
Grammar Boosting: A New Technique for Proving Lower Bounds
for Computation over Compressed Data∗

Rajat De† Dominik Kempa‡

Abstract

Computation over compressed data is a new paradigm in the design of algorithms and data structures
that can reduce space usage and speed up computation by orders of magnitude. One of the most frequently
employed compression frameworks, capturing many practical compression methods (such as the Lempel–Ziv
family, dictionary methods, and others), is grammar compression. In this framework, a string T of length N is
represented as a context-free grammar of size n whose language contains only the string T . In this paper, we focus
on studying the limitations of these techniques. Previous work focused on proving lower bounds for algorithms
and data structures operating over grammars constructed using algorithms that achieve the approximation ratio
ρ = O(polylogN) (since finding the smallest grammar representation is NP-hard, every polynomial-time grammar
compressor can be viewed as an approximation algorithm). Unfortunately, for many grammar compressors
we either have ρ = ω(polylogN) or it is not known whether ρ = O(polylogN) holds. In their seminal paper,
Charikar, Lehman, Liu, Panigrahy, Prabhakaran, Sahai, and Shelat [IEEE Trans. Inf. Theory 2005] studied
seven popular grammar compression algorithms: RePair, Greedy, LongestMatch, Sequential, Bisection,
LZ78, and α-Balanced. Only one of them (α-Balanced) is known to achieve ρ = O(polylogN).

In this paper, we develop the first technique for proving lower bounds for data structures and algorithms
on grammars that is fully general and does not depend on the approximation ratio ρ of the used grammar
compressor. Our first set of results concerns compressed data structures. In 2013, Verbin and Yu proved that
implementing random access to T using a grammar constructed by an algorithm with ρ = O(polylogN) requires
Ω(logN/ log logN) time in the worst case. This lower bound applies to any structure using O(npolylogN)
space and matches the existing upper bounds. We prove that this lower bound holds also for RePair, Greedy,
LongestMatch, Sequential, and Bisection, while Ω(log logN) time is required for random access to LZ78.
Our lower bounds apply to any structure using O(npolylogN) space and match the existing upper bounds.
Moreover, we show that our technique generalizes to the class of global algorithms (that includes, e.g., the
RePair algorithm), i.e., the lower bound Ω(logN/ log logN) applies to the whole class. This makes a significant
step forward in a long-standing open problem of analyzing global algorithms.

Our second set of results concerns compressed computation, i.e., computation that runs in time that depends
on the size of the input in compressed form. Recently, Abboud, Backurs, Bringmann, and Künnemann [FOCS
2017 and NeurIPS 2020] proved numerous limitations of compressed computation under popular conjectures
(such as SETH, k-Clique, k-OV, and k-SUM). Similarly as above, however, their framework also displays a
dependence on ρ. For example, their results imply that, assuming the k-Clique Conjecture, there is no algorithm
to solve CFG Parsing (for which the best algorithm has a time complexity of O(Nω), where ω is the exponent
of matrix multiplication) on grammars constructed using Bisection (which satisfies ρ = Θ̃(N1/2)) that runs
in O(nc ·Nω−ϵ) time for constants ϵ > 0 and c < 2ϵ. Using our new techniques, we improve these and other
conditional lower bounds. For example, for CFG parsing on Bisection, we rule out algorithms with runtime
O(nc ·Nω−ϵ) for all constants ϵ > 0 and c > 0.

1 Introduction

Modern applications produce textual data at a rate not seen before. During 2004–2015, the cost of sequencing the
DNA of a single person has decreased from $20 million to around $1000, i.e., by a factor of 2 × 105 [48]. This
resulted in projects like the 100,000 Genome Project [44], which during 2013-2018, produced around 75 terabytes
of text. The efforts to sequence even larger populations are now underway, e.g., in 2018, 26 countries started the

∗The full version of the paper can be accessed at https://arxiv.org/abs/2307.08833.
†Stony Brook University, NY, USA. Email: rde@cs.stonybrook.edu.
‡Stony Brook University, NY, USA. Email: kempa@cs.stonybrook.edu. Supported by a Simons Foundation Junior Faculty

Fellowship.

Copyright © 2024
Copyright for this paper is retained by authors3376

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://arxiv.org/abs/2307.08833
mailto:rde@cs.stonybrook.edu
mailto:kempa@cs.stonybrook.edu

ongoing 1+ Million Genomes Initiative [25]. It is predicted that genomics research will generate between 2 and 40
exabytes of data within the next decade [77, 92]. Other sources of massive textual datasets include versioned text
documents (such as Wikipedia) and source code repositories (such as Github) [74, 53].

This explosion of data has not been matched by the corresponding increase in computational power. One
ray of hope in being able to handle such massive datasets is that they are highly repetitive [89, 26, 11, 46, 74].
This has been the driving force behind the development of compressed algorithms and data structures [72, 73, 74],
which combine aspects of information theory, lossless data compression, and combinatorial pattern matching, to
perform various queries or even run complex computation directly on data in compressed form [37, 53, 59, 1].

One of the most general frameworks for storing highly repetitive strings is grammar compression [62, 20, 91],
in which we represent a string using a straight-line program (SLP), i.e., a context-free grammar, whose language
contains only the input string. On the one hand, this framework is easy to work with and can succinctly
encode even complex structure of repetitions. On the other hand, it comes with solid mathematical foundations
– as shown in [20, 91, 36, 59, 53, 65, 90, 60], grammar compression is up to logarithmic factors equivalent to
LZ77 [100], LZ-End [66], RLBWT [18], macro schemes [93], collage systems [61], string attractors [59], and substring
complexity [90, 65], and it is at least as powerful as automata [14], Byte-Pair [32], and several other LZ-type
compressors [101, 98, 94, 30]. For this reason, grammar compression has been a very popular framework in numerous
previous studies. This includes pattern matching [50, 38, 1, 42, 15, 19], sequence similarity [95, 47, 1, 41], context-
free grammar (CFG) parsing, RNA folding, disjointness [1], and compressed linear algebra [2, 29]. Grammars are
also the key component in algorithms converting between different compressed representations [53, 58]. We refer
to surveys in [74, 73, 69] and discussion in [1, 37, 59, 53] for more details.

The central component in many of the above applications, and a useful structure on its own, is a compressed
index – a data structure requiring small space (close to the size of SLP representing the text) that supports
various queries over the underlying (uncompressed) text. Nowadays, SLP-based indexes supporting random-
access [13, 39, 9, 59, 65, 56], rank/select [88, 86, 10, 9], longest common extension (LCE) [49, 43, 78, 56], pattern
matching [22, 23, 24, 34, 33, 27, 21, 64, 43, 65], suffix array queries [56], and various geometric queries [17, 16] are
available. Despite these advances, our understanding of lower bounds on SLP-compressed indexes remains an open
problem, even for random access (the most basic query and a building block for more complex queries).

• On the one hand, Bille et al. [13] proved that for any grammar compression algorithm that reduces a length-N
string T into a representation of size n, we can build a structure of size O(n) allowing decoding of any
symbol of T in O(logN) time. The latter result has recently been generalized by Ganardi et al. [39], who
proved that for any size-n SLP encoding a length-N string, there exists a size-O(n) SLP encoding the same
string but with height O(logN). At the cost of increasing the space by a O(logϵ n) factor, it is possible to
reduce the query time to O(logN/ log logN) [9]. To complement this, Verbin and Yu, proved that for every
algorithm that achieves an O(polylogN) approximation ratio1, one cannot access symbols of T faster than
O(logN/ log logN) time using a representation of size O(n polylogN) [97].2

• On the other hand, for LZ78 [101] in O(n) space it is possible to implement random access in O(log logN) [28].
Consistent with the bound of Verbin and Yu, LZ78 achieves an approximation ratio of Ω̃(N2/3) [20, 8].3

The above situation suggests that there exists a trade-off between the approximation ratio and the time
required for random access. This, however, leads to two very serious issues:

1. The above techniques do not say anything about lower bounds on random access to grammars computed
using algorithms with ω(polylogN) approximation factor. This is problematic, since the majority of practical
grammar compressors are in this category: Charikar et al. [20] prove that Sequitur [76], Sequential [99],
Bisection [63, 75], LZ78 [101], LZW [98] all achieve Ω(N ϵ) ratio (for some constant ϵ > 0). Badkobeh et
al. [7] prove analogous bound for LZD [45].

2. Even worse, for many grammar compressors, it is not known whether they achieve an approximation
ratio of O(polylogN). This includes Greedy [5, 6, 4], LongestMatch [67], and RePair [68] – the last
being one of the most practical and widely studied compressors [12, 82, 35, 70, 71, 31, 40] which “(. . .)

1Finding the smallest grammar encoding of a given string is NP-hard [20]. Thus, every polynomial time grammar compression
algorithm can be viewed as the approximation algorithm for the smallest grammar problem [20].

2Verbin and Yu [97] formulate this equivalently as stating that for any universal data structure (i.e., working for every grammar
compressor), one cannot achieve o(logN/ log logN) query time in O(n polylogN) space.

3We assume that Ω̃ and Õ suppresses factors polylogarithmic in the length N of the uncompressed text T .

