
LCP Array Construction Using O(sort(n))
(or Less) I/Os

Juha Kärkkäinen(B) and Dominik Kempa

Department of Computer Science and Helsinki Institute for Information
Technology HIIT, University of Helsinki, Helsinki, Finland

{juha.karkkainen,dominik.kempa}@cs.helsinki.fi

Abstract. The suffix array, one of the most important data structures
in modern string processing, needs to be augmented with the longest-
common-prefix (LCP) array in many applications. Their construction is
often a major bottleneck especially when the data is too big for internal
memory. While there are external memory algorithms that construct
the suffix array and the LCP array simultaneously in the optimal I/O
complexity of O(sort(n)), for several reasons it would be desirable to
construct the suffix array first and then the LCP array from the suffix
array in a separate stage. In this paper we describe the first algorithm
that achieves O(sort(n)) I/O complexity for the LCP array construction
stage and is not an extension of a suffix sorting algorithm. As a variant,
we obtain a Monte Carlo algorithm that, given a sparse suffix array
containing m < n suffixes in sorted order, computes the corresponding
LCP array in O(scan(n) + sort(m) log(n/m)) I/Os if the suffix positions
are evenly spaced, and in O(scan(n) + sort(m) log(n)) I/Os in general.

1 Introduction

The suffix array [13,28], a lexicographically sorted list of the suffixes of a text,
is one of the most important data structures in modern string processing. It is
frequently augmented with the longest-common-prefix (LCP) array, which stores
the lengths of the longest common prefixes between lexicographically adjacent
suffixes. Together they are the basis of powerful text indexes such as enhanced
suffix arrays [1] and many compressed full-text indexes [30]. Modern textbooks
spend dozens of pages in describing their applications, see e.g. [27,33].

The construction of the two arrays is a bottleneck in many applications. They
can be constructed either simultaneously using a single algorithm, a SLACA (suf-
fix and LCP array construction algorithm), or separately constructing the suffix
array first using a SACA (suffix array construction algorithm) and then the LCP
array from the suffix array and the text using a LACA (LCP array construc-
tion algorithm). The latter option is preferred because the separate algorithms
are simpler, enable separate development and optimization, and allow many dif-
ferent combinations. The best SACA+LACA combinations are also both faster
and more space efficient than the best SLACAs in practice. This is true even in
external memory computation as shown in [17,18].
c© Springer International Publishing AG 2016
S. Inenaga et al. (Eds.): SPIRE 2016, LNCS 9954, pp. 204–217, 2016.
DOI: 10.1007/978-3-319-46049-9 20

LCP Array Construction Using O(sort(n)) (or Less) I/Os 205

However, asymptotically the external memory LACAs are inferior to the
best SLACAs. In the standard external memory (EM) model, with RAM size
M and disk block size B, common I/O complexities are scan(n) = n/B,
which is the complexity of scanning a sequence of n elements, and sort(n) =
(n/B) logM/B(n/B), which is the complexity of sorting n elements. The I/O com-
plexity of the best SACAs and SLACAs is O(sort(n)), where n is the length of the
text, which is clearly optimal since the construction involves sorting. The I/O
complexity of the external memory LACAs is O(

sort(n) + (n2/(MB log2σ n))
)

(or worse), where σ is the size of the alphabet. This leaves open the existence of
a LACA with I/O complexity O(sort(n)).

Our Contribution. We describe the first LACA with I/O complexity O(sort(n)).
It is based on two sampling schemes, difference covers and sparse PLCP arrays,
both of which have been previously used in LCP array construction, but never
together and never in the way we use them.

Difference cover sampling has been used in SACAs [15], SLACAs [21] and
LACAs [34] as well as in a data structure for answering longest common exten-
sion (LCE) queries [6], which ask for lcp(i, j), the length of the longest common
prefix of the suffixes starting at positions i and j. A difference cover sample
defines a subset of text positions with specific properties. All of the above appli-
cations compute a sparse suffix array containing in lexicographical order the
suffixes starting at the difference cover positions. The corresponding sparse LCP
array is used in the LACA and the LCE data structure. The SACA DC3 [15]
also involves O(n) substrings defined by recursive difference covers in the early
stages of its computation, and it is these DC-substrings that form the central
data structure of our new algorithm. Each DC-substring is assigned a name
so that we can compare the equality of two DC-substrings by comparing their
names. The names can be computed in O(sort(n)) I/Os similarly to DC3. Alter-
natively, in O(scan(n)) I/Os we can compute Karp-Rabin fingerprints for the
DC-substrings, which results in a Monte Carlo algorithm that works correctly
with high probability.

