
Breaking the O(n)-Barrier in the Construction
of Compressed Suffix Arrays and Suffix Trees∗

Dominik Kempa† Tomasz Kociumaka‡

Abstract
The suffix array, describing the lexicographical order of suffixes of a given text, and the suffix tree, a

path-compressed trie of all suffixes, are the two most fundamental data structures for string processing, with
plethora of applications in data compression, bioinformatics, and information retrieval. For a length-n text,
however, they use Θ(n logn) bits of space, which is often too costly. To address this, Grossi and Vitter [STOC
2000] and, independently, Ferragina and Manzini [FOCS 2000] introduced space-efficient versions of the suffix
array, known as the compressed suffix array (CSA) and the FM-index. Sadakane [SODA 2002] then showed how
to augment them to obtain the compressed suffix tree (CST). For a length-n text over an alphabet of size σ,
these structures use only O(n log σ) bits. Nowadays, these structures are part of the standard toolbox: modern
textbooks spend dozens of pages describing their applications, and they almost completely replaced suffix arrays
and suffix trees in space-critical applications. The biggest remaining open question is how efficiently they can
be constructed. After two decades, the fastest algorithms still run in O(n) time [Hon et al., FOCS 2003], which
is Θ(logσ n) factor away from the lower bound of Ω(n/ logσ n) (following from the necessity to read the input).

In this paper, we make the first in 20 years improvement in n for this problem by proposing a new compressed
suffix array and a new compressed suffix tree which admit o(n)-time construction algorithms while matching the
space bounds and the query times of the original CSA/CST and the FM-index. More precisely, our structures
take O(n log σ) bits, support SA queries and full suffix tree functionality in O(logϵ n) time per operation, and
can be constructed in O(nmin(1, log σ/

√
logn)) time using O(n log σ) bits of working space. (For example,

if σ = 2, the construction time is O(n/
√
logn) = o(n).) We derive this result as a corollary from a much

more general reduction: We prove that all parameters of a compressed suffix array/tree (query time, space,
construction time, and construction working space) can essentially be reduced to those of a data structure
answering new query types that we call prefix rank and prefix selection. Using the novel techniques, we also
develop a new index for pattern matching.

1 Introduction

Let T be a text of length n. A suffix tree [81] of T is a trie of all suffixes of T , in which every unary path has been
replaced with a single edge labeled by a text substring. The resulting tree has less than 2n nodes and thus can be
encoded in O(n log n) bits. Related to suffix trees are suffix arrays [60]. The suffix array SA[1 . . n] of T stores the
permutation of {1, . . . , n} such that SA[i] is the starting position of the ith lexicographically smallest suffix of T .
Consider now the following problem: Construct a data structure that, given any length-m pattern P , counts the
number of occurrences of P in T . To solve it using a suffix tree, it suffices to descend the tree in O(m) time and
report the precomputed number of leaves below the reached node. Using a suffix array, it suffices to perform an
O(m log n)-time binary search resulting in the range SA[b . . e) of suffixes of T having P as a prefix. Then, e− b is
the number of occurrences of P in T (and SA[b . . e) contains their starting positions). The advantage of suffix
array is that it is more space efficient: it only needs n⌈log n⌉ bits. The queries, however, are usually slightly slower.

The above is a canonical application of suffix arrays/trees. It is, however, only the tip of the iceberg. Suffix
trees and suffix arrays are widely considered to be the two most fundamental data structures for string processing.

∗The full version of the paper can be accessed at https://arxiv.org/abs/2106.12725.
†Stony Brook University, NY, USA. Email: kempa@cs.stonybrook.edu. Work in part done while at University of California,

Berkeley and Johns Hopkins University. Supported by NIH HG011392, NSF DBI-2029552, 1652303, 1934846 grants, an Alfred P.
Sloan Fellowship, and a Simons Foundation Junior Faculty Fellowship.

‡Max Planck Institute for Informatics, Saarland Informatics Campus, Germany. Email: tomasz.kociumaka@mpi-inf.mpg.de. Work
mostly done while at the University of California, Berkeley, partly supported by NSF 1652303, 1909046, and HDR TRIPODS 1934846
grants, and an Alfred P. Sloan Fellowship.