Copyright © 2024
Copyright for this paper is retained by authors3377

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

consistently outperforms other grammar-based compressors, including those that offer theoretical guarantees
of approximation.” [73]

With current techniques, proving lower bounds for algorithms like RePair appears to be a hopeless task,
since RePair has resisted all attempts to prove an upper bound on its approximation ratio for over 20 years.
Given this situation, we ask:

Problem 1. Can we prove lower bounds for data structures based on grammar compressors without first
establishing their approximation ratio?

Another application of data compression in the design of algorithms is compressed computation, where the
goal is to develop algorithms whose runtime depends on the size of the input in the compressed form. For example,
Tiskin [95] developed an algorithm that, given two strings S1 ∈ ΣN and S2 ∈ ΣN , both in grammar-compressed
form of total size n, computes the longest common subsequence LCS(S1, S2) in Õ(n · N) time. For highly
compressible strings (e.g., when n = O(N1/2)), this is a significant improvement over the currently best general
algorithm for LCS that runs in O(N2) time (and is unlikely to be improved to O(N2−ϵ) due to the recent
conditional lower bound [3] based on the Strong Exponential Time Hypothesis (SETH)).

Abboud et al. [1, 2] recently asked whether algorithms like the above LCS algorithm can be improved, i.e.,
when restricting the set of inputs to those that are highly compressible, is the algorithm running in O((n ·N)1−ϵ)
time achievable. They proved that under popular hardness assumptions such as SETH, k-OV, k-Clique, or k-SUM,
the currently best compressed algorithms for several problems are optimal. In particular, they showed that unless
SETH fails, there is no algorithm for LCS that runs in O((n ·N)1−ϵ) time, for any constant ϵ > 0, even when
restricted to highly compressible strings. They proved similar conditional lower bounds for CFG parsing, RNA
folding, matrix-vector multiplication, inner product, and several other problems.

Similarly as the lower bound of Verbin and Yu, however, the techniques in [1, 2] exhibit a dependence on
the approximation ratio ρ of the grammar compressor used to obtain the input grammar. For example, for the
CFG parsing problem, where given a CFG Γ (for simplicity, let us assume |Γ| = Õ(1)) and a string S ∈ ΣN , the
goal is to check if S ∈ L(Γ), the currently best algorithm runs in Õ(Nω) time, where ω is the exponent of matrix
multiplication [96]. Abboud et al. [1] proved that unless the k-Clique Conjecture fails, for S constructed using
grammar compressors with ρ = O(polylogN), there is no algorithm running O(poly(n) ·Nω−ϵ) time. However,
for larger ρ, e.g., ρ = Θ(Nα), this technique excludes only the algorithms running in O(nc ·Nω−ϵ), where c < ϵ/α.
For example, if α = 1/2, then there is no algorithm running in O(n3/2 ·N), but it leaves open whether there is an
algorithm running in O(n4 ·N) time. We thus ask:

Problem 2. What are the limitations for compressed computation on grammars obtained using algorithms
with large or unknown approximation ratios? Can we prove such lower bounds without first establishing those
approximation ratios?

Our Results We present a new technique for proving lower bounds on grammar-compressed strings called
Grammar Boosting that does not require any knowledge about the approximation ratio of the algorithm and lets
us answer both of the above questions.

New Lower Bounds for Data Structures. We prove that the lower bound of Ω(logN/ log logN) applies to
nearly all of the classical and commonly used grammar compressors, including: RePair [68], Greedy [4, 5, 6],
LongestMatch [67], Sequitur [76], Sequential [99], Bisection [63, 75], and LZD [45]. No lower bounds for
random access on either of these grammars were known before. Our bound applies to any structure whose space is
O(n polylogN) (where n is the output size of any of the above algorithms), i.e., it is always as strong as the bound
of Verbin and Yu [97]. Our result establishes the first query separation between algorithms like Sequitur or LZD,
and LZ78 (which admits a random access solution with O(log logN) query time [28]). As an auxiliary result, we
show (via a reduction from the colored predecessor problem [85]) that random access to LZ78 in O(log logN) time
is optimal within near-linear space (i.e., O(npolylogN)), which is the case in [28].

Our technique applies not only to individual algorithms but is able to capture an entire class. Specifically,
we show that the lower bound Ω(logN/ log logN) holds for all global algorithms [20] (which includes RePair,

Copyright © 2024
Copyright for this paper is retained by authors3378

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

Greedy, and LongestMatch). This makes a significant step forward in a long-standing open problem postulated
by Charikar et al. [20]: “Because they are so natural and our understanding is so incomplete, global algorithms are
one of the most interesting topics related to the smallest grammar problem that deserves further investigation.”

The key idea in the framework and Verbin and Yu [97] is to prove that given any collection P of n points
on an n × n grid, we can construct a string A(P) (called the answer string ; see Definition 4.1) of length
|A(P)| = Θ(n2) that encodes answers to all possible parity range counting queries [84] on P, and has a grammar
of size O(n polylog n). Since answering such queries in O(n polylog n) space requires Ω(log n/ log log n) time [84]
(Theorem 4.1), any universal structure that for a grammar G encoding T ∈ ΣN takes O(npolylogN) space, must
thus take Ω(logN/ log logN) time for access.

Let Alg be some fixed grammar compression algorithm. The issue with applying the above idea to Alg is
that it would require proving a bound on the size of the output of Alg on A(P), which for, e.g., RePair can be
very difficult. We instead prove that for any string T for which there exists an SLP of size n that encodes T , we
can construct a string T ′ such that:

(a) The length of T ′ is polynomial in the length of T ,
(b) T can be quickly identified within T ′, e.g., T [j] = T ′[α+ β · j] for some α ≥ 0 and β > 0,
(c) Alg compresses T ′ into size O(n). Note that this does not require proving anything about the compression

of T by Alg.

In other words, we take a string T having a small grammar G and “boost” the performance of Alg by
presenting T in a well-structured form of T ′ so that Alg compresses the string T ′ into size O(|G|). This still
lets us utilize the reduction from parity range counting queries [84], since by Item (a), log |T ′| = Θ(log |T |), and
by Item (b), accessing symbols of T via T ′ does not incur any time penalty. To construct T ′, we typically first
define an auxiliary grammar G′ with the set of nonterminals similar to G, but including special sentinel symbols
identifying the nonterminals. The string T ′ is then defined by listing expansions of all nonterminals of G′ in
the order of nondecreasing length, repeating each expansion twice, optionally separating with additional sentinel
symbols. The crux of the analysis is to show that for any of the algorithms we studied, such structuring forces
the algorithm to compress the string in a specific way. For global algorithms this is particularly hard, since
their behavior is not very well understood. We manage, however, to fully characterize a class of all intermediate
grammars that global algorithms can reach during the processing of T ′, and then prove that there is only one
possible final grammar. We present more details in the Technical Overview (Section 4). As a result, we obtain a
series of lower bounds. In a single theorem, we can summarize them as follows. For any grammar compression
algorithm Alg, we denote the output of Alg on a string T by Alg(T).

Theorem 1.1. Let Alg be any global algorithm (e.g., RePair, Greedy, or LongestMatch), or one of the
following algorithms: Sequitur, Sequential, Bisection, or LZD. In the cell-probe model, there is no data
structure that, for every string T of length N , achieves O(|Alg(T)| logc N) space (where c = O(1)) and implements
random access queries to T in o(logN/ log logN) time.

New Lower Bounds for Compressed Computation. Our second result is to demonstrate that the grammar boosting
technique complements the framework of Abboud et al. [1, 2] for proving conditional lower bounds for compressed
computation. We consider two problems: CFG Parsing (defined above), and Weighted RNA Folding (defined
below). Among other results, the authors of [1] prove that unless the k-Clique Conjecture (resp. Combinatorial
k-Clique Conjecture) fails (see Section 2.1), these problems essentially require Ω(Nω) (resp. Ω(N3)) time, even for
highly compressible inputs. Here we extend these results to several grammar compressors with large or unknown
approximation ratio ρ.

Consider the CFG Parsing problem. The key idea in the hardness proof presented in [1] is, given k ≥ 3
and an undirected graph G = (V,E), to construct a small CFG Γ and a highly compressible string S of length
|S| = O(|V |k+2) (specifically, S has a grammar of size O(|V |3)), such that G has a 3k-clique if and only if S ∈ L(Γ).
To adapt this reduction to a grammar compression algorithm Alg, we construct a “well-structured” string S′ and
a CFG Γ′ such that:

(a) |S′| = |V |k+O(1),
(b) S′ ∈ L(Γ′) if and only if S ∈ L(Γ),
(c) Alg compresses S′ into size |V |O(1).

Copyright © 2024
Copyright for this paper is retained by authors3379

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

The construction of S′ for Sequential is similar to the random-access problem above. The CFG Γ′ is obtained
from Γ by ensuring that it ignores every second symbol as well as some sufficiently long prefix of S′. As a result,
we obtain a series of lower bounds. In a single theorem, we can summarize them as follows (note that this is a
simplified form, and in some cases, the lower bounds hold with stronger assumptions on |Σ| and |Γ|).

Theorem 1.2. Let Alg be any global algorithm (e.g., RePair, Greedy, or LongestMatch), or one of the
following algorithms: Sequitur, Sequential, Bisection, or LZD. Let δ ∈ (0, 1]. Assuming the k-Clique
Conjecture (resp. Combinatorial k-Clique Conjecture), there is no algorithm (resp. combinatorial algorithm) that,
given T ∈ ΣN and a CFG Γ such that |Γ| = O(Nδ), |Σ| = O(Nδ), and |Alg(T)| = O(Nδ), determines if T ∈ L(Γ)
in O(Nω−ϵ) (resp. O(N3−ϵ)) time, for any ϵ > 0.