We show that given the substring names, we can answer an LCE query
lcp(i, j) in O(log lcp(i, j)) time. We can answer informed, approximate LCE
queries even faster, where informed means that we are given lower and upper
bounds on lcp(i, j) as input, and approximate means that the output consists of
(tighter) lower and upper bounds instead of the exact value. In external mem-
ory, we can answer batches of such LCE queries efficiently. Specifically, we can
answer a batch of d exact queries in O(scan(n) + sort(d) log �) I/Os, where � is
the average value of the results, and informed approximate queries even faster.

The second sampling technique, sparse PLCP array, has been used for LCP
array construction in [20]. The PLCP array is a permutation of the LCP array
into the text order instead of the lexicographical order, and a sparse PLCP array
is a subsequence of the full PLCP array. A sparse PLCP array allows computing
lower and upper bounds for the other PLCP array entries. In [20], a simple sparse
PLCP was used in a space efficient LCP array construction algorithm. Our new

206 J. Kärkkäinen and D. Kempa

algorithm involves a recursive hierarchy of sparse PLCP arrays, which are used
for obtaining input bounds for informed approximate LCE queries.

A careful combination of the two sampling techniques produces the full PLCP
array, and thus the LCP array, using O(sort(n)) I/Os. Furthermore, given an
arbitrary sparse suffix array of size m < n, the associated LCP array can be
computed in O(scan(n) + sort(m) log(n)) I/Os, excluding the computation of
the DC-substring names. Using Karp-Rabin fingerprints as DC-substring names
results in a Monte Carlo algorithm with the same I/O complexity. If the suf-
fixes are evenly spaced in the text, the I/O complexity can be improved to
O(scan(n) + sort(m) log(n/m)).

Related Work. The first SLACA appeared already in the seminal paper by Man-
ber and Myers [28], but the LCP array did not really become popular until
Kasai et al. [23] introduced the first LACA. Since then several new LACAs
have been developed with a particular emphasis on reducing the space require-
ments [4,12,20,26,29,34,35]. Some of the algorithms are even semi-external, i.e.,
they keep most of the data structures on disk but need to have at least the full
text in RAM [20,34].

The first I/O-optimal external memory SACA, DC3 [15], came right away
with a modification into a SLACA [21, Sect. 4]. Other external memory SLA-
CAs are eSAIS [7], which is I/O optimal, and eGSA [25], which does not have
useful worst case bounds on the I/O complexity. Several recent external memory
SACAs are based on induced sorting [24,31,32] and could probably be converted
into SLACAs using the same technique (introduced in [9]) as eSAIS. For practi-
cal purposes, the best SACAs are probably SAscan [16] and pSAscan [19], even
though their I/O complexity is a non-optimal O(

sort(n) + (n2/(MB logσ n))
)
.

The external memory LACAs in [17,18] have an I/O-complexity similar to
SAscan and pSAscan, O(

sort(n) + (n2/(MB log2σ n))
)
. Despite the apparently

quadratic I/O complexity, the SACA+LACA combination of these algorithms
is probably the best way to construct the suffix and LCP arrays for large texts
in most practical situations. Based on the analysis and experiments in [18], the
text would have to be more than 100 times the size of the available RAM before
the quadratic part becomes dominant, and we do not believe our new algorithm
would be competitive for any smaller texts. Beyond that limit though, a well
engineered implementation of the new algorithm could become the algorithm of
choice.

We are not aware of previous results directly comparable to our results on
LCE queries and sparse LCP array construction, but there exists tangentially
related recent work on external memory range minimum queries [2,3] (since LCE
queries can be answered as range minimum queries on the LCP array), as well as
on LCE queries [5,11,36] and sparse suffix and LCP array construction [10,14]
in internal memory.

LCP Array Construction Using O(sort(n)) (or Less) I/Os 207

2 Preliminaries

Throughout we consider a string X = X[0 . . n) = X[0]X[1] . . .X[n − 1] of |X| = n
symbols drawn from the alphabet [0 . . σ). Here and elsewhere we use [i . . j) as a
shorthand for [i . . j − 1]. For i ∈ [0 . . n], we write X[i . . n) to denote the suffix of
X of length n − i, that is X[i . . n) = X[i]X[i + 1] . . .X[n − 1]. We will often refer
to suffix X[i . . n) simply as “suffix i”. Similarly, we write X[0 . . i) to denote the
prefix of X of length i. X[i . . j) is the substring X[i]X[i + 1] . . .X[j − 1] of X that
starts at position i and ends at position j − 1.

The suffix array SA of X is an array SA[0 . . n] which contains a permutation of
the integers [0 . . n] such that X[SA[0] . . n) < X[SA[1] . . n) < · · · < X[SA[n] . . n).
In other words, SA[j] = i iff X[i . . n) is the (j + 1)th suffix of X in ascending
lexicographical order. The inverse suffix array SA−1 is the inverse permutation
of SA, that is SA−1[i] = j iff SA[j] = i. Conceptually, SA−1[i] tells the position
of suffix i in SA. Another representation of the permutation is the Φ array [20]
Φ[0 . . n) defined by Φ[SA[j]] = SA[j−1] for j ∈ [1 . . n]. In other words, the suffix
Φ[i] is the immediate lexicographical predecessor of the suffix i.

