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ABSTRACT
A well-known fact in the field of lossless text compression is that

high-order entropy is a weak model when the input contains long

repetitions. Motivated by this fact, decades of research have gener-

ated myriads of so-called dictionary compressors: algorithms able to

reduce the text’s size by exploiting its repetitiveness. Lempel-Ziv

77 is one of the most successful and well-known tools of this kind,

followed by straight-line programs, run-length Burrows-Wheeler

transform, macro schemes, collage systems, and the compact di-

rected acyclic word graph. In this paper, we show that these tech-

niques are different solutions to the same, elegant, combinatorial

problem: to find a small set of positions capturing all distinct text’s

substrings. We call such a set a string attractor. We first show reduc-

tions between dictionary compressors and string attractors. This

gives the approximation ratios of dictionary compressors with re-

spect to the smallest string attractor and allows us to uncover new

asymptotic relations between the output sizes of different dictio-

nary compressors. We then show that the k-attractor problem —

deciding whether a text has a size-t set of positions capturing all
substrings of length at most k — is NP-complete for k ≥ 3. This,

in particular, includes the full string attractor problem. We pro-

vide several approximation techniques for the smallest k-attractor,
show that the problem is APX-complete for constant k , and give

strong inapproximability results. To conclude, we provide matching

lower and upper bounds for the random access problem on string

attractors. The upper bound is proved by showing a data structure

supporting queries in optimal time. Our data structure is universal:
by our reductions to string attractors, it supports random access on

any dictionary-compression scheme. In particular, it matches the

lower bound also on LZ77, straight-line programs, collage systems,

and macro schemes, and therefore essentially closes (at once) the

random access problem for all these compressors.

CCS CONCEPTS
• Theory of computation→ Data compression; Packing and
covering problems; Problems, reductions and completeness;
Cell probe models and lower bounds;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00

https://doi.org/10.1145/3188745.3188814

KEYWORDS
Dictionary compression, compressed data structures

ACM Reference Format:
Dominik Kempa and Nicola Prezza. 2018. At the Roots of Dictionary Com-

pression: String Attractors. In Proceedings of 50th Annual ACM SIGACT
Symposium on the Theory of Computing (STOC’18). ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3188745.3188814

1 INTRODUCTION
The goal of lossless text compression is to reduce the size of a given

string by exploiting irregularities such as skewed character distri-

butions or substring repetitions. Unfortunately, the holy grail of

compression — Kolmogorov complexity [28] — is non-computable:

no Turing machine can decide, in a finite number of steps, whether

a given string has a program generating it whose description is

smaller than some fixed value K . This fact stands as the basis of
all work underlying the field of data compression: since we cannot

always achieve the best theoretical compression, we can at least

try to approximate it. In order to achieve such a goal, we must

first find a model that captures, to some good extent, the degree

of regularity of the text. For example, in the case of the text gen-

erated by a Markovian process of order k , the k-th order entropy

Hk of the source represents a lower bound for our ability to com-

press its outputs. This concept can be extended to that of empirical
entropy [13] when the underlying probabilities are unknown and

must be approximated with the empirical symbol frequencies. The

k-th order compression, however, stops being a reasonable model

about the time when σk becomes larger than n, where σ and n are

the alphabet size and the string length, respectively. In particular,

Gagie [18] showed that when k ≥ logσ n, no compressed represen-

tation can achieve a worst-case space bound of c · nHk + o(n logσ )
bits, regardless of the value of the constant c . This implies that k-th
order entropy is a weak model when k is large, i.e., when the goal

is to capture long repetitions. Another way of proving this fact is

to observe that, for any sufficiently long textT , symbol frequencies

(after taking their context into account) in any power of T (i.e., T
concatenated with itself) do not vary significantly [30, Lem. 2.6]. As

a result, we have that nHk (T
t ) ≈ t · nHk (T ) for any t > 1: entropy

is not sensitive to very long repetitions.

This particular weakness of entropy compression generated, in

the last couple of decades, a lot of interest in algorithms able to di-

rectly exploit text repetitiveness in order to beat the entropy lower

bound on very repetitive texts. The main idea underlying these algo-

rithms is to replace text substrings with references to a dictionary of

strings, hence the name dictionary compressors. One effective com-

pression strategy of this kind is to build a context-free grammar that
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generates (only) the string. Such grammars (in Chomsky normal

form) are known by the name of straight-line programs (SLP) [26];
an SLP is a set of rules of the kind X → AB or X → a, where X , A,
and B are nonterminals and a is a terminal. The string is obtained
from the expansion of a single starting nonterminal S . If also rules

of the form X → Aℓ
are allowed, for any ℓ > 2, then the grammar

is called run-length SLP (RLSLP) [36]. The problems of finding the

smallest SLP — of size д∗ — and the smallest run-length SLP — of

size д∗r l — are NP-hard [12, 23], but fast and effective approxima-

tion algorithms are known, e.g., LZ78 [46], LZW [44], Re-Pair [31],

Bisection [27]. An even more powerful generalization of RLSLPs is

represented by collage systems [25]: in this case, also rules of the

form X → Y [l ..r ] are allowed (i.e., X expands to a substring of Y ).
We denote with c the size of a generic collage system, and with

c∗ the size of the smallest one. A related strategy, more powerful

than grammar compression, is that of replacing repetitions with

pointers to other locations in the string. The most powerful and

general scheme falling into this category takes the name of pointer
macro scheme [40, 41], and consists of a set of substring equalities

that allow for unambiguously reconstructing the string. Finding

the smallest such system — of size b∗ — is also NP-hard [22]. How-

ever, if we add the constraint of unidirectionality (i.e., text can only

be copied from previous positions), then Lempel and Ziv in [32]

showed that a greedy algorithm (LZ77) finds an optimal solution to

the problem (we denote the size of the resulting parsing by z). Sub-
sequent works showed that LZ77 can even be computed in linear

time [14]. Other effective techniques to compress repetitive strings

include the run-length Burrows-Wheeler transform [11] (RLBWT)

and the compact directed acyclic word graph [10, 15] (CDAWG).

With the first technique, we sort all circular string permutations

in an n × n matrix; the BWT is the last column of this matrix. The

BWT contains few equal-letter runs if the string is very repetitive,

therefore run-length compression often significantly reduces the

size of this string permutation [33]. The number r of runs in the

BWT is yet another good measure of repetitiveness. Finally, one can

build a compact (that is, path compressed) automaton recognizing

the string’s suffixes, and indicate with e the number of its edges.

The size e∗ of the smallest such automaton — the CDAWG — also

grows sublinearly with n if the string is very repetitive [5]. Both

RLBWT and CDAWG can be computed in linear time [1, 16, 35].

The promising results obtained in the field of dictionary com-

pression have generated — in recent years — a lot of interest around

the closely-related field of compressed computation, i.e., designing
compressed data structures that efficiently support a particular set

of queries on the text. The sizes of these data structures are bounded

in terms of repetitiveness measures. As with text compression, the

landscape of compressed data structures is extremely fragmented:

different solutions exist for each compression scheme, and their

space/query times are often not even comparable, due to the fact

that many asymptotic relations between repetitiveness measures

are still missing. See, for example, Gagie et al. [21] for a compre-

hensive overview of the state-of-the-art of dictionary-compressed

full-text indexes (where considered queries are random access to

text and counting/locating pattern occurrences). In this paper we

consider data structures supporting random access queries (that

is, efficient local decompression). Several data structures for this

problem have been proposed in the literature for each distinct com-

pression scheme. In Table 1 we report the best time-space trade-offs

known to date (grouped by compression scheme). Extracting text

from Lempel-Ziv compressed text is a notoriously difficult prob-

lem. No efficient solution is known within O (z) space (they all

require time proportional to the parse’s height), although efficient

queries can be supported by raising the space by a logarithmic

factor [6, 8]. Grammars, on the other hand, allow for more com-

pact and time-efficient extraction strategies. Bille et al. [9] have

been the first to show how to efficiently perform text extraction

within O (д) space. Their time bounds were later improved by Belaz-

zougui et al. [2], who also showed how to slightly increase the space

to O (д logϵ n log(n/д)) while matching a lower bound holding on

grammars [42]. Space-efficient text extraction from the run-length

Burrows-Wheeler transform has been an open problem until re-

cently. Standard solutions [33] required spending additional O (n/s )
space on top of the RLBWT in order to support extraction in a time

proportional to s . In a recent publication, Gagie et al. [21] showed

how to achieve near-optimal extraction time in the packed setting

within O (r log(n/r )) space. Belazzougui and Cunial [3] showed

how to efficiently extract text from a CDAWG-compressed text.

Their most recent work [4] shows, moreover, how to build a gram-

mar of size O (e ): this result implies that the solutions for grammar-

compressed text can be used on the CDAWG. To conclude, no strate-

gies for efficiently extracting text from general macro schemes and

collage systems are known to date: the only solution we are aware

of requires explicitly navigating the compressed structure, and can

therefore take time proportional to the text’s length in the worst

case.

1.1 Our Contributions
At this point, it is natural to ask whether there exists a common

(and simple) principle underlying the complex set of techniques

constituting the fields of dictionary compression and compressed-

computation. In this paper, we answer (affirmatively) this question.

Starting from the observation that string repetitiveness can be de-

fined in terms of the cardinality of the set of distinct substrings, we

introduce a very simple combinatorial object — the string attractor
— capturing the complexity of this set. Formally, a string attractor

is a subset of the string’s positions such that all distinct substrings

have an occurrence crossing at least one of the attractor’s elements.

Despite the simplicity of this definition, we show that dictionary

compressors can be interpreted as algorithms approximating the

smallest string attractor: they all induce (very naturally) string at-

tractors whose sizes are bounded by their associated repetitiveness

measures. We also provide reductions from string attractors to most

dictionary compressors and use these reductions to derive their

approximation rates with respect to the smallest string attractor.

This yields our first efficient approximation algorithms computing

the smallest string attractor, and allows us to uncover new rela-

tions between repetitiveness measures. For example, we show that

д∗, z ∈ O (c∗ log2 (n/c∗)), c∗ ∈ O (b∗ log(n/b∗)) ∩ O (r log(n/r )),
and b∗ ∈ O (c∗ log(n/c∗)).