In the RNA Folding problem, we are given a string T ∈ ΣN , where Σ is augmented with a match operation
such that for every a ∈ Σ, there exists a matching symbol a ∈ Σ satisfying a ̸= a and a = a. The goal is to
compute the cardinality |R| of a largest set R ⊆ [1 . . N]2 such that for every (i, j) ∈ R, the symbols T [i] and T [j]
match, and every pair of intervals in R is either nested or disjoint. In the weighted variant, we are additionally
given a weight function w : Σ → [0 . .M], and the goal is to compute the weight of a set R that maximizes the
total weight of matching pairs. We denote it WRNA(T). The application of grammar boosting for this problem
requires proving some auxiliary results about the studied grammar compression algorithms or the RNA Folding
problem, but in its core, it uses a reduction from k-Clique [1] essentially in a black-box manner. As a result, we
obtain a series of lower bounds. In a single theorem, we can summarize them as follows.

Theorem 1.3. Let Alg be Sequential, LZD, or any global algorithm (e.g., RePair, Greedy, or
LongestMatch). Assuming the k-Clique Conjecture (resp. Combinatorial k-Clique Conjecture), there is no
algorithm (resp. combinatorial algorithm) that, given T ∈ ΣN (where Σ is augmented with a match operation) and
a weight function w : Σ → [0 . .M] such that |Σ| = O(Nδ), M = O(poly(N)), and |Alg(T)| = O(Nδ), computes
WRNA(T) in O(Nω−ϵ) (resp. O(N3−ϵ)) time, for any ϵ > 0.

Related Work Another important compression method utilized in compressed indexing is the Run-Length
Burrows–Wheeler Transform (RLBWT) [18]. Gagie et al. [37] demonstrated that it is possible to efficiently
support suffix array and suffix tree queries using O(r log n) space4, where r is the size of RLBWT. On the other
hand, Kempa and Kociumaka proved that for all strings, it always holds r = O(δ log δmax(1, log n

δ log δ)) [53]
(where δ ≤ r is the substring complexity [65], a measure closely related to Lempel-Ziv and grammar compression),
establishing the first link between RLBWT-based indexes, and LZ and grammar-based indexes. Moreover, the
above gap between r and δ is asymptotically tight in the worst-case for all values of r, δ, and n [53]. This created a
divide between indexes efficiently supporting easier queries like random access or pattern matching (which achieve
O(δ log n) space [65]), and indexes supporting the powerful queries like suffix array (for which the best achievable
space was O(r log n) [37], i.e., up to Θ(log2 n) times larger). This apparent hierarchy was recently proved to be
nonexistent: In [56], Kempa and Kociumaka described the first compressed index, called δ-SA, that supports the
suffix array functionality in O(δ log n) space. More precisely, δ-SA uses O(δ log n log σ

δ logn) space. The significance
of this result is that O(δ log n log σ

δ logn) is the asymptotically smallest space sufficient to represent any string with
parameters n, σ, and δ [65]. This is also the space used by the smallest text indexes supporting basic queries such
as random access [65]. Hence, [56] can be viewed as collapsing the hierarchy of compressed indexes to a point. As
an auxiliary result, [56] also describes the first structure supporting efficient LCE queries in O(δ log n log σ

δ logn) space.
An important aspect of text indexes that also received significant attention is their efficient construction [83,

81, 53, 55, 87, 57, 52, 56]. Of particular interest here are the algorithms operating in compressed time, i.e., time
proportional to the input in compressed form. Significant progress on this problem has recently been made by [56],
which described the algorithm that, given any LZ77-like parsing of T consisting of f phrases, constructs δ-SA
in O(f polylog n) time. This is the first compressed-time algorithm for constructing a compressed index with
suffix array functionality. They also developed the first such construction algorithms for the optimal-space indexes
supporting LCE and random access queries.

Yet another aspect of (compressed) text indexes that has recently attracted a lot of attention is making them
dynamic. Several of the above-mentioned operations can be supported in this setting [43, 54, 79, 78].

4Nishimoto and Tabei [80] showed how to reduce the space of [37] for LF and Φ−1 queries to O(r). These queries, however, are not
sufficient to compute arbitrary suffix array values.

Copyright © 2024
Copyright for this paper is retained by authors3380

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

2 Preliminaries

Let w ∈ Σn be a string (or text) of length n over alphabet Σ. Denote σ = |Σ|. We index strings starting from 1, i.e.,
w = w[1]w[2] · · ·w[n]. For 1 ≤ i ≤ j ≤ n, we denote substrings of w as w[i . . j] and by [i . . j) we mean [i . . j − 1].
We denote the length of string w as |w|. The concatenation of strings u and v is written as u ·v or uv, and the empty
string is denoted ε. For every u, v ∈ Σ∗, we denote Occ(u, v) = {i ∈ [1 . . |v|] : i+ |u| ≤ |v|+1 and v[i . . i+ |u|) = u}.

A context-free grammar (CFG) is a tuple G = (V,Σ, R, S), where V is a finite set of nonterminals (or variables),
Σ is a finite set of terminals, and R ⊆ V × (V ∪ Σ)∗ is a set of productions (or rules). We assume V ∩ Σ = ∅ and
S ∈ V . The nonterminal S is called the starting nonterminal. Nonterminals in V \ {S} are called secondary. If
(N, γ) ∈ R, then we write N → γ. For u, v ∈ (V ∪ Σ)∗, we write u ⇒ v if there exist u1, u2 ∈ (V ∪ Σ)∗ and a rule
N → γ such that u = u1Nu2 and v = u1γu2. We say that u derives v and write u ⇒∗ v, if there exists a sequence
u1, . . . , uk, k ≥ 1, such that u = u1, v = uk, and ui ⇒ ui+1 for 1 ≤ i < k. The language of grammar G is the set
L(G) := {w ∈ Σ∗ | S ⇒∗ w}.

A grammar G = (V,Σ, R, S) is called a straight-line grammar (SLG) if for any N ∈ V , there is exactly one
production with N on the left side, and there exists a linear order ≺ on V such that for every X,Y ∈ V , if
(X, γ) ∈ R and Y occurs in γ, then X ≺ Y . The unique γ such that N → γ is called the definition of N and
denoted rhsG(N). If G is clear from the context, we simply write rhs(N). In any SLG, for any u ∈ (V ∪Σ)∗, there
exists exactly one w ∈ Σ∗ such that u ⇒∗ w. We call such w the expansion of u and denote expG(u) (or simply
exp(u) when G is clear). Note that for any SLG G, L(G) = {expG(S)}.

We say that two SLGs G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) are isomorphic if there exists a bijection
f : V1 ∪ Σ → V2 ∪ Σ such that:

• f(S1) = S2,
• For every c ∈ Σ, f(c) = c,
• For every N1 ∈ V1, letting N2 = f(N1), u1 = rhsG1(N1), and u2 = rhsG2(N2), it holds that |u1| = |u2|, and

for every j ∈ [1 . . |u1|], u2[j] = f(u1[j]).

If G1 is isomorphic to G2, then |V1| = |V2|. Moreover, for every N1 ∈ V1, expG1
(N1) = expG2

(f(N1)). In particular,
L(G1) = {expG1

(S1)} = {expG2
(f(S1))} = {expG2

(S2)} = L(G2).
Let G = (V,Σ, R, S) be an SLG. We define the parse tree of A ∈ V ∪ Σ as a rooted ordered tree TG(A) (we

omit G, whenever it is clear from the context), where each node v is associated with a symbol s(v) ∈ V ∪ Σ. The
root of T (A) is a node ρ such that s(ρ) = A. If A ∈ Σ then ρ has no children. If A ∈ V and rhs(A) = B1 · · ·Bk,
then ρ has k children and the subtree rooted at the ith child is (a copy of) T (Bi). The parse tree T (G) of G is
defined as the parse tree T (S) of the starting nonterminal S.

The idea of grammar compression is, given a string w, to compute a small SLG G such that L(G) = {w}.
The size of the SLG G is defined as |G| :=

∑
N∈V |rhs(N)|. Clearly, it is easy to encode any G in O(|G|) space:

pick an ordering of nonterminals and write down the definitions of all variables with nonterminals replaced by
their number in the order.

The size of the smallest SLG generating w is denoted g∗(w). The decision problem SmallestGrammar of
determining whether for a given string w it holds g∗(w) ≤ t is NP-hard [20]. The optimization version of the
problem is APX-hard [20], but O(log(n/g∗))-approximations are known [91, 20, 51].

Definition 2.1. An SLG G = (V,Σ, R, S) is admissible if for every X ∈ V , it holds |rhsG(X)| = 2 and X occurs
in the parse tree T (S).

2.1 Hardness Assumptions

Conjecture 2.1. (k-Clique) For all constant k ≥ 3 and ϵ > 0, there is no algorithm checking if an undirected
graph G = (V,E) has a k-clique that runs in O(|V |(kω/3)(1−ϵ)) time.

Conjecture 2.2. (Combinatorial k-Clique) For all constant k ≥ 3 and ϵ > 0, there is no combinatorial
algorithm checking if an undirected graph G = (V,E) has a k-clique that runs in O(|V |k(1−ϵ)) time.