Let lcp(i, j) denote the length of the longest-common-prefix (LCP) of suffix i
and suffix j. For example, in the string X = cccccatcat, lcp(0, 3) = 2 = |cc|, and
lcp(4, 7) = 3 = |cat|. The longest-common-prefix array, LCP[1 . . n], is defined
such that LCP[i] = lcp(SA[i],SA[i − 1]) for i ∈ [1 . . n]. The permuted LCP
array [20] PLCP[0 . . n) is the LCP array permuted from the lexicographical
order into the text order, i.e., PLCP[SA[j]] = LCP[j] for j ∈ [1 . . n]. Then
PLCP[i] = lcp(i,Φ[i]) for all i ∈ [0 . . n). The following property of the PLCP
array is the basis of all efficient LACAs.

Lemma 1 ([18]). Let i, j ∈ [0 . . n). If i ≤ j, then i + PLCP[i] ≤ j + PLCP[j].
Symmetrically, if Φ[i] ≤ Φ[j], then Φ[i] + PLCP[i] ≤ Φ[j] + PLCP[j].

Let p be a prime and choose s ∈ [0 . . p − 1] uniformly at random. The Karp-
Rabin fingerprint [22] for a substring X[i . . j] of X is defined as FP[i . . j] =∑j

k=i X[k] · sj−k mod p. Clearly, if X[i . . i + �] = X[j . . j + �] then FP[i . . i + �] =
FP[j . . j + �]. On the other hand, if X[i . . i+ �] �= X[j . . j + �] then FP[i . . i+ �] �=
FP[j . . j+�] with probability at least 1−n−c for any constant c > 0 [8] (assuming
p > nc+4). The fingerprint of a concatenation can be computed efficiently using
FP[i . . k] = FP[i . . j] · sk−j + FP[j + 1 . . k] mod p for any i ≤ j < k.

3 LCE Queries Using DC-substrings

In this section we develop the basic machinery that is used to compute (or
approximate) the LCE queries. Assume for simplicity that n is a power of 3. Let
bk−1 . . . b0 be the binary representation of integer b. For k ≥ 0 let

Sk = {a3k +
k−1∑

i=0

(bi + 1)3i | a ∈ [0 . . n/3k), b ∈ [0 . . 2k)}.

208 J. Kärkkäinen and D. Kempa

Note that for any k ≥ 0, Sk ⊂ [0 . . n). The set of DC-substrings of X is defined as

log3 n⋃

k=0

{X[i . . i + 3k) | i ∈ Sk}.

In the above definition we implicitly assume that X is followed by a sequence
of infinitely repeated special symbol that is smaller than any symbol in the
alphabet. From the definition of Sk we have |Sk| = 2k(n/3k). Thus, the total
number of DC-substrings is n

∑log3 n
k=0 (2/3)k = O(n).

We want to assign a name to each DC-substring such that any two substrings
of the same length are equal (or equal with high probability) if and only if
their names are equal. We now describe a procedure for computing deterministic
names (that when compared guarantee the equality of corresponding substrings)
and Monte-Carlo names (that guarantee the equality with high probability) in
external memory. For any i ∈ Sk we denote the name (of any kind) of DC-
substring X[i . . i+3k) by αk(i). We will assume that names for DC-substrings of
different lengths are stored in different files on disk, so that accessing the names
of all DC-substrings of length 3k takes O(

scan
(
n(2/3)k

))
I/Os.

Lemma 2. The deterministic names of all DC-substrings can be computed using
O(sort(n)) I/Os in the standard EM model.

Proof. For k = 0 we sort all letters of X and assign a rank of each letter (in sorted
order) as the name of the substring. For larger k we observe that Sk+1 ⊂ Sk.
Furthermore, if i ∈ Sk and i + 3k < n then i + 3k ∈ Sk. Thus, given the names
of DC-substrings of length 3k we can compute the names for DC-substrings of
length 3k+1 by sorting the set of triples {(αk(i), αk(i + 3k), αk(i + 2 · 3k)) | i ∈
Sk+1} lexicographically and again assigning a rank of each triple as the name of
the corresponding substring (if either of the positions i + 3k and i + 2 · 3k are
outside the range [0..n) we use −1 as the name of the corresponding substring). A
single sorting step takes O(scan(|Sk|) + sort(|Sk+1|)) = O(

sort
(
n(2/3)k

))
I/Os

which over all lengths of DC-substrings sums up to O(sort(n)) I/Os. ��
Lemma 3. The Monte-Carlo names of all DC-substrings can be computed using
O(scan(n)) I/Os in the standard EM model.