Copyright © 2023
Copyright for this paper is retained by the authors5122

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2106.12725
mailto:kempa@cs.stonybrook.edu
mailto:tomasz.kociumaka@mpi-inf.mpg.de

As written by Gusfield in his classical textbook [44]: “Suffix trees can be used to solve the exact matching problem
in linear time (. . .), but their real virtue comes from their use in linear-time solutions to many string problems
more complex than exact matching”. This includes well-studied problems like Maximal Repeats, Longest Repeated
Factor, Minimal Absent Word, Longest Common Substring, Matching Statistics, Maximal Unique Matches, LZ77
Factorization, BWT Compression, and many more (see, e.g., [1, 44, 58, 65, 72]).

With the increasing size of datasets that need processing, plain suffix arrays and suffix trees, however, have
become expensive to use, particularly in applications where the input text is over a small alphabet [0 . . σ). Such
text requires n⌈log σ⌉ bits, whereas the suffix array/tree uses at least n⌈log n⌉ bits of space. In some applications,
the gap logn

log σ can be quite large, e.g., in computational biology, where we usually have σ = 4, the gap is typically
between 16 and 32. This shortcoming was addressed by Grossi and Vitter and, independently, Ferragina and
Manzini at the turn of the millennium. They introduced space-efficient versions of the suffix array, known as the
compressed suffix array (CSA) [42, 43] and the FM-index [27, 28]. For a length-n text over an alphabet of size σ,
these data structures use only O(n log σ) bits, and they can answer SA queries (asking for SA[i] given i ∈ [1 . . n])
in O(logϵ n) time, where ϵ > 0 is an arbitrary predefined constant. With such data structure, one can execute any
algorithm that uses the suffix array, but consuming less space and only incurring a factor of O(logϵ n) penalty in
the runtime.1 Shortly after these discoveries, Sadakane [79] extended CSA/FM-index into a compressed suffix
tree (CST), supporting all suffix tree operations in O(logϵ n) time (while still using O(n log σ) bits of space). This
powerful structure can be plugged into an even larger set of algorithms [37].

Nowadays, CSAs and CSTs are widely used in practice. Modern string algorithms textbooks focus on the
use and applications of CSAs/CSTs and related data structures [1, 58], or even entirely on the emerging notion
of compressed data structures [65]. The FM-index occupies the central role in some of the most commonly used
bioinformatics tools, like Bowtie [55], BWA [56], and Soap2 [57], and mature and highly engineered implementations
of CSAs and CSTs are available through the sdsl library2 of Gog et al. [37, 38]. Despite these developments
in functionality and practical adoption of CSAs/CSTs, the time complexity of their construction remains an
open problem. The original paper of Grossi and Vitter [42], describes a method that, given a length-n text over
alphabet Σ = [0 . . σ), constructs the CSA in O(n log σ) time and using O(n log n) bits of working space. In 2003,
a celebrated result of Hon et al. [46] lowered the time complexity to O(n log log σ) and the space to the optimal
O(n log σ) bits. Note, however, that, e.g., for σ = 2, this algorithm still runs in Θ(n) time, which is slower by a
Θ(log n) factor than the lower bound of Ω(n/ log n), following simply from the necessity to read the entire input.
Recently, Belazzougui [5] improved the time complexity of the CSA/CST construction to randomized O(n) (while
using the optimal space of O(n log σ) bits), making it independent of the alphabet size σ. Shortly after, Munro,
Navarro, and Nekrich [61] proposed a deterministic solution. Despite these advances, 20 years after the result of
Hon et al. [46], the bound of Ω(n) still stands on the construction of CSAs/CSTs. Given the fundamental role of
CSAs and CSTs, we thus ask:

Given a text over alphabet Σ = [0 . . σ) represented using O(n log σ) bits,
can we construct a compressed suffix array/tree of T in o(n) time?