Copyright © 2024
Copyright for this paper is retained by authors3381

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

3 Grammar Compression Algorithms

3.1 Global Algorithms

Definition 3.1. Let G = (V,Σ, R, S) be an SLG. A string s ∈ (Σ ∪ V)+ is called maximal (with respect to G) if
it satisfies the following conditions:

1. |s| ≥ 2,
2. The string s has at least two non-overlapping occurrences on the right-hand side of G (i.e., in the definitions

of nonterminals of G),
3. There is no string s′ ∈ (Σ∪V)+ such that |s′| > |s| and s′ has at least as many non-overlapping occurrences on

the right-hand side of G as s (where the number of non-overlapping occurrences of a string x on the right-hand
side of G is defined with a greedy search, i.e., we scan the definition of each nonterminal left-to-right, and
once an occurrence of x is found at position i, we restart the search at position i+ |x|).

Charikar et al. [20] defines the class of “global algorithms” as all grammar compression algorithms operating
according to the following principle. Begin with a grammar having a single starting nonterminal S whose definition
is w. Each iteration of the algorithm: (1) chooses a maximal string s (Definition 3.1), (2) creates a new nonterminal
N and sets s as its definition, and (3) scans (left to right) the definition of every nonterminal except N , replacing
every encountered occurrence of s with N . Note that all the affected occurrences of s are non-overlapping. Global
algorithms differ only in the choice of the maximal string s at each step.

Charikar et al. [20] list the following global algorithms:

RePair [68]: In each round, the algorithm selects the maximal string s with the highest number of non-overlapping
occurrences on the right-hand side of the current grammar. We remark that the original formulation of
RePair [68] additionally requires |s| = 2.

Greedy [4, 5, 6]: In each round, the algorithm selects the maximal string that results in the largest reduction in
the grammar size.

LongestMatch [67]: In each round, the algorithm selects the longest maximal string.

3.2 Nonglobal Algorithms

Sequential [99]: Process the input left-to-right. In each step, first compute the longest prefix of the remaining
suffix of the input that is equal to exp(N) for some secondary nonterminal N existing in the grammar, and
append N to the definition of the start rule. If there is no such prefix, append the next symbol from the input.
If now there exists a pair of symbols AB on the right-hand side of the grammar with two non-overlapping
occurrences (in [99], it is proved that there cannot be more such occurrences), create a new nonterminal M
with rhs(M) = AB, and replace both the occurrences with M . Finally, if after this update there exists a
nonterminal that is only used once on the right-hand side of the grammar, remove it from the grammar,
replacing its occurrence with its definition.

Sequitur [76]: Process input string left-to-right. In each step, we first append the next symbol from the input
into the definition of the start rule. We then apply the following reductions to the grammar as long as
possible, each time choosing the reduction earliest in the list:

1. If the length-2 suffix AB of the definition of the starting nonterminal S is equal to the definition of
some other nonterminal N , replace this length-2 suffix with N .

2. If the length-2 suffix AB of the definition of the starting nonterminal has another non-overlapping
occurrence on the right-hand side of the grammar (in [76], it is proved that there cannot be more than
one such occurrence), create a new nonterminal M with rhs(M) = AB, and replace both occurrences
with M .

3. If there exists a nonterminal that is only used once on the right-hand side of the grammar, remove it
from the grammar, replacing its occurrence with its definition.

Bisection [63, 75]: Let w ∈ Σn be the input string with n ≥ 2. The first step of the algorithm computes a set S
of substrings of w as follows. First, we insert the string w itself into the set. If n > 1, we then compute the
largest k ≥ 0 such that 2k < n and recursively process w[1 . . 2k] and w(2k . . n]. After S is computed, we

Copyright © 2024
Copyright for this paper is retained by authors3382

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

create a nonterminal for every s ∈ S satisfying |s| ≥ 2. Each such nonterminal can be defined by a rule with
exactly two symbols on the right.

LZ78 [101]: Let w ∈ Σn be the input string. The LZ78 algorithm computes the factorization w = f1f2 . . . fz78
(the elements of which are called phrases) such that for every i ∈ [1 . . z78], it holds either that fi ∈ Σ (if
w[|f1f2 . . . fi−1|+ 1] is the leftmost occurrence of that symbol in w), or fi is the longest prefix of fi . . . fz78
such that there exists i′ ∈ [1 . . i) satisfying fi′c = fi for some c ∈ Σ. This parsing can be easily encoded as
an SLG of size 3z78.

LZD [45]: Let w ∈ Σn be the input string. The LZD algorithm factorizes w into f1f2 · · · fm such that f0 = ε,
and for 1 ≤ i ≤ m, fi = fi1fi2 where fi1 is the longest prefix of w[k . . n] with fi1 ∈ {fj : 1 ≤ j < i} ∪ Σ, fi2
is the longest prefix of w[k + |fi1 | . . n] with fi2 ∈ {fj : 0 ≤ j < i} ∪ Σ, and k = |f1 · · · fi−1|+ 1. Intuitively,
at step i, 1 ≤ i ≤ m, LZD computes fi1 as the longest prefix of the unprocessed string among f1, ..., fi−1

or Σ. It then analogously computes fi2 for remaining suffix of w (or sets fi2 = ε if the remaining suffix is
empty). The ith phrase is then defined as fi = fi1fi2 . Note, that we can represent this factorization as an
SLG by creating a nonterminal Ni for each factor fi, and then creating the starting nonterminal S with
N1 · · ·Nm as the definition. The size of this SLG is 3m.

4 Technical Overview
Due to space constraints, here we present only the overview of the basic grammar boosting (for data structures).

4.1 The Framework of Verbin and Yu

The study of data structure lower bounds on grammar-compressed strings was pioneered by Verbin and Yu [97].
Below, we provide a summary of their techniques.

Definition 4.1. [Verbin and Yu [97]] Let P ⊆ [1 . .m]2 be a set of |P| = m points on an m×m grid. By A(P),
we denote a binary string of length m2 defined such that for every x, y ∈ [1 . .m],

A(P)[x+ (y − 1)m] = |{(x′, y′) ∈ P : x′ ≤ x and y′ ≤ y}| mod 2.

Verbin and Yu called A(P) the answer string as it encodes the answers for all possible parity range counting
queries on the set P. Any such query, given (x, y) ∈ [1 . .m]2, returns the parity of the number of points from
P in the range [1 . . x]× [1 . . y] (note that rows are enumerated from bottom to top). Verbin and Yu proved the
following result.

Lemma 4.1. (Verbin and Yu [97]) Assume that m is a power of two. Let P ⊆ [1 . .m]2 be a set of |P| = m
points on an m×m grid. There exists an admissible SLG G = (V,Σ, R, S) (Definition 2.1) of height O(logm)
such that L(G) = {A(P)} and |G| = O(m logm).

Theorem 4.1. (Pătraşcu [84]) In the cell-probe model, there is no data structure that, for every set P of
|P| = m points on an m ×m grid, achieves O(m logc m) space (where c = O(1)) and implements parity range
counting queries on P in o(logm/ log logm) time.

Theorem 4.2. (Verbin and Yu [97]) In the cell-probe model, there is no data structure that, for every string
T of length N and every SLG G of T such that L(G) = {T}, achieves O(|G| logc N) space (where c = O(1)) and
implements random access queries to T in o(logN/ log logN) time.

The key idea in the proof of the above fact is as follows. Suppose that there exists a data structure D that,
given any SLG G for a string T ∈ ΣN , uses O(|G| logc N) space (where c = O(1)) and answers random access
queries on T in o(logN/ log logN) time. Let P ⊆ [1 . .m]2 be any set of |P| = m points on an m × m grid.
Assume for simplicity that m is a power of two (otherwise, letting m′ be the smallest power of two satisfying
m′ ≥ m, we apply the proof for P ′ = P ∪ {(p, p)}p∈(m. .m′]; note that the answer to any range counting query
on P is equal to the answer on P ′). By Lemma 4.1, there exists an admissible SLG GP = (VP , {0, 1}, RP , SP)
such that L(GP) = {A(P)} is an answer string for P (Definition 4.1), and it holds |GP | = O(m logm). Recall

Copyright © 2024
Copyright for this paper is retained by authors3383

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

that |A(P)| = m2. Let D′ denote the structure D for GP . By |GP | = O(m logm) and the assumption, D uses
O(|GP | logc |A(P)|) = O(m logm logc(m2)) = O(m log1+c m) space, and implements random access to A(P) in
o(log(m2)/ log log(m2)) = o(logm/ log logm) time. Given D′ and any (x, y) ∈ [1 . .m]2, we can thus answer in
o(logm/ log logm) the parity range query on P with arguments (x, y) by issuing a random access query on A(P)
with position j = x+ (y − 1)m. Thus, the existence of D′ contradicts Theorem 4.1.

4.2 Grammar Boosting

The Main Idea We now describe our new technique. Consider any T ∈ ΣN and assume that there exists a
grammar G = (V,Σ, R, S) such that L(G) = {T} and |G| = n. Assume that G is admissible (Definition 2.1).
Most grammars that we start with will satisfy this property, but any grammar can be transformed into an
admissible grammar generating the same string without asymptotically increasing its size. Consider any ordering
N1, . . . , N|V | of nonterminals in V such that |expG(N1)| ≤ · · · ≤ |expG(N|V |)|. Let Σ′ = Σ ∪ {$i : i ∈ [1 . . |V |]}
and G′ = (V,Σ′, R′, S) be a grammar with the same set of nonterminals and the starting nonterminal as G, but
with a unique sentinel symbol in every definition, i.e., such that for every i ∈ [1 . . |V |], it holds rhsG′(Ni) = A$iB,
where A,B ∈ V ∪ Σ are such that rhsG(Ni) = AB. Let T ′ =

⊙
j=1,...,|V | expG′(Nj) · #2j−1 · expG′(Nj) · #2j .