Proof. The goal is to compute Karp-Rabin fingerprint for every DC-substring.
The general scheme of the naming procedure follows the one from Lemma 2. How-
ever, unlike in Lemma 2 the Monte-Carlo name of substring X[i . . i+3k+1) can be
directly computed from the names of substrings X[i . . i+3k), X[i+3k . . i+2·3k),
and X[i + 2·3k . . i + 3·3k) in O(1) time. Thus, we only need to scan the file con-
taining the names of DC-substrings of length 3k which takes O(

scan
(
n(2/3)k

))

I/Os. Over all lengths of DC-substrings we spend O(scan(n)) I/Os. ��
Note that to efficiently collect the names during scans in the above lemmas,

within a single file we need to additionally group the names of DC-substrings
according to the value i mod 3k, where i is the starting position of the substring.

LCP Array Construction Using O(sort(n)) (or Less) I/Os 209

We will next show how to use names of DC-substrings to efficiently compute
or approximate LCE queries. For simplicity we now describe the internal-memory
versions of basic procedures and later explain how to modify them for external
memory. Figure 1 gives a pseudo-code of an algorithm to answer an LCE query
for an arbitrary pair of suffixes. The number of iterations of the while loop in
lines 3–7 is bounded using the following lemma.

Lemma 4. Let i, j ∈ Sk and assume that max{i, j} + 2 · 3k < n. Then either
{i, j} ⊂ Sk+1 or {i + 3k, j + 3k} ⊂ Sk+1 or {i + 2 · 3k, j + 2 · 3k} ⊂ Sk+1.

Proof. Let a, b be such that i = a3k +
∑k−1

i=0 (bi + 1)3i where a ∈ [0 . . n/3k)
and b ∈ [0 . . 2k) (which exist from the definition of Sk). It is easy to check that
i ∈ Sk+1 iff a mod 3 �= 0. Thus, exactly two out of {i, i + 3k, i + 2 · 3k} are in
Sk+1. Since the analogous property holds for j, the claim follows. ��

Fig. 1. Left: Computation of lcp(i, j) using DC-substrings. Right: Approximating the
value of lcp(i, j). Given �̌ and �̂ such that �̌ ≤ lcp(i, j) < �̂ the function lcph returns a
pair (�̌, �̂) that in addition satisfies �̂ − �̌ ≤ 3h. In both functions we assume i �= j

To perform the check {i, j} ⊂ Sk+1 efficiently, we identify the DC-substrings
of length 3k starting at positions i and j using triples (k, a, b) where a, b are as
in the definition of Sk. This representation supports the check in constant time.
Every update of i and j (represented in this way) in Fig. 1 also takes constant

210 J. Kärkkäinen and D. Kempa

time. Thus, since by Lemma 4 the lcp algorithm uses O(1) DC-substrings of each
length it runs in O(log n) time. A more careful analysis shows that the algorithm
only inspects DC-substrings up to length Θ(lcp(i, j)), and thus its running time
is in fact O(log lcp(i, j)).

Given h ≥ 0, �̌, and �̂ such that �̌ ≤ lcp(i, j) < �̂ we define the informed
approximate LCE query with accuracy 3h as the task of refining the slack defined
as �̂ − �̌, so that in addition to initial assumption, it satisfies �̂ − �̌ ≤ 3h. We now
describe a method of answering approximate LCE queries using DC-substrings.
We start by introducing useful auxiliary functions.

Lemma 5. For any k ≥ 0 and any i, j ∈ [0 . . n), max{i, j} + 3k ≤ n, there
exists δ ∈ [0 . . 3k) such that {i + δ, j + δ} ⊂ Sk. We denote such δ by δ+k (i, j).
Symmetrically, if i, j ≥ 3k − 1, there exists δ ∈ [0 . . 3k) such that {i− δ, j − δ} ⊂
Sk. We denote such δ by δ−

k (i, j).

Proof. Clearly {i, j} ⊂ S0. By Lemma 4 we can find δ0 ≤ 2 such that {i+ δ0, j +
δ0} ⊂ S1. Iteratively applying Lemma 4 gives δ = δ0 + . . . + δk−1 such that
{i + δ, j + δ} ⊂ Sk. Since δt ≤ 2 · 3t, we have δ ≤ 2

∑k−1
t=0 3t < 3k. The proof for

δ−
k (i, j) is analogous. ��

The pseudo-code of the function approximating lcp is given in Fig. 1. It works
essentially the same as the exact version except we start (lines 4–5) by computing
k and δ such that 0 ≤ δ < 3k ≤ �̌ + 1 and 3k ≤ �̂ − �̌. The first condition
ensures that i and j are increased by a value in the interval [0 . . �̌] in line 6
(which is correct from the definition of �̌). The second condition guarantees
that the algorithm does not use DC-substrings longer than Θ(�̂ − �̌). This is
necessary in the case �̂ − �̌ 	 �̌ because otherwise the algorithm would perform
Θ(log(�̌/(�̂ − �̌))) comparisons of DC-substrings in the while loop in lines 12–16
which are guaranteed (from the definition of �̂) to not be equal. The shortest DC-
substrings used in the algorithm are of length Ω(min(�̌, 3h)). Thus, the number
of compared DC-substrings is O(log((�̂ − �̌)/min(�̌, 3h))).