Our reductions suggest that a solution (or a good approximation)

to the problem of finding an attractor of minimum size could yield a

better understanding of the concept of text repetitiveness and could
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help in designing better dictionary compressors. We approach the

problem by first generalizing the notion of string attractor to that of

k-attractor: a subset of the string’s positions capturing all substrings
of length at most k . We study the computational complexity of the

k-attractor problem: to decide whether a text has a k-attractor of
a given size. Using a reduction from k-set-cover, we show that

the k-attractor problem is NP-complete for k ≥ 3. In particular,

this proves the NP-completeness of the original string attractor

problem (i.e., the case k = n). Given the hardness of computing the

smallest attractor, we focus on the problem of approximability. We

show that the smallest k-attractor problem is APX-complete for

constant k by showing a 2k-approximation computable in linear

time and a reduction from k-vertex-cover. We also use reductions

to k-set-cover to provide O (logk )-approximations computable in

polynomial time. Our APX-completeness result implies that the

smallest k-attractor problem has no PTAS unless P=NP. Using a

reduction from 3-vertex-cover and explicit constants derived by

Berman and Karpinski [7], we strengthen this result and show that,

for every ϵ > 0 and every k ≥ 3, it is NP-hard to approximate the

smallest k-attractor within a factor of 11809/11808 - ϵ .
We proceed by presenting an application of string attractors to

the domain of compressed computation: we show that the simple

property defining string attractors is sufficient to support random

access in optimal time. We first extend a lower bound [42, Thm. 5]

for random access on grammars to string attractors. Letγ be the size

of a string attractor of a length-n string T over an alphabet of size

σ . The lower bound states that Ω(logn/ log logn) time is needed to

access one random position within O (γ polylog n) space. Letw be

the memory word size (in bits). We present a data structure taking

O (γτ logτ (n/γ )) words of space and supporting the extraction of

any length-ℓ substring of T in O (logτ (n/γ ) + ℓ logσ/w ) time, for

any τ ≥ 2 fixed at construction time. For τ = log
ϵ n (for any con-

stant ϵ > 0) this query time matches the lower bound. Choosing

τ = (n/γ )ϵ , we obtain instead optimal time in the packed setting

within O (γ 1−ϵnϵ ) space. From our reductions, our solution is uni-
versal: given a dictionary-compressed text representation, we can

induce a string attractor of the same size and build our structure on

top of it. We note, as well, that the lower bound holds, in particular,

on most compression schemes. As a result, our data structure is

also optimal for SLPs, RLSLPs, collage systems, LZ77, and macro

schemes. Tables 1 and 2 put our structure in the context of state-

of-the-art solutions to the problem. Note that all existing solutions

depend on a specific compression scheme.

2 PRELIMINARIES
Throughout the paper, we use the terms string and text interchange-
ably. The notion T [i ..j], 1 ≤ i ≤ j ≤ n, denotes the substring of

string T ∈ Σn starting at position i and ending at position j. We

denote the alphabet size of string T by |Σ| = σ .
The LZ77 parsing [32, 45] of a string T is a greedy, left-to-right

parsing of T into longest previous factors, where a longest previous
factor at position i is a pair (pi , ℓi ) such that, pi < i ,T [pi ..pi + ℓi −
1] = T [i ..i + ℓi − 1], and ℓi is maximized. In this paper, we use the

LZ77 variant where no overlaps between phrases and sources are

allowed, i.e., we require that pi + ℓi − 1 < i . Elements of the parsing

are called phrases. When ℓi > 0, the substring T [pi ..pi + ℓi − 1] is

Table 1: Best trade-offs in the literature for extracting text
from compressed representations.

Structure Space Extract time

[8, Lem. 5] O (z log(n/z)) O (ℓ + log(n/z))
[6, Thm. 2] O (z log(n/z)) O ((1 + ℓ/ logσ n) log(n/z))
[2, Thm. 1] O (д) O (ℓ/ logσ n + logn)

[2, Thm. 3] O (д logϵ n log n
д ) O (ℓ/ logσ n +

logn
log logn )

[21, Thm. 4] O (r log(n/r )) O (ℓ log(σ )/w + log(n/r ))
[4, Thm. 7] O (e ) O (ℓ/ logσ n + logn)

Table 2: Some trade-offs achievable with our structure for
different choices of τ , in order of decreasing space and in-
creasing time. Query time in the first row is optimal in the
packed setting, while in the second row it is optimal within
the resulting space due to a lower bound for random access
on string attractors. To compare these bounds with those of
Table 1, just replace γ with any of the measures z, д, r , or e
(possible by our reductions to string attractors).

τ Space Extract time

(n/γ )ϵ O (γ 1−ϵnϵ ) O (ℓ log(σ )/w )

log
ϵ n O (γ log

ϵ n log(n/γ )) O

(
ℓ log(σ )/w +

log(n/γ )
log logn

)
2 O (γ log(n/γ )) O (ℓ log(σ )/w + log(n/γ ))

called the source of phraseT [i ..i+ℓi−1]. In otherwords,T [i ..i+ℓi−1]
is the longest prefix of T [i ..n] that has another occurrence not

overlappingT [i ..n] and pi < i is its starting position. The exception
is when ℓi = 0, which happens iffT [i] is the leftmost occurrence of

a symbol inT . In this case we output (T [i], 0) (to representT [i ..i]: a
phrase of length 1) and the next phrase starts at position i + 1. LZ77
parsing has been shown to be the smallest parsing of the string

into phrases with sources that appear earlier in the text [45]. The

parsing can be computed in O (n) time for integer alphabets [14]

and in O (n logσ ) for general (ordered) alphabets [38]. The number

of phrases in the LZ77 parsing of string T is denoted by z.
Amacro scheme [41] is a set of b directives of two possible types:

(1) T [i ..j]← T [i ′..j ′] (i.e., copy T [i ′..j ′] in T [i ..j]), or
(2) T [i]← c , with c ∈ Σ (i.e., assign character c to T [i]),

such that T can be unambiguously decoded from the directives.

A bidirectional parse is a macro scheme where the left-hand sides

of the directives induce a text factorization, i.e., they cover the

whole T and they do not overlap. Note that LZ77 is a particular

case of a bidirectional parse (the optimal unidirectional one), and

therefore it is also a macro scheme.

A collage system [25] is a set of c rules of four possible types:

(1) X → a: nonterminal X expands to a terminal a,
(2) X → AB: nonterminal X expands to AB, with A and B non-

terminals different from X ,

(3) X → Rℓ : nonterminal X expands to nonterminal R , X
repeated ℓ times,

(4) X → K[l ..r ]: nonterminal X expands to a substring of the

expansion of nonterminal K , X .
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The text is the result of the expansion of a special starting non-

terminal S . Moreover, we require that the collage system does not

have cycles, i.e., the derivation tree of any nonterminal X does not

contain X nor X [l ..r ] for some integers l , r as an internal node.

Collage systems generalize SLPs (where only rules 1 and 2 are al-

lowed) and RLSLPs (where only rules 1, 2, and 3 are allowed). The

height hX of a nonterminal X is defined as follows. If X expands

to a terminal with rule 1, then hX = 1. If X expands to AB with

rule 2, then hX = max{hA,hB } + 1. If X expands to Rℓ with rule

3, then hX = hR + 1. If X expands to K[l ..r ] with rule 4, then

hX = hK + 1. The height of the collage system is the height of its

starting nonterminal.

By SA[1..n] we denote the suffix array [34] ofT , |T | = n, defined
as a permutation of the integers [1..n] such that T [SA[1]..n] ≺
T [SA[2]..n] ≺ · · · ≺ T [SA[n]..n], where ≺ denotes the lexicograph-

ical ordering. For simplicity we assume that T [n] = $, where $ is

a special symbol not occurring elsewhere in T and lexicographi-

cally smaller than all other alphabet symbols. The Burrows-Wheeler
Transform [11] BWT [1..n] is a permutation of the symbols inT such

that BWT [i] = T [SA[i] − 1] if SA[i] > 1 and $ otherwise. Equiv-

alently, BWT can be obtained as follows: sort lexicographically

all cyclic permutations of T into a (conceptual) matrixM ∈ Σn×n

and take its last column. Denote the first and last column ofM by

F and L, respectively. The key property of M is the LF mapping:
the i-th occurrence of any character c in column L corresponds

to the i-th occurrence of any character c in column F (i.e., they

represent the same position in the text). With LF [i], i ∈ [1,n]
we denote the LF mapping applied on position i in the L column.

It is easy to show that LF [i] = C[L[i]] + rankL[i] (L, i ), where
C[c] = |{i ∈ [1,n] | L[i] < c}| and rankc (L, i ) is the number of

occurrences of c in L[1..i − 1].
On compressible texts, BWT exhibits some remarkable properties

that allow the boosting of compression. In particular, it can be

shown [33] that repetitions inT generate equal-letter runs in BWT.

We can efficiently represent this transform as the list of pairs

RLBWT = ⟨λi , ci ⟩i=1, ...,r ,

where λi > 0 is the length of the i-th maximal run, and ci ∈ Σ.
Equivalently, RLBWT is the shortest list of pairs ⟨λi , ci ⟩i=1, ...,r

satisfying BWT = cλ1
1
cλ2
2
. . . cλrr .

The compact directed acyclic word graph [10, 15] (CDAWG for

short) is the minimum path-compressed graph (i.e., unary paths are

collapsed into one path) with one source node s and one sink node

f such that all T ’s suffixes can be read on a path starting from the

source. The CDAWG can be built in linear time by minimization of

the suffix tree [43] of T : collapse all leaves in one single node, and

proceed bottom-up until no more nodes of the suffix tree can be

collapsed. The CDAWG can be regarded as an automaton recogniz-

ing all T ’s substrings: make s the initial automaton’s state and all

other nodes (implicit and explicit) final.

3 STRING ATTRACTORS
A stringT [1..n] is considered to be repetitivewhen the cardinality of
the set SUBT = {T [i ..j] | 1 ≤ i ≤ j ≤ |T |} of its distinct substrings is
much smaller than the maximum number of distinct substrings that

could appear in a string of the same length on the same alphabet.

Note that T can be viewed as a compact representation of SUBT .
This observation suggests a simple way of capturing the degree of

repetitiveness of T , i.e., the cardinality of SUBT . We can define a

function ϕ : SUBT → Γ ⊆ [1,n] satisfying the following property:
each s ∈ SUBT has an occurrence crossing position ϕ (s ) in T . Note
that such a function is not necessarily unique. The codomain Γ of ϕ
is the object of study of this paper. We call this set a string attractor :

Definition 3.1. A string attractor of a string T ∈ Σn is a set of γ
positions Γ = {j1, . . . , jγ } such that every substring T [i ..j] has an
occurrence T [i ′..j ′] = T [i ..j] with jk ∈ [i

′, j ′], for some jk ∈ Γ.

Example 3.2. Note that {1, 2, ..,n} is always a string attractor (the
largest one) for any string. Note also that this is the only possible

string attractor for a string composed of n distinct characters (e.g.,

a permutation).

Example 3.3. Consider the following string T , where we under-
lined the positions of a smallest string attractor Γ∗ = {4, 7, 11, 12}
of T .

CDABCCDABCCA

To see that Γ∗ is a valid attractor, note that every substring between
attractor’s positions has an occurrence crossing some attractor’s

position (these substrings are A, B, C, D, CD, DA, CC, AB, BC, CDA, ABC).
The remaining substrings cross an attractor’s position by definition.

To see that Γ∗ is of minimum size, note that the alphabet size is

σ = 4 = |Γ∗ |, and any attractor Γ must satisfy |Γ | ≥ σ .

3.1 Reductions from Dictionary Compressors
In this section we show that dictionary compressors induce string

attractors whose sizes are bounded by their associated repetitive-

ness measures.

Since SLPs and RLSLPs are particular cases of collage systems,

we only need to show a reduction from collage systems to string

attractors to capture these three classes of dictionary compressors.

We start with the following auxiliary lemma.

Lemma 3.4. Let C = {Xi → ai , i = 1, . . . , c ′} ∪ {Yi → AiBi , i =

1, . . . , c ′′}∪{Zi → Rℓii , ℓi > 2, i = 1, . . . , c ′′′}∪{Wi → Ki [li ..ri ], i =
1, . . . , c ′′′′} be a collage system with starting nonterminal S generat-
ing string T . For any substring T [i ..j] one of the following is true:

(1) i = j and T [i] = ak , for some 1 ≤ k ≤ c ′, or
(2) there exists a rule Yk → AkBk such that T [i ..j] is composed

of a non-empty suffix of the expansion of Ak followed by a
non-empty prefix of the expansion of Bk , or

(3) there exists a rule Zk → R
ℓk
k such that T [i ..j] is composed

of a non-empty suffix of the expansion of Rk followed by a
non-empty prefix of the expansion of Rℓk−1k .