Observation: |T ′| = O(|T |2) and T is an easily identifiable subsequence of T ′. Note that for every X ∈ V , we
have |expG′(X)| = 2|expG(X)| − 1 and, letting m = |expG(X)|, it holds expG′(X)[2j − 1] = expG(X)[j] for
every j ∈ [1 . .m]. By definition of T ′, we therefore have |T ′| = 4

∑
X∈V |expG(X)|. Consequently, since for

every X ∈ V it holds |expG(X)| ≤ |T |, and |V | ≤ |T |, we obtain |T ′| ≤ 4|T |2. For the second claim, note
that since there exists j ∈ [1 . . |V |] such that S = Nj , it follows by the above that for some δ ≥ 0, we have
T [j] = T ′[δ + 2j − 1], where j ∈ [1 . . |T |].

By the above observation, T ′ is plain enough that we can use it to access symbols of T without incurring any
penalty in the runtime. We now outline how to prove that T ′ is simultaneously structured strongly enough, so
that the algorithms studied in the paper compress it to size O(n).

Analysis of Nonglobal Algorithms As an illustration, we consider the processing of T ′ using Sequential
(see Section 3.2). Denote Σ′′ = Σ′ ∪ {#j : j ∈ [1 . . 2|V |]}. For every k ∈ [0 . . |V |], let Gk = (Vk,Σ

′′, Rk, Sk)
be such that Vk = {N1, . . . , Nk, Sk}, for every i ∈ [1 . . k], rhsGk

(Ni) = rhsG′(Ni), and rhsGk
(Sk) =⊙

i=1,...,k Ni ·#2i−1 ·Ni ·#2i. We claim that after 8k steps of Sequential, the algorithm has processed the prefix⊙
j=1,...,k expG′(Nj) · #2j−1 · expG′(Nj) · #2j of T ′, and the resulting grammar is isomorphic to Gk. We proceed

by induction on k. The inductive base is easily verified. To show the inductive step, let A,B ∈ V ∪Σ be such that
rhsG′(Nk) = A · $k ·B and assume that Sequential processed

⊙
j=1,...,k−1 expG′(Nj) · #2j−1 · expG′(Nj) · #2j .

Thus, expG′(A) · $k · expG′(B) · #2k−1 · expG′(A) · $k · expG′(B) · #2k is the prefix of the remaining suffix. Note
that during the next five steps, we process expG′(A) · $k · expG′(B) · #2k−1 · expG′(A), and simply append five
symbols A′$kB

′#2k−1A
′ (where A′ and B′, respectively, correspond to expG′(A) and expG′(B)) to the definition

of the starting nonterminal. Next, we create a new nonterminal X capturing the repetition of A′$k. In the seventh
step, we again create a new nonterminal X ′ corresponding to the repetition of XB′, and then remove X (it now
occurs only once). Finally, we append #2k. The result is isomorphic to Gk. The high-level analysis of Sequitur is
similar, except each step involves many smaller substeps (in which intermediate grammars are partially completed
versions of Gk).

Analysis of Global Algorithms We now outline the proof that all global algorithms on T ′ output the same
grammar as nonglobal algorithms. The key difficulty in the analysis, compared to nonglobal algorithms, is that
replacements leading up to the grammar isomorphic with G|V | do not occur in order. We thus need to generalize
the class of intermediate grammars. We show that it suffices to consider 2|V | grammars. We define them as follows.

• Let {Mi : i ∈ [1 . . |V |]} be a set of fresh variables, i.e., such that {Mi}i∈[1. .|V |] ∩ {Ni}i∈[1. .|V |] = ∅. For every
X ∈ V ∪Σ and I ⊆ {1, . . . , |V |}, by bexpI(X) we denote a string obtained by starting with X and repeatedly
expanding the nonterminals (according to their definition in G′) until only symbols in Σ′ ∪ {Ni}i∈I are left.
Each occurrence of the remaining nonterminal from {Ni}i∈I is then replaced with the matching symbol from
{Mi}i∈I .

• For every I ⊆ {1, . . . , |V |}, we let GI = (VI ,Σ
′′, RI , S), where VI = {S} ∪ {Mi}i∈I . For any i ∈ I, we let

rhsGI (Mi) = bexpI(X) · $i · bexpI(Y), where X,Y ∈ V ∪ Σ are such that rhsG(Ni) = XY . We also set

Copyright © 2024
Copyright for this paper is retained by authors3384

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

rhsGI (S) =
⊙

i=1,...,|V | bexpI(Ni) · #2i−1 · bexpI(Ni) · #2i. We denote G = {GI : I ⊆ {1, . . . , |V |}}. Note
that |G| = 2|V | and L(GI) = {T ′} holds for every I ⊆ {1, . . . , |V |}. Observe also that the initial grammar
that every global algorithm starts with when processing T ′ (see Section 3.1), is isomorphic with G∅.

Observation 1: If s is maximal with respect to GI , then s = bexpI(Ni) for some i ∈ {1, . . . , |V |} \ I. Each symbol
in {#i}i∈[1. .2|V |] occurs once on the right-hand side of GI . On the other hand, every second symbol in
the remaining substrings of GI belongs to {$i}i∈[1. .|V |]. Thus, by |s| ≥ 2, one of them occurs in s. It is
easy to check that every symbol in {$i}i∈I occurs once on the right-hand side of GI . Thus, s contains $i
for some i ∈ {1, . . . , |V |} \ I. An inductive argument shows that every occurrence of $i for such i can be
extended into an occurrence of bexpI(Ni). String bexpI(Ni) must therefore be a substring of s. Choosing
as i the maximal t ∈ {1, . . . , |V |} \ I such that $t occurs in s, we thus have s = bexpI(Ni), since every
occurrence of bexpI(Ni) on the right-hand side of GI is surrounded by either $i′ with i′ > i, or a symbol
from {#i}i∈[1. .2|V |].

Observation 2: The output of one step of every global algorithm on GI with bexpI(Ni) as a maximal string is
isomorphic to GI∪{i}. Denote I ′ = I ∪ {i} and s = bexpI(Ni). First, we observe that by an inductive
argument it follows that replacing every occurrence of Mi on the right-hand side of GI′ with s, and removing
nonterminal Mi, results in GI . On the other hand, no two occurrences of s on the right-hand side of GI are
overlapping. These two together imply the claim, since the output of a single step of a global algorithm is
then not determined by the order of replacements.

Observation 3: There exists a maximal string with respect to GI if and only if I ̸= {1, . . . , |V |}. The first
implication follows from above. For the second implication, observe that if I ̸= {1, . . . , |V |}, then, letting
i ∈ {1, . . . , |V |} \ I and s = bexpI(Ni), we have |s| ≥ 2, and s has at least two non-overlapping occurrences
on the right-hand side of GI (in the definition of S). Thus, either s is maximal, or it can be extended into a
maximal string (Definition 3.1).

By the above, the intermediate grammars computed by every global algorithm on T ′ are isomorphic to a
chain G∅, GI1

, . . . , GI|V | such that I1 ⊊ I2 ⊊ · · · ⊊ I|V |. Thus, I|V | = {1, . . . , |V |}, and hence the final grammar
is isomorphic to G{1,...,|V |}, which has size O(|V |) = O(n).

Putting Everything Together Theorem 1.1 follows from the above analysis as follows. Suppose that for some
Alg as in Theorem 1.1, there exists a structure D that for any T ∈ ΣN uses O(|Alg(T)| logc N) space (where
c = O(1)) and answers random access queries on T in o(logN/ log logN) time. Let P ⊆ [1 . .m]2 be any set of
|P| = m points on an m×m grid. By Lemma 4.1, there exists an admissible grammar GP = (VP , {0, 1}, RP , SP)
such that L(GP) = {A(P)} is the answer string for P (Definition 4.1), and it holds |GP | = O(m logm). Let us
now consider the string T ′ (defined as in the beginning of Section 4.2) for T = A(P) and G = GP . As noted
in the initial observation of Section 4.2, it holds |T ′| = O(|T |2) = O(m4), and there exists δ ≥ 0, such that
T [j] = T ′[δ + 2j − 1], for every j ∈ [1 . . |T |]. Let GT ′ = Alg(T ′) be the output of Alg on T ′. By the above
discussion, we have |GT ′ | = O(|GP |) = O(m logm). Let D′ denote a data structure consisting of the following two
components:

1. The structure D for string T ′. By |GT ′ | = O(m logm) and the above assumption, the structure D uses
O(|Alg(T ′)| logc |T ′|) = O(m logm logc(m4)) = O(m log1+c m) space, and implements random access to T ′

in o(log |T ′|/ log log |T ′|)= o(log(m4)/ log log(m4)) = o(logm/ log logm) time,
2. The position δ ≥ 0, as defined above.

