, they

are the central component of many read-aligners [30, 31].

BWT Construction. Given the practical importance of BWT, its

efficient construction emerged as one of the most important open

problems in the field of indexing and sequence analysis. The first

breakthrough was the algorithm of Hon et al. [21], who reduced

the time complexity of BWT construction for binary strings from

O (n logn) to O (n) time using working space of O (n) bits. This
bound has been recently generalized to any alphabet size σ . More

precisely, Belazzougui [4] described a (randomized) O (n)-time con-

struction working in optimal space of O (n/ logσ n) words. Munro

et al. [34] then proposed an alternative (and deterministic) construc-

tion. These algorithms achieve the optimal construction space, but

their running time is still Ω(n), which is up to Θ(logn) times more

than the lower bound of Ω(n/ logσ n) time (required to read the

input and write the output). Up until now, all o(n)-time algorithms

required additional assumptions, such as that the BWT is highly

compressible using run-length encoding [25].

In this paper, we propose the first algorithm that always breaks

the O (n)-time barrier for BWT construction. Given a binary string

of lengthn, our algorithm builds the Burrows–Wheeler transform in

O (n/
√
logn) time andO (n/ logn) space.We complement this result

with a conditional lower bound proving that any further progress

in the time complexity of BWT construction would imply faster

algorithms for the very well studied problem of counting inversions:

it would improve the state-of-the-art O (m
√
logm)-time solution

by Chan and Pǎtraşcu [9]. We also generalize our construction to

larger alphabets whose size σ satisfies logσ ≤
√
logn. In this case,

the running time is O (n logσ/
√
logn) and the space complexity is

O (n logσ/ logn), proportional to the input and output size.

LCE Queries. The Longest Common Extension queries LCE(i, j)
(also known as the Longest Common Prefix queries), given two po-

sitions in a textT , return the length of the longest common prefix of

the suffixesT [i . .n] andT [j . .n] starting at positions i and j , respec-
tively. These queries were introduced by Landau and Vishkin [29]

in the context of approximate pattern matching. Since then, they

became one of the most commonly used tools in text processing.

Standard data structures answer LCE queries in constant time and

take linear space. The original construction algorithm [20, 29, 42]

works in linear time for constant alphabets only, but it has been sub-

sequently generalized to larger integer alphabets [12] and simplified

1
Although originally formulated in terms of the so-called “Ψ function” [16], it is now

established (see, e.g., [21, 34]) that the CSA is essentially dual to the FM-index.

substantially [6, 24]. Thus, LCE queries are completely resolved in

the classic setting where the text T is stored in O (n) space.
However, if T is over a small alphabet of size σ , then it can

be stored in O (n logσ) bits. Yet, until very recently, even for the

binary alphabet there was no data structure of o(n logn) bits sup-
porting LCE queries in constant time. The first such solutions are

by Tanimura et al. [41] and Munro et al. [35], who showed that

constant-time queries can be implemented using data structures of

size O (n logσ/
√
logn) and O (n

√
logσ/

√
logn), respectively. The

latter result admits an O (n/
√
logσ n)-time construction from the

packed representation of T . In yet another study, Birenzwige et

al. [7] considered LCE queries in a model where T is available

for read-only random access, but not counted towards the data

structure size. Constant-time LCE queries in the optimal space of

O (n logσ) bits can be deduced as a corollary of their results, but

the construction algorithm is randomized and takes O (n) time.

Our contribution in the area of LCE queries is a data structure of

the optimal size O (n/ logσ n) that answers LCE in O (1) time and,

furthermore, can be deterministically constructed in the optimal

O (n/ logσ n) time. This significantly improves the state of the art

and essentially closes the LCE problem also in the packed setting.

Our Techniques. Our main innovation and the key tool behind

both our results is a novel notion of string synchronizing sets, which
relies on local consistency—the idea to make symmetry-breaking

decisions involving a position i of the text T based on the char-

acters at the nearby positions. This way, we can guarantee that

equal fragments of the text are handled in the same way. The clas-

sic implementations of local consistency involve parsing the text;

see e.g. [23, 40]. Unfortunately, the context size at a given level of

the parsing is expressed in terms of the number of phrases, whose

lengths may vary significantly between regions of the text. To over-

come these limitations, Kociumaka et al. [28] introduced samples
assignments with fixed context size. Birenzwige et al. [7] then ap-

plied the underlying techniques to define partitioning sets, which
they used for answering LCE queries. Moreover, they obtained an

alternative construction of partitioning sets (with slightly inferior

properties) by carefully modifying the parsing scheme of [40]. In

his PhD thesis [27], the second author introduced synchronizing
functions, an improved version of samples assignmentswith stronger
properties and efficient deterministic construction procedures. He

also used synchronizing functions to develop the optimal LCE data

structure in a packed text. In this work, we reproduce the latter

result using synchronizing sets, which are closely related to synchro-
nizing functions, but enjoy a much simpler and cleaner interface.

Organization of the Paper. After introducing the basic notation
and tools in Section 2, we start by defining the main concept of the

paper—the string synchronizing set—and proving some of its prop-

erties (Section 3). Next, we show how to sort suffixes in such a set

(Section 4) and extend these ideas into an optimal LCE data struc-

ture (Section 5). We then describe how to build the BWT given a

small string synchronizing set (Section 6) and prove the conditional

optimality of our construction (Section 7). We conclude by showing

efficient algorithms for the construction of string synchronizing set

(Section 8). Due to space limitations, proofs of the claims marked

with ♠ are presented only in the full version of the paper [26].

757

String Synchronizing Sets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

2 PRELIMINARIES
LetT ∈ Σ∗ be a string over alphabet Σ = [0 . . σ−1]. Unless explicitly
stated otherwise, we assume σ = nO (1) , where n = |T |. For 1 ≤ i ≤
j ≤ n, we writeT [i . . j] to denote the substring T [i]T [i + 1] · · ·T [j].
Throughout, we use [i . . j) as a shorthand for [i . . j − 1]. The length
of the longest common prefix of X ,Y ∈ Σ∗ is denoted lcp(X ,Y).

An integer p ∈ [1 . . |X |] is a period of X if X [i] = X [i + p] for
i ∈ [1 . . |X | − p]. The shortest period of X is denoted as per(X).

Lemma 2.1 (Periodicity Lemma [14]). If a string X has periods
p,q such that p +q − gcd(p,q) ≤ |X |, then gcd(p,q) is also its period.

2.1 Suffix Array and BWT
The suffix array [33] SA[1 . .n] of a textT is a permutation defining

the lexicographic order on suffixes: T [SA[i] . .n] ≺ T [SA[j] . .n] if
i < j . It takes O (n) space and can be constructed in O (n) time [24].

Given positions i, j in T , the Longest Common Extension query

LCE(i, j) asks for lcp(T [i . .n],T [j . .n]). The standard solution con-

sists of the suffix array SA, the inverse permutation SA
−1

(defined

so that SA[SA
−1
[i]] = i), the LCP table LCP[2 . .n] (whose entries

are LCP[i] = LCE(SA[i − 1], SA[i])), and a data structure for range
minimum queries built on top of the LCP table; see [6, 12, 20, 24].

Proposition 2.2. LCE queries in a text T ∈ [0 . . σ)n with σ =
nO (1) can be answered in O (1) time after O (n)-time preprocessing.

The Burrows–Wheeler transform (BWT) [8] ofT [1 . .n] is defined
as BWT[i] = T [SA[i] − 1] if SA[i] > 1 and BWT[i] = T [n] other-
wise. To ensure the correct handling of boundary cases, it is often

assumed that BWT[SA
−1
[1]] contains a sentinel $ < Σ. In this paper,

we avoid this to make sure that BWT[1 . .n] ∈ [0 . . σ)n . Our con-
struction also returns SA

−1
[1], though, so that the corresponding

value can be set as needed.

2.2 Word RAMModel
Throughout the paper, we use the standard word RAM model of

computation [18] withw-bit machine words, wherew ≥ logn.
In the word RAM model, strings are typically represented as

arrays, with each character occupying a single memory cell. Nev-

ertheless, a single character can be represented using

⌈
logσ

⌉
bits,

which might be much less than w . Consequently, one may store

a text T ∈ [0 . . σ)n in O
(⌈n logσ

w

⌉)
consecutive memory cells. In

the packed representation of T , we assume that the first character

corresponds to the

⌈
logσ

⌉
least significant bits of the first cell.

Proposition 2.3 (♠). Suppose that T ∈ [0 . . σ)n is stored in the
packed representation. The packed representation of any length-ℓ
substring can be retrieved in O

(⌈ ℓ logσ
w

⌉)
time. The longest common

prefix of two length-ℓ fragments can be identified in the same time.

A particularly important case is that of σ = 2. In many applica-

tions, these bitvectors are equipped with a data structure answering

rank queries: for B[1 . .n], rankB (i) = |{j ∈ [1 . . i] : B[j] = 1}|.

Jacobson [22] proved that rankB queries can be answered in O (1)
time using an additional component of o(n) extra bits. However, an
efficient construction of such a component is much more recent.

Proposition 2.4 ([3, 36]). A packed bitvector B[1 . .n] can be
extended in O

(
n

logn

)
time with a data structure of size o

(
n

logn

)
which

answers rankB queries in O (1) time.

2.3 Wavelet Trees
Wavelet trees, invented by Grossi, Gupta, and Vitter [15] for space-

efficient text indexing, are important data structures with a vast

number of applications far beyond text processing (see [37]).

The wavelet tree of a stringW ∈ [0 . . 2b)n is recursively defined

as follows. First, we create the root node vε . This completes the

construction forb = 0. Ifb > 0, we attach tovε a bitvector Bε [1 . .n]
in which Bε [i] is the most significant bit ofW [i] (interpreted as a

b-bit number). Next, we partitionW into subsequencesW0 andW1

by scanningW and appendingW [i], with the most significant bit d
removed, to the subsequenceWd . Finally, we attach the recursively

created wavelet trees ofW0 andW1 (over alphabet [0 . . 2
b−1)) to

vε . The result is a perfect binary tree with 2
b
leaves.

Assuming that we label edges 0 (resp. 1) if they go to the left (resp.

right) child, we define the label of a node to be the concatenation of

the labels on the root-to-node path. If BX denotes the bitvector of a

node vX labeled X ∈ {0, 1}<b , then BX contains one bit (following

X as a prefix) from eachW [i] whose binary encoding has prefix X .

Importantly, the bits in the bitvector BX occur in the same order as

the corresponding elementsW [i] occur inW .

It is easy to see that the space occupied by the bitvectors is O (nb)
bits, i.e., O

(
nb
logn

)
words.We need one extra machine word per node

for pointers and due to word alignment, which sums up to O (2b).
Thus, the total size of a wavelet tree is O

(
2
b + nb

logn

)
machine words,

which is O
(
nb
logn

)
if b ≤ logn. As shown recently, a wavelet tree

can be constructed efficiently from the packed representation ofW .

Theorem 2.5 ([3, 36]). Given the packed representation of a string
W of length n over [0 . . 2b) for b ≤ logn, we can construct its wavelet
tree in O (nb/

√
logn) time using O (nb/ logn) space.

3 STRING SYNCHRONIZING SETS
In this section, we introduce string synchronizing sets, the central

novel concept underlying both main results of this paper.