Proof. Consider any substring T [i ..j] generated by expanding

the start rule S . The proof is by induction on the height h of S .
For h = 1, the start rule S must expand to a single symbol and

hence case (1) holds. Consider a collage system of height h > 1, and

let S be its start symbol. Then, S has one of the following forms:

(1) S expands as S → AB, or

(2) S expands as S → Rℓ , or
(3) S expands as S → K[l ..r ],
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where A, B, R, and K are all nonterminals of height h − 1.
In case (1), either T [i ..j] is fully contained in the expansion of A,

or it is fully contained in the expansion of B, or it is formed by a

non-empty suffix of the expansion of A followed by a non-empty

prefix of the expansion of B. In the first two cases, our claim is true

by inductive hypothesis on the collage systems with start symbols

A or B. In the third case, our claim is true by definition.

In case (2), either T [i ..j] is fully contained in the expansion of

R, or it is formed by a non-empty suffix of the expansion of Rℓ1

followed by a non-empty prefix of the expansion of Rℓ2 , for some

ℓ1, ℓ2 > 0 such that ℓ1 + ℓ2 = ℓ. In the former case, our claim is true

by inductive hypothesis. In the latter case,T [i ..j] can be written as a
suffix of R followed by a concatenation of k ≥ 0 copies of R followed

by a prefix of R, i.e., T [i ..j] = R[l ..|R |]RkR[1..r ] for some 1 ≤ l ≤
|R |, k ≥ 0, and 1 ≤ r ≤ |R |. Then, T [i ..j] has also an occurrence

crossing R and Rℓ−1: T [i ..j] = R[l ..|R |]Rℓ−1[1..(j − i ) − ( |R | − l )].
In case (3), sinceT [i ..j] is a substring of the expansion of S , then

it is also a substring of the expansion of K . Since the height of K is

h − 1, we apply an inductive hypothesis with start symbol K . □

The above lemma leads to our first reduction:

Theorem 3.5. Let C be a collage system of size c generating T .
Then, T has an attractor of size at most c .

Proof. Let C = {Xi → ai , i = 1, . . . , c ′} ∪ {Yi → AiBi , i =

1, . . . , c ′′}∪{Zi → Rℓii , ℓi > 2, i = 1, . . . , c ′′′}∪{Wi → Ki [li ..ri ], i =
1, . . . , c ′′′′} be a collage system of size c = c ′ + c ′′ + c ′′′ + c ′′′′ gen-
erating string T .

Start with an empty string attractor ΓC = ∅ and repeat the

following for k = 1, . . . , c ′. Choose any of the occurrences T [i]
of the expansion ak of Xk in T and insert i in ΓC . Next, for k =
1, . . . , c ′′, choose any of the occurrences T [i ..j] of the expansion
of Yk . By the production Yk → AkBk , T [i ..j] can be factored as

T [i ..j] = T [i ..i ′]T [i ′ + 1..j], where T [i ..i ′] and T [i ′ + 1..j] are
expansions of Ak and Bk , respectively. Insert position i ′ in ΓC .
Finally, for k = 1, . . . , c ′′′, choose any of the occurrences T [i ..j]

of the expansion of Zk in T . By the production Zk → R
ℓk
k , T [i ..j]

can be factored as T [i ..j] = T [i ..i ′]T [i ′ + 1..j], where T [i ..i ′] and

T [i ′ + 1..j] are expansions of Rk and R
ℓk−1
k . Insert position i ′ in ΓC .

Clearly the size of ΓC is atmost c . To see that ΓC is a valid attractor,

consider any substringT [i ..j] ofT . By Lemma 3.4, either i = j (and,
by construction, ΓC contains a position of some occurrence of ak
such thatT [i] = ak and Xk → ak is one of the rules inC), orT [i ..j]

spans the expansion of some Ak |Bk or Rk |R
ℓk−1
k (with the crossing

point shown). From the construction of ΓC , such expansion has

an occurrence in T containing an element in ΓC right before the

crossing point. Thus, T [i ..j] has an occurrence T [i ′..j ′] containing
a position from ΓC . □

We now show an analogous result for macro schemes.

Theorem 3.6. Let M be a macro scheme of size b ofT . Then,T has
an attractor of size at most 2b.

Proof. Let T [ik1 ..jk1 ] ← T [i ′k1
..j ′k1

], T [qk2 ] ← ck2 , with 1 ≤

k1 ≤ b1, 1 ≤ k2 ≤ b2, andb = b1+b2 be theb directives of ourmacro

schemeMS.We claim that ΓMS = {i1, . . . , ib1 , j1, . . . , jb1 ,q1, . . . ,qb2 }
is a valid string attractor for T .

Let T [i ..j] be any substring. All we need to show is that T [i ..j]
has a primary occurrence, i.e., an occurrence containing one of

the positions ik1 , jk1 , or qk2 . Let s1 = i and t1 = j. Consider all
possible chains of copies (following the macro scheme directives)

T [s1..t1] ← T [s2..t2] ← T [s3..t3] ← . . . that either end in some

primary occurrence T [sk ..tk ] or are infinite (note that there could
exist multiple chains of this kind since the left-hand side terms

of some macro scheme’s directives could overlap). Our goal is to

show that there must exist at least one finite such chain, i.e., that

ends in a primary occurrence. Pick any s1 ≤ p1 ≤ t1. Since ours
is a valid macro scheme, then T [p1] can be retrieved from the

scheme, i.e., the directives induce a finite chain of copies T [p1]←
· · · ← T [pk ′] ← c , for some k ′, such that T [pk ′] ← c is one of

the macro scheme’s directives. We now show how to build a finite

chain of copiesT [s1..t1]← T [s2..t2]← · · · ← T [sk ..tk ] ending in a
primary occurrenceT [sk ..tk ] ofT [s1..t1], withk ≤ k ′. By definition,
the assignment T [p1]← T [p2] comes from some macro scheme’s

directive T [l1..r1]← T [l2..r2] such that p1 ∈ [l1, r1] and p1 − l1 =
p2−l2 (if there are multiple directives of this kind, pick any of them).

If either l1 ∈ [s1, t1] or r1 ∈ [s1, t1], then T [s1..t1] is a primary

occurrence and we are done. Otherwise, we set s2 = l2 + (i − l1) and
t2 = l2+ (j−l1). By this definition, we have thatT [s1..t1] = T [s2..t2]
and p2 ∈ [s2, t2], therefore we can extend our chain to T [s1..t1]←
T [s2..t2]. It is clear that the reasoning can be repeated, yielding that

eitherT [s2..t2] is a primary occurrence or our chain can be extended

to T [s1..t1] ← T [s2..t2] ← T [s3..t3] for some substring T [s3..t3]
such that p3 ∈ [s3, t3]. We repeat the construction for p4,p5, . . .
until either (i) we end up in a chain T [i ..j] ← · · · ← T [sk ..tk ],
with k < k ′, ending in a primary occurrence T [sk ..kk ] of T [s1..t1],
or (ii) we obtain a chain T [s1..t1] ← · · · ← T [sk ′ ..tk ′] such that

pk ′ ∈ [sk ′ , tk ′] (i.e., we consume all the p1, . . . ,pk ′ ). In case (ii), note

that T [pk ′]← c is one of the macro scheme’s directives, therefore

T [sk ′ ..tk ′] is a primary occurrence of T [s1..t1]. □

The above theorem implies that LZ77 induces a string attractor

of size at most 2z. We can achieve a better bound by exploiting the

so-called primary occurrence property of LZ77:

Lemma 3.7. Let z be the number of factors of the Lempel-Ziv
factorization of a string T . Then, T has an attractor of size z.

Proof. We insert in ΓLZ 77 all positions at the end of a phrase.

It is easy to see [30] that every text substring has an occurrence

crossing a phrase boundary (these occurrences are called primary),
therefore we obtain that ΓLZ 77 is a valid attractor for T . □

Kosaraju and Manzini [29] showed that LZ77 is coarsely optimal,
i.e., its compression ratio differs from the k-th order empirical

entropy by a quantity tending to zero as the text length increases.

From Lemma 3.7, we can therefore give an upper bound to the size

of the smallest attractor in terms of k-th order empirical entropy.
1

Corollary 3.8. Let γ ∗ be the size of the smallest attractor for a
string T ∈ Σn , and Hk denote the k-th order empirical entropy of T .
Then, γ ∗ logn ≤ nHk + o(n logσ ) for k ∈ o(logσ n).

1
Note that [29] assumes a version of LZ77 that allows phrases to overlap their sources.

It is easy to check that Lemma 3.7 holds also for this variant.
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The run-length Burrows-Wheeler transform seems a completely

different paradigm for compressing repetitive strings: while gram-

mars and macro schemes explicitly copy portions of the text to

other locations, with the RLBWT we build a string permutation by

concatenating characters preceding lexicographically-sorted suf-

fixes, and then run-length compress it. This strategy is motivated

by the fact that equal substrings are often preceded by the same

character, therefore the BWT contains long runs of the same letter

if the string is repetitive [33]. We obtain:

Theorem 3.9. Let r be the number of equal-letter runs in the
Burrows-Wheeler transform of T . Then, T has an attractor of size r .

Proof. Let n = |T |. Denote the BWT of T by L and consider the

process of inverting the BWT to obtainT . The inversion algorithm is

based on the observation thatT [n−k] = L[LFk [p0]] fork ∈ [0,n−1],
where p0 is the position of T [n] in L. From the formula for LF it is

easy to see that if two positions i, j belong to the same equal-letter

run in L then LF [j] = LF [i]+ (j − i ). Let ΓBWT = {n−k | LF
k
[p0] =

1 or L[LFk [p0]− 1] , L[LFk [p0]]}, i.e., ΓBWT is the set of positions

i inT such that if the symbol in L corresponding toT [i] is L[j] then
j is the beginning of run in L (alternatively, we can define ΓBWT as

the set of positions at the end of BWT runs).

To show that ΓBWT is an attractor of T , consider any substring

T [i ..j] of T . We show that there exists an occurrence of T [i ..j] in T
that contains at least one position from ΓBWT . Let p = LFn−j [p0],
i.e., L[p] is the symbol in L corresponding to T [j]. Denote ℓ =
j−i+1 and let [i0, j0], [i1, j1], . . . , [iℓ−1, jℓ−1] be the sequence of runs
visited when the BWT inversion algorithm computes, from right

to left, T [i ..j], i.e., L[it ..jt ] is the BWT-run containing L[LF t [p]],
t ∈ {0, . . . , ℓ − 1}. Let b = argmin{LF t [p] − it | t ∈ [0, ℓ − 1]}.

Further, let ∆ = LFb [p] − ib and let p′ = p − ∆. By definition of

b and from the above property of LF for two positions inside the

same run we have that L[LF t [p′]] = L[LF t [p]] for t ∈ [0, ℓ − 1].