Observe that given the structure D′ and any (x, y) ∈ [1 . .m]2, we can answer in o(logm/ log logm) the parity
range query on P with arguments (x, y) by a random access query to T ′ with position j = δ + 2j′ − 1, where
j′ = x+ (y − 1)m. Thus, the existence of D′ contradicts Theorem 4.1.

References

[1] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained complexity of
analyzing compressed data: Quantifying improvements over decompress-and-solve. In Chris Umans, editor,
58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 192–203. IEEE Computer
Society, 2017. doi:10.1109/FOCS.2017.26.

Copyright © 2024
Copyright for this paper is retained by authors3385

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1109/FOCS.2017.26

[2] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Impossibility results
for grammar-compressed linear algebra. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Annual Conference on Neural Information Pro-
cessing Systems 2020 (NeurIPS), 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
645e6bfdd05d1a69c5e47b20f0a91d46-Abstract.html.

[3] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for LCS and
other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium
on Foundations of Computer Science (FOCS), pages 59–78. IEEE Computer Society, 2015. doi:
10.1109/FOCS.2015.14.

[4] Alberto Apostolico and Stefano Lonardi. Some theory and practice of greedy off-line textual substitution. In
Data Compression Conference (DCC), pages 119–128. IEEE Computer Society, 1998. doi:10.1109/DCC.
1998.672138.

[5] Alberto Apostolico and Stefano Lonardi. Compression of biological sequences by greedy off-line textual
substitution. In Data Compression Conference (DCC), pages 143–152. IEEE Computer Society, 2000.
doi:10.1109/DCC.2000.838154.

[6] Alberto Apostolico and Stefano Lonardi. Off-line compression by greedy textual substitution. Proceedings of
the IEEE, 88(11):1733–1744, 2000. doi:10.1109/5.892709.

[7] Golnaz Badkobeh, Travis Gagie, Shunsuke Inenaga, Tomasz Kociumaka, Dmitry Kosolobov, and Simon J.
Puglisi. On two LZ78-style grammars: Compression bounds and compressed-space computation. In Gabriele
Fici, Marinella Sciortino, and Rossano Venturini, editors, 24th International Symposium on String Processing
and Information Retrieval (SPIRE), pages 51–67. Springer, 2017. doi:10.1007/978-3-319-67428-5_5.

[8] Hideo Bannai, Momoko Hirayama, Danny Hucke, Shunsuke Inenaga, Artur Jez, Markus Lohrey, and
Carl Philipp Reh. The smallest grammar problem revisited. IEEE Trans. Inf. Theory, 67(1):317–328, 2021.
doi:10.1109/TIT.2020.3038147.

[9] Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Gonzalo
Navarro, Alberto Ordóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. Block trees. Journal of Computer
and System Sciences, 117:1–22, 2021. doi:10.1016/j.jcss.2020.11.002.

[10] Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Alberto Ordóñez Pereira, Simon J.
Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In Ali Bilgin, Michael W. Marcellin, Joan
Serra-Sagristà, and James A. Storer, editors, 2015 Data Compression Conference (DCC), pages 83–92. IEEE,
2015. doi:10.1109/DCC.2015.69.

[11] Bonnie Berger, Noah M. Daniels, and Y. William Yu. Computational biology in the 21st century: Scaling
with compressive algorithms. Communication of the ACM, 59(8):72–80, jul 2016. doi:10.1145/2957324.

[12] Philip Bille, Inge Li Gørtz, and Nicola Prezza. Space-efficient Re-Pair compression. In Ali Bilgin, Michael W.
Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, 2017 Data Compression Conference (DCC),
pages 171–180. IEEE, 2017. doi:10.1109/DCC.2017.24.

[13] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and Oren Weimann.
Random access to grammar-compressed strings and trees. SIAM Journal on Computing, 44(3):513–539,
2015. doi:10.1137/130936889.

[14] Anselm Blumer, Janet A. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3):578–595, 1987.
doi:10.1145/28869.28873.

[15] Karl Bringmann, Philip Wellnitz, and Marvin Künnemann. Few matches or almost periodicity: Faster pattern
matching with mismatches in compressed texts. In Timothy M. Chan, editor, 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1126–1145. SIAM, 2019. doi:10.1137/1.9781611975482.
69.

Copyright © 2024
Copyright for this paper is retained by authors3386

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://proceedings.neurips.cc/paper/2020/hash/645e6bfdd05d1a69c5e47b20f0a91d46-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/645e6bfdd05d1a69c5e47b20f0a91d46-Abstract.html
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/DCC.1998.672138
https://doi.org/10.1109/DCC.1998.672138
https://doi.org/10.1109/DCC.2000.838154
https://doi.org/10.1109/5.892709
https://doi.org/10.1007/978-3-319-67428-5_5
https://doi.org/10.1109/TIT.2020.3038147
https://doi.org/10.1016/j.jcss.2020.11.002
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1145/2957324
https://doi.org/10.1109/DCC.2017.24
https://doi.org/10.1137/130936889
https://doi.org/10.1145/28869.28873
https://doi.org/10.1137/1.9781611975482.69
https://doi.org/10.1137/1.9781611975482.69

[16] Nieves R. Brisaboa, Adrián Gómez-Brandón, Miguel A. Martínez-Prieto, and José R. Paramá. 3DGraCT:
A grammar-based compressed representation of 3D trajectories. In Travis Gagie, Alistair Moffat, Gonzalo
Navarro, and Ernesto Cuadros-Vargas, editors, 25th International Symposium on String Processing and
Information Retrieval (SPIRE), pages 102–116. Springer, 2018. doi:10.1007/978-3-030-00479-8_9.

[17] Nieves R. Brisaboa, Adrián Gómez-Brandón, Gonzalo Navarro, and José R. Paramá. GraCT: A grammar
based compressed representation of trajectories. In Shunsuke Inenaga, Kunihiko Sadakane, and Tetsuya
Sakai, editors, 23rd International Symposium on String Processing and Information Retrieval (SPIRE),
pages 218–230, 2016. doi:10.1007/978-3-319-46049-9_21.

[18] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, Palo Alto, California, 1994. URL: https://www.hpl.hp.com/
techreports/Compaq-DEC/SRC-RR-124.pdf.

[19] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate pattern matching:
A unified approach. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 978–989. IEEE, 2020. doi:10.1109/FOCS46700.2020.00095.

[20] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi
Shelat. The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576, 2005.
doi:10.1109/TIT.2005.850116.

[21] Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro, and Nicola
Prezza. Optimal-time dictionary-compressed indexes. ACM Transactions on Algorithms, 17(1):8:1–8:39,
2021. doi:10.1145/3426473.

[22] Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fundamenta Informaticae,
111(3):313–337, 2011. doi:10.3233/FI-2011-565.

[23] Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes. In Liliana Calderón-
Benavides, Cristina N. González-Caro, Edgar Chávez, and Nivio Ziviani, editors, 19th International
Symposium on String Processing and Information Retrieval (SPIRE), pages 180–192. Springer, 2012.
doi:10.1007/978-3-642-34109-0_19.

[24] Francisco Claude, Gonzalo Navarro, and Alejandro Pacheco. Grammar-compressed indexes with logarithmic
search time. Journal of Computer and System Sciences, 118:53–74, 2021. doi:10.1016/j.jcss.2020.12.
001.

[25] European Commission. 1+ Million Genomes Initiative. https://digital-strategy.ec.europa.eu/en/
policies/1-million-genomes.

[26] Sebastian Deorowicz, Agnieszka Danek, and Heng Li. AGC: Compact representation of assembled genomes.
bioRxiv, 2022. doi:10.1101/2022.04.07.487441.

[27] Diego Díaz-Domínguez, Gonzalo Navarro, and Alejandro Pacheco. An LMS-based grammar self-index
with local consistency properties. In Thierry Lecroq and Hélène Touzet, editors, 28th International
Symposium on String Processing and Information Retrieval (SPIRE), pages 100–113. Springer, 2021.
doi:10.1007/978-3-030-86692-1_9.

[28] Akashnil Dutta, Reut Levi, Dana Ron, and Ronitt Rubinfeld. A simple online competitive adaptation of
Lempel-Ziv compression with efficient random access support. In Ali Bilgin, Michael W. Marcellin, Joan
Serra-Sagristà, and James A. Storer, editors, 2013 Data Compression Conference (DCC), pages 113–122.
IEEE, 2013. doi:10.1109/DCC.2013.19.

[29] Paolo Ferragina, Giovanni Manzini, Travis Gagie, Dominik Köppl, Gonzalo Navarro, Manuel Striani, and
Francesco Tosoni. Improving matrix-vector multiplication via lossless grammar-compressed matrices. Proc.
VLDB Endow., 15(10):2175–2187, 2022. URL: https://www.vldb.org/pvldb/vol15/p2175-tosoni.pdf.

Copyright © 2024
Copyright for this paper is retained by authors3387

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1007/978-3-030-00479-8_9
https://doi.org/10.1007/978-3-319-46049-9_21
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1145/3426473
https://doi.org/10.3233/FI-2011-565
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1016/j.jcss.2020.12.001
https://doi.org/10.1016/j.jcss.2020.12.001
https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes
https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes
https://doi.org/10.1101/2022.04.07.487441
https://doi.org/10.1007/978-3-030-86692-1_9
https://doi.org/10.1109/DCC.2013.19
https://www.vldb.org/pvldb/vol15/p2175-tosoni.pdf

[30] Edward R Fiala and Daniel H Greene. Data compression with finite windows. Communications of the ACM,
32(4):490–505, 1989. doi:10.1145/63334.63341.