In the remainder of the paper we focus on a special type of informed approx-
imate LCE queries for which the bounds provided as input additionally satisfy
3h ≤ �̌, �̂ − �̌, where 3h is the required accuracy of the query. We call them
3h-LCE queries. Note that from the discussion above a 3h-LCE query can be
answered using O(log((�̂ − �̌)/3h)) comparisons.

4 Answering Batches of LCE Queries

Assume we are given a sequence of d LCE queries R = [(i1, j1), . . . , (id, jd)]. We
can answer a single LCE query (i, j) using O(log lcp(i, j)) comparisons of DC-
substrings. Thus, to answer a batch of d queries we need O(

∑d
t=1 log lcp(it, jt))

comparisons. By Jensen’s inequality this is bounded by O(d log �) where � =
(
∑d

t=1 lcp(it, jt))/d is the average lcp value. Thus, we obtain the following
lemma.

LCP Array Construction Using O(sort(n)) (or Less) I/Os 211

Lemma 6. It suffices to compare O(d log �) DC-substrings to answer a batch of
d LCE queries with an average value �.

Consider now the task of answering a batch of d 3h-LCE queries R =
[(i1, j1, �̌1, �̂1), . . . , (id, jd, �̌d, �̂d)]. As shown in the previous section, answering
a single 3h-LCE query takes O(log((�̂ − �̌)/3h)) comparisons, thus a batch of d

queries needs O(
∑d

t=1 log((�̂t−�̌t)/3h)) comparisons. Again, by Jensen’s inequal-
ity this is bounded by O(

d log(�/3h)
)
, where � = (

∑d
t=1(�̂t− �̌t))/d is the average

slack in R.

Lemma 7. It suffices to compare O(
d log(�/3h)

)
DC-substrings to answer a

batch of d 3h-LCE queries with an average slack of �.

Suppose now we want to answer a batch of d LCE queries in external memory.
Assume that both the set of queries R and names of all DC-substrings are stored
on disk. We divide the lcp algorithm in Fig. 1 into two phases corresponding to
loops in lines 3–7 and 8–12.

Consider the first phase. During the algorithm we maintain log3 n files on
disk and at any given moment each LCE query is stored in exactly one of the
files. The k-th file stores all triples (iinit, i, j) such that iinit corresponds to the
value that we store in line 1, and {i, j} ⊂ Sk stores the current state of the
query. We process files in increasing order of k. To process k-th file we scan all
triples and for every (iinit, i, j) we generate requests to retrieve the names αk(i),
αk(i+3k), αk(i+2·3k), αk(j), αk(j+3k), αk(j+2·3k). By Lemma 4 these are the
only names of DC-substrings of length 3k used by the lcp algorithm. All name
requests are first sorted by the starting position and then the corresponding
names are retrieved with a single scan of the file containing k-level names. The
name requests are then sorted back to the original order and each of the LCE
queries is now updated. Depending on the result of the name comparison, the
query either stays in the current file (mismatch) or is moved to the (k + 1)-th
file (match) and the values i, j are updated.

If by dk we denote the number of triples in the k-th file then executing
the k-th step takes O(

scan
(
n(2/3)k

)
+ sort(dk)

)
I/Os. Over all steps the I/O

is O(scan(n) +
∑log3 n

k=0 sort(dk)). By Lemma 6 we have
∑log3 n

k=0 dk = O(d log �)
where � is the average lcp value. Thus by Jensen’s inequality the total I/O volume
is bounded by O(scan(n) + sort(d) log �).

To execute the second stage of the algorithm (lines 8–12) the algorithm pro-
ceeds analogously, except now we process the remaining items in all files in the
decreasing order of k. The I/O complexity does not change.

Lemma 8. A batch of d LCE queries with an average value � can be answered
using O(scan(n) + sort(d) log �) I/Os in the standard EM model.

Answering a batch of 3h-LCE queries in external memory works analogously
and the result follows from Lemma 7. We don’t access DC-substrings shorter
than 3h and thus the scanning time is reduced.

212 J. Kärkkäinen and D. Kempa

Fig. 2. Given R = [(i, Φ(i), �̌i, �̂i)], |R| ≤ n/3k such that 3k −1 ≤ �̌i ≤ lcp(i, Φ(i)) < �̂i,
refine all �̌i, �̂i so that in addition to initial assumptions they satisfy �̂i − �̌i ≤ 3k

Lemma 9. A batch of d 3h-LCE queries with an average slack � can be answered
using O(

scan
(
n(2/3)h

)
+ sort(d) log(�/3h)

)
I/Os in the standard EM model.