This implies that if we let j ′ be such that p′ = LFn−j
′

[p0] (i.e.,
j ′ is such that T [j ′] corresponds to L[p′]) then T [i ..j] = T [i ′..j ′]

for i ′ := j ′ − ℓ + 1. However, since by definition of b, L[LFb [p′]]
(corresponding toT [j ′ −b]) is at the beginning of run in L,T [i ′..j ′]
contains a position from ΓBWT . □

Finally, an analogous theorem holds for automata recognizing

the string’s suffixes:

Theorem 3.10. Let e be the number of edges of a compact automa-
ton A recognizing all (and only the) suffixes of a string T . Then, T
has an attractor of size e .

Proof. We call root the starting state of A. Start with empty

attractor ΓA . For every edge (u,v ) ofA, do the following. LetT [i ..j]
be any occurrence of the substring read from the root of A to the

first character in the label of (u,v ). We insert j in ΓA .
To see that ΓA is a valid string attractor of size e , consider any

substring T [i ..j]. By definition of A, T [i ..j] defines a path from

the root to some node u, plus a prefix of the label (possibly, all

the characters of the label) of an edge (u,v ) originating from u.
Let T [i ..k], k ≤ j, be the string read from the root to u, plus the
first character in the label of (u,v ). Then, by definition of ΓA there

is an occurrence T [i ′..k ′] = T [i ..k] such that k ′ ∈ ΓA . Since the
remaining (possibly empty) suffix T [k + 1..j] of T [i ..j] ends in

the middle of an edge, every occurrence of T [i ..k] is followed by

T [k + 1..j], i.e.,T [i ′..i ′ + (j − i )] is an occurrence ofT [i ..j] crossing
the attractor’s element k ′. □

3.2 Reductions to Dictionary Compressors
In this section we show reductions from string attractors to dic-

tionary compressors. Combined with the results of the previous

section, this will imply that dictionary compressors can be inter-

preted as approximation algorithms for the smallest string attractor.

The next property follows easily from Definition 3.1 and will be

used in the proofs of the following theorems.

Lemma 3.11. Any superset of a string attractor is also a string
attractor.

We now show that we can derive a bidirectional parse from a

string attractor.

Theorem 3.12. Given a string T ∈ Σn and a string attractor Γ of
size γ forT , we can build a bidirectional parse (and therefore a macro
scheme) for T of size O (γ log(n/γ )).

Proof. We add γ equally-spaced attractor’s elements following

Lemma 3.11. We define phrases of the parse around attractor’s ele-

ments in a “concentric exponential fashion”, as follows. Characters

on attractor’s positions are explicitly stored. Let i1 < i2 be two con-
secutive attractor’s elements. Letm = ⌊(i1 + i2)/2⌋ be the middle

position between them. We create a phrase of length 1 in position

i1 + 1, followed by a phrase of length 2, followed by a phrase of

length 4, and so on. The last phrase is truncated at positionm. We

do the same (but right-to-left) for position i2 except the last phrase
is truncated at positionm + 1. For the phrases’ sources, we use any
of their occurrences crossing an attractor’s element (possible by

definition of Γ).
Suppose we are to extract T [i], and i is inside a phrase of length

≤ 2
e
, for some e . Let i ′ be the position from where T [i] is copied

according to our bidirectional parse. By the way we defined the

scheme, it is not hard to see that i ′ is either an explicitly stored

character or lies inside a phrase of length
2 ≤ 2

e−1
. Repeating the

reasoning, we will ultimately “fall” on an explicitly stored character.

Since attractor’s elements are at a distance of at most n/γ from

each other, both the parse height and the number of phrases we

introduce per attractor’s element are O (log(n/γ )). □

The particular recursive structure of the macro scheme of Theo-

rem 3.12 can be exploited to induce a collage system of the same

size. We state this result in the following theorem.

Theorem 3.13. Given a string T ∈ Σn and a string attractor Γ of
size γ forT , we can build a collage system forT of size O (γ log(n/γ )).

Proof. We first build the bidirectional parse of Theorem 3.12,

withO (γ log(n/γ )) phrases of length at mostn/γ each.Wemaintain

the following invariant: every maximal substring T [i ..j] covered
by processed phrases is collapsed into a single nonterminal Y .

We will process phrases in order of increasing length. The idea

is to map a phrase on its source and copy the collage system of the

2
To see this, note that 2

e = 1 + 2
0 + 2

1 + 2
2 + · · · + 2

e−1
: these are the lengths of

phrases following (and preceding) attractor’s elements (included). In the worst case,

position i′ falls inside the longest such phrase (of length 2
e−1

).
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source introducing only a constant number of new nonterminals. By

the bidirectional parse’s definition, the source of any phrase T [i ..j]
overlaps only phrases shorter than j − i + 1 characters. Since we
process phrases in order of increasing length, phrases overlapping

the source have already been processed and therefore T [i ..j] is a
substring of the expansion of some existing nonterminal K .

We start by parsing each maximal substring T [i ..j] containing
only phrases of length 1 into arbitrary blocks of length 2 or 3. We

create a constant number of new nonterminals per block (one for

blocks of length two, and two for blocks of length three). Note

that, by the way the parse is defined, this is always possible (since

j − i + 1 ≥ 2 always holds). We repeat this process recursively —

grouping nonterminals at level k ≥ 0 to form new nonterminals

at level k + 1 — until T [i ..j] is collapsed into a single nonterminal.

Our invariant now holds for the base case, i.e., for phrases of length

t = 1: each maximal substring containing only phrases of length

≤ t is collapsed into a single nonterminal.

We now proceed with phrases of length ≥ 2, in order of increas-

ing length. Let T [i ..j] be a phrase to be processed, with source at

T [i ′..j ′]. By definition of the parse, T [i ′..j ′] overlaps only phrases

of length at most j − i and, by inductive hypothesis, these phrases

have already been processed. It follows that T [i ′..j ′] is equal to a
substring K[i ′′..j ′′] of the expansion of some existing nonterminal

K . At this point, it is sufficient to add a new ruleW → K[i ′′..j ′′]
generating our phrase T [i ..j]. Since we process phrases in order of

increasing length,W is either followed (WX1), preceded (X1W ), or

in the middle (X1WX2) of one or two nonterminals X1,X2 expand-

ing to a maximal substring containing adjacent processed phrases.

We introduce at most two new rules of the form Y → AB to merge

these nonterminals into a single nonterminal, so that our invariant

is still valid. Since we introduce a constant number of new nonter-

minals per phrase, the resulting collage system has O (γ log(n/γ ))
rules. □

A similar proof can be used to derive a (larger) straight-line

program.

Theorem 3.14. Given a string T ∈ Σn and a string attractor Γ of
size γ for T , we can build an SLP for T of size O (γ log

2 (n/γ )).

Proof. This proof follows that for Theorem 3.13 (but is slightly

more complicated since we cannot use rules of the form W →

K[l ..r ]). We will first show a simpler construction achieving an

SLP of size O (γ log(n/γ ) log(n)) and then show how to refine it to

achieve size O (γ log
2 (n/γ )).

For the purpose of the proof we modify the definition of SLP to

allow also for the rules of the formA→ XYZ ,A→ ab, andA→ abc
where {X ,Y ,Z } are nonterminals and {a,b, c} are terminals. It is

easy to see that, if needed, the final SLP can be turned into a standard

SLP without asymptotically affecting its size and height.

For any nonterminal, by level we mean the height of its parse-

tree. This is motivated by the fact that at any point during the

construction, any nonterminal at level k will have all its children

at level exactly k − 1. Furthermore, once a nonterminal is created,

it is never changed or deleted. Levels of nonterminals, in particular,

will thus not change during construction.

We start by building the bidirectional parse of Theorem 3.12, with

O (γ log(n/γ )) phrases of length at most n/γ each. We will process

phrases in order of increasing length. The main idea is to map a

phrase on its source and copy the source’s parse into nonterminals,

introducing new nonterminals at the borders if needed. By the

bidirectional parse’s definition, the source of any phrase T [i ..j]
overlaps only phrases shorter than j − i + 1 characters. Since we
process phrases in order of increasing length, phrases overlapping

the source have already been processed and therefore their parse

into nonterminals is well-defined. We will maintain the following

invariant: once we finish the processing of a phrase with the source

T [i ′..j ′], the phrase will be represented by a single nonterminal Y
(expanding to T [i ′..j ′]).

In the first version of our construction we will also maintain

the following invariant: every maximal substringT [i ..j] covered by
processed phrases is collapsed into a single nonterminal X . Hence,

whenever the processing of some phrase is finished and its source

is an expansion of some nonterminal Y we have to merge it with at

most two adjacent nonterminals representing contiguous processed

phrases to keep our invariant true. It is clear that, once all phrases

have been processed, the entire string is collapsed into a single

nonterminal S . We now show how to process a phrase and analyze

the number of introduced nonterminals.

We start by parsing each maximal substring T [i ..j] containing
only phrases of length 1 into arbitrary blocks of length 2 or 3. We

create a new nonterminal for every block. We then repeat this

process recursively — grouping nonterminals at level k ≥ 0 to form

new nonterminals at level k + 1 — until T [i ..j] is collapsed into a

single nonterminal. Our invariant now holds for the base case t = 1:

each maximal substring containing only phrases of length ≤ t is
collapsed into a single nonterminal.

We now proceed with phrases of length ≥ 2, in order of increas-

ing length. Let T [i ..j] be a phrase to be processed, with source at

T [i ′..j ′]. By definition of the parse, T [i ′..j ′] overlaps only phrases

of length at most j − i and, by inductive hypothesis, these phrases

have already been processed. We group characters of T [i ..j] in
blocks of length 2 or 3 copying the parse ofT [i ′..j ′] at level 0. Note
that this might not be possible for the borders of length 1 or 2 of

T [i ..j]: this is the case if the block containing T [i ′] starts before
position i ′ (symmetric for T [j ′]). In this case, we create O (1) new
nonterminals as follows. IfT [i ′ − 1, i ′, i ′ + 1] form a block, then we

group T [i, i + 1] in a block of length 2 and collapse it into a new

nonterminal at level 1. If, on the other hand, T [i ′ − 1, i ′] form a

block, we consider two sub-cases. If T [i ′ + 1, i ′ + 2] form a block,

then we create the block to T [i, i + 1, i + 2] and collapse it into a

new nonterminal at level 1. If T [i ′ + 1, i ′ + 2, i ′ + 3] form a block,

then we create the two blocks T [i, i + 1] and T [i + 2, i + 3] and

collapse them into 2 new nonterminals at level 1. Finally, the case

when T [i ′ − 2, i ′ − 1, i ′] form a block is handled identically to the

previous case. We repeat this process for the nonterminals at level

k ≥ 1 that were copied from T [i ′..j ′], grouping them in blocks

of length 2 or 3 according to the source and creating O (1) new
nonterminals at level k + 1 to cover the borders. After O (log(n/γ ))
levels,T [i ..j] is collapsed into a single nonterminal. Since we create

O (1) new nonterminals per level, overall we introduce O (log(n/γ ))
new nonterminals.