Definition 3.1. Let T be a string of length n and let τ ≤ 1

2
n

be a positive integer. We say that a set S ⊆ [1 . .n − 2τ + 1] is a
τ -synchronizing set of T if it satisfies the following conditions:

(1) if T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ S holds if and only if
j ∈ S (for i, j ∈ [1 . .n − 2τ + 1]), and

(2) S∩ [i . . i +τ) = ∅ if and only if i ∈ R (for i ∈ [1 . .n− 3τ + 2]),
where

R = {i ∈ [1 . .n − 3τ + 2] : per(T [i . . i + 3τ − 2]) ≤ 1

3
τ }.

Intuitively, the above definition requires that the decision on

whether i ∈ S depends entirely on T [i . . i + 2τ), i.e., it is made

consistently across the whole text (the first consistency condition)
and that S contains densely distributed positions within (and only

within) non-periodic regions of T (the second density condition).
The properties of a τ -synchronizing set S allow for symmetry-

breaking decisions that let us individually process only positions

i ∈ S, compared to the classic O (n)-time algorithms handling all

positions one by one. Thus, we are interested in minimizing the size

of S. Since R = ∅ is possible in general, the smallest τ -synchronizing
set we can hope for is of size Ω(nτ) in the worst case. Our deter-

ministic construction in Section 8 matches this lower bound.

Note that the notion of a τ -synchronizing set is valid for every

positive integer τ ≤ 1

2
n. Some applications make use of many

758

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dominik Kempa and Tomasz Kociumaka

synchronizing sets with parameters τ spread across the whole

domain; see [1, 27]. However, in this paper we only rely on τ -
synchronizing sets for τ = ε logσ n (where ε is a sufficiently small

positive constant), because this value turns out to be the suitable for

processing the packed representation of a text T ∈ [0 . . σ)n stored

in Θ(n/ logσ n) machine words. This is because our generic con-

struction algorithm (Proposition 8.10) runs in O (n) time, whereas

a version optimized for packed strings (Theorem 8.11) takes O (nτ)
time only for τ ≤ ε logσ n with ε < 1

5
. (Note that an O (nτ)-time

construction is feasible for τ = O (logσ n) only, because we need
to spend Ω(n/ logσ n) time already to read the whole packed text.)

Moreover, the running time of our BWT construction procedure

involves a term σ O (τ) , which would dominate if we set τ too large.

We conclude this section with two properties of τ -synchronizing
sets useful across all our applications. To formulate them, we define

the successor in S for each i ∈ [1 . .n − 2τ + 1]:

succS (i) := min{j ∈ S ∪ {n − 2τ + 2} : j ≥ i}.

The sentinel n − 2τ + 2 guarantees that the set on the right-hand

side is non-empty. Our first result applies the density condition to

relate succS (i) for i ∈ R with maximal periodic regions of T .

Fact 3.2. Let T be a text and let S be its τ -synchronizing set for a
positive integer τ ≤ 1

2
. If i ∈ R and p = per(T [i . . i + 3τ − 2]), then

T [i . . succS (i) + 2τ − 2] is the longest prefix ofT [i . .n] with period p.

Proof. Let us define s = succS (i) and observe that [i . . s)∩S = ∅.
Consequently, [j . . j + τ) ∩ S = ∅ holds for every j ∈ [i . . s − τ].
By the density condition, this implies [i . . s − τ] ⊆ R, i.e., that
per(T [j . . j + 3τ − 2]) ≤ 1

3
τ for j ∈ [i . . s − τ]. We shall prove by

induction on j that p = per(T [i . . j+3τ −2]) holds for j ∈ [i . . s−τ].
Tha base case of j = i follows from the definition of p. For j > i ,
on the other hand, let us denote p′ = per(T [j . . j + 3τ − 2]) and
assume p = per(T [i . . j + 3τ − 3]) by the inductive hypothesis. We

observe that j + 3τ − 2 − p′ − p > j + 2τ − 2 ≥ j , so T [j + 3τ − 2] =
T [j + 3τ − 2 − p′] = T [j + 3τ − 2 − p′ − p] = T [j + 3τ − 2 − p]. This
shows that p = per(T [i . . j + 3τ − 2]) and completes the inductive

step. We conclude that p is the shortest period of T [i . . s + 2τ − 2].
We now need to prove that this is the longest prefix ofT [i . .n]with
period p. The claim is trivially true if s = n − 2τ + 2. Otherwise,

s ∈ S, so [s −τ +1 . . s]∩S , ∅. By the density condition, this means

that s −τ +1 < R, i.e., per(T [s −τ +1 . . s +2τ −1]) > 1

3
τ . As a result,

per(T [i . . s + 2τ − 1]) > 1

3
τ ≥ p. This completes the proof. □

The second result applies the consistency condition to relate

succS (i) with succS (j) for two common starting positions i, j ∈
[1 . .n − 2τ + 1] of a sufficiently long substring.

Fact 3.3. Let T be a text and let S be its τ -synchronizing set for a
positive integer τ ≤ 1

2
. If a substring X of length |X | ≥ 2τ occurs in

T at positions i and j, then either
(i) succS (i) − i = succS (j) − j ≤ |X | − 2τ , or
(ii) succS (i) − i > |X | − 2τ and succS (j) − j > |X | − 2τ .

Moreover, (i) holds if |X | ≥ 3τ − 1 and per(X) > 1

3
τ .

Proof. First, we shall prove that (i) holds if (ii) does not. Without

loss of generality, we assume that succS (i)− i ≤ succS (j)− j , which
yields succS (i) − i ≤ |X | − 2τ . In particular, T [i . . succS (i) + 2τ) =
T [j . . j − i + succS (i) + 2τ) is a prefix of X . Moreover, succS (i) ≤

n − 2τ + 1, so succS (i) ∈ S. The consistency condition therefore

implies j − i + succS (i) ∈ S. Hence, succS (j) ≤ j − i + succS (i), and
succS (i) − i = succS (j) − j thus holds as claimed.

Next, we shall prove that succS (i) − i ≤ |X | − 2τ if |X | ≥ 3τ − 1
and per(X) > 1

3
τ . From this, we shall conclude that (ii) does not

hold (whereas (i) holds) in that case. If i < R, then [i . . i + τ) ∩ S ,
∅ by the density condition, so succS (i) − i ≤ τ − 1 ≤ |X | − 2τ .
Otherwise, let us define p = per(T [i . . i + 3τ − 2]) and note that

T [i . . succS (i) + 2τ − 2] has period p by Fact 3.2. Since p ≤ 1

3
n, this

means that |X | > |T [i . . succS (i) + 2τ − 2]|, which is equivalent to

the desired inequality succS (i) − i ≤ |X | − 2τ . □

4 SORTING SUFFIXES STARTING IN
SYNCHRONIZING SETS

Let T ∈ [0 . . σ)n be a text stored in the packed representation and

let S be its τ -synchronizing set of size O (nτ) for τ = O (logσ n). In
this section, we show that given the above as input, the suffixes of

T starting at positions in S can be sorted lexicographically in the

optimal O (nτ) time. We assume that the elements of S are stored

in an array in the left-to-right order so that we can access the ith
smallest element, denoted si , in constant time for i ∈ [1 . . |S|]. The
presented algorithm is the first step in our BWT construction. It

also reveals the key ideas behind our LCE data structure.

4.1 The Nonperiodic Case
Consider first a case when R = ∅. The density condition then

simplifies to the following statement:

(2′) S ∩ [i . . i + τ) , ∅ for every i ∈ [1 . .n − 3τ + 2].

We introduce a string T ′ of length n′ := |S| defining it so that

T ′[i] = T [si . .min(n, si + 3τ − 1)]. All characters of T
′
are strings

over [0 . . σ) of length up to 3τ . Hence, they can be encoded using

O (τ logσ) = O (logn)-bit integers so that the lexicographic order

is preserved.
2
Furthermore, the lexicographic order of the suffixes

of T ′ coincides with that of the corresponding suffixes of T .

Lemma 4.1. Assume R = ∅ holds for a text T . If positions i, j of T ′

satisfy T ′[i . .n′] ≺ T ′[j . .n′], then T [si . .n] ≺ T [sj . .n].

Proof. We proceed by induction on lcp(T ′[i . .n′],T ′[j . .n′]).
The base case is thatT ′[i] ≺ T ′[j]. IfT ′[i] is a proper prefix ofT ′[j],
then T [si . .n] = T

′
[i] ≺ T ′[j] ⪯ T [sj . .n]. Otherwise, T

′
[i] ·W ≺

T ′[j] holds for any stringW , so T [si . .n] ≺ T
′
[j] ⪯ T [sj . .n].

Henceforth, we assume that T ′[i] = T ′[j]. Since i , j, this
implies |T ′[i]| = |T ′[j]| = 3τ and si , sj ≤ n − 3τ + 1. The density
condition yields sn′ ≥ n−3τ +2 (due to n−3τ +2 < R), so we further
have i, j ∈ [1 . .n′) and T ′[i + 1 . .n′] ≺ T ′[j + 1 . .n′]. Moreover,

X := T [si +1 . . si +3τ) = T [sj +1 . . sj +3τ) occurs inT at positions

si + 1 and sj + 1. As per(X) > 1

3
τ (due to si + 1 < R), Fact 3.3 implies

succS (si + 1) − (si + 1) = succS (sj + 1) − (sj + 1) ≤ τ − 1,

i.e., si+1−si = sj+1−sj ≤ τ . Furthermore,T [si . . si+1) = T [sj . . sj+1)
because T [si . . si + 3τ) = T ′[i] = T ′[j] = T [sj . . sj + 3τ). Due to
T [si+1 . .n] ≺ T [sj+1 . .n] (which we derive from the inductive

hypothesis), this implies T [si . .n] ≺ T [sj . .n] and completes the

proof of the inductive step. □

2
For example, we may append 6τ − 2 |T ′[i] | zeroes and |T ′[i] | ones to T ′[i]. The
result can then be interpreted as the base-σ representation of an integer in [0 . . σ 6τ).

759

String Synchronizing Sets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

By Lemma 4.1, the suffix array of T ′ can be used to retrieve the

lexicographic order of the suffixes T [si . .n] for si ∈ S. Recall that
each symbol of T ′ takes O (τ logσ) = O (logn) bits, so the suffix

array of T ′ can be computed in O (|T ′ |) = O (nτ) time [24].

4.2 The General Case
We now show how to adapt the approach from the previous section

so that it also works if R , ∅. As before, we construct a stringT ′ of
length n′ = |S| over a polynomially bounded integer alphabet, and

we sort its suffixes. However, the definition of T ′ becomes more

involved. To streamline the formulae, we set sn′+1 = n − 2τ + 2. For
each i ∈ [1 . .n′], we defineT ′[i] = (T [si . .min(n, si + 3τ − 1)],di),
where di is an integer specified as follows:

(a) If si+1 − si ≤ τ (in particular, if si > n − 3τ + 1), then di = 0.

(b) Otherwise, we set pi = per(T [si + 1 . . si + 3τ)) and

di =

n − si+1 + si if T [si+1 + 2τ − 1] ≻ T [si+1 + 2τ − 1 − pi],

si+1 − si − n otherwise (if si+1 = n − 2τ + 2 in particular).

Note that eachT ′[i] can be encoded inO (τ logσ+logn) = O (logn)
bits so that the comparison of the resulting integers is equivalent

to the lexicographic comparison of the corresponding symbols.