Note that all the complexities stated in this section exclude the time needed
to compute the names of DC-substrings. Thus, to solve an arbitrary set of
LCE queries we need to additionally spend O(sort(n)) I/Os to compute deter-
ministic names (Lemma 2) or O(scan(n)) I/Os to compute Monte-Carlo names
(Lemma 3).

5 LCP Array Construction

Let k ≥ 0 and consider an arbitrary subset P of at most n/3k text positions from
[0 . . n) such that 3k − 1 ≤ lcp(i,Φ(i)) for all i ∈ P . Let R = {(i,Φ(i), �̌i, �̂i) | i ∈
P} be such that 3k − 1 ≤ �̌i ≤ lcp(i,Φ(i)) < �̂i for all i. The main ingredient of
the new LCP array construction algorithm is the procedure to reduce all slacks
in R to at most 3k. It uses batched 3k-LCE queries in the final step after first
improving the bounds with a different technique.

The pseudo-code of the procedure is given in Fig. 2. For simplicity we use the
standard notation for internal-memory algorithms. Below we outline all steps

LCP Array Construction Using O(sort(n)) (or Less) I/Os 213

and explain how to implement them in external memory using scanning and
sorting.

We start by checking, for every i, whether lcp(i,Φ(i)) ≥ 3k+1 − 1. This
requires fetching O(1) names of DC-substrings of length 3k for each tuple,
and thus takes O(

scan
(
n(2/3)k

)
+ sort(|R|)) I/Os. Next, we create a sample

consisting of every third tuple (we assume they are sorted by i) for which
lcp(i,Φ(i)) ≥ 3k+1 − 1 and recursively reduce the slacks of the sample to at
most 3k+1. Excluding the cost of recursive call, it takes O(sort(|R|)) I/Os. In
the next step we use the slacks of the sample set to reduce all remaining slacks.
The correctness of the reduction follows from Lemma 1. The reduced slacks sat-
isfy the following property.

Lemma 10. The total slack in R after step 4 is O(n).

Proof. Denote the elements of S after returning from recursion (line 9) by
(iSj ,Φ(iSj), �̌S

j , �̂S
j), where j ∈ [1 . . |S|] and assume iSj < iSj+1 for j ∈ [1 . . |S|). For

j = |S|+1 we set iSj = n, �̂S
j = 0. Let (i,Φ(i), �̌i, �̂i) ∈ R′\S be one of the elements

processed in line 10. Let (iSj ,Φ(iSj), �̌S
j , �̂S

j) be the predecessor of (i,Φ(i), �̌i, �̂i) in
S (which always exists since S contains the smallest item of R′). Then the succes-
sor of (i,Φ(i), �̌i, �̂i) in S is (iSj+1,Φ(iSj+1), �̌

S
j+1, �̂

S
j+1). The slack of the processed

tuple after the update satisfies �̂i − �̌i ≤ (�̂S
j+1 + (iSj+1 − i)) − (�̌S

j − (i − iSj)) =
(�̂S

j+1 − �̌S
j)+(iSj+1 − iSj). Since each tuple in S can be the predecessor of at most

two elements in R′\S (from definition of S), the total slack in R′\S is bounded
by

2
|S|∑

j=1

((�̂S
j+1 − �̌S

j) + (iSj+1 − iSj)) ≤ 2n + 2
|S|∑

j=1

(�̂S
j − �̌S

j).

Since the total slack in S does not exceed |S| · 3k+1 = O(n), the total slack in
R′\S is also O(n). Finally, by Step 1 and definition of R′, the slack in R\R′ is
not greater than |R| · 3k+1 = O(n). ��

As a last step we apply the algorithm from the previous section to answer
a batch of at most |R| approximate lcp queries. The average slack in R at this
point is O(n/|R|), and thus by Lemma9 answering all approximate lcp queries
takes O(

scan
(
n(2/3)k

)
+ sort(|R|) log(n/3k|R|)) I/Os. Excluding the cost of the

recursive call, this step dominates the I/O complexity.
Consider the call of Reduce processing the sample S (i.e., the first level of

recursion). The number of performed I/Os (excluding deeper recursive calls)
is O(

scan
(
n(2/3)k+1

)
+ sort(|S|) log(n/3k+1|S|)). We have |S| ≤ |R|/3, but

since O(
sort(d) log(n/3k+1d)

)
as a function of d is non-decreasing (assum-

ing d = O(
n/3k+1

)
), the I/O complexity is maximized for |S| = |R|/3 and

hence sort(|S|) log(n/3k+1|S|) = O(
sort(|R|/3) log(n/3k|R|)). Thus, since I/O

decreases exponentially with every level of recursion, the total I/O complexity
of Reduce(k,R) is not greater than the complexity at zero-level recursion.