At this point, let Y be the nonterminal just created that expands

toT [i ..j]. Since we process phrases in order of increasing length, Y
is either followed (YX ), preceded (XY ), or in the middle (X1YX2) of
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one or two nonterminals expanding to a maximal substring contain-

ing contiguous processed phrases. We now show how to collapse

these two or three nonterminals in order to maintain our invariant,

at the same time satisfying the property that nonterminals at level

k expand to two or three nonterminals at level k − 1. We show the

procedure in the case where Y is preceded by a nonterminal X , i.e.,

we want to collapse XY into a single nonterminal. The other two

cases can then easily be derived using the same technique. Let kX
and kY be the levels of X and Y . If kX = kY , then we just create

a new nonterminalW → XY and we are done. Assume first that

kX ≤ kY . Let Y1 . . .Yt , with t ≥ 2, be the sequence of nonterminals

that are the expansion of Y at level kX . Our goal is to collapse the

sequence XY1 . . .Yt into a single nonterminal. We will show that

this is possible while introducing at most O (log(n/γ )) new nonter-

minals. The parsing of Y1 . . .Yt into blocks is already defined (by

the expansion of Y ), so we only need to copy it while adjusting the

left border in order to include X . We distinguish two cases. If Y1
and Y2 are grouped into a single block, then we replace this block

with the new block XY1Y2 and collapse it in a new nonterminal at

level kX + 1. If, on the other hand, Y1, Y2, and Y3 are grouped into

a single block then we replace it with the two blocks XY1 and Y2Y3
and collapse them in two new nonterminals at level kX + 1. We

repeat the same procedure at levels kX + 1,kX + 2, . . . ,kY , until
everything is collapsed in a single nonterminal. At each level we

introduce one or two new nonterminals, therefore overall we in-

troduce at most 2(kY − kX ) + 1 ∈ O (log(n/γ )) new nonterminals.

The case kX > kY is solved analogously except there is no upper

bound of n/γ on the length of the expansion of X and hence in the

worst case the procedure introduces 2(kX −kY )+1 ∈ O (logn) new
nonterminals. Overall, however, this procedure generates the SLP

for T of size O (γ log(n/γ ) log(n)).
To address the problem above we introduce γ special blocks of

size 2n/γ starting at text positions that are multiples of n/γ , and
we change the invariant ensuring that any contiguous sequence

of already processed phrases is an expansion of some nontermi-

nal, and instead require that at any point during the computation

the invariant holds within all special blocks; more precisely, if for

any special block we consider the smallest contiguous sequence

P1 · · · Pt of phrases that overlaps both its endpoints (the endpoints

of the block, that is), then the old invariant applied to any con-

tiguous subsequence of P1 · · · Pt of already processed phrases has

to hold. This is enough to guarantee that during the algorithm

the source of every phrase is always a substring of an expansion

of some nonterminal, and whenever we merge two nonterminals

XY they always both each expand to a substring of length O (n/γ )
which guarantees that the merging introduces O (log(n/γ )) new
nonterminals. Furthermore, it is easy to see that once a phrase

has been processed, in order to maintain the new invariant, we

now need to perform at most 6 mergings of nonterminals (as op-

posed to at most 2 from before the modification), since each phrase

can overlap at most three special blocks. Finally, at the end of the

construction we need to make sure the whole string T is an expan-

sion of some nonterminal. To achieve this we do log(γ log(n/γ ))
rounds of a pairwise merging of nonterminals corresponding to

adjacent phrases (in the first round) or groups of phrases (in latter

rounds). This adds O (γ log(n/γ )) nonterminals. The level of the

nonterminal expanding to T (i.e., the height of the resulting SLP) is

O (log(γ log(n/γ )) + log(n/γ )) = O (logn). □

Using the above theorems, we can derive the approximation

rates of some compressors for repetitive strings with respect to the

smallest string attractor.

Corollary 3.15. The following bounds hold between the size д∗ of
the smallest SLP, the size д∗r l of the smallest run-length SLP, the size z
of the Lempel-Ziv parse, the size b∗ of the smallest macro scheme, the
size c∗ of the smallest collage system, and the size γ ∗ of the smallest
string attractor:

(1) b∗, c∗ ∈ O (γ ∗ log(n/γ ∗)),
(2) д∗,д∗r l , z ∈ O (γ

∗
log

2 (n/γ ∗)).

Proof. For the first bounds, build the bidirectional parse of

Theorem 3.12 and the collage system of Theorem 3.13 using a

string attractor of minimum size γ ∗. For the second bound, use the

same attractor to build the SLP of Theorem 3.14 and exploit the

well-known relation z ≤ д∗ [39]. □

Our reductions and the above corollary imply our first approxi-

mation algorithms for the smallest string attractor. Note that only

one of our approximations is computable in polynomial time (unless

P=NP): the attractor induced by the LZ77 parsing. In the next sec-

tion we show how to obtain asymptotically better approximations

in polynomial time.

All our reductions combined imply the following relations be-

tween repetitiveness measures:

Corollary 3.16. The following bounds hold between the size д∗

of the smallest SLP, the size z of the Lempel-Ziv parse, the size c∗ of
the smallest collage system, the size b∗ of the smallest macro scheme,
and the number r of equal-letter runs in the BWT:

(1) z,д∗ ∈ O (b∗ log2 n
b∗ ) ∩ O (r log

2 n
r ) ∩ O (c

∗
log

2 n
c∗ ),

(2) c∗ ∈ O (b∗ log n
b∗ ) ∩ O (r log

n
r ),

(3) b∗ ∈ O (c∗ log n
c∗ ).

Proof. For bounds 1, build the SLP of Theorem 3.14 on string

attractors of size b∗, r , and c∗ induced by the smallest macro scheme

(Theorem 3.6), RLBWT (Theorem 3.9), and smallest collage system

(Theorem 3.5). The results follow from the definition of the smallest

SLP and the bound z ≤ д∗ [39]. Similarly, bounds 2 and 3 are

obtained with the reductions of Theorems 3.9, 3.12, and 3.13. □

Some of these (or even tighter) bounds have been very recently

obtained by Gagie et al. in [20] and in the extended version [19]

of [21] using different techniques based on locally-consistent pars-

ing. Our reductions, one the other hand, are slightly simpler and

naturally include a broader class of dictionary compressors, e.g., all

relations concerning c∗ have not been previously known.

4 COMPUTATIONAL COMPLEXITY
By Attractor = {⟨T ,p⟩ : String T has an attractor of size ≤ p}
we denote the language corresponding to the decision version of

the smallest attractor problem. To prove the NP-completeness of

Attractor we first generalize the notion of string attractor.
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Definition 4.1. We say that a set Γ ⊆ [1..n] is a k-attractor of a
string T ∈ Σn if every substring T [i ..j] such that i ≤ j < i + k has

an occurrenceT [i ′..j ′] = T [i ..j] with j ′′ ∈ [i ′..j ′] for some j ′′ ∈ Γ.3

By Minimum-k-Attractor we denote the optimization problem

of finding the smallest k-attractor of a given input string. By

k-Attractor = {⟨T ,p⟩ : T has a k-attractor of size ≤ p}

we denote the corresponding decision problem. Observe that At-

tractor is a special case of k-Attractor where k = n. The NP-
completeness of k-Attractor for any k ≥ 3 (this includes any con-

stant k ≥ 3 as well as any non-constant k) is obtained by a reduction
from the k-SetCover problem that is NP-complete [17] for any con-

stant k ≥ 3: given integer p and a collection C = {C1,C2, . . . ,Cm }
ofm subsets of a universe setU = {1, 2, . . . ,u} such that

⋃m
i=1Ci =

U , and for any i ∈ {1, . . . ,m}, |Ci | ≤ k , return “yes” iff there exists

a subcollection C ′ ⊆ C such that

⋃
C ′ = U and |C ′ | ≤ p.

We obtain our reduction as follows. For any constant k ≥ 3,

given an instance ⟨U ,C⟩ of k-SetCover we build a string TC of

length O (uk2 + tk + t ′) where t =
∑m
i=1 ni and t

′ =
∑m
i=1 n

2

i with

the following property: ⟨U ,C⟩ has a cover of size ≤ p if and only if

TC has a k-attractor of size ≤ 4u (k−1)+p+6t−3m. This establishes

the NP-completeness of k-Attractor for any constant k ≥ 3. We

then show that for TC the size of the smallest k-attractor is equal
to that of the smallest k ′-attractor for every k ≤ k ′ ≤ |TC |, which
allows us to prove the NP-completeness for non-constant k .

Theorem 4.2. For k ≥ 3, k-Attractor is NP-complete.

Proof. Assume first that k ≥ 3 is constant. We show a polyno-

mial time reduction from k-SetCover to k-Attractor.4 Denote
the sizes of individual sets in the collection C by ni = |Ci | > 0 and

let Ci = {ci,1, ci,2, . . . , ci,ni }. Recall that u = |U | andm = |C |.
Let

Σ =
u⋃
i=1

k⋃
j=1
{x

(j )
i } ∪

m⋃
i=1

ni+1⋃
j=1
{$i, j } ∪

u⋃
i=1

k⋃
j=2
{$′i, j , $

′′
i, j }∪

m⋃
i=1

ni⋃
j=2
{$′′′i, j , $

(4)
i, j } ∪ {#}

be our alphabet. Note that in the construction below, x
(j )
i or $

(4)
i, j

denotes a single symbol, while #
k−1

denotes a concatenation of

k − 1 occurrences of symbol #. We will now build a string TC over

the alphabet Σ.
Let

TC =
u∏
i=1

Pi ·
m∏
i=1

RiSi ,

where ·/
∏

denotes the concatenation of strings and Pi , Ri , and Si
are defined below.

Intuitively, we associate each t ∈ U with the substringx
(1)
t · · · x

(k )
t

and each collection Ci with Si . Each Si will contain all ni strings
corresponding to elements of Ci as substrings. The aim of Si is to
simulate — via how many positions are used within Si in the solu-

tion to the k-Attractor onTC — the choice between not including

3
We permit non-constant k = f (n) where n = |T | as long as limn→∞ f (n) = ∞ and

f (n) is non-decreasing.
4
The proof only requires that k ≥ 3 but we point out that the reduction is valid also

for k = 2.

Ci in the solution to k-SetCover on C (in which case Si is covered
using a minimum possible number of positions that necessarily

leaves uncovered all substrings corresponding to elements ofCi ) or
including Ci (in which case, by using only one additional position

in the cover of Si , the solution covers all substrings unique to Si and
simultaneously all ni substrings of Si corresponding to elements of

Ci ). Gadgets Ri and Pi are used to cover “for free” certain substrings
occurring in Si so that any algorithm solving k-Attractor for TC
will not have to optimize for their coverage within Si . This will be
achieved as follows: each gadget Pi (similar for Ri ) will have xPi
non-overlapping substrings (for some xPi ) that appear only in Pi
and nowhere else inTC . This will imply that any k-attractor forTC
has to include at least xPi positions within Pi . On the other hand,

we will show that there exists an optimal choice of xPi positions
within Pi that covers all those unique substrings, plus the substrings
of Pi occurring also Si that we want to cover “for free” within Pi .

For i ∈ {1, 2, . . . ,m}, let (brackets added for clarity)

Si =
*.
,

ni∏
j=1

#
k−1

$i,1 · · · $i, jx
(1)
ci, j · · · x

(k )
ci, j $i, j

+/
-
#
k−1

$i,1 · · · $i,ni+1.

An example of Si for k = 6 and ni = 4 is reported below. The

meaning of overlined and underlined characters is explained next.