Lemma 4.2. If positions i, j of T ′ satisfy T ′[i . .n′] ≺ T ′[j . .n′],
then T [si . .n] ≺ T [sj . .n].

Proof. Induction on lcp(T ′[i . .n′],T ′[j . .n′]). If lcp(T [si . .n],
T [sj . .n]) < 3τ , then we proceed as in the proof of Lemma 4.1.

Otherwise, the stringX = T [si +1 . . si +3τ) = T [sj +1 . . sj +3τ)
occurs inT at positions si+1 and sj+1. Ifmin(si+1−si , sj+1−sj) ≤ τ ,
then Fact 3.3 yields si+1 − si = sj+1 − sj ≤ τ , so di = dj = 0 and

T ′[i] = T ′[j]. Moreover, i, j ∈ [1 . .n′) due to si , sj ≤ n − 3τ + 1.

Consequently, the claim follows from T [si . . si+1) = T [sj . . sj+1)
because the inductive hypothesis yields T [si+1 . .n] ≺ T [sj+1 . .n].

On the other hand, min(si+1 − si , sj+1 − sj) > τ yields di ,dj , 0.

Moreover, the density condition implies si + 1, sj + 1 ∈ R with pi =
pj = per(X) ≤ 1

3
τ . By Fact 3.2, the longest prefix of T [si + 1 . .n]

with period pi is Pi := T [si +1 . . si+1+2τ −2] and the longest prefix
of T [sj + 1 . .n] with period pj is Pj := T [sj + 1 . . sj+1 + 2τ − 2].

Both Pi and Pj start with X , so one of them is a prefix of the

other. We consider three cases based on how their lengths, |Pi | =
n + 2τ − 2 − |di | and |Pj | = n + 2τ − 2 − |dj |, compare to each other.

• If |di | > |dj |, then Pi is a proper prefix of Pj . If i = n′, then
T [si . .n] = Pi ≺ Pj ⪯ T [sj . .n]. Otherwise, we note that
di < 0 due to di < dj , soT [si + 1+ |Pi |] ≺ Pi [|Pi | −pi + 1] =
Pj [|Pi | − pj + 1] = T [sj + 1 + |Pi |], which yields the claim.

• If |di | = |dj |, then Pi = Pj . If i = n′, then T [si . .n] = Pi =
Pj ≺ T [sj . .n]. Otherwise, we consider two subcases:

– If di = −dj , then di < 0 < dj , so T [si + 1 + |Pi |] ≺
Pi [|Pi | −pi +1] = Pj [|Pj | −pj +1] ≺ T [sj +1+ |Pj |], which
also yields the claim.

– Finally, if di = dj , then T
′
[i] = T ′[j] and i, j ∈ [1 . .n′), so

the inductive hypothesis gives T [si+1 . .n] ≺ T [sj+1 . .n].
The claim follows due to T [si . . si+1) = T [sj . . sj+1).

• If |di | < |dj |, then Pj is a proper prefix of Pi . Moreover,

dj > 0 due to di < dj , soT [si + 1+ |Pj |] = Pi [|Pj | −pi + 1] =
Pj [|Pj | − pj + 1] ≺ T [sj + 1 + |Pj |] and the claim holds. □

We now prove that efficient construction ofT ′ is indeed possible.
The only difficulty is computing the valuespi in case si+1−si > τ . To
achieve this in constant time, we observe that pi ≤

1

3
τ holds by the

density condition due to si < n−3τ +2 and si +1 < R. Consequently,
pi is also the shortest period of every prefix of T [si + 1 . . si + 3τ)
of length 2pi or more. By the synchronizing property of primitive

strings [11, Lemma 1.11], this means that the leftmost occurrence

of T [si + 1 . . si + τ] in T [si + 2 . . si + 2τ] starts at position pi . We

can find it in O (1) time (after O (nε)-time preprocessing) using the

packed string matching algorithm [5].

Theorem 4.3. Given the packed representation of a text T ∈
[0 . . σ)n and its τ -synchronizing set S of sizeO (nτ) for τ = O (logσ n),
we can compute in O (nτ) time the lexicographic order of all suffixes
of T starting at positions in S.

5 DATA STRUCTURE FOR LCE QUERIES
In Section 4, for a text T ∈ [0 . . σ)n and its τ -synchronizing set

S with τ = O (logσ n), we constructed a string T ′ such the lexi-

cographic order of the suffixes of T ′ coincides with the order of

suffixes ofT starting at positions in S. In this section, we show how

to reduce LCE queries in T to LCE queries in T ′. Our approach re-

sults in a data structure with O (1)-time LCE queries and O (nτ)-time

construction provided that |S| = O (nτ). Recall that n
′ = |S| = |T ′ |,

si is the ith smallest element of S, and sn′+1 = n − 2τ + 2.

5.1 The Nonperiodic Case
Analogously to Section 4.1, we start with the case of R = ∅, which
makes the definition ofT ′ simpler:T ′[i] = T [si . .min(n, si+3τ−1)].

Consider an LCE query in the text T . If LCE(i, j) < 3τ , we
can retrieve it in O (1) time from the packed representation of

T . Otherwise, Fact 3.3 yields succS (i) − i = succS (j) − j < τ .
Hence, LCE(i, j) = si′ − i + LCE(si′ , sj′), where si′ = succS (i)
and sj′ = succS (j). A similar reasoning can be repeated to de-

termine LCE(si′ , sj′), which must be smaller than 3τ or equal to

si′+1 − si′ + LCE(si′+1, sj′+1). The former condition can be verified

by checking whetherT ′[i ′] = T ′[j ′]. A formal recursive application

of this argument results in the following characterization:

Fact 5.1. Consider a string T ∈ [0 . . σ)n which satisfies R = ∅.
For positions i, j in T such that LCE(i, j) ≥ 3τ − 1, let us define
si′ = succS (i) as well as sj′ = succS (j). If ℓ = LCET ′ (i

′, j ′), then

LCE(i, j) = si′+ℓ − i + LCE(si′+ℓ , sj′+ℓ) < si′+ℓ − i + 3τ .

Proof. The proof is by induction on ℓ. Due to i, j < R, Fact 3.3
yields si′ − i = sj′ − j < τ , and therefore T [i . . si′) = T [j . . sj′).
Hence, LCE(i, j) = si′ − i + LCE(si′ , sj′). If ℓ = 0, it just remains to

prove that LCE(si′ , sj′) < 3τ , which follows from T ′[i ′] , T ′[j ′].
For ℓ > 0, we note that T ′[i ′] = T ′[j ′], so LCE(si′ , sj′) ≥ 3τ

and LCE(si′ + 1, sj′ + 1) ≥ 3τ − 1. The inductive hypothesis now
yields LCE(si′ + 1, sj′ + 1) = si′+ℓ − si′ − 1 + LCE(si′+ℓ , sj′+ℓ) and
LCE(si′+ℓ , sj′+ℓ) < 3τ . Since LCE(i, j) = si′ − i + LCE(si′ , sj′) =
si′ + 1 − i + LCE(si′ + 1, sj′ + 1), this completes the proof. □

Fact 5.1 leads to a data structure for LCE queries that consists of

the packed representation ofT (Proposition 2.3), a τ -synchronizing
set S of size O (nτ), a component for LCE queries in T ′ (Proposi-
tion 2.2; the alphabet size is σ 3τ = nO (1)), and a bitvector B[1 . .n],

760

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dominik Kempa and Tomasz Kociumaka

with B[i] = 1 if and only if i ∈ S, equipped with a component for

O (1)-time rank queries (Proposition 2.4).

To compute LCE(i, j), we first use the packed representation to

retrieve the answer in O (1) time provided that LCE(i, j) < 3τ . Other-
wise, we obtain i ′ and j ′ such that si′ = succS (i) and sj′ = succS (j)
using rankB queries, and we compute ℓ = LCET ′ (i

′, j ′). By Fact 5.1,
LCE(i, j) = si′+ℓ−i+LCE(si′+ℓ , sj′+ℓ). Since LCE(si′+ℓ , sj′+ℓ) < 3τ ,
we finalize the algorithm using the packed representation again.

5.2 The General Case
In this section, we generalize the results of Section 5.1 so that the

case of R , ∅ is also handled. Our data structure consists of the

same components; the only difference is that the string T ′ is now
defined as in Section 4.2 rather than as in Section 4.1.

The query algorithm needs more changes but shares the original

outline. If LCE(i, j) < 3τ , then we determine the answer using

Proposition 2.3. Otherwise, we apply the following lemma as a

reduction to computing LCE(succS (i), succS (j)).

Lemma 5.2 (♠). For positions i, j inT such that LCE(i, j) ≥ 3τ − 1,
let us define si′ = succS (i) and sj′ = succS (j). Then

LCE(i, j) =

min(si′ − i, sj′ − j) + 2τ − 1 if si′ − i , sj′ − j,
si′ − i + LCE(si′ , sj′) if si′ − i = sj′ − j .

We are left with determining the values LCE(si , sj) for i, j ∈
[1 . .n′+1], i.e., handling LCE queries for positions in S∪{n−2τ +2}.
The next result reduces this task to answering LCE queries in T ′.

Lemma 5.3 (♠). If ℓ = LCET ′ (i, j) for positions i, j ∈ [1 . .n′ + 1],
then LCE(si , sj) = si+ℓ−si+LCE(si+ℓ , sj+ℓ). Moreover, LCE(si , sj) <
3τ or LCE(si , sj) = min(si+1 − si , sj+1 − sj) + 2τ − 1 holds if ℓ = 0.

We are now ready to describe the complete query algorithm

determining LCE(i, j) for two positions i, j in T . We start by us-

ing Proposition 2.3 to compare the first 3τ symbols of T [i . .n] and
T [j . .n]. If we detect a mismatch, the procedure is completed. Other-

wise, we compute the indices i ′, j ′ ∈ [1 . .n′+1] of si′ = succS (i) and
sj′ = succS (j) using rank queries on the bitvector B. If si′−i , sj′−j ,
then we answer the query LCE(i, j) = min(si′ − i, sj′ − j) + 2τ − 1
according to Lemma 5.2. Otherwise, Lemma 5.2 yields LCE(i, j) =
si′ − i + LCE(si′ , sj′), and it remains to compute LCE(si′ , sj′). For
this, we query for ℓ = LCET ′ (i

′, j ′) and note that LCE(si′ , sj′) =
si′+ℓ − si′ + LCE(si′+ℓ , sj′+ℓ) by Lemma 5.3. Finally, we are left

with determining the latter LCE value. We start by comparing

the first 3τ symbols of T [si′+ℓ . .n] and T [sj′+ℓ . .n]. If we detect
a mismatch, the procedure is finished. Otherwise, we compute

LCE(si′+ℓ , sj′+ℓ) = min(si′+ℓ+1 − si′+ℓ , sj′+ℓ+1 − sj′+ℓ) + 2τ − 1

according to Lemma 5.3. This completes the algorithm.

Before we conclude, note that given a synchronizing set of size

O (nτ) for τ = O (logσ n), the data structure can be constructed in

O (nτ) time. This follows from Theorem 4.3 (building T ′), Proposi-
tion 2.2 (LCE queries in T ′), and Proposition 2.4 (rankB queries). If

τ ≤ ε logσ n for a positive constant ε < 1

5
, then Theorem 8.11 also

lets us compute an appropriate τ -synchronizing set in O (nτ) time.