Our Results We answer the above question affirmatively by describing a new data structure that takes O(n log σ)
bits, supports all operations of CSA and CST in O(logϵ n) time, and can be constructed in O(nmin(1, log σ/

√
log n))

time using O(n log σ) bits of space (Theorems 5.1 and 7.1). Thus, our solution matches the size and the query
time of [27, 42, 79] (as well as more recent CSTs [14, 16, 31, 34, 75, 77]) but, unlike those, admits a sublinear-time
construction for small σ. In particular, we achieve O(n/

√
log n) = o(n) time for σ = 2, constituting the first

improvement in n since 2003 [46].
In addition to a new CSA/CST, we also present a new pattern matching index. We show (in Theorem 6.1) how,

given a length-n text T stored using O(n log σ) bits, to construct in O(nmin(1, log σ/
√
log n)) time an index of size

O(n log σ) bits that, given the packed representation (i.e., using O(m log σ) bits) of any pattern P [1 . .m], counts
the occurrences of P in T in O(m/ logσ n+ logϵ n) time (where ϵ > 0 is an arbitrary predefined constant). The
best previous solutions using compact space (i.e., O(n log σ) bits) achieve O(n log σ/

√
log n)-time3 construction

and O(m/ logσ n + log n · logσ n)-time queries [63], or O(n)-time construction and O(m/ logσ n + logϵσ n)-time

1This is often acceptable: a slower algorithm remains usable, but insufficient memory can thwart it entirely.
2The library is available at https://github.com/simongog/sdsl-lite.
3Although CSA lets us implement pattern counting queries, an index implementing pattern counting queries does not let us

implement SA queries; thus, although built in o(n) time, [63] cannot be used to answer SA queries.

Copyright © 2023
Copyright for this paper is retained by the authors5123

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite

queries [62]. Thus, for the most difficult case of σ = 2O(
√
logn), our construction subsumes both these indexes in

both aspects.4 Since our pattern-matching index not only returns the number of occurrences but also the range in
SA containing all suffixes prefixed with P , combining the above result with our CSA yields the structure that can
additionally report all occurrences of P in O(logϵ n) time per occurrence (Theorem 6.2).

The query times of all our data structures (i.e., both the CSA/CST and the pattern matching index) are
worst-case, and all our algorithms are deterministic.

Our data structures differ significantly from the CSA of Grossi and Vitter [42], the FM-index of Ferragina and
Manzini [27], and the CST of Sadakane [79], which are based on the so-called Ψ function [42] or the Burrows–
Wheeler transform [15]. We instead rely on the combination of the recently developed notion of string synchronizing
sets (SSS) [50] and the new type of queries we call prefix rank and prefix selection queries. Although the prior
work on SSS [50, 52] laid out its basic properties, it cannot be turned into an efficient CSA, because it heavily
relies on orthogonal range counting queries [18], which are provably incapable of supporting SA queries as fast as
the CSA or FM-index: Pǎtraşcu [76] showed a lower bound Ω(logn

log logn) on the query time of any structure using
near-linear space. On the other hand, the O(n log σ/

√
log n)-time BWT construction from [50] is not sufficient to

obtain an implementation of CSA since the classical BWT-based CSA, in addition to BWT, requires SA samples,
i.e., a set containing all pairs (SA−1[j], j) such that j is a multiple of log n, and it is not known how to obtain such
a sequence using prior techniques. The key difficulty is computing the (global) rank SA−1[j] of each sampled suffix;
an easy application of sparse suffix sorting gives, in O(n/ logσ n) time, the lexicographic order of the sampled
suffixes, but this is insufficient for placing each sampled suffix among the n suffixes of the original string.

We sidestep these obstacles and demonstrate that general orthogonal range counting queries [19, 18] are in fact
not needed at all, and each of their uses can either be: (1) eliminated completely (see the proof in Section 5.3.6), (2)
replaced with prefix rank/selection queries (see Section 4.3), or (3) improved, utilizing the fact that the instances
arising in our construction have properties that permit a fast custom solution (see Section 4.4). More details
are provided in the Technical Overview (Section 3). As a result, we obtain a general set of reductions for the
construction of CSA/CST and pattern-matching indexes, stated in Theorems 5.2, 6.3, and 7.2. In a single theorem,
we can summarize it as follows; note that our reduction achieves near-perfect efficiency, i.e., it incurs no overhead
(compared to the optimal solution) in space, preprocessing time, and preprocessing space, and only has an extra
O(log log n) term in the query time. Everything else depends entirely on prefix rank and selection queries.