Si = #####$i,1x
(1)
ci,1x

(2)
ci,1x

(3)
ci,1x

(4)
ci,1x

(5)
ci,1x

(6)
ci,1$i,1

#####$i,1$i,2x
(1)
ci,2x

(2)
ci,2x

(3)
ci,2x

(4)
ci,2x

(5)
ci,2x

(6)
ci,2$i,2

#####$i,1$i,2$i,3x
(1)
ci,3x

(2)
ci,3x

(3)
ci,3x

(4)
ci,3x

(5)
ci,3x

(6)
ci,3$i,3

#####$i,1$i,2$i,3$i,4x
(1)
ci,4x

(2)
ci,4x

(3)
ci,4x

(4)
ci,4x

(5)
ci,4x

(6)
ci,4$i,4

#####$i,1$i,2$i,3$i,4$i,5

Any k-attractor of TC contains at least 2ni + 1 positions within
Si because: (i) Si contains 2ni non-overlapping substrings of length
k , each of which necessarily5 occurs in Si only once and nowhere

else
6
in TC :

ni⋃
j=1
{$i, j#

k−1} ∪

ni⋃
j=1
{$i, jx

(1)
ci, j · · · x

(k−1)
ci, j },

and (ii) Si contains symbol $i,ni+1, which occurs only once in Si and
nowhere else in TC , and does not overlap any of the 2ni substrings
mentioned before. With this in mind we now observe that Si has
the following two properties:

(1) There exists a “minimum” set ΓS,i of 2ni + 1 positions within
the occurrence of Si in TC that covers all substrings of Si of
length ≤ k that necessarily occur only in Si and nowhere else
in TC . The set ΓS,i includes: the leftmost occurrence of $i, j
for j ∈ {1, . . . ,ni +1} and the second occurrence from the left

of $i, j for j ∈ {1, . . . ,ni } (ΓS,i is shown in the above example

using underlined positions). Furthermore, ΓS,i is the only
such set. This is because in any such set there needs to be at

5
That is, independent of what is Ci . Importantly, although any of the substrings in⋃ni
j=1 {x

(1)
ci, j · · · x

(k )
ci, j } could have the only occurrence in Si , they are not necessarily

unique to Si . This situation is analogous to k -SetCover when some t ∈ U is covered

by only one set in C , and thus that set has to be included in the solution.

6
This can be verified by consulting the definitions of families {Rt }mt=1 and {Pt }

u
t=1

that follow.
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least one position inside each of the 2ni + 1 non-overlapping
substrings of Si mentioned above. In the first ni of those

substrings,

⋃ni
j=1{$i, j#

k−1}, the first position intersects k dis-

tinct substrings of length k that necessarily occur only once

in Si and nowhere else in TC , and hence in those substrings

the position in the attractor is fixed. Next, the position in

any such set is also trivially fixed for the only occurrence of

$i,ni+1 in TC . Let us then finally look at each of the remain-

ing ni substrings,
⋃ni
j=1{$i, jx

(1)
ci, j · · · x

(k−1)
ci, j }, starting from

the rightmost (j = ni ). In the substring $i,ni x
(1)
ci,ni
· · · x

(k−1)
ci,ni

the first position intersects only k − 1 substrings of Si of
length k that necessarily occur only once in Si and nowhere

else inTC . However, all other occurrences (for j = ni there is
only one; in general there isni−j+1 occurrences) inTC of the

remaining non-unique substring intersecting the first posi-

tion, #
k−ni

$i,1 · · · $i,ni , are in Si (and nowhere else inTC ), to

the right of the discussed occurrence of $i,ni x
(1)
ci,ni
· · · x

(k−1)
ci,ni

,

and are not covered. Thus, the attractor needs to include the

first position in this substring. Repeating this argument for

j = ni − 1, . . . , 1 yields the claim. Now we observe that the

only substrings of Si of length ≤ k not covered by ΓS,i are

strings {#k−1} ∪
⋃ni
j=1{x

(1)
ci, j · · · x

(k )
ci, j } and all their proper sub-

strings. We have thus demonstrated that if in any k-attractor
of TC , Si is covered using the minimum number of 2ni + 1
positions, these positions must be precisely ΓS,i and hence,

in particular, any of the strings in the set

⋃ni
j=1{x

(1)
ci, j · · · x

(k )
ci, j }

is then not covered within Si .
(2) There exists a “nearly-universal” set Γ′S,i of 2ni + 2 positions

within the occurrence of Si inTC that covers: (i) all substrings

of Si of length ≤ k that necessarily occur only in Si and

nowhere else inTC , and (ii)
⋃ni
j=1{x

(1)
ci, j · · · x

(k )
ci, j }. The set Γ

′
S,i

includes: the only occurrence of x
(1)
ci, j for j ∈ {1, . . . ,ni },

the second occurrence of $i, j for j ∈ {1, . . . ,ni }, the only
occurrence of $i,ni+1, and the last occurrence of $i,1 (Γ

′
S,i

is shown in the above example using overlined positions).

The only substrings of Si of length ≤ k not covered by Γ′S,i

are strings {#k−1} ∪
⋃ni
j=1{x

(2)
ci, j · · · x

(k )
ci, j } and all their proper

substrings, and all substrings of length > 1 of the string

$i,2 · · · $i,ni . For these strings we introduce separate gadget

strings described next.

To finish the construction, we will ensure that for any i ∈
{1, . . . ,m}, certain substrings of Si are covered “for free” elsewhere
inTC . To this end we introduce families {Pi }

u
i=1 and {Ri }

m
i=1. Specif-

ically, all strings (and all their proper substrings) in the set {#k−1} ∪⋃u
i=1{x

(2)
i · · · x

(k )
i } will be covered for free in {Pi }

u
i=1. Analogously,

all strings (and all their proper substrings) in

⋃m
i=1{$i,2 · · · $i,ni }

will be covered for free in {Ri }
m
i=1. Assuming these substrings are

covered: (i) if we use ΓS,i to cover unique substrings of Si , the
only substrings of Si of length ≤ k not covered by ΓS,i will be⋃ni
j=1{x

(1)
ci, j · · · x

(k )
ci, j }, and (ii) if we use Γ′S,i , all substrings of Si of

length ≤ k will be covered.

We now show the existence of the families {Pi }
u
i=1 and {Ri }

m
i=1.

For i ∈ {1, 2, . . . ,u}, let

Pi =
k∏
j=2

#
k−1

$
′
i, jx

(2)
i · · · x

(j )
i $
′′
i, j#

k−1
$
′
i, jx

(2)
i · · · x

(j )
i $
′
i, j$
′
i, j$
′′
i, j .

A prefix of Pi for k = 6 is

Pi = #####$
′
i,2x

(2)
i $

′′
i,2#####$

′
i,2x

(2)
i $

′
i,2$
′
i,2$
′′
i,2

#####$
′
i,3x

(2)
i x

(3)
i $

′′
i,3#####$

′
i,3x

(2)
i x

(3)
i $

′
i,3$
′
i,3$
′′
i,3

#####$
′
i,4x

(2)
i x

(3)
i x

(4)
i $

′′
i,4#####$

′
i,4x

(2)
i x

(3)
i x

(4)
i $

′
i,4$
′
i,4$
′′
i,4.

Any k-attractor of TC contains at least 4(k − 1) positions within
Pi because there are 4(k − 1) non-overlapping substrings of length

two of Pi that occur only in Pi and nowhere else in TC .
7
These

substrings are, for j ∈ {2, . . . ,k }: #$′i, j , x
(j )
i $
′′
i, j , x

(j )
i $
′
i, j , $

′
i, j$
′′
i, j .

On the other hand, there exists a “universal” set ΓP,i of 4(k − 1)
positions within the occurrence Pi inTC that covers all substrings of
Pi of length ≤ k .8 In particular, ΓP,i covers the strings x

(2)
i · · · x

(k )
i

and #
k−1

, and all their proper substrings. The set ΓP,i includes:

the position of the leftmost occurrence of x
(j )
i for j ∈ {2, . . . ,k },

the position preceding the second occurrence of $
′
i,2 from the left,

the third occurrence of $
′
i,2 from the left, the second and third

occurrences of $
′
i, j from the left for j ∈ {3, . . . ,k }, and the second

occurrence of $
′′
i, j from the left for j ∈ {2, . . . ,k }. The positions in

ΓP,i are underlined in the above example.

For i ∈ {1, 2, . . . ,m}, let

Ri =

ni∏
j=2

#
k−1

$
′′′
i, j$i,2 · · · $i, j$

(4)
i, j #

k−1
$
′′′
i, j$i,2 · · · $i, j$

′′′
i, j$
′′′
i, j$

(4)
i, j .

An example of Ri for k = 6 and ni = 4 is

Ri = #####$
′′′
i,2$i,2$

(4)
i,2#####$

′′′
i,2$i,2$

′′′
i,2$
′′′
i,2$

(4)
i,2

#####$
′′′
i,3$i,2$i,3$

(4)
i,3#####$

′′′
i,3$i,2$i,3$

′′′
i,3$
′′′
i,3$

(4)
i,3

#####$
′′′
i,4$i,2$i,3$i,4$

(4)
i,4#####$

′′′
i,4$i,2$i,3$i,4$

′′′
i,4$
′′′
i,4$

(4)
i,4 .

Note, that if ni = 1 then Ri is the empty string. Suppose that

Ri is non-empty, i.e., ni ≥ 2. The construction of Ri is analogous
to Pi . Any k-attractor of TC contains at least 4(ni − 1) positions
within Ri . On the other hand, there exists a “universal” set ΓR,i of
4(ni − 1) positions of Ri that covers all substrings of Ri of length
≤ k . In particular, ΓR,i covers the string $i,2 · · · $i,ni and all its

proper substrings. The set ΓR,i includes: the position of the leftmost

occurrence of $i, j for j ∈ {2, . . . ,ni }, the position preceding the

second occurrence of $
′′′
i,2 from the left, the third occurrence of

$
′′′
i,2 from the left, the second and third occurrence of $

′′′
i, j for j ∈

{3, . . . ,ni }, and the second occurrence of $
(4)
i, j from the left for

j ∈ {2, . . . ,ni }. The positions in ΓR,i are underlined in the example.

7
This for example enforces k ≥ 2 in our proof.

8
Note a small subtlety here. Because each of the gadgets {Pi }ui=1 , {Si }

m
i=1 , {Ri }

m
i=1

begins with #
k−1

and each Pi is followed by some other gadget in TC , the following

set of substrings of Pi : {$′′i,k #
t }k−1t=1 will indeed be covered by ΓP,i but for k > 2

the covered occurrences are not substrings of Pi . An analogous property holds for

{Ri }mi=1 .
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With the above properties, we are now ready to prove the follow-

ing claim: an instance ⟨U ,C⟩ of k-SetCover has a solution of size

≤ p if and only ifTC has a k-attractor of size ≤ 4u (k−1)+p+6t−3m,

where t =
∑m
i=1 ni .

“(⇒)” Let C ′ ⊆ C be a cover ofU of size p′ ≤ p and let

ΓC ′ =
⋃
{Γ′S,i | Ci ∈ C

′} ∪
⋃
{ΓS,i | Ci < C

′} ∪

u⋃
i=1

ΓP,i ∪
m⋃
i=1

ΓR,i .