214 J. Kärkkäinen and D. Kempa

Lemma 11. Reduce uses O(
scan

(
n(2/3)k

)
+ sort(|R|) log(n/3k|R|)) I/Os in

the standard EM model.

Using Reduce we can compute the LCP array as follows. We scan the suffix
array and for every i > 0 we create a tuple (i,SA[i],SA[i − 1]). We then sort
these tuples by the second component to obtain a sequence (SA−1[i], i,Φ[i]).
Using that we create a sequence of tuples (i,Φ[i], 0, n) which is then used as an
input to Reduce with k = 0. As a result we obtain a sequence (i, ·,PLCP[i], ·),
which we can now permute into LCP using SA−1 values. The total I/O com-
plexity (including the computation of deterministic names for DC-substrings) is
O(sort(n)).

Theorem 1. Using DC-substrings the LCP array can be computed correctly in
the standard EM model from the text and its suffix array using O(sort(n)) I/Os.

6 o(sort(n)) I/Os

Finally, we look at some variants of the LCP array construction problem, where
we can achieve an I/O complexity of o(sort(n)). In all of these, we use the Monte
Carlo names of DC-substrings, which can be computed in O(scan(n)) I/Os, and
thus the results are correct with high probability.

A sparse suffix array contains some subset of suffixes in the lexicographical
order and the associated LCP array contains lcps of suffixes that are lexico-
graphically adjacent in that subset. The LCP array can be computed as a batch
of LCE queries and thus by Lemma 8 we obtain the following result.

Theorem 2. Given a sparse suffix array containing m < n suffixes of a text of
length n in sorted order it takes

O(scan(n) + sort(m) log(�)) = O(scan(n) + sort(m) log(n))

I/Os in the standard EM model to compute the corresponding LCP array cor-
rectly with high probability, where � is the average value in the LCP array.

We can do better in the special case of evenly spaced sparse suffix array that
contains exactly every qth suffix of the text for some q ≥ 1. In this case, we can
use the Reduce algorithm and give as input the set of pairs (i,Φ(i)), where i
and Φ(i) are divisible by q and the suffix Φ(i) is the immediate lexicographical
predecessor of the suffix i among the sparse set. Notice that this approach does
not work correctly for an arbitrary sparse set (because of Step 4 in Reduce).

Theorem 3. Given an evenly spaced sparse suffix array containing every qth

suffix of a text of length n in sorted order it takes O(scan(n) + sort(n/q) log(q))
I/Os in the standard EM model to compute the corresponding LCP array cor-
rectly with high probability.

LCP Array Construction Using O(sort(n)) (or Less) I/Os 215

If q = ω(1), the number of performed I/Os is o(sort(n)). For example, if q =
Ω((logM/B(n/B))2), the I/O complexity is O(scan(n)).

Finally, we can sometimes compute the full PLCP array using o(sort(n)) I/Os
by computing first a subset of so called irreducible lcp values, from which the
other lcp values are easy to derive (see [18,20]). For highly repetitive texts, the
number r of the irreducible lcp values can be much smaller than n. To identify
the irreducible positions quickly we need the Burrows–Wheeler transform as an
additional input. We can compute the irreducible entries of the PLCP array
using Reduce in O(scan(n) + sort(r) log(n/r)) I/Os and then the other entries
by a simple scan in O(scan(n)) I/Os.

Theorem 4. Given the suffix array and the Burrows-Wheeler transform of a
text of length n, it takes O(scan(n) + sort(r) log(n/r)) I/Os in the standard EM
model to compute the PLCP array correctly with high probability, where r is the
number of irreducible lcp values.

If r = o(n), the complexity is o(sort(n)). Transforming the PLCP array into an
LCP array still needs Θ(sort(n)) I/Os.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Afshani, P., Sitchinava, N.: I/O-efficient range minima queries. In: Ravi, R., Gørtz,
I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 1–12. Springer, Heidelberg (2014)

3. Arge, L., Fischer, J., Sanders, P., Sitchinava, N.: On (dynamic) range minimum
queries in external memory. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 37–48. Springer, Heidelberg (2013)

4. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the Burrows-Wheeler transform. J. Discrete Algorithms
18, 22–31 (2013)

5. Bille, P., Gørtz, I.L., Knudsen, M.B.T., Lewenstein, M., Vildhøj, H.W.: Longest
common extensions in sublinear space. In: Cicalese, F., Porat, E., Vaccaro, U.
(eds.) CPM 2015. LNCS, vol. 9133, pp. 65–76. Springer, Heidelberg (2015)

6. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest
common extensions. J. Discrete Algorithms 25, 42–50 (2014)

7. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and LCP arrays in external
memory. In: Sanders, P., Zeh, N. (eds.) ALENEX 2013. pp. 88–102. SIAM (2013)