Theorem 1.1. (Main result of this paper) Consider a data structure answering prefix rank and selection
queries (Section 2.1) that, for any string of length m over alphabet [0 . . σ)ℓ (or equivalently, a sequence of m
length-ℓ strings over alphabet [0 . . σ)), achieves:

1. Space usage S(m, ℓ, σ) (measured in Θ(logm)-bit machine words),
2. Preprocessing time Pt(m, ℓ, σ),
3. Preprocessing space Ps(m, ℓ, σ),
4. Query time Q(m, ℓ, σ).

For every T ∈ [0 . . σ)n with 2 ≤ σ < n1/7, there exist m = O(n/ logσ n) and ℓ = O(logσ n) such that, given the
packed representation of T , we can in O(n/ logσ n+Pt(m, ℓ, σ)) time and O(n/ logσ n+Ps(m, ℓ, σ)) working space
build a structure of size O(n/ logσ n+ S(m, ℓ, σ)) that:

• Supports SA and inverse SA queries in O(log log n+Q(m, ℓ, σ)) time;
• Supports all suffix tree operations (Table 1) in O(log log n+Q(m, ℓ, σ)) time;
• Given the packed representation of any pattern P ∈ [0 . . σ)m, returns:

– The range SA[b . . e) of suffixes of T with prefix P in O(m/ logσ n+ log log n+Q(m, ℓ, σ)) time;
– All occ starting positions of P in T in O(m/ logσ n+ (occ+ 1)(log log n+Q(m, ℓ, σ))) time.

Using this general reduction, we obtain the specific tradeoffs for CSA/CST and pattern matching queries we
announced earlier by plugging in the data structure for prefix rank/selection queries from Theorem 2.2.

Related Work In parallel to efforts to improve the complexity of CSA/CST construction, were the efforts to
make it more practical [38, 39, 40, 48, 73, 75]. This resulted in libraries of compressed data structures such as
sdsl [38], sux, and libcds. More recently, some of these data structures have been extended to the dynamic
setting, e.g., in the DYNAMIC [74] library.

4Note that if log σ = O(
√
logn), then logϵσ n = Θ(logϵ

′
n) holds for ϵ′ = ϵ

2
.

Copyright © 2023
Copyright for this paper is retained by the authors5124

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/simongog/sdsl-lite
https://github.com/vigna/sux
https://github.com/fclaude/libcds
https://github.com/xxsds/DYNAMIC

In addition to CSA/CST and indexes using the optimal space of O(n log σ) bits, previous work addressed
the problem of designing structures using ω(n log σ) but still o(n log n) bits [28, 35, 43]. We formulated our main
result (Theorem 1.1) as a general reduction so that techniques from these and similar future studies could be easily
combined with ours, potentially yielding new tradeoffs for pattern matching and CSA/CST queries.

In recent years, there has also been progress in the query time of O(n log n)-bit pattern matching indexes. The
suffix trees support O(m)-time pattern search after O(n)-time randomized or O(n log log σ)-time deterministic
construction [26, 78]. Fischer and Gawrychowski [30] achieved O(m + log log σ)-time queries after O(n)-time
deterministic construction, improving upon [22, 60]. If the pattern is given using O(m log σ) bits, Bille et al. [12]
achieved O(m/ logσ n+ logm+ log log σ) time, which Navarro and Nekrich [69] improved to O(m/ logσ n+ 1).

Surprisingly, the size of some CSAs, CSTs, and compact indexes can be reduced below n⌈log σ⌉ bits for
statistically compressible texts. For example, already the original FM-index [27] takes only O(nHk(T))+ o(n log σ)
bits, where Hk(T) denotes the empirical kth-order entropy of the text T [23]. Currently, the smallest indexes
reach nHk(T) + o(n(Hk(T) + 1)) bits [4, 8]. Navarro and Mäkinen [68], and Belazzougui and Navarro [7] survey
the achievable tradeoffs for such fully compressed indexes. Chan et al. [17], and Mäkinen and Navarro [59] describe
dynamic compressed pattern-matching indexes maintaining a collection of texts supporting insertions/deletions.