[31] Isamu Furuya, Takuya Takagi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Takuya Kida.
MR-RePair: Grammar compression based on maximal repeats. In Ali Bilgin, Michael W. Marcellin, Joan
Serra-Sagristà, and James A. Storer, editors, Data Compression Conference (DCC), pages 508–517. IEEE,
2019. doi:10.1109/DCC.2019.00059.

[32] Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, feb 1994. URL:
https://dl.acm.org/doi/abs/10.5555/177910.177914.

[33] Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi. A faster
grammar-based self-index. In Adrian-Horia Dediu and Carlos Martín-Vide, editors, 6th International
Conference on Language and Automata Theory and Applications (LATA), pages 240–251. Springer, 2012.
doi:10.1007/978-3-642-28332-1_21.

[34] Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi. LZ77-
based self-indexing with faster pattern matching. In Alberto Pardo and Alfredo Viola, editors, 11th
Latin American Symposium on Theoretical Informatics (LATIN), pages 731–742. Springer, 2014. doi:
10.1007/978-3-642-54423-1_63.

[35] Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, and Yoshimasa Takabatake.
Rpair: Rescaling RePair with Rsync. In Nieves R. Brisaboa and Simon J. Puglisi, editors, 26th
International Symposium on String Processing and Information Retrieval (SPIRE), pages 35–44. Springer,
2019. doi:10.1007/978-3-030-32686-9_3.

[36] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. On the approximation ratio of Lempel-Ziv parsing. In
Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro, editors, 13th Latin American Symposium
on Theoretical Informatics (LATIN), pages 490–503. Springer, 2018. doi:10.1007/978-3-319-77404-6_36.

[37] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text searching
in BWT-runs bounded space. Journal of the ACM, 67(1):1–54, 2020. doi:10.1145/3375890.

[38] Moses Ganardi and Pawel Gawrychowski. Pattern matching on grammar-compressed strings in linear time.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, 2022 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2833–2846. SIAM, 2022. doi:10.1137/1.9781611977073.110.

[39] Moses Ganardi, Artur Jez, and Markus Lohrey. Balancing straight-line programs. Journal of the ACM,
68(4):27:1–27:40, 2021. doi:10.1145/3457389.

[40] Michal Ganczorz and Artur Jez. Improvements on Re-Pair grammar compressor. In Ali Bilgin, Michael W.
Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, 2017 Data Compression Conference (DCC),
pages 181–190. IEEE, 2017. doi:10.1109/DCC.2017.52.

[41] Arun Ganesh, Tomasz Kociumaka, Andrea Lincoln, and Barna Saha. How compression and approximation
affect efficiency in string distance measures. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2867–2919. SIAM, 2022. doi:
10.1137/1.9781611977073.112.

[42] Pawel Gawrychowski. Optimal pattern matching in LZW compressed strings. In Dana Randall, editor,
22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 362–372. SIAM, 2011.
doi:10.1137/1.9781611973082.29.

[43] Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr Sankowski. Optimal
dynamic strings. In Artur Czumaj, editor, 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1509–1528. SIAM, 2018. Full version: arxiv.org/abs/1511.02612. doi:10.1137/1.
9781611975031.99.

Copyright © 2024
Copyright for this paper is retained by authors3388

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1145/63334.63341
https://doi.org/10.1109/DCC.2019.00059
https://dl.acm.org/doi/abs/10.5555/177910.177914
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-030-32686-9_3
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1145/3375890
https://doi.org/10.1137/1.9781611977073.110
https://doi.org/10.1145/3457389
https://doi.org/10.1109/DCC.2017.52
https://doi.org/10.1137/1.9781611977073.112
https://doi.org/10.1137/1.9781611977073.112
https://doi.org/10.1137/1.9781611973082.29
arxiv.org/abs/1511.02612
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99

[44] Genomics England. The 100,000 Genomes Project. https://www.genomicsengland.co.uk/
about-genomics-england/the-100000-genomes-project/.

[45] Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. LZD factorization: Simple and
practical online grammar compression with variable-to-fixed encoding. In Ferdinando Cicalese, Ely Porat,
and Ugo Vaccaro, editors, 26th Annual Symposium on Combinatorial Pattern Matching (CPM), pages
219–230. Springer, 2015. doi:10.1007/978-3-319-19929-0_19.

[46] Dan Greenfield, Vaughan Wittorff, and Michael Hultner. The importance of data compression in the field of
genomics. IEEE Pulse, 10(2):20–23, 2019. doi:10.1109/MPULS.2019.2899747.

[47] Danny Hermelin, Gad M. Landau, Shir Landau, and Oren Weimann. Unified compression-based acceleration
of edit-distance computation. Algorithmica, 65(2):339–353, 2013. doi:10.1007/s00453-011-9590-6.

[48] Mikel Hernaez, Dmitri Pavlichin, Tsachy Weissman, and Idoia Ochoa. Genomic data compression. Annual
Review of Biomedical Data Science, 2:19–37, 2019. doi:10.1146/annurev-biodatasci-072018-021229.

[49] Tomohiro I. Longest common extensions with recompression. In Juha Kärkkäinen, Jakub Radoszewski,
and Wojciech Rytter, editors, 28th Annual Symposium on Combinatorial Pattern Matching (CPM), pages
18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.CPM.2017.18.

[50] Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Transactions on Algorithms,
11(3):20:1–20:43, 2015. doi:10.1145/2631920.

[51] Artur Jeż. A really simple approximation of smallest grammar. Theoretical Computer Science, 616:141–150,
2016. doi:10.1016/j.tcs.2015.12.032.

[52] Dominik Kempa. Optimal construction of compressed indexes for highly repetitive texts. In Timothy M.
Chan, editor, 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1344–1357. SIAM,
2019. doi:10.1137/1.9781611975482.82.

[53] Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows-Wheeler transform conjecture. In
Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
1002–1013. IEEE, 2020. doi:10.1109/FOCS46700.2020.00097.

[54] Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries and updates.
In Stefano Leonardi and Anupam Gupta, editors, 54th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 1657–1670. ACM, 2022. doi:10.1145/3519935.3520061.

[55] Dominik Kempa and Tomasz Kociumaka. Breaking the O(n)-barrier in the construction of compressed suffix
arrays and suffix trees. In Nikhil Bansal and Viswanath Nagarajan, editors, 2023 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 5122–5202. SIAM, 2023. doi:10.1137/1.9781611977554.CH187.

[56] Dominik Kempa and Tomasz Kociumaka. Collapsing the hierarchy of compressed data structures: Suffix
arrays in optimal compressed space. In IEEE 64th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE Computer Society, 2023. URL: https://doi.org/10.48550/arXiv.2308.03635.

[57] Dominik Kempa and Dmitry Kosolobov. LZ-End parsing in compressed space. In Ali Bilgin, Michael W.
Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, 2017 Data Compression Conference (DCC),
pages 350–359. IEEE, 2017. doi:10.1109/DCC.2017.73.

[58] Dominik Kempa and Ben Langmead. Fast and space-efficient construction of AVL grammars from the
LZ77 parsing. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European
Symposium on Algorithms (ESA), pages 56:1–56:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.ESA.2021.56.

[59] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: String attractors. In Ilias
Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 827–840. ACM, 2018. doi:10.1145/3188745.3188814.

Copyright © 2024
Copyright for this paper is retained by authors3389

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/
https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/
https://doi.org/10.1007/978-3-319-19929-0_19
https://doi.org/10.1109/MPULS.2019.2899747
https://doi.org/10.1007/s00453-011-9590-6
https://doi.org/10.1146/annurev-biodatasci-072018-021229
https://doi.org/10.4230/LIPICS.CPM.2017.18
https://doi.org/10.1145/2631920
https://doi.org/10.1016/j.tcs.2015.12.032
https://doi.org/10.1137/1.9781611975482.82
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1137/1.9781611977554.CH187
https://doi.org/10.48550/arXiv.2308.03635
https://doi.org/10.1109/DCC.2017.73
https://doi.org/10.4230/LIPICS.ESA.2021.56
https://doi.org/10.1145/3188745.3188814

[60] Dominik Kempa and Barna Saha. An upper bound and linear-space queries on the LZ-End parsing. In
Joseph (Seffi) Naor and Niv Buchbinder, editors, 2022 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2847–2866. SIAM, 2022. doi:10.1137/1.9781611977073.111.

[61] Takuya Kida, Tetsuya Matsumoto, Yusuke Shibata, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa.
Collage system: A unifying framework for compressed pattern matching. Theoretical Computer Science,
298(1):253–272, 2003. doi:10.1016/S0304-3975(02)00426-7.

[62] John C. Kieffer and En-Hui Yang. Grammar-based codes: A new class of universal lossless source codes.
IEEE Transactions on Information Theory, 46(3):737–754, 2000. doi:10.1109/18.841160.

[63] John C. Kieffer, En-Hui Yang, Gregory J. Nelson, and Pamela C. Cosman. Universal lossless compression
via multilevel pattern matching. IEEE Transactions on Information Theory, 46(4):1227–1245, July 2000.
doi:10.1109/18.850665.

[64] Tomasz Kociumaka, Gonzalo Navarro, and Francisco Olivares. Near-optimal search time in δ-optimal space.
In Armando Castañeda and Francisco Rodríguez-Henríquez, editors, 15th Latin American Symposium on
Theoretical Informatics (LATIN), pages 88–103. Springer, 2022. doi:10.1007/978-3-031-20624-5_6.