The overall construction time,O (nτ), is minimized by τ = Θ(logσ n).

Theorem 5.4. LCE queries in a text T ∈ [0 . . σ)n with σ = nO (1)

can be answered in O (1) time after O (n/ logσ n)-time preprocessing
of the packed representation of T .

6 BWT CONSTRUCTION
Let T ∈ [0 . . σ)n , for logσ ≤

√
logn, be a text given in the packed

representation, and let S be a τ -synchronizing set ofT of size O (nτ),
where τ = ε logσ n for some sufficiently small constant ε > 0. We

assume that τ is a positive integer and that 3τ − 1 ≤ n.
In this section, we show how to construct the BWT of T in

O (n logσ/
√
logn) time and O (n/ logσ n) space. For simplicity, we

first restrict ourselves to a binary alphabet. The time and space

complexities then simplify to O (n/
√
logn) and O (n/ logn).

6.1 Binary Alphabet
Similarly as in previous sections, we first assume R = ∅ (note that
this implies S , ∅ due to 3τ−1 ≤ n). In Section 6.1.2, we consider the
general case and describe the remaining parts of our construction.

6.1.1 The Nonperiodic Case. To compensate for the lack of a sen-

tinel T [n] = $ (see Section 2), let us choose b
$
∈ {0, 1} such that

per(X) > 1

3
τ holds forX = b

$
T [1 . . 2τ). Using packed string match-

ing [5], we add to S all positions where X occurs in T . This in-
creases |S| by O (nτ) and does not violate Definition 3.1. Denote by

(s ′i)i ∈[1.. |S |] the set S, sorted using Theorem 4.3 according to the or-

der of the corresponding suffixes, i.e., T [s ′i . .n] ≺ T [s
′
j . .n] if i < j.

Define a sequenceW of length |S| so thatW [i] ∈ [0 . . 23τ) is an
integer whose base-2 representation is T [s ′i − τ . . s

′
i + 2τ), where

X denotes the string-reversal operation.
3
In the word RAM model

with word size w = Ω(logn), reversing any O (logn)-bit string
takes O (1) time after O (nδ)-time (δ < 1) preprocessing. Thus,
W [1 . . |S|] can be constructed in O (|S| + nδ) = O (n/ logn) time.

Recall that the density condition simplifies to S ∩ [i . . i + τ) , ∅
for i ∈ [1 . .n − 3τ + 2] if R = ∅. Thus, except for O (τ) rightmost

symbols, every symbol of T is included in at least one character

ofW . In principle, it suffices to rearrange these bits to obtain the

BWT. For this, we utilize as a black box the wavelet tree ofW and

prove that its construction performs the necessary permuting. We

are then left with a task of copying the bits from the wavelet tree.

More precisely, we show how to extract (almost) all bits of the

BWT of T from the bitvectors BX in the wavelet tree of W in

2
Θ(τ) + O (n/ logn) time. Intuitively, we partition the BWT into

2
Θ(τ)

blocks that appear as bitvectors BX .
A similar stringW was constructed in [10] for an evenly dis-

tributed set of positions. In that case, however, the bitvectors in the

wavelet tree form non-contiguous subsequences of the BWT.

Distinguishing Prefixes. To devise the announced partitioning of

the BWT, for j ∈ [1 . .max S] let D j = T [j . . succS (j) + 2τ) be the
distinguishing prefix ofT [j . .n]. By the density condition for R = ∅,
succS (j) − j < τ and thus |D j | ≤ 3τ − 1. Let D = {D j : j ≤ max S}.

Recall thatBX is the bitvector associatedwith the nodevX whose

root-to-node label in the wavelet tree ofW isX . By definition of the

wavelet tree (applied toW), for any X ∈ {0, 1}≤3τ−1, BX contains

the bit precedingX from each stringT [s ′i −τ . . s
′
i +2τ) that hasX as

a suffix. (The order of these bits matches the sequence (s ′i)i ∈[1.. |S |].)

Lemma 6.1. (1) IfT [j . . j + |X |) = X for X ∈ D, then D j = X .
(2) If SA[b . . e] includes all suffixes ofT havingX ∈ D as a prefix,

then BWT[b . . e] = BX .

3
WheneverT [k] is out of bounds, we letT [k] = b

$
if k = 0 andT [k] = 0 otherwise.

761

String Synchronizing Sets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Proof. (1) LetX = Di , i.e.,X = T [i . . succS (i)+2τ). SinceX also

occurs at position j and succS (i)−i ≤ |X |−2τ , we have succS (j)−j =
succS (i)−i by Fact 3.3. Consequently,D j = T [j . . succS (j)+2τ) = X .

(2) By the above discussion, BX contains the bits preceding X
as suffixes in (T [s ′i − τ . . s

′
i + 2τ))i ∈[1.. |S |]. From (1), there is a bi-

jection between the occurrences of X in T and such suffixes (im-

portantly, b
$
T [1 . . s ′i + 2τ) for s

′
i ∈ S is not a suffix of X due to the

modification of S, so X is never compared against out-of-bounds

symbols of T inW). By definition of BWT[b . . e] and |X | ≤ 3τ − 1,
BX and BWT[b . . e] indeed contain the same (multisets of) bits.

To show that the bits of BWT[b . . e] occur in BX in the same

order, observe thatT [s ′i + 2τ − |X | . .n] ≺ T [s
′
j + 2τ − |X | . .n] holds

if T [s ′i − τ . . s
′
i + 2τ) and T [s

′
j − τ . . s

′
j + 2τ) have X as a suffix for

i < j. This is because T [s ′i + 2τ − |X | . . s
′
i) = T [s

′
j + 2τ − |X | . . s

′
j)

is a prefix of X , and we have T [s ′i . .n] ≺ T [s
′
j . .n] by i < j. □

The Algorithm. We start by building the stringW and its wavelet

tree. By Theorem 2.5, this takes O ((n/τ) log(23τ)/
√
log(n/τ)) =

O (n/
√
logn) time and O (n/ logn) space.

Next, we create a lookup table that, for any X ∈ {0, 1}2τ , tells
whether X occurs at a position j ∈ S (by the consistency condition,

j ∈ S for every position j where X occurs in T). It needs O (n2ε)
space and is easily filled: set “yes” for each T [j . . j + 2τ) with j ∈ S.

Initialize the output to an empty string. Consider the preorder

traversal of a complete binary tree of depth 3τ −1with each edge to

a left child labeled “0” and to a right child—“1”. Whenever we visit a

node with root-to-node path X such that |X | ≥ 2τ , we check if the

length-2τ suffix ofX is a “yes” substring. If so, we reportX and skip

the traversal of the current subtree. Otherwise, we descend into the

subtree. This procedure enumeratesD in the lexicographic order in

O (23τ) = O (n3ε) time. For each reported substring X , we append
BX to the output string. LocatingvX takes O (|X |) = O (logn) time;

hence, we spend O (n/ logn + n3ε logn) = O (n/ logn) time in total.

The above traversal outputs a BWT subsequence containing the

symbols preceding positions in [1 . .max S]. To include the missing

symbols, we make the following adjustment: while visiting a node

with label X < D, we check if X occurs as a suffix of T . If so,
then before descending into the subtree, we append the preceding

character T [n − |X |] to the output string.

The algorithm runs in O (n/
√
logn) time and uses O (n/ logn)

space. For correctness, observe that the set D is prefix-free by

Lemma 6.1. Thus, no symbol is output twice.

To complete the construction, we need SA
−1
[1] (see Section 2.1).

LetD1 be the distinguishing prefix ofT [1 . .n] and let i1 be the index
of min S in (s ′i)i ∈[1.. |S |]. Observe that the symbol T [0] = b

$
occurs

in BD1

at position |{i ≤ i1 : D1 is a prefix ofW [i]}|, which can be

determined in O (|S|) time. Appending BD1

to the constructed BWT,

we map this position in BD1

to the corresponding one in the BWT.

Finally, we overwrite b
$
by setting BWT[SA

−1
[1]] = T [n].

6.1.2 The General Case. Let use define

F = {X ∈ {0, 1}3τ−1 : X ′ < D for every prefix X ′ of X }.

Observe that ifT [j . . j + 3τ − 1) ∈ F , then j ∈ R. Conversely, when-
ever j ∈ R, thenT [j . . j+3τ −1) ∈ F . Thus, R contains precisely the

starting positions of all strings in F . Hence, in the general case with

R possibly non-empty, the algorithm of Section 6.1.1 outputs the

BWT subsequence missing exactly the symbols T [j − 1] for j ∈ R.

The crucial property of R that allows handling the general case

is that R cannot have many “gaps”. Moreover, whenever X ∈ F
occurs at a position j ∈ Rwith j−1 ∈ R, thenT [j−1] depends onX .

Lemma 6.2. Let R′ = {j ∈ R : j − 1 < R} be a subset of R. Then:
(1) |R′ | ≤ |S| + 1.
(2) IfX =T [j . . j+ |X |) ∈ F and j <R′, thenT [j−1]=X [per(X)].

Proof. (1) By density condition, j ∈ R′ implies j − 1 ∈ S if j > 1.

(2) Note that per(X) = per(T [j − 1 . . succS (j − 1)+ 2τ − 2]) ≤
1

3
τ

due to Fact 3.2 and because succS (j − 1) = succS (j) ≥ j + τ . Hence,
T [j − 1] = T [j − 1 + per(X)] = X [per(X)]. □

Consider thus the following modification: whenever we reach

X ∈ F during the enumeration of D, we append to the output a

unary string of fX symbols X [per(X)], where fX is the number of

occurrences of X in T . By Lemma 6.2, the number of mistakes in

the resulting BWT, over all X ∈ F , is only |R′ | = O (nτ).
To implement the above modification (excluding BWT correc-

tion), we need to compute per(X) and fX for every X ∈ {0, 1}3τ−1.
The period is determined using a lookup table.

Computing Frequencies of Length-ℓ Substrings. Consider ⌊|T |/ℓ⌋
blocks of length 2ℓ−1 starting inT at positions of the form 1+kℓ (the
last block might be shorter). Sort all blocks in O (nℓ) time into a list

L. Then, scan the list and for each distinct block B in L, consider the
multiset of all its length-ℓ substrings X . For each such X , increase

its frequency by the frequency of B in L. The correctness follows
by noting that T [i . . i + ℓ) is contained in the ⌈i/ℓ⌉th block only.

There are at most 1 + 22ℓ−1 distinct blocks and we spend O (ℓ)
time for each. The total running time is therefore O (nℓ + ℓ2

2ℓ−1).
In our application, ℓ = 3τ − 1 < 3ε logn, so it suffices to choose

ε < 1

6
so that O (nℓ +ℓ2

2ℓ−1) = O (n/ logn+n6ε logn) = O (n/ logn).