Compressed indexes based on LZ77 [82] and run-length BWT [15] rapidly gain popularity. The early
indexes [6, 11, 13, 32, 33] support only pattern search and random-access operations. Subsequent works generalized
them to other dictionary compressors [20, 53, 70] and added dynamism [36, 71]. Support for SA queries is
a recent addition of Gagie et al. [34]. Navarro surveys these indexes [67] and the intricate network of the
underlying compressibility measures [66]. Interestingly, some of these pattern matching indexes can be constructed
in compressed time. For example, the index of [36] can be constructed in O(z log3 n) time from the LZ77
representation of T (with z phrases), and then it locates pattern occurrences in O(m+ occ log n) time. On the
other hand, the only compressed index supporting SA queries [34] is only constructible in Ω(n) time, but it can be
built in compressed space O(r log(n/r)) given the run-length BWT of T (with r runs).

Organization of the Paper After introducing the basic notation and tools in Section 2, we give a technical
overview of the paper in Section 3. In Section 4, we then introduce some auxiliary tools utilized in our data
structures. Section 5 describes our data structure answering SA and SA−1 queries. In Section 6, we present our
index for counting and reporting occurrences of patterns given using packed representation. Finally, in Section 7,
we extend the functionality of our CSA into that of a CST.

2 Preliminaries

$
a$
aababa$
aababababaababa$
aba$
abaababa$
abaababababaababa$
ababa$
ababaababa$
abababaababa$
ababababaababa$
ba$
baababa$
baababababaababa$
baba$
babaababa$
bababaababa$
babababaababa$

T [SA[i] . . n]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

i

18
17
12
3
15
10
1
13
8
6
4
16
11
2
14
9
7
5

SA[i]

Figure 1: A list of all sorted suf-
fixes of T = abaababababaababa$
along with the suffix array of T .

A string is a finite sequence of characters from a given alphabet. The length of
a string S is denoted |S|. For i ∈ [1 . . |S|],5 the ith character of S is denoted
S[i]. A substring of S is a string of the form S[i . . j) = S[i]S[i+ 1] · · ·S[j − 1]
for some 1 ≤ i ≤ j ≤ |S|+ 1. Prefixes and suffixes are substrings of the form
S[1 . . j) and S[i . . |S|], respectively. We use S to denote the reverse of S, i.e.,
S[|S|] · · ·S[2]S[1]. We denote the concatenation of two strings U and V , that
is, U [1] · · ·U [|U |]V [1] · · ·V [|V |], by UV or U · V . Furthermore, Sk =

⊙k
i=1 S

is the concatenation of k ∈ Z≥0 copies of S; note that S0 = ε is the empty
string. For a non-empty string S ∈ Σ+, we define the special infinite string S∞

such that S∞[i] = S[1 + (i − 1) mod |S|] holds for every i ∈ Z; in particular,
S∞[1 . . |S|] = S[1 . . |S|]. An integer p ∈ [1 . . |S|] is a period of S if S[i] = S[i+p]
holds for every i ∈ [1 . . |S| − p]. We denote the shortest period of S as per(S).

Throughout the paper, we consider a string (called the text) T of length
n ≥ 2 over an integer alphabet Σ = [0 . . σ), where σ = nO(1). We assume
T [n] = 0, and that 0 (also denoted with $) does not appear elsewhere in T .
We use ⪯ to denote the order on Σ, extended to the lexicographic order on
Σ∗ (the set of strings over Σ) so that U, V ∈ Σ∗ satisfy U ⪯ V if and only
if either U is a prefix of V , or U [1 . . i) = V [1 . . i) and U [i] ≺ V [i] holds for
some i ∈ [1 . .min(|U |, |V |)]. The suffix array SA[1 . . n] of T is a permutation

5For i, j ∈ Z, denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z : i ≤ k < j}, and (i . . j] = {k ∈ Z : i < k ≤ j}.

Copyright © 2023
Copyright for this paper is retained by the authors5125

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

of [1 . . n] such that T [SA[1] . . n] ≺ T [SA[2] . . n] ≺ · · · ≺ T [SA[n] . . n], i.e., SA[i] is the starting position of the
lexicographically ith suffix of T ; see Fig. 1 for an example. The inverse suffix array ISA[1 . . n] (also denoted
SA−1[1 . . n]) is the inverse permutation of SA, i.e., ISA[j] = i holds if and only if SA[i] = j. Intuitively, ISA[j]
stores the lexicographic rank of a suffix T [j . . n] among the suffixes of T . By lcp(U, V) we denote the length of
the longest common prefix of U and V . For j1, j2 ∈ [1 . . n], we let LCE(j1, j2) = lcp(T [j1 . .], T [j2 . .]). For any
P, S ∈ Σ∗, we let

Occ(P, S) = {j ∈ [1 . . |S|] : j + |P | ≤ |S|+ 1 and S[j . . j+|P |) = P},
RangeBeg(P, S) = |{i ∈ [1 . . |S|] : S[i . . |S|] ≺ P}|,
RangeEnd(P, S) = RangeBeg(P, S) + |Occ(P, S)|.