ΓC ′ contains universal attractors ΓP, · and ΓR, · introduced above

for {Pi }
u
i=1 and {Ri }

m
i=1, and nearly-universal attractors Γ′S, · for ele-

ments of {Si }
m
i=1 corresponding to elements of C ′. All other strings

in {Si }
m
i=1 are covered using minimum attractors ΓS, ·. It is easy to

check that |ΓC ′ | = 4u (k−1)+p′+6t−3m. From the above discussion

ΓC ′ covers all substrings ofTC of length ≤ k inside {Pi }
u
i=1, {Ri }

m
i=1,

and {Si }
m
i=1. In particular, {x

(1)
i · · · x

(k )
i }

u
i=1 are covered because C ′

is a cover of U . All other substrings of TC of length ≤ k span at

least two gadget strings and thus are also covered since all sets

forming ΓC ′ include the last position of the gadget string.

“(⇐)” Let Γ be a k-attractor ofTC of size ≤ 4u (k−1)+p+6t−3m.

We will show thatU must have a cover of size ≤ p using elements

from C . Let I be the set of indices i ∈ {1, . . . ,m} for which Γ
contains more than 2ni + 1 positions within the occurrence of Si in
TC . To bound the cardinality of I we first observe that by the above

discussion, Γ cannot have less than
∑m
i=1 4(ni −1)+

∑u
i=1 4(k −1) =

4u (k − 1) + 4t − 4m positions within all occurrences of {Pi }
u
i=1 and

{Ri }
m
i=1 inTC . Thus, there is only at most 2t +m+p positions left to

use within {Si }
m
i=1. Furthermore, each of Si , i ∈ {1, . . . ,m} requires

2ni + 1 positions, and hence there cannot be more than p indices

where Γ uses more positions than necessary. Thus, |I | ≤ p. Let
C ′Γ = {Ci ∈ C | i ∈ I}. We now show that C ′Γ is a cover ofU . Take

any t ∈ U . Since Γ is a k-attractor of TC , the string x
(1)
t · · · x

(k )
t is

covered in some Sit such that t ∈ Cit . By the above discussion for

this to be possible Γ must use more than 2nit + 1 positions within
Sit . Thus, it ∈ I and hence Cit ∈ C

′
Γ .

The above reduction proves theNP-completeness of k-Attractor
for any constant k ≥ 3. We now show a property of TC that will

allow us to obtain the NP-completeness for non-constant k . De-
note the size of the smallest k-attractor of string X by γ ∗k (X ). By

definition a k ′-attractor of string X is also a k-attractor of X for

any k < k ′ and thus for any k ∈ {1, . . . , |X | − 1}, γ ∗k (X ) ≤ γ ∗k+1 (X ).
The inequality in general can be strict, e.g., for X = acacaacc,
γ ∗
2
(X ) < γ ∗

3
(X ). We now show that forTC it holdsγ ∗k (TC ) = γ

∗
k ′ (TC )

for any k < k ′ ≤ |TC |. Assume that p is the size of the smallest

k-set-cover of U and let C ′ ⊆ C be the optimal cover. Then, ΓC ′

(defined as above) is the smallest k-attractor of TC and, crucially,

admits a particular structure, namely, it is a union of universal,

nearly-universal and minimum attractors introduced above. We

will now show that ΓC ′ is a k
′
-attractor ofTC . Since each of the sets

forming ΓC ′ covers the last position of the corresponding gadget

string, we can focus on substrings of length > k entirely contained

inside gadget strings. To show the claim for {Si }
m
i=1 it suffices to ver-

ify that all substrings of #
k−1

$i,1 · · · $i,ni of length > k are covered

in both ΓS,i and Γ
′
S,i . Analogously, for {Pi }

u
i=1 and {Ri }

m
i=1 it suffices

to verify the claim for the families {#k−1$′i, jx
(2)
i · · · x

(j−1)
i }kj=3 and

{#k−1$′′′i, j$i,2 · · · $i, j−1}
ni
j=3. Thus, ΓC ′ is a k

′
-attractor of TC .

To show the NP-completeness of k-Attractor for non-constant
k (in particular for k = n) consider any non-decreasing function

k = f (n) such that limn→∞ f (n) = ∞. Let n0 = min{n ≥ 1 |

f (n) ≥ 3}. Suppose that we have a polynomial-time algorithm

for f (n)-Attractor. Consider an instance ⟨U ,C⟩, C = {Ci }
m
i=1 of

3-SetCover. To decide if ⟨U ,C⟩ has a cover of size ≤ p, we first
build the string TC . If |TC | < n0, we run a brute-force algorithm to

find the answer in O (2m poly(t )) = O (2n0
poly(n0)) = O (1) time,

where t =
∑m
i=1 |Ci |. Otherwise, the answer is given by checking

the inequality γ ∗
3
(TC ) = γ ∗f ( |TC |)

(TC ) ≤ 8u + p + 6t − 3m (where

u = |U |) in polynomial time. □

We further demonstrate that Minimum-k-Attractor can be

efficiently approximated up to a constant factor when k ≥ 3 is

constant, but unless P=NP, does not have a PTAS. This is achieved by

a reduction from vertex cover on bounded-degree graphs, utilizing

the smallest k-set cover as an intermediate problem. Using explicit

constants derived by Berman and Karpinski [7] for the vertex cover,

we also obtain explicit constants for our problem (and general k).

Theorem 4.3. For any constant k ≥ 3, Minimum-k-Attractor is
APX-complete.

Proof. Denote the size of the smallest k-attractor ofT by γ ∗k (T )

and let σk (T ) be the number of different substrings of T of length

k . We claim that γ ∗k (T ) ≤ σk (T
2) ≤ 2kγ ∗k (T ) (where T

2
is a con-

catenation of two copies of T ). To show the first inequality, define

Γ as the set containing the beginning of the leftmost occurrence

of every distinct substring of T 2
of length k . Such Γ can be easily

computed in polynomial time. We claim that Γ is a k-attractor of T .
Consider any substring ofT of length k ′ ≤ k and letT [i ..i +k ′ − 1]
be its leftmost occurrence. Then, T 2

[i ..i + k − 1] is the leftmost

occurrence of T 2
[i ..i + k − 1] in T 2

, as otherwise we would have

an earlier occurrence of T [i ..i + k ′ − 1] in T . Thus, i ∈ Γ. On the

other hand, each position in a k-attractor of T 2
covers at most k

distinct substrings of T 2
of length k . Thus γ ∗k (T

2) ≥ ⌈σk (T
2)/k⌉.

Combining this withγ ∗k (T
2) ≤ γ ∗k (T )+1 gives the second inequality.

Thus, Minimum-k-Attractor is in APX.

To show thatMinimum-k-Attractor is APX-hard we generalize
the hardness argument of Charikar et al. [12] from grammars to

attractors.We show that to approximateMinimum-k-VertexCover
(minimum vertex cover for graphs with vertex-degree bounded by

k) in polynomial time below a factor 1 + ϵ , for any constant ϵ > 0,

it suffices to approximate Minimum-k-Attractor in polynomial

time below a factor 1+δ , where δ = ϵ/(2k3 +4k2 −3k +1). In other

words, if Minimum-k-Attractor has a PTAS then Minimum-k-
VertexCover also has a PTAS. Since Minimum-k-VertexCover
is APX-hard [37], this will yield the claim.

LetG = (V ,E) be an undirected graphwith vertex-degree bounded
by k . Assume that |V | ≤ |E | and that G has no isolated vertices.

9

Let UG = E and CG = {Ev | v ∈ V }, where Ev = {e ∈ E |
e is incident to v}. Then, the size of the minimum k-set cover for
CG is p if and only if the minimum k-vertex cover of G has size

p. Consider the string TG := TCG as in Theorem 4.2. The smallest

k-attractor of TG has size (8 + 4k ) |E | − 3|V | + p (since the universe

9
Minimum-k -VertexCover is still APX-hard under this assumption, since a PTAS for

this case would give us a PTAS for the general case.
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size is |E |, the number of sets inCG is |V |, and their total cardinality
is 2|E |) if and only if the smallest vertex cover of G has size p.

Assume it is NP-hard to approximate Minimum-k-VertexCover
below the ratio 1 + ϵ . Then it is also NP-hard to approximate the

smallest k-attractor for TG below the ratio

r =
(8 + 4k ) |E | − 3|V | + (1 + ϵ )p

(8 + 4k ) |E | − 3|V | + p
= 1 +

ϵp

(8 + 4k ) |E | − 3|V | + p
.

Since all vertices have degree atmostk , 2|E | ≤ k |V |. Furthermore,

since each vertex can cover at mostk edges, the size of the minimum

k-vertex cover, p, must be at least
1

k |E | ≥
1

k |V |. The expression
above achieves its minimum when |E | is large and p is small. From

the constraints |E | ≤ k
2
|V | and p ≥ 1

k |V |, we thus get the lower
bound

r ≥ 1 +
ϵ · 1k |V |

(8 + 4k ) · k
2
|V | − 3|V | + 1

k |V |
= 1 +

ϵ

2k3 + 4k2 − 3k + 1
.

□

Corollary 4.4. For every constant ϵ > 0 and every (not neces-
sarily constant) k ≥ 3, it is NP-hard to approximate Minimum-k-
Attractor within factor 11809/11808 − ϵ .

Proof. By [7], Minimum-3-VertexCover is NP-hard to approx-

imate below a factor 1+ϵ3 =
145

144
. By Theorem 4.3 it is equally hard

to approximate Minimum-3-Attractor below 1 +
ϵ3

2k3+4k2−3k+1 ,

where k = 3. The claim for larger (and non-constant) k follows

from the property γ ∗k (TG ) = γ ∗k ′ (TG ), k < k ′ ≤ |TG | of the string
TG used in the proof on Theorem 4.3. □

Theorem 4.3 implies a 2k-approximation algorithm forMinimum-

k-Attractor, k ≥ 3. By reducing the problem to Minimum-k-
SetCover we can however obtain a better ratio.

Theorem 4.5. For any k ≥ 3, Minimum-k-Attractor can be ap-
proximated in polynomial time up to a factor ofH (k (k+1)/2), where
H (p) =

∑p
i=1

1

i is the p-th harmonic number. In particular, Mini-
mumAttractor can be approximated to a factorH (n(n + 1)/2) ≤

2 ln((n + 1)/
√
2) + 1.

Proof. We first show that in polynomial time we can reduce

Minimum-k-Attractor to an instance of Minimum-k ′-SetCover
for k ′ = k (k + 1)/2. Let T be the input string of length n. Consider
the set U of all distinct substrings of T of length ≤ k . The size

ofU is at most kn, i.e., polynomial in n. We create a collection C
of sets overU as follows. For any position i ∈ [1,n] in T take all

distinct substrings of length ≤ k that have an occurrence containing

position i (there is at most p such substrings of length p and hence

not more than k (k + 1)/2 in total) and add a set containing those

substrings to C . It is easy to see that Minimum-k-attractor for T
has the same size as Minimum-k ′-SetCover for C . Since the latter
can be approximated to a factorH (k ′) [24], the claim follows. □

For constant k ≥ 3, Duh and Fürer [17] describe an approxi-

mation algorithm based on semi-local optimization that achieves

an approximation ratio ofH (k ) − 1/2 for Minimum-k-SetCover.
Thus, we obtain an improved approximation ratio for constant k .

Theorem 4.6. LetH (p) =
∑p
i=1

1

i be the p-th harmonic number.
For any constant k ≥ 3, Minimum-k-Attractor can be approximated
in polynomial time up to a factor ofH (k (k + 1)/2) − 1/2.