Correcting BWT. We will now show how to compute the rank

(i.e., the position in the suffix array) of every suffix of T starting

in R′. This will let us correct the mistakes in the BWT produced

within the previous step. If r j is the rank of T [j . .n], where j ∈ R′,
we set BWT[r j] = T [j − 1]. To compute r j , we only need to know

r ′j : the local rank of T [j . .n] among the suffixes of T starting with

T [j . . j + 3τ − 1) (note that any such suffix starts at j ′ ∈ R) since
the rank among other suffixes is known during the enumeration

of D. Formally, for j ∈ R′, define pos(j) = {j ′ ∈ R : LCET (j, j
′) ≥

3τ − 1 and T [j ′ . .n] ⪯ T [j . .n]} so that r ′j = |pos(j) |.
Motivated by Lemma 6.2, we focus on the properties of runs

of consecutive positions in R. We start by partitioning such runs

into classes, where the computation of local ranks is easier and

can be done independently. For X ∈ F , we define the Lyndon root
L-root(X) = min{X [t . . t + p) : t ∈ [1 . .p]} ∈ {0, 1}≤τ /3, where
p = per(X). We further set L-root(j) = L-root(T [j . . j + 3τ − 1)) for
every j ∈ R. It is easy to see that if j ∈ R \ R′, then L-root(j − 1) =
L-root(j). Thus, to compute r ′j for some j ∈ R′, it suffices to look at

the runs starting at j ′ ∈ R′ such that L-root(j) = L-root(j ′).
Further, for j ∈ R, let us define ej = min{j ′ ≥ j : j ′ < R} + 3τ − 2.

We define type(j) = +1 if T [ej] ≻ T [ej − p] and type(j) = −1
otherwise, where p = per(T [j . . ej)). Similarly as for the L-root, if

j ∈ R \ R′, then type(j − 1) = type(j). Furthermore, if type(j) = −1
holds for j ∈ R′, then type(j ′) = −1 holds for all j ′ ∈ pos(j). Let
R− = {j ∈ R : type(j) = −1}, R+ = R \ R−, R′− = R′ ∩ R−, and

762

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dominik Kempa and Tomasz Kociumaka

R′+ = R′ ∩ R+. In the rest of this section, we focus on computing

r ′j for j ∈ R
′−
. The set R′+ is processed symmetrically.

To efficiently determine local ranks for a group of runs with

the same L-root, we refine the classification further into individual

elements of R. Let U = L-root(j) for j ∈ R. It is easy to see that the

following L-decomposition T [j . . ej) = U ′U kU ′′ (where k ≥ 1, U ′

is a proper suffix of U , and U ′′ is a proper prefix of U) is unique.

We call the triple (|U ′ |,k, |U ′′ |) the L-signature of j and the value

L-exp(j) = k its L-exponent. By the uniqueness of L-decompositions,

given j ∈ R′−, we have L-exp(j ′) ≤ L-exp(j) for all j ′ ∈ pos(j).
Note that, letting S = (si)i ∈[1.. |S |] where si < si′ if i < i ′

and s0 = 0, s |S |+1 = n − 2τ + 2, we have, by the density condition:

R′ = {si+1 : i ∈ [0 . . |S|] and si+1 − si > τ }. Furthermore, whenever

j − 1 = si for j ∈ R′, then ej = si+1 + 2τ − 1. Thus, computing R′

and {ej }j ∈R′ (and also the type of each j ∈ R′) takes O (|S|) time.

For j ∈ R′−, let r=j = |{j
′ ∈ pos(j) : L-exp(j ′) = L-exp(j)}| and

r<j = |{j
′ ∈ pos(j) : L-exp(j ′) < L-exp(j)}|.

To compute r=j for each j ∈ R′−, consider sorting the list of all

j ∈ R′− first according to L-root(j), second according to |U ′′ | in its

L-signature, and third according to T [ej . .n]. Such ordering can

be obtained in O (|R′− |) time by utilizing the sequence (s ′i)i ∈[1.. |S |]
and the fact that ej − 2τ + 1 ∈ S. The L-root and |U ′′ | are computed

using lookup tables. Then, to determine r=j , we count j
′ ∈ R′− with

the same L-root that are not later than j in the list and the factor

U ′U k
in their L-decomposition is at least as long as for j. To this

end, we issue a 3-sided orthogonal 2D range counting query on an

input instance containing, for every j ∈ R′−, a point with |U ′U k |

from its L-decomposition as the first coordinate and its position in

the above list as the second coordinate. Answering a batch ofm
orthogonal 2D range counting queries takes O (m

√
logm) time and

O (m) space [9]. Sincem = |R′− |, this step takes O (n/
√
logn) time.

To compute r<j for each j ∈ R′−, we sort j ∈ R′− first by L-root(j),
and then by L-exp(j). For a fixedU ∈ {0, 1}≤τ /3, let us define

R−U = {j ∈ R
−
: L-root(j) = U } ⊆ R−.

Let also R′−U = R′ ∩ R−U . The key observation is that there are

only |U | different prefixes of length 3τ − 1 in {T [j . .n] : j ∈ R−U }.
We will incrementally compute the frequency of each of these

prefixes X ∈ {0, 1}3τ−1 and keep the count in an array C[0 . . |U |),
indexed by t = |U ′ | in the L-decomposition of every j ∈ R−U with

T [j . . j + 3τ − 1) = X (denote this set as R−U ,t). A single round

of the algorithm handles Hk = {j ∈ R′−U : L-exp(j) = k }. We

execute the rounds for increasing k and maintain the invariant

that C[t] contains |{j ∈ R−U ,t : L-exp(j) ≤ k }| at the end of round

k . At the beginning of round k , we use the values of C to first

compute r<j for each j ∈ Hk and then update C to maintain the

invariant. The update consists of increasing some entries in C for

each j ∈ Hk , and then increasing all entries in C by the total

number q of yet unprocessed positions (having higher L-exponent),

i.e., q = |R′−U | −
∑k
i=1 |Hi |. It is easy see that for each j ∈ Hk , the

update can be expressed as a constant number of increments in

contiguous ranges of C . Additionally, if Hk−1 = ∅ and kprev =
max{k ′ < k : Hk ′ , ∅}, right at the beginning of round k (before

computing r<j for j ∈ Hk), we increment all ofC by q · (k−kprev−1),
to account for the skipped L-exponents. Each update of C takes

O (log |U |) = O (log logn) time if we implement C as a balanced

BST. Thus, the algorithm takes O (|R′− | log logn) = O (n/
√
logn)

time. Note, that there are O (2τ /3) = O (nε/3) different L-roots;
hence, we can afford to initialize C in O (logn) time for eachU .

Theorem 6.3. Given the packed representation of a textT ∈ {0, 1}n

and its τ -synchronizing set S of size O (n/τ) for τ = ε logn, where
ε > 0 is a sufficiently small constant, the Burrows–Wheeler transform
of T can be constructed in O (n/

√
logn) time and O (n/ logn) space.

6.2 Large Alphabets
Note that our BWT construction does not immediately generalize to

larger alphabets since for binary strings it already relies on wavelet

tree construction for sequences over alphabets of polynomial size.

More precisely, in the binary case, we combined the bitvectors

BX in the wavelet tree of a large-alphabet sequenceW to retrieve

fragments of the Burrows–Wheeler transform of the text T . For an
alphabet Σ = [0 . . σ), the BWT consists of (logσ)-bit characters.
Thus, instead of standard binary wavelet trees, we use wavelet trees

of degree σ . For simplicity, we assume that σ is a power of two.

6.2.1 High-Degree Wavelet Trees. To construct a degree-σ wavelet

tree, we consider a stringW of length n over an alphabet [0 . . σb)
and think of every symbolW [i] as of a number in base σ with

exactly b digits (including leading zeros). First, we create the root

node vε and construct its string Dε of length n setting as Dε [i] the
most significant digit ofW [i]. We then partitionW into σ subse-

quencesW0,W1, . . . ,Wσ−1 by scanning throughW and appending

W [i] with the most significant digit removed toWc , where c is

the removed digit ofW [i]. We recursively repeat the construction

for everyWc and attach the resulting tree as the cth child of the

root. The nodes of the resulting degree-σ wavelet tree are labeled

with strings Y ∈ [0 . . σ)≤b . For |Y | < b, the string DY at node vY
labeled with Y contains the next digit following the prefix Y in the

σ -ary representation ofW [i] for each elementW [i] ofW whose

σ -ary representation contains Y as a prefix. (The digits in DY occur

in the order as the corresponding entriesW [i].) The total size of
a wavelet tree is O

(
σb +

nb logσ
logn

)
words, which is O

(nb logσ
logn

)
if

b ≤ logσ n.
As observed in [3], the binary wavelet tree construction proce-

dure can be used as a black box to build degree-σ wavelet trees.

Here, we present a more general version of this reduction.

Lemma 6.4 (♠; see [3, Lemma 2.2]). Given the packed representa-
tion of a stringW ∈

[
0 . . σb

)n
with b ≤ logσ n, we can construct its

degree-σ wavelet tree in O (nb logσ/
√
logn + nb log2 σ/ logn) time

using O (nb/ logσ n) space.

6.2.2 BWT Construction Algorithm. Our construction algorithm

for T ∈ [0 . . σ)n uses a τ -synchronizing set (s ′i)i ∈[1.. |S |] (where
T [s ′i . .n] ≺ T [s ′j . .n] if i < j) for τ = ε logσ n. We then build a

sequenceW ∈ [0 . . σ 3τ) |S | withW [i] = T [s ′i − τ . . s
′
i + 2τ), i.e., we

reverseT [s ′i − τ . . s
′
i + 2τ) and then interpret it as a 3τ -digit integer

in base σ . Next, we construct a degree-σ wavelet tree ofW and

combine the strings DY , where Y ∈ [0 . . σ)≤3τ−1, to obtain the

BWT of T . The procedure is analogous to the binary case.

Theorem 6.5. Given the packed representation of a text T ∈
[0 . . σ)n with logσ ≤

√
logn and its τ -synchronizing set S of size

O (nτ) with τ = ε logσ n, where ε > 0 is a sufficiently small con-
stant, the Burrows–Wheeler transform of T can be constructed in
O (n logσ/

√
logn) time and O (n/ logσ n) space.

763

String Synchronizing Sets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

7 CONDITIONAL OPTIMALITY OF THE
BINARY BWT CONSTRUCTION

Given an arrayA[1 . .m] of integers, the task of counting inversions

is to compute the number of pairs (i, j) such that i < j and A[i] >
A[j]. The currently fastest solution for the above problem, due to

Chan and Pǎtraşcu [9], runs in O (m
√
logm) time and O (m) space.

Without loss of generality [19], we assumeA[i] ∈ [0 . .m). In this
section, we show that improving the BWT construction from Sec-

tion 6.1 also yields an improvement over [9]. More precisely, we

show that computing the BWT of a packed text T ∈ {0, 1}n in

time O (f (n)) implies an O (m + f (m logm))-time construction of

the wavelet tree for A; hence, improving over Theorem 6.3 implies

an o(m
√
logm)-time wavelet tree construction. The main result

then follows from the next observation since it is easy to count

inversions in a length-n bitvector in O (n/ logn) time.

Observation 7.1. The number of inversions in any integer se-
quence A is equal to the total number of inversions in the bitvectors
of the wavelet tree of A.

We first consider the case when A[i] < mε
for all i ∈ [1 . .m]

and for some sufficiently small constant ε < 1; it is almost a direct

reversal of the reduction from Section 6.1.1.

7.1 The Case A[i] < mε

Let bink (x) ∈ {0, 1}
k
be the base-2 representation of x ∈ [0 . . 2k)

and let padk : {0, 1}k → {0, 1}2k be a padding function that, given

X ∈ {0, 1}k , inserts a 0-bit before each bit of X .