Observe that the following equality holds for every P ∈ Σ∗:

Occ(P, T) = {SA[i] : i ∈ (RangeBeg(P, T) . .RangeEnd(P, T)]}.

We use the word RAM model of computation [45] with w-bit machine words, where w ≥ log n. In this
model, strings are typically represented as arrays, with each character occupying one memory cell. A single
character, however, only needs ⌈log σ⌉ bits, which might be much less than w. We can therefore store (the packed
representation of) a text T ∈ [0 . . σ)n using O

(⌈
n log σ

w

⌉)
memory cells.

2.1 (Prefix) Rank and Selection Queries

Let us recall the (ordinary) rank and selection queries on a string S ∈ Σn:

Rank query rankS,a(j): Given a ∈ Σ and j ∈ [0 . . n], compute |{i ∈ [1 . . j] : S[i] = a}|.
Selection query selectS,a(r): Given a ∈ Σ and r ∈ [1 . . rankS,a(n)], find the rth smallest element of

{i ∈ [1 . . n] : S[i] = a}.

Theorem 2.1. (Rank and selection queries in bitvectors [3, 21, 47, 64]) For every string S ∈ {0, 1}∗,
there exists a data structure of O(|S|) bits answering rank and selection queries in O(1) time. Moreover, given
the packed representations of m binary strings of total length n, the data structures for all these strings can be
constructed in O(m+ n/ log n) time.

Next, we provide a generalization of rank and selection queries specific to sequences of strings (strings whose
characters are strings themselves). Let W ∈ (Σ∗)m be a sequence of m strings.

Prefix rank query rankW,X(j): Given X ∈ Σ∗ and j ∈ [0 . .m], compute |{i ∈ [1 . . j] : X is a prefix of W [i]}|.
Prefix selection query selectW,X(r): Given X ∈ Σ∗ and r ∈ [1 . . rankW,X(m)], find the rth smallest element of

{i ∈ [1 . .m] : X is a prefix of W [i]}.
The following result, proved in Section 4.3 by building on the results of Belazzougui and Puglisi [9], provides

an efficient implementation of prefix rank and selection queries. Note that we require W to consist of same-length
strings over an integer alphabet.

Theorem 2.2. For all integers m, ℓ, σ ∈ Z≥1 satisfying m ≥ σℓ ≥ 2, every constant ϵ > 0, and every string
W ∈ ([0 . . σ)ℓ)≤m, there exists a data structure of size O(m) answering prefix rank queries in O(ℓϵ/2 log logm) =
O(logϵ m) time and prefix selection queries in O(ℓϵ/2) = O(logϵ m) time. Moreover, it can be constructed in
O(mmin(ℓ,

√
logm)) time using O(m) working space given the packed representation of W and the constant

parameter ϵ > 0.

2.2 Range Counting and Selection

Let A[1 . .m] be an array of nonnegative integers. We define the following queries on A:

Range counting query rcountA(v, j): Given an integer v ≥ 0 and a position j ∈ [0 . .m], compute
|{i ∈ [1 . . j] : A[i] ≥ v}|.

Copyright © 2023
Copyright for this paper is retained by the authors5126

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Range selection query rselectA(v, r): Given integers v ≥ 0 and r ∈ [1 . . rcountA(v,m)], find the rth smallest
element of {i ∈ [1 . .m] : A[i] ≥ v}.

The currently fastest general-purpose data structure for range counting/selection queries is described in [18,
Theorems 2.3 and 3.3]. The instances in our construction, however, satisfy an additional property, namely, that
the sum

∑m
i=1 A[i] is bounded. This lets us obtain a solution with faster queries and smaller construction time;

see Section 4.4.

Proposition 2.1. An array A[1. .m′] of m′ ∈ [2. .m] nonnegative integers satisfying
∑m′

i=1 A[i] = O(m logm) can
be preprocessed in O(m) time so that range counting and selection queries can be answered in O(log logm) time
and O(1) time, respectively.