8. Dietzfelbinger, M., Gil, J., Matias, Y., Pippenger, N.: Polynomial hash func-
tions are reliable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 235–246.
Springer, Heidelberg (1992)

9. Fischer, J.: Inducing the LCP-array. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.)
WADS 2011. LNCS, vol. 6844, pp. 374–385. Springer, Heidelberg (2011)

10. Fischer, J., I, T., Köppl, D.: Deterministic sparse suffix sorting on rewritable texts.
In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644,
pp. 483–496. Springer, Heidelberg (2016)

216 J. Kärkkäinen and D. Kempa

11. Gawrychowski, P., Kociumaka, T., Rytter, W., Walen, T.: Faster longest common
extension queries in strings over general alphabets. In: Grossi, R., Lewenstein,
M. (eds.) CPM 2016. LIPIcs, vol. 54. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016)

12. Gog, S., Ohlebusch, E.: Fast and lightweight LCP-array construction algorithms.
In: Müller-Hannemann, M., Werneck, R.F.F. (eds.) ALENEX 2011. pp. 25–34.
SIAM (2011)

13. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: PAT trees and
PAT arrays. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information Retrieval: Data
Structures & Algorithms, pp. 66–82. Prentice-Hall, Englewood Cliffs (1992)

14. I, T., Kärkkäinen, J., Kempa, D.: Faster sparse suffix sorting. In: Mayr, E.W.,
Portier, N. (eds.) STACS 2014. LIPIcs, vol. 25, pp. 386–396. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2014)

15. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

16. Kärkkäinen, J., Kempa, D.: Engineering a lightweight external memory suffix array
construction algorithm. In: Iliopoulos, C.S., Langiu, A. (eds.) ICABD 2014. pp. 53–
60 (2014)

17. Kärkkäinen, J., Kempa, D.: Faster external memory LCP array construction. In:
Sankowski, P., Zaroliagis, C. (eds.) ESA 2016. LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016)

18. Kärkkäinen, J., Kempa, D.: LCP array construction in external memory. J. Exp.
Algorithmics 21(1), 1.7:1–1.7:22 (2016)

19. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Parallel external memory suffix sorting.
In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp.
329–342. Springer, Heidelberg (2015)

20. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009)

21. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

22. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

23. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir,
A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer,
Heidelberg (2001)

24. Liu, W.J., Nong, G., Chan, W.H., Wu, Y.: Induced sorting suffixes in external
memory with better design and less space. In: Iliopoulos, C., Puglisi, S., Yilmaz,
E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 83–94. Springer, Heidelberg (2015)

25. Louza, F.A., Telles, G.P., De Aguiar Ciferri, C.D.: External memory generalized
suffix and LCP arrays construction. In: Fischer, J., Sanders, P. (eds.) CPM 2013.
LNCS, vol. 7922, pp. 201–210. Springer, Heidelberg (2013)

26. Mäkinen, V.: Compact suffix array – a space efficient full-text index. Fund. Inform.
56(1–2), 191–210 (2003)

27. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, Cambridge (2015)

28. Manber, U., Myers, G.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

LCP Array Construction Using O(sort(n)) (or Less) I/Os 217

29. Manzini, G.: Two space saving tricks for linear time LCP array computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383.
Springer, Heidelberg (2004)

30. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), 2 (2007)

31. Nong, G., Chan, W.H., Hu, S.Q., Wu, Y.: Induced sorting suffixes in external
memory. ACM Trans. Inf. Syst. 33(3), 12:1–12:15 (2015)

32. Nong, G., Chan, W.H., Zhang, S., Guan, X.F.: Suffix array construction in external
memory using d-critical substrings. ACM Trans. Inf. Syst. 32(1), 1:1–1:15 (2014)

33. Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction. Oldenbusch Verlag, Bremen (2013)

34. Puglisi, S.J., Turpin, A.: Space-time tradeoffs for longest-common-prefix array com-
putation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS,
vol. 5369, pp. 124–135. Springer, Heidelberg (2008)

35. Sirén, J.: Sampled longest common prefix array. In: Amir, A., Parida, L. (eds.)
CPM 2010. LNCS, vol. 6129, pp. 227–237. Springer, Heidelberg (2010)

36. Tanimura, Y., I, T., Bannai, H., Inenaga, S., Puglisi, S.J., Takeda, M.: Determinis-
tic sub-linear space LCE data structures with efficient construction. In: Grossi, R.,
Lewenstein, M. (eds.) CPM 2016. LIPIcs, vol. 54, pp. 1:1–1:10. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016)

	LCP Array Construction Using O(sort(n)) (or Less) I/Os
	1 Introduction
	2 Preliminaries
	3 LCE Queries Using DC-substrings
	4 Answering Batches of LCE Queries
	5 LCP Array Construction
	6 o(sort(n)) I/Os
	References