Assume ε logm and logm are integers. Given A[1 . .m], let

TA =
m∏
i=1

binε logm (A[i]) · 01 · 1ε logm · pad
logm (bin

logm (i − 1)) · 0.

The textTA is of lengthm(3+2(1+ε) logm) and constructing it takes
O (m) time. Recall that BX denotes the bitvector corresponding to

the node of the wavelet tree of A with root-to-node label X .

Lemma 7.2. For X ∈ {0, 1}<ε logm , let SA[b . . e] be the range
containing all suffixes of TA having X · 01 · 1ε logm as a prefix. Then,
BX = BWT[b . . e].

Proof. Let д : i 7→ (i − 1) (3 + 2(1 + ε) logm) + ε logm − |X | + 1
restricted to AX := {i ∈ [1 . .m] : X is a prefix of binε logm (A[i])}
be a one-to-one map between AX and the set SA[b . . e]. It remains

to observe that TA[д(i) . . |TA |] ≺ TA[д(j) . . |TA |] holds if i < j for
i, j ∈ AX , and binε logm (A[i])[|X |+1] = TA[д(i)−1] for i ∈ AX . □

To compute the BWT ranges corresponding to the bitvectors BX
for X ∈ {0, 1}<ε logm , we proceed as in Section 6: perform a pre-

order traversal of the complete binary tree of height 2ε logm+1 cor-
responding to lexicographic enumeration of X ′ ∈ {0, 1}≤2ε logm+1.
For X ′ = X011

ε logm
, where X ∈ {0, 1}<ε logm , copy the bits from

BWT into BX . The number of bits to copy is given by the number

fX ′ of occurrences of X
′
in TA. After copying the bits (or when we

reach X ′ ∈ {0, 1}2ε logm+1), advance the position in BWT by fX ′ .
To determine the frequencies of all {0, 1}≤2ε logm+1, compute

fX ′ for all X
′ ∈ {0, 1}2ε logm+1 in O (m) time using the algorithm

in Section 6.1.2. The remaining frequencies are then easily derived.

The algorithm runs in O (m + f (m logm)) time, where f (n) is
the runtime of the BWT construction for a packed text from {0, 1}n .

7.2 The Case A[i] < m
Given an array A[1 . .m] with values A[i] ∈ [0 . .m), let

TA =
m∏
i=1

bin
logm (A[i]) · 01 · 1logm · 0 · bin

logm (i − 1) · 0 · 1logm · 0.

Lemma 7.3. For X ∈ {0, 1}<logm , let SA[b . . e] be the range con-
taining all suffixes of TA having X · 01 · 1logm as a prefix. Then,
BX = BWT[b . . e].

The main challenge lies in obtaining the BWT ranges, as the ap-

proach of Section 7.1 no longer works. Consider instead partitioning

the suffixes in SA according to the length-logm prefix (separately

handling shorter suffixes). Observe that there is a unique bijection

ext : {0, 1}logm \ {1logm } → {0, 1}<logm · 01 · 1logm such that X is

a prefix of ext(X). Furthermore, if the range SA[b . . e] contains suf-
fixes ofTA prefixed byX ∈ {0, 1}logm \ {1logm }, then the analogous

range SA[b ′ . . e ′] for ext(X) satisfies e ′ = e . Thus, it suffices to

precompute frequencies F := {(X , fX) : X ∈ {0, 1}logm \ {1logm }}
and F ′ := {(X , fX) : X ∈ {0, 1}<logm · 01 · 1logm }.

To this end, construct F
pref

:= {(X , f ′X) : X ∈ {0, 1}≤logm }, with
f ′X defined as the number occurrences of X as prefixes of strings in

A = (bin
logm (A[i]))i ∈[1..m]

. To compute F
pref

, we first in O (m)
time build {(X , f ′X) : X ∈ {0, 1}logm } ⊆ F

pref
by scanning A. The

remaining elements of F
pref

are derived by the equality f ′X = f ′X 0
+

f ′X 1
. Analogously prepare suffix frequencies F

suf
. Given F

pref
and

F
suf

, we can compute F in O (m) time: the number of occurrences

of X ∈ {0, 1}logm overlapping factors A is obtained from F
pref

and

F
suf

; the number of other occurrences is easily determined as it

only depends onm. Finally, F ′ is computed directly from F
suf

.

Theorem 7.4. If there exists an algorithm that, given the packed
representation of a text T ∈ {0, 1}n , constructs its BWT in O (f (n))
time, then we can compute the number of inversions in an array
of m integers in O (m + f (m logm)) time. In particular, if f (n) =
o(n/
√
logn), then the algorithm runs in o(m

√
logm) time.

8 SYNCHRONIZING SETS CONSTRUCTION
Throughout this section, we fix a text T of length n and a posi-

tive integer τ ≤ 1

2
n. We also introduce a partition P of the set

[1 . .n − τ + 1] so that positions i, j belong to the same class if and

only ifT [i . . i+τ) = T [j . . j+τ). In other words, each class contains
the starting positions of a certain length-τ substring of T . We rep-

resent P using an identifier function id : [1 . .n−τ + 1]→ [0 . . |P |)
such that id(i) = id(j) if and only if T [i . . i + τ) = T [j . . j + τ).

The local consistency of a string synchronizing set S means that

the decision on whether i ∈ S should be made solely based on

T [i . . i + 2τ) or, equivalently, on id(i), . . . , id(i + τ). The density
condition, on the other hand, is formulated in terms of a set R = {i ∈
[1 . .n − 3τ + 2] : per(T [i . . i + 3τ − 2]) ≤ 1

3
τ }. Here, we introduce

its superset Q = {i ∈ [1 . .n − τ + 1] : per(T [i . . i + τ) ≤ 1

3
τ)}. The

periodicity lemma (Lemma 2.1) lets us relate these two sets:

R = {i ∈ [1 . .n − 3τ + 2] : [i . . i + 2τ) ⊆ Q}. (1)

Based on an identifier function id and the set Q , we define a

synchronizing set S as follows. Consider a window of size τ + 1

sliding over the identifiers id(j). For any position i of the window,
we compute the smallest identifier id(j) for j ∈ [i . . i + τ] \Q . We

insert i to S if the minimum is attained for id(i) or id(i + τ).

764

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dominik Kempa and Tomasz Kociumaka

Construction 8.1. For an identifier function id, we define

S = {i ∈ [1 . .n − 2τ + 1] :

min{id(j) : j ∈ [i . . i + τ] \Q} ∈ {id(i), id(i + τ)}}.

Let us formally argue that this results in a synchronizing set.

Lemma 8.2. Construction 8.1 always yields a τ -synchronizing set.

Proof. As for the local consistency of S, observe that if positions
i, i ′ satisfyT [i . . i + 2τ) = T [i ′ . . i ′ + 2τ), then id(i +δ) = id(i ′ +δ)
for δ ∈ [0 . . τ]. Moreover, i + δ ∈ Q if and only if i ′ + δ ∈ Q .

Consequently, {id(i), id(i + τ)} = {id(i ′), id(i ′ + τ)} and

min{id(j) : j ∈ [i . . i + τ] \Q} = min{id(j) : j ∈ [i ′ . . i ′ + τ] \Q}.

Thus, i ∈ S if and only if i ′ ∈ S.
To prove the density condition, first assume that i < R. As (1)

yields [i . . i + 2τ) \ Q , ∅, we can choose a position j in the

latter set with minimum identifier. If j < i + τ , then j ∈ S due

to id(j) = min{id(j ′) : j ′ ∈ [j . . j + τ] \ Q}. Otherwise, j − τ ∈ S
due to id(j) = min{id(j ′) : j ′ ∈ [j − τ . . j] \ Q}. In either case,

S ∩ [i . . i + τ) , ∅.
The converse implication is easy: if i ∈ R, then [i . . i + 2τ) ⊆ Q

by (1), so [j . . j + τ] \Q = ∅ and therefore j < S for j ∈ [i . . i + τ).
Consequently, S ∩ [i . . i + τ) = ∅. □

The main challenge in building a τ -synchronizing set with Con-

struction 8.1 is to choose an appropriate identifier function id so

that resulting synchronizing set S is small. We first consider only

texts satisfying Q = ∅. Note that this is a stronger assumption that

R = ∅, which we made in the nonperiodic case of Sections 4 to 6.

8.1 The Nonperiodic Case
The key feature of strings without small periods is that their occur-

rences cannot overlap too much. We say that a setA ⊆ Z is d-sparse
if every two distinct elements i, i ′ ∈ A satisfy |i − i ′ | > d .

Fact 8.3. An equivalence class P ∈ P is 1

3
τ -sparse if P ∩Q = ∅.

Proof. Suppose that positions i, i ′ ∈ P satisfy i < i ′ ≤ i+ 1

3
τ . We

haveT [i . . i +τ) = T [i ′ . . i ′+τ), so per(T [i . . i ′+τ)) ≤ i ′− i ≤ 1

3
τ .

In particular, per(T [i . . i + τ)) ≤ 1

3
τ , so i ∈ Q and P ∩Q , ∅. □

8.1.1 Randomized Construction. It turns out that choosing id uni-

formly at random leads to satisfactory results if Q = ∅.

Fact 8.4. Let π : P → [0 . . |P |) be a uniformly random bijection,
and let id be an identifier function such that id(j) = π (P) for each
j ∈ P and P ∈ P. If Q = ∅, then a τ -synchronizing set S defined with
Construction 8.1 based on such a function id satisfies E[|S|] ≤ 6n

τ .

Proof. Observe that for every position i ∈ [1 . .n − 2τ + 1], we
have |[i . . i + τ] \ Q | = |[i . . i + τ]| = τ + 1. Moreover, Fact 8.3

guarantees that |[i . . i + τ] ∩ P| ≤ 3 for each class P ∈ P. Thus,
positions in [i . . i + τ] belong to at least

τ
3
distinct classes. Each of

them has the same probability of having the smallest identifier, so

P[i ∈ S] = P[min{id(j) : j ∈ [i . . i + τ]} ∈ {id(i), id(i + τ)}] ≤ 2 · 3τ

holds for every i ∈ [1 . .n − 2τ + 1]. By linearity of expectation, we

conclude that E[|S|] ≤ 6n
τ . □

8.1.2 Deterministic Construction. Our next goal is to provide an

O (n)-time deterministic construction of a synchronizing set S of

size |S| = O (nτ). The idea is to gradually build an identifier func-

tion id assigning consecutive identifiers to classes P ∈ P one at a

time. Our choice of the subsequent classes is guided by a carefully

designed scoring function inspired by Fact 8.4.

Proposition 8.5. If Q = ∅ for a text T and a positive integer
τ ≤ 1

2
n, then in O (n) time one can construct a τ -synchronizing set of

size at most 18n
τ .

Proof. First, we build the partition P. A simple O (n)-time im-

plementation is based on the suffix array SA and the LCP table ofT
(see Section 2.1). We cut the suffix array before every position i such
that LCP[i] < τ , and we remove positions i with SA[i] > n − τ + 1.
The values SA[ℓ . . r] in each remaining maximal region form a

single class P ∈ P. We store pointers to P for all positions j ∈ P.
Next, we iteratively construct the function id represented in a

table id[1 . .n − τ + 1]. Initially, each value id[j] is undefined (⊥). In
the kth iteration, we choose a class Pk ∈ P and set id[j] = k for j ∈
Pk . Finally, we build a τ -synchronizing set as in Construction 8.1.