[65] Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Toward a definitive compressibility measure for
repetitive sequences. IEEE Trans. Inf. Theory, 69(4):2074–2092, 2023. doi:10.1109/TIT.2022.3224382.

[66] Sebastian Kreft and Gonzalo Navarro. LZ77-like compression with fast random access. In James A. Storer and
Michael W. Marcellin, editors, 2010 Data Compression Conference (DCC), pages 239–248. IEEE Computer
Society, 2010. doi:10.1109/DCC.2010.29.

[67] J. Kevin Lanctôt, Ming Li, and En-Hui Yang. Estimating DNA sequence entropy. In David B. Shmoys,
editor, 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 409–418. ACM/SIAM,
2000. URL: http://dl.acm.org/citation.cfm?id=338219.338586.

[68] N. Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. Proceedings of the IEEE,
88(11):1722–1732, 2000. doi:10.1109/5.892708.

[69] Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology,
4(2):241–299, 2012. doi:10.1515/gcc-2012-0016.

[70] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. XML tree structure compression using RePair.
Information Systems, 38(8):1150–1167, 2013. doi:10.1016/j.is.2013.06.006.

[71] Takuya Mieno, Shunsuke Inenaga, and Takashi Horiyama. RePair grammars are the smallest grammars
for Fibonacci words. In Hideo Bannai and Jan Holub, editors, 33rd Annual Symposium on Combinatorial
Pattern Matching (CPM), pages 26:1–26:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.CPM.2022.26.

[72] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press, Cambridge,
UK, 2016. doi:10.1017/cbo9781316588284.

[73] Gonzalo Navarro. Indexing highly repetitive string collections, part I: Repetitiveness measures. ACM
Comput. Surv., 54(2):29:1–29:31, 2021. doi:10.1145/3434399.

[74] Gonzalo Navarro. Indexing highly repetitive string collections, part II: Compressed indexes. ACM Comput.
Surv., 54(2):26:1–26:32, 2021. doi:10.1145/3432999.

[75] Greg Nelson, John Kieffer, and Pamela Cosman. An interesting hierarchical lossless data compression
algorithm. In IEEE Information Theory Society Workshop, 1995.

[76] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997. doi:10.1613/jair.374.

Copyright © 2024
Copyright for this paper is retained by authors3390

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1137/1.9781611977073.111
https://doi.org/10.1016/S0304-3975(02)00426-7
https://doi.org/10.1109/18.841160
https://doi.org/10.1109/18.850665
https://doi.org/10.1007/978-3-031-20624-5_6
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1109/DCC.2010.29
http://dl.acm.org/citation.cfm?id=338219.338586
https://doi.org/10.1109/5.892708
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.1016/j.is.2013.06.006
https://doi.org/10.4230/LIPICS.CPM.2022.26
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3432999
https://doi.org/10.1613/jair.374

[77] National Human Genome Research Institute (NIH). Genomic data science. https://www.genome.gov/
about-genomics/fact-sheets/Genomic-Data-Science.

[78] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Fully dynamic data
structure for LCE queries in compressed space. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier,
editors, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS), pages
72:1–72:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.MFCS.2016.72.

[79] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Dynamic
index and LZ factorization in compressed space. Discret. Appl. Math., 274:116–129, 2020. doi:
10.1016/j.dam.2019.01.014.

[80] Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on BWT-runs compressed indexes. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 101:1–101:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.101.

[81] Takaaki Nishimoto and Yasuo Tabei. R-enum: Enumeration of characteristic substrings in BWT-runs
bounded space. In Pawel Gawrychowski and Tatiana Starikovskaya, editors, 32nd Annual Symposium
on Combinatorial Pattern Matching (CPM), pages 21:1–21:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.CPM.2021.21.

[82] Carlos Ochoa and Gonzalo Navarro. RePair and all irreducible grammars are upper bounded by high-
order empirical entropy. IEEE Transactions on Information Theory, 65(5):3160–3164, 2019. doi:
10.1109/TIT.2018.2871452.

[83] Tatsuya Ohno, Kensuke Sakai, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. A faster
implementation of online RLBWT and its application to LZ77 parsing. J. Discrete Alg., 52-53:18–28, 2018.
doi:10.1016/j.jda.2018.11.002.

[84] Mihai Patrascu. Lower bounds for 2-dimensional range counting. In David S. Johnson and Uriel Feige,
editors, 39th Annual ACM Symposium on Theory of Computing (STOC), pages 40–46. ACM, 2007.
doi:10.1145/1250790.1250797.

[85] Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Jon M. Kleinberg,
editor, 38th Annual ACM Symposium on Theory of Computing (STOC), pages 232–240. ACM, 2006.
doi:10.1145/1132516.1132551.

[86] Alberto Ordóñez Pereira, Gonzalo Navarro, and Nieves R. Brisaboa. Grammar compressed sequences with
rank/select support. Journal of Discrete Algorithms, 43:54–71, 2017. doi:10.1016/j.jda.2016.10.001.

[87] Alberto Policriti and Nicola Prezza. From LZ77 to the run-length encoded Burrows-Wheeler transform,
and back. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, 28th Annual Symposium
on Combinatorial Pattern Matching (CPM), pages 17:1–17:10. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPICS.CPM.2017.17.

[88] Nicola Prezza. Optimal rank and select queries on dictionary-compressed text. In Nadia Pisanti and Solon P.
Pissis, editors, 30th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 4:1–4:12. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.CPM.2019.4.

[89] Molly Przeworski, Richard R. Hudson, and Anna Di Rienzo. Adjusting the focus on human variation. Trends
in Genetics, 16(7):296–302, 2000. doi:10.1016/S0168-9525(00)02030-8.

[90] Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms for
approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/s00453-012-9618-6.

[91] Wojciech Rytter. Application of Lempel–Ziv factorization to the approximation of grammar-based
compression. Theoretical Computer Science, 302(1–3):211–222, 2003. doi:10.1016/S0304-3975(02)
00777-6.

Copyright © 2024
Copyright for this paper is retained by authors3391

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
https://doi.org/10.4230/LIPICS.MFCS.2016.72
https://doi.org/10.1016/j.dam.2019.01.014
https://doi.org/10.1016/j.dam.2019.01.014
https://doi.org/10.4230/LIPICS.ICALP.2021.101
https://doi.org/10.4230/LIPICS.CPM.2021.21
https://doi.org/10.1109/TIT.2018.2871452
https://doi.org/10.1109/TIT.2018.2871452
https://doi.org/10.1016/j.jda.2018.11.002
https://doi.org/10.1145/1250790.1250797
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1016/j.jda.2016.10.001
https://doi.org/10.4230/LIPICS.CPM.2017.17
https://doi.org/10.4230/LIPICS.CPM.2019.4
https://doi.org/10.1016/S0168-9525(00)02030-8
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1016/S0304-3975(02)00777-6

[92] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai, Miles J Efron,
Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and Gene E Robinson. Big data: astronomical or
genomical? PLoS biology, 13(7):e1002195, 2015. doi:10.1371/journal.pbio.1002195.

[93] James A. Storer and Thomas G. Szymanski. The macro model for data compression (extended abstract).
In Richard J. Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho,
editors, 10th Annual ACM Symposium on Theory of Computing (STOC), pages 30–39. ACM, 1978.
doi:10.1145/800133.804329.

[94] James A. Storer and Thomas G. Szymanski. Data compression via textual substitution. Journal of the
ACM, 29(4):928–951, 1982. doi:10.1145/322344.322346.

[95] Alexander Tiskin. Fast distance multiplication of unit-monge matrices. Algorithmica, 71(4):859–888, 2015.
doi:10.1007/s00453-013-9830-z.

[96] Leslie G. Valiant. General context-free recognition in less than cubic time. J. Comput. Syst. Sci., 10(2):308–
315, 1975. doi:10.1016/S0022-0000(75)80046-8.

[97] Elad Verbin and Wei Yu. Data structure lower bounds on random access to grammar-compressed strings. In
Johannes Fischer and Peter Sanders, editors, 24th Annual Symposium on Combinatorial Pattern Matching
(CPM), pages 247–258. Springer, 2013. doi:10.1007/978-3-642-38905-4_24.

[98] Terry A. Welch. A technique for high-performance data compression. Computer, 17(6):8–19, 1984.
doi:10.1109/MC.1984.1659158.

[99] En-Hui Yang and John C. Kieffer. Efficient universal lossless data compression algorithms based on a greedy
sequential grammar transform - part one: Without context models. IEEE Transactions on Information
Theory, 46(3):755–777, 2000. doi:10.1109/18.841161.

[100] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

[101] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

Copyright © 2024
Copyright for this paper is retained by authors3392

D
ow

nl
oa

de
d

01
/0

6/
24

 to
 9

2.
40

.1
92

.1
22

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1145/800133.804329
https://doi.org/10.1145/322344.322346
https://doi.org/10.1007/s00453-013-9830-z
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1007/978-3-642-38905-4_24
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/18.841161
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	1 Introduction
	2 Preliminaries
	2.1 Hardness Assumptions

	3 Grammar Compression Algorithms
	3.1 Global Algorithms
	3.2 Nonglobal Algorithms

	4 Technical Overview
	4.1 The Framework of Verbin and Yu
	4.2 Grammar Boosting