5 OPTIMAL-TIME RANDOM ACCESS
In this section we show that the simple string attractor property

introduced in Definition 3.1 is sufficient to support random access

in optimal time on string attractors and, in particular, on most

dictionary-compression schemes.We show this fact by extending an

existing lower bound of Verbin and Yu [42] (holding on grammars)

and by providing a data structure matching this lower bound. First,

we reiterate the main step of the proof in [42], with minute technical

details tailored to our needs.

Theorem 5.1 (Verbin and Yu [42]). Let д be the size of any SLP
for a string of lengthn. Any static data structure takingO (д polylog n)
space needs Ω(logn/ log logn) time to answer random access queries.

Proof. Consider the following problem: given m points on a

grid of size m ×mϵ
, where ϵ > 0 is some constant, build a data

structure answering 2-sided parity range-counting queries, i.e., for

any position (x ,y) find the number (modulo 2) of points with coor-

dinates in [1,x] × [1,y]. Any static data structure answering such

queries using O (m polylogm) words of space must have a query

time of Ω(logm/ log logm) [42, Lem. 5]. Assume that our claim

does not hold, i.e., for any SLP of size д, there exists a static data
structure D of size O (д polylog n) that answers access queries in
o(logn/ log logn) time. Now take any instance of the above range-

counting problem, i.e., a set ofm points on a grid. Take the string

of length n =m1+ϵ
encoding answers to all possible queries (call it

the answer string) in row-major order. This string, by [42, Lem. 6],

has an SLP of size д ∈ O (m logm). Thus, D takes O (д polylog n) =
O (m polylogm) space and answers access (and hence also range-

counting) queries in o(logn/ log logn) = o(logm/ log logm) time,

contradicting [42, Lem. 5]. □

The key observation for extending the above lower bound to

other compression schemes and to string attractors is that we can

use known reductions from SLPs to obtain a different representation

(e.g., a collage system or a macro scheme) of size at most д. For
example, the fact that z ≤ д∗ [39] immediately implies that the

above bound also holds within O (z polylog n) space. Hence, for
any compression method that is at least as powerful as SLPs we

can generalize the lower bound.

Theorem 5.2. Let T ∈ Σn and let α be any of these measures:

(1) the size γ of a string attractor for T ,
(2) the size дr l of an RLSLP for T ,
(3) the size c of a collage system for T ,
(4) the size z of the LZ77 parse of T ,
(5) the size b of a macro scheme for T .

Then, Ω(logn/ log logn) time is needed to access one random position
of T within O (α polylog n) space.

Proof. Let G be the SLP of size д used in Theorem 5.1 to com-

press the answer string. By our reduction stated in Theorem 3.5, we

can build a string attractor of size γ ≤ д, therefore γ polylog n ∈

838



At the Roots of Dictionary Compression: String Attractors STOC’18, June 25–29, 2018, Los Angeles, CA, USA

O (д polylog n) and bound (1) holds. Since RLSLPs and collage sys-

tems are extensions of SLPs, G is also an RLSLP and a collage sys-

tem forT , hence bounds (2) and (3) hold trivially. From the relation

z ≤ д∗ [39] we have that z polylog n ∈ O (д polylog n), therefore
bound (4) holds. Finally, LZ77 is a particular unidirectional parse,

and macro schemes are extensions of unidirectional parses, hence

bound (5) holds. □

We now describe a parametrized data structure based on string

attractors matching lower bounds (1-5) of Theorem 5.2. Our result

generalizes Block Trees [6] (where blocks are only copied left-to-

right) and a data structure proposed very recently by Gagie et

al. [21] supporting random access on the RLBWT (where only

constant out-degree is considered).

Theorem 5.3. Let T [1..n] be a string over alphabet [1..σ ], and
let Γ be a string attractor of size γ for T . For any integer parame-
ter τ ≥ 2, we can store a data structure of O (γτ logτ (n/γ )) w-bit
words supporting the extraction of any length-ℓ substring of T in
O (logτ (n/γ ) + ℓ log(σ )/w ) time.

Proof. We describe a data structure supporting the extraction of

α =
w logτ (n/γ )

logσ packed characters in O (logτ (n/γ )) time. To extract

a substring of length ℓ we divide it into ⌈ℓ/α⌉ blocks and extract

each block with the proposed data structure. Overall, this will take

O ((ℓ/α + 1) logτ (n/γ )) = O (logτ (n/γ ) + ℓ log(σ )/w ) time.

Our data structure is organized into O (logτ (n/γ )) levels. For
simplicity, we assume that γ divides n and that n/γ is a power of τ .
The top level (level 0) is special: we divide the string into γ blocks

T [1..n/γ ]T [n/γ+1..2n/γ ] . . .T [n−n/γ+1..n] of sizen/γ . Intuitively,
at each level i > 0 we associate to each j ∈ Γ two context substrings
of length si = n/(γ · τ i−1) flanking position j. These substrings

are divided in a certain number of (overlapping) blocks of length

si/τ = si+1. Each block is then associated to an occurrence at level

i + 1 overlapping some element j ′ ∈ Γ (possible by definition of Γ).
At some particular level i∗ (read the formal description below) we

store explicitly all characters in the context substrings. To extract a

substring of length α , we will map it from level 0 to level i∗, and
then extract naively using the explicitly stored characters.

More formally, for levels i > 0 and for every element j ∈ Γ, we
consider the 2τ non-overlapping blocks of length si+1 forming the

two context substrings flanking j:T [j−si+1 ·k +1...j−si+1 · (k −1)]
and T [j + si+1 · (k − 1) + 1...j + si+1 · k], for k = 1, . . . ,τ . We

moreover consider a sequence of 2τ − 1 additional consecutive and
non-overlapping blocks of length si+1, starting in the middle of

the first block above defined and ending in the middle of the last:

T [j−si+1 ·k+1+si+1/2...j−si+1 ·(k−1)+si+1/2] fork = 1, . . . ,τ , and
T [j+si+1 · (k−1)+1+si+1/2...j+si+1 ·k+si+1/2], for k = 1, . . . ,τ−1.
Note that, with this choice of blocks, at level i for any substring S of

length at most si+1/2 inside the context substrings around elements

of Γ we can always find a block fully containing S . This property
will now be used to map “short” strings from the first to last level

of our structure without splitting them, until reaching explicitly

stored characters at some level i∗ (see below).
From the definition of string attractor, blocks at level 0 and each

block at level i > 0 have an occurrence at level i + 1 crossing some

position in Γ. Such an occurrence can be fully identified by the

coordinate ⟨off , j⟩, for 0 ≤ off < si+1 and j ∈ Γ, indicating that the

occurrence starts at position j − off . Let i∗ be the smallest number

such that si∗+1 < 2α =
2w logτ (n/γ )

logσ . Then i∗ is the last level of our

structure. At this level, we explicitly store a packed string with the

characters of the blocks. This uses in total O (γ · si∗ log(σ )/w ) =
O (γτ logτ (n/γ )) words of space. All the blocks at levels 0 ≤ i < i∗

store instead the coordinates ⟨off , j⟩ of their primary occurrence

in the next level. At level i∗ − 1, these coordinates point inside the
strings of explicitly stored characters.

Let S = T [i ..i + α − 1] be the substring to be extracted. Note

that we can assume n/γ ≥ α ; otherwise the whole string can be

stored in plain packed form using n log(σ )/w < αγ log(σ )/w ∈
O (γ logτ (n/γ )) words and we do not need any data structure. It

follows that S either spans two blocks at level 0, or it is contained

in a single block. The former case can be solved with two queries

of the latter, so we assume, without losing generality, that S is fully

contained inside a block at level 0. To retrieve S , we map it down

to the next levels (using the stored coordinates) as a contiguous

substring as long as this is possible, that is, as long as it fits inside

a single block. Note that, thanks to the way blocks overlap, this

is always possible as long as level i is such that α ≤ si+1/2. By
definition, then, we arrive in this way precisely to level i∗, where
characters are stored explicitly and we can return the packed sub-

string. Note also that, since blocks in the same level have the same

length, at each level we spend only constant time to find the pointer

to the next level (this requires a simple integer division). □

Table 2 reports some interesting space-time trade-offs achiev-

able with our data structure. For τ = log
ϵ n, the data structure

takes O (γ polylog n) space and answers random access queries in

O (log(n/γ )/ log logn) time, which is optimal by Theorem 5.2 (note

that log(n/γ ) ∈ Θ(logn) for the string used in Theorem 5.2, so the

structure does not break the lower bound). Choosing τ = (n/γ )ϵ ,
space increases to O (γ 1−ϵnϵ ) words and query time is optimal in
the packed setting. Note that our data structure is universal: given
any dictionary-compressed representation, by the reductions of

Section 3.1 we can derive a string attractor of the same asymptotic

size and build our data structure on top of it. By Theorems 5.1 and

5.2 we obtain:

Corollary 5.4. For τ = log
ϵ n (for any constant ϵ > 0), the data

structure of Theorem 5.3 supports random access in optimal time on
string attractors, SLPs, RLSLPs, LZ77, collage systems, and macro
schemes.

6 CONCLUSIONS
In this paper we have proposed a new theory unifying all known

dictionary compression techniques. The new combinatorial object

at the core of this theory — the string attractor — is NP-hard to

optimize within some constant in polynomial time, but logarith-

mic approximations can be achieved using compression algorithms

and reductions to well-studied combinatorial problems. We have

moreover shown a data structure supporting optimal random access

queries on string attractors and on most known dictionary compres-

sors. Random access stands at the core of most compressed compu-

tation techniques; our results suggest that compressed computation

can be performed independently of the underlying compression

scheme (and even in optimal time for some queries).
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An interesting view for future research is to treat (the size of

the smallest) k-attractors as a measure of string compressibility

akin to the k-th order empirical entropy (which has proven to be an

accurate and robust measure for texts that are not highly-repetitive),

as it exhibits a similar regularity, e.g., γ ∗k (X ) ≤ γ ∗k+1 (X ) for any k ,

while being sensitive to repetition: γ ∗k (X
t ) ≤ γ ∗k (X ) + 1.

Another use of our techniques could be to provide a linear

ordering of compression algorithms based on how well they ap-

proximate the smallest attractor. For example, the unary string

shows that a “weak” compression like LZ78 in the worst case

cannot achieve a better ratio than |LZ78|/γ ∗ ∈ Ω(
√
n), while we

showed that LZ77 achieves (via our reductions from attractors)

|LZ77|/γ ∗ ∈ O (polylog n) ratio. Relatedly, it is still an open prob-

lem to determine whether the smallest attractor can be approxi-

mated up to o(logn) ratio in polynomial time for all strings. Even

within logarithmic ratio, we have left open the problem of efficiently

computing such an approximation. A naive implementation of our

algorithm based on set-cover runs in cubic time.

It would also be interesting to further explore the landscape of

compressed data structures based on string attractors. In this paper

we showed that the simple string attractor property is sufficient to

support random access. Is this true for more complex queries such

as, e.g., indexing?

Finally, an intriguing problem is that of optimal approximation

of string k-attractors; e.g., what is the complexity of the 2-attractor

problem? what is, assuming P,NP, the best approximation ratio

for the minimum 3-attractor problem? For the latter question, in

this paper we gave a lower bound of 11809/11808 (Corollary 4.4)

and an upper bound of 1.95 (Theorem 4.6).
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