Our choice of subsequent classes Pk is guided by a scoring func-

tion. To define it, we distinguish active blocks which are maximal

blocks id[ℓ . . r] consisting of undefined values only and satisfying

r − ℓ ≥ τ . Each position j ∈ [ℓ . . r] lying in an active block id[ℓ . . r]
is called an active position and assigned a score: −1 if it is among

the leftmost or the rightmost

⌊
1

3
τ
⌋
positions within an active block

and +2 otherwise. Note that the condition r − ℓ ≥ τ implies that

the total score of positions within an active block is non-negative.

Hence, the global score of all active positions is also non-negative.

Our algorithm explicitly remembers whether each position is

active and what its score is. Moreover, we store the aggregate score

of active positions in each class P ∈ P and maintain a collection

P+ ⊆ P of unprocessed classes with non-negative scores. Note

that the aggregate score is 0 for the already processed classes, so

P+ is non-empty until there are no unprocessed classes. Hence, we

can always choose the subsequent class Pk from P+.

Having chosen the class Pk , we need to set id[j] = k for j ∈ Pk .
If the position j ∈ Pk was active, then some nearby positions j ′ may

cease to be active or change their scores. This further modifies the

aggregate scores of other classes P ∈ P, some of which may enter or

leave P+. Nevertheless, the affected positions j ′ satisfy |j − j ′ | ≤ τ ,
so we can implement the changes caused by setting id[j] = k in

O (τ) time. The total cost of processing Pk is O (|Pk |+τ |Ak |), where
Ak ⊆ Pk consists of positions which were active initially.

Finally, we build the synchronizing set S according to Construc-

tion 8.1. Recall that a position i ∈ [1 . .n − 2τ + 1] is inserted to S if

and only if min id[i . . i + τ] ∈ {id[i], id[i + τ]}. Hence, it suffices to

slide a window of fixed width τ + 1 over the table id[1 . .n − τ + 1]
computing the sliding-window minima. This takes O (n) time.

To bound the size |S|, consider a position i inserted to S, let
k = min id[i . . i+τ], and note thatk = id[i] ork = id[i+τ]. Observe
that prior to processing Pk , we had id[j] = ⊥ for j ∈ [i . . i + τ].
Consequently, id[i . . i + τ] was contained in an active block and

i, i+τ were active positions. At least one of them belongs to Pk , so it
also belongs to Ak . Hence, if i ∈ S, then i ∈

⋃
k Ak or i+τ ∈

⋃
k Ak ,

which yields |S| ≤ 2|
⋃
k Ak | = 2

∑
k |Ak |. In order to bound this

quantity, let us introduce sets A+k ⊆ Ak formed by active positions

765

String Synchronizing Sets STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

that had score +2 prior to processing Pk . The choice of Pk as a class

with non-negative aggregate score guarantees that |Ak | ≤ 3|A+k |.
Finally, we shall prove that the set A+ :=

⋃
k A
+
k is

1

3
τ -sparse.

Consider two distinct positions j, j ′ ∈ A+ such that j ∈ A+k , j
′ ∈ A+k ′ .

If k = k ′, then |j − j ′ | > 1

3
τ because A+k ⊆ Pk is

1

3
τ -sparse by

Fact 8.3. Hence, we may assume without loss of generality that

k ′ < k . Prior to processing Pk , the position j ′ was not active (the
value id[j ′] = k ′ was already set) whereas j was active and had

score+2. Hence, there must have been at least

⌊
1

3
τ
⌋
active positions

with score −1 in between, so |j − j ′ | ≥
⌊
1

3
τ
⌋
+ 1 > 1

3
τ .

Consequently, |A+ | ≤
⌈
3(n−τ+1)

τ

⌉
≤ 3n

τ , which implies |S| ≤
2

∑
k |Ak | ≤ 6

∑
k |A

+
k | = 6|A+ | ≤ 18n

τ . Moreover, the overall run-

ning time is O (n + τ
∑
k |Ak |) = O (n + τ

n
τ) = O (n). □

8.1.3 Efficient Implementation for Small τ . Next, we shall imple-

ment our construction in O (nτ) time if τ ≤ ε logσ n and ε < 1

5
.

Our approach relies on local consistency of the procedure in

Proposition 8.5. More specifically, we note that the way this proce-

dure handles a position i depends only on the classes of the nearby

positions j with |j − i | ≤ τ . In particular, these classes determine

how the score of i changes and whether i is inserted to S.
Motivated by this observation, we partition [1 . .n − τ + 1] into

O (nτ) blocks so that the bth block contains positions i with ⌈ iτ ⌉ = b.
We defineT [1+ (b−2)τ . . (b+2)τ] to be the context of the bth block
(assuming that T [i] = # < Σ for out-of-bound positions i < [1 . .n]),
and we say that blocks are equivalent if they share the same context.

Based on the initial observation, we note that if two blocks b,b ′

are equivalent, then the corresponding positions i = bτ − δ and

i ′ = b ′τ − δ (for δ ∈ [0 . . τ)) are processed in the same way by the

procedure of Proposition 8.5. This means that we need to process

just one representative block in each equivalence class.

We can retrieve each context in O (1) time using Proposition 2.3.

Consequently, it takes O (nτ) time to partition the blocks into equiv-

alence classes and construct a family B of representative blocks.

Our choice of τ guarantees that |B| = O (1 + σ 4τ) = O (n4ε). Simi-

larly, the class P ∈ P of a position j is determined byT [j . . j +τ), so
|P | = O (nε) and the substring can also be retrieved in O (1) time.

Hence, the construction procedure has O (nε) iterations. If we spent
O
(
τ O (1)

)
time for each representative block at each iteration, the

overall running time would be O
(
nεn4ετ O (1)

)
= O
(
n5ε+o (1)

)
=

O
(
n1−Ω(1)

)
= O (nτ). This allows for a quite simple approach.

We maintain classes P ∈ P indexed by the underlying substrings.

For each class, we store the identifier id(j) assigned to the positions
j ∈ P and a list of positions j ∈ P contained in the representative

blocks. To initialize these components (with the identifier id(j) set
to ⊥ at first), we scan all representative blocks in O

(
τ O (1)

)
time

per block, which yields O
(
|B|τ O (1)

)
= o(nτ) time in total.

Choosing a class to be processed in every iteration involves

computing scores. To determine the score of a particular class P ∈ P,
we iterate over all positions j ∈ P contained in the representative

blocks. We retrieve the class of each fragment j ′ with |j − j ′ | ≤ τ
in order to compute the score of j. We add this score, multiplied

by the number of equivalent blocks, to the aggregate score of P.
Having computed the score of each class, we take an arbitrary class

Pk with a non-negative score (and no value assigned yet), and we

assign the subsequent identifier k to this class. As announced above,

the running time of a single iteration is O
(
|B|τ O (1)

)
as we spend

O
(
τ O (1)

)
time for each position contained in a representative block.

In the post-processing, we compute S restricted to positions

in representative blocks: For every position i contained in a rep-

resentative block, we retrieve the classes of the nearby positions

j ∈ [i . . i + τ] to check whether i should be inserted to S. This takes
O
(
τ O (1)

)
time per position i , which is O

(
|B|τ O (1)

)
= o(nτ) in total.

Finally, we build the whole set S: For each block, we copy the

positions of the corresponding representative block inserted to S
(shifting the indices accordingly). The running time of this final

phase is O (|S| + n
τ), which is O (nτ) due to |S| ≤

18n
τ .

Proposition 8.6. For every constant ε < 1

5
, given the packed rep-

resentation of a text T ∈ [0 . . σ)n and a positive integer τ ≤ ε logσ n
such that Q = ∅, one can construct in O (nτ) time a τ -synchronizing
set of size O (nτ).

8.2 The General Case
In this section, we adapt our constructions so that they work for

arbitrary strings. For this, we first study the structure of the set Q .

8.2.1 Structure of Highly Periodic Fragments. The probabilistic ar-
gument in the proof of Fact 8.4 relies on the large size of each set

[i . . i + τ] \Q that we had due to Q = ∅. However, in general the

sets [i . . i + τ] \ Q can be of arbitrary size between 0 and τ + 1. To
deal with this issue, we define the following set (assuming τ ≥ 2).

B =
{
i ∈ [1 . .n − τ + 1] \Q :

per(T [i . . i + τ − 1)) ≤ 1

3
τ or per(T [i + 1 . . i + τ)) ≤ 1

3
τ
}

(In the special case of τ = 1, we set B = ∅.) Intuitively, B forms a

boundary which separates Q from its complement, as formalized in

the fact below. However, it also contains some additional fragments

included to make sure that B consists of full classes P ∈ P.

Fact 8.7 (♠). If [ℓ . . r]∩Q , ∅ and [ℓ . . r] ⊈ Q for two positions
ℓ, r ∈ [1 . .n − τ + 1], then [ℓ . . r] ∩ B , ∅.

We conclude the analysis with a linear-time construction of Q
and B, which also reveals an upper bound on |B|.

Lemma 8.8 (♠). Given a text T and a positive integer τ , the sets Q
and B can be constructed in O (n) time. Moreover, |B| ≤ 6n

τ .

8.2.2 Randomized Construction. The set B lets us adopt the results

of Section 8.1 to arbitrary texts. As indicated in a probabilistic argu-

ment, the key trick is to assign the smallest identifiers to classes in B.

Fact 8.9. There is an identifier function id such that Construc-
tion 8.1 yields a synchronizing set of size at most 18n

τ .

Proof. As in Fact 8.4, we take a random bijection π : P →

[0 . . |P |) and set id(j) = π (P) if j ∈ P. However, this time we draw

π uniformly at random only among bijections such that if P ⊆ B
and P′ ∩ B = ∅ for classes P, P′ ∈ P, then π (P) < π (P′). (Note that
each class in P is either contained in B or is disjoint with this set.)

Consider a position i . Observe that if [i . . i + τ] ∩ B , ∅, then
i ∈ S holds only if i ∈ B or i + τ ∈ B. Hence, the number of such

positions i ∈ S is at most 2|B| ≤ 12n
τ . Otherwise, Fact 8.7 implies

that [i . . i + τ] ⊆ Q or [i . . i + τ] ∩ Q = ∅. In the former case, we

are guaranteed that i < S by Construction 8.1. On the other hand,

766

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Dominik Kempa and Tomasz Kociumaka

P[i ∈ S] ≤ 6

τ holds in the latter case as in the proof of Fact 8.4 since

[i . . i+τ]\Q = [i . . i+τ] is of size τ +1. By linearity of expectation,
the expected number of such positions i ∈ S is up to

6n
τ .

We conclude that E[|S|] ≤ 12n
τ +

6n
τ =

18n
τ . In particular, |S| ≤

18n
τ holds for some identifier function id. □

8.2.3 Deterministic Construction. Our adaptation of the determin-

istic construction uses Fact 8.7 and Lemma 8.8 in a similar way. As

in the proof of Proposition 8.5, we gradually construct id handling

one partition class P ∈ P at a time. We start with classes contained

in B (in an arbitrary order), then we process classes contained in Q
(still in an arbitrary order). In the final third phase, we choose the

subsequent classes disjoint with B ∪Q according to their scores.

Proposition 8.10 (♠). Given a text T ∈ [0 . . σ)n for σ = nO (1)

and a positive integer τ ≤ 1

2
n, in O (n) time one can construct a

τ -synchronizing set of size at most 30n
τ .

8.2.4 Efficient Implementation for Small τ . We conclude by noting

that the procedure of Proposition 8.10 can be implemented in O (nτ)
time for τ < ε logσ n just as we implemented the procedure of

Proposition 8.5 to prove Proposition 8.6. The only observation

needed to make this seamless adaptation is that we can check in

O
(
τ O (1)

)
time whether a given position belongs to Q or B. In

particular, we have sufficient time to perform these two checks for

every position contained in a representative block or its context.

Theorem 8.11. For every constant ε < 1

5
, given the packed repre-

sentation of a text T ∈ [0 . . σ)n and a positive integer τ ≤ ε logσ n,
one can construct in O (nτ) time a τ -synchronizing set of size O (nτ).

REFERENCES
[1] Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,

Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and

Wiktor Zuba. 2019. Quasi-linear-time algorithm for longest common circular

factor. In Proc. CPM. arXiv:1901.11305 To appear.

[2] Alberto Apostolico. 1985. The myriad virtues of subword trees. In Combinatorial
Algorithms on Words. 85–96. https://doi.org/10.1007/978-3-642-82456-2_6

[3] Maxim Babenko, Paweł Gawrychowski, Tomasz Kociumaka, and Tatiana

Starikovskaya. 2015. Wavelet trees meet suffix trees. In Proc. SODA. 572–591.
https://doi.org/10.1137/1.9781611973730.39

[4] Djamal Belazzougui. 2014. Linear time construction of compressed text indices in

compact space. In Proc. STOC. 148–193. https://doi.org/10.1145/2591796.2591885

[5] Oren Ben-Kiki, Philip Bille, Dany Breslauer, Leszek Ga̧sieniec, Roberto Grossi,

and Oren Weimann. 2014. Towards optimal packed string matching. Theor.
Comput. Sci. 525 (2014), 111–129. https://doi.org/10.1016/j.tcs.2013.06.013

[6] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena,

and Pavel Sumazin. 2005. Lowest common ancestors in trees and directed acyclic

graphs. J. Algorithms 57, 2 (2005), 75–94. https://doi.org/10.1016/j.jalgor.2005.08.

001

[7] Or Birenzwige, Shay Golan, and Ely Porat. 2018. Locally consistent parsing for

text indexing in small space. arXiv:1812.00359

[8] Michael Burrows and David J. Wheeler. 1994. A block-sorting lossless data com-
pression algorithm. Technical Report 124. Digital Equipment Corporation.

[9] Timothy M. Chan and Mihai Pătraşcu. 2010. Counting inversions, offline

orthogonal range counting, and related problems. In Proc. SODA. 161–173.
https://doi.org/10.1137/1.9781611973075.15

[10] Yu-Feng Chien, Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jef-

frey Scott Vitter. 2015. Geometric BWT: compressed text indexing via sparse

suffixes and range searching. Algorithmica 71, 2 (2015), 258–278. https:

//doi.org/10.1007/s00453-013-9792-1

[11] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. 2007. Algorithms
on strings. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/

cbo9780511546853

[12] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. 2000. On the

sorting-complexity of suffix tree construction. J. ACM 47, 6 (2000), 987–1011.

https://doi.org/10.1145/355541.355547

[13] Paolo Ferragina and Giovanni Manzini. 2005. Indexing compressed text. J. ACM
52, 4 (2005), 552–581. https://doi.org/10.1145/1082036.1082039

[14] Nathan J. Fine and Herbert S. Wilf. 1965. Uniqueness theorems for periodic

functions. Proc. Am. Math. Soc. 16, 1 (1965), 109–114. https://doi.org/10.2307/

2034009

[15] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. 2003. High-order entropy-

compressed text indexes. In Proc. SODA. 841–850. http://dl.acm.org/citation.cfm?

id=644108.644250

[16] Roberto Grossi and Jeffrey Scott Vitter. 2005. Compressed suffix arrays and suffix

trees with applications to text indexing and string matching. SIAM J. Comput.
35, 2 (2005), 378–407. https://doi.org/10.1137/s0097539702402354

[17] Dan Gusfield. 1997. Algorithms on strings, trees, and sequences: Computer science
and computational biology. Cambridge University Press, Cambridge, UK. https:

//doi.org/10.1017/cbo9780511574931

[18] Torben Hagerup. 1998. Sorting and searching on the word RAM. In Proc. STACS,
Vol. 1373. 366–398. https://doi.org/10.1007/BFb0028575

[19] Yijie Han. 2004. Deterministic sorting inO (n log logn) time and linear space. J.
Algorithms 50, 1 (2004), 96–105. https://doi.org/10.1016/j.jalgor.2003.09.001

[20] Dov Harel and Robert Endre Tarjan. 1984. Fast algorithms for finding nearest

common ancestors. SIAM J. Comput. 13, 2 (1984), 338–355. https://doi.org/10.

1137/0213024

[21] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. 2009. Breaking a time-

and-space barrier in constructing full-text indices. SIAM J. Comput. 38, 6 (2009),
2162–2178. https://doi.org/10.1137/070685373

[22] Guy Jacobson. 1989. Space-efficient static trees and graphs. In Proc. FOCS. 549–554.
https://doi.org/10.1109/SFCS.1989.63533

[23] Artur Jeż. 2016. Recompression: A simple and powerful technique for word

equations. J. ACM 63, 1, Article 4 (2016). https://doi.org/10.1145/2743014

[24] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. 2006. Linear work suffix

array construction. J. ACM 53, 6 (2006), 918–936. https://doi.org/10.1145/1217856.

1217858

[25] Dominik Kempa. 2019. Optimal construction of compressed indexes for

highly repetitive texts. In Proc. SODA. 1344–1357. https://doi.org/10.1137/1.

9781611975482.82

[26] Dominik Kempa and Tomasz Kociumaka. 2019. String synchronizing sets:

Sublinear-time BWT construction and optimal LCE queries. arXiv:1904.04228

[27] Tomasz Kociumaka. 2018. Efficient data structures for internal queries in texts.
PhD thesis. University of Warsaw, Warsaw, Poland. https://www.mimuw.edu.pl/

~kociumaka/files/phd.pdf

[28] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.

2015. Internal pattern matching queries in a text and applications. In Proc. SODA.
532–551. https://doi.org/10.1137/1.9781611973730.36

[29] Gad M. Landau and Uzi Vishkin. 1988. Fast string matching with k differences.

J. Comput. Syst. Sci. 37, 1 (1988), 63–78. https://doi.org/10.1016/0022-0000(88)

90045-1

[30] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. 2009. Ultrafast

and memory-efficient alignment of short DNA sequences to the human genome.

Genome Biol. 10, 3, Article R25 (2009). https://doi.org/10.1186/gb-2009-10-3-r25

[31] Heng Li and Richard Durbin. 2009. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 14 (2009), 1754–1760. https:

//doi.org/10.1093/bioinformatics/btp324

[32] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu.

2015. Genome-scale algorithm design: Biological sequence analysis in the era
of high-throughput sequencing. Cambridge University Press, Cambridge, UK.

https://doi.org/10.1017/cbo9781139940023

[33] Udi Manber and Eugene W. Myers. 1993. Suffix arrays: A new method for on-line

string searches. SIAM J. Comput. 22, 5 (1993), 935–948. https://doi.org/10.1137/

0222058

[34] J. IanMunro, Gonzalo Navarro, and Yakov Nekrich. 2017. Space-efficient construc-

tion of compressed indexes in deterministic linear time. In Proc. SODA. 408–424.
https://doi.org/10.1137/1.9781611974782.26

[35] J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. 2017. Text indexing and

searching in sublinear time. arXiv:1712.07431

[36] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. 2016. Fast construction of

wavelet trees. Theor. Comput. Sci. 638 (2016), 91–97. https://doi.org/10.1016/j.tcs.

2015.11.011

[37] Gonzalo Navarro. 2014. Wavelet trees for all. J. Discrete Algorithms 25 (2014),
2–20. https://doi.org/10.1016/j.jda.2013.07.004

[38] Gonzalo Navarro. 2016. Compact data structures: A practical approach. Cambridge

University Press, Cambridge, UK. https://doi.org/10.1017/cbo9781316588284

[39] Enno Ohlebusch. 2013. Bioinformatics algorithms: Sequence analysis, genome rear-
rangements, and phylogenetic reconstruction. Oldenbusch Verlag, Ulm, Germany.

[40] Süleyman Cenk Sahinalp and Uzi Vishkin. 1994. On a parallel-algorithms method

for string matching problems. In Proc. CIAC. 22–32. https://doi.org/10.1007/

3-540-57811-0_3

[41] Yuka Tanimura, Takaaki Nishimoto, Hideo Bannai, Shunsuke Inenaga, and

Masayuki Takeda. 2017. Small-space LCE data structure with constant-time

queries. In Proc. MFCS. https://doi.org/10.4230/LIPIcs.MFCS.2017.10

[42] Peter Weiner. 1973. Linear pattern matching algorithms. In Proc. SWAT (FOCS).
1–11. https://doi.org/10.1109/SWAT.1973.13

767

http://arxiv.org/abs/1901.11305
https://doi.org/10.1007/978-3-642-82456-2_6
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1145/2591796.2591885
https://doi.org/10.1016/j.tcs.2013.06.013
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1016/j.jalgor.2005.08.001
http://arxiv.org/abs/1812.00359
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1007/s00453-013-9792-1
https://doi.org/10.1007/s00453-013-9792-1
https://doi.org/10.1017/cbo9780511546853
https://doi.org/10.1017/cbo9780511546853
https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.2307/2034009
https://doi.org/10.2307/2034009
http://dl.acm.org/citation.cfm?id=644108.644250
http://dl.acm.org/citation.cfm?id=644108.644250
https://doi.org/10.1137/s0097539702402354
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1016/j.jalgor.2003.09.001
https://doi.org/10.1137/0213024
https://doi.org/10.1137/0213024
https://doi.org/10.1137/070685373
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1145/2743014
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1137/1.9781611975482.82
https://doi.org/10.1137/1.9781611975482.82
http://arxiv.org/abs/1904.04228
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1017/cbo9781139940023
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1137/1.9781611974782.26
http://arxiv.org/abs/1712.07431
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.1007/3-540-57811-0_3
https://doi.org/10.1007/3-540-57811-0_3
https://doi.org/10.4230/LIPIcs.MFCS.2017.10
https://doi.org/10.1109/SWAT.1973.13

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Suffix Array and BWT
	2.2 Word RAM Model
	2.3 Wavelet Trees

	3 String Synchronizing Sets
	4 Sorting Suffixes Starting in Synchronizing Sets
	4.1 The Nonperiodic Case
	4.2 The General Case

	5 Data Structure for LCE Queries
	5.1 The Nonperiodic Case
	5.2 The General Case

	6 BWT Construction
	6.1 Binary Alphabet
	6.2 Large Alphabets

	7 Conditional Optimality of the Binary BWT Construction
	7.1 The Case A[i]<m-to-eps
	7.2 The Case A[i]<m

	8 Synchronizing Sets Construction
	8.1 The Nonperiodic Case
	8.2 The General Case

	References