2.3 String Synchronizing Sets

Definition 2.1. (τ-synchronizing set [50]) Let T ∈ Σn be a string and let τ ∈ [1 . . ⌊n
2 ⌋] be a parameter. A

set S ⊆ [1 . . n− 2τ + 1] is called a τ -synchronizing set of T if it satisfies the following consistency and density
conditions:

1. If T [i . . i+ 2τ) = T [j . . j + 2τ), then i ∈ S holds if and only if j ∈ S (for i, j ∈ [1 . . n− 2τ + 1]),
2. S ∩ [i . . i+ τ) = ∅ if and only if i ∈ R(τ, T) (for i ∈ [1 . . n− 3τ + 2]), where

R(τ, T) := {i ∈ [1 . . |T | − 3τ + 2] : per(T [i . . i+ 3τ − 2]) ≤ 1
3τ}.

In most applications, we want to minimize |S|. Note, however, that the density condition imposes a lower
bound |S| = Ω(nτ) for strings of length n ≥ 3τ − 1 that do not contain substrings of length 3τ − 1 which are
periodic with period ≤ 1

3τ . Thus, we cannot hope to achieve an upper bound improving in the worst case upon
the following one.

Theorem 2.3. ([50, Proposition 8.10]) For any string T of length n and parameter τ ∈ [1 . . ⌊n
2 ⌋], there

exists a τ -synchronizing set S of size |S| = O
(
n
τ

)
. Moreover, if T ∈ [0 . . σ)n, where σ = nO(1), such S can be

deterministically constructed in O(n) time.

Note that when τ = ω(1) ∩ O(logσ n) and T ∈ [0 . . σ)n is given in the packed representation, the first part of
Theorem 2.3 opens the possibility of an algorithm running in O(nτ) = o(n) time. In [50], it was shown that this
lower bound is achievable (the upper bound τ = O(logσ n) follows from the fact that every algorithm needs to at
least read the input, which takes Θ(n/ logσ n) time; thus, for larger τ , the algorithm cannot run in O(nτ) time).

Theorem 2.4. ([50, Theorem 8.11]) For every constant µ < 1
5 , given the packed representation of a text

T ∈ [0 . . σ)n and a positive integer τ ≤ µ logσ n, one can deterministically construct in O(nτ) time a τ -synchronizing
set of size O(nτ).

3 Technical Overview

In this section, we give an overview of our data structures to answer SA and ISA queries (Section 3.1), pattern
matching queries (Section 3.2), and suffix tree queries (Section 3.3). Each subsection contains a summary of the
key new techniques.

3.1 SA and ISA Queries

Let ϵ ∈ (0, 1) and T ∈ [0 . . σ)n, where 2 ≤ σ < n1/7. In this section, we give an overview of our data structure
to compute the value of SA[i] (resp. ISA[j]) given any i ∈ [1 . . n] (resp. j ∈ [1 . . n]) in O(logϵ n) time. The data
structure uses O(n/ logσ n) space. We assume σ < n1/7 since for larger σ the plain representations of SA and ISA
use O(n log n) = O(n log σ) bits and can be constructed in O(n) time [49].

Let τ = ⌊µ logσ n⌋, where µ < 1
6 is a positive constant chosen so that τ ≥ 1 (such µ exists by σ < n1/7).

We use R as a shorthand for R(τ, T) (see Definition 2.1). Our data structure to compute SA[i] (resp. ISA[j])
works differently depending on whether SA[i] ∈ R (resp. j ∈ R). To check if SA[i] ∈ R, we store a bitvector

Copyright © 2023
Copyright for this paper is retained by the authors5127

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

B3τ−1 marking boundaries between the blocks of suffixes in SA sharing the length-(3τ−1) prefix. We also store
the sequence Ashort of those prefixes (by µ < 1

6 , it needs O(σ3τ−1) = O(n3µ) = o(n/ logσ n) space). Given any
i ∈ [1 . . n], we can then check if SA[i] ∈ R by first computing the block k containing position i using a rank query
on B3τ−1, and then checking (using a lookup table) if X = Ashort[k] satisfies per(X) ≤ 1

3τ . As for an ISA query,
checking if j ∈ R only needs the lookup table (since we store T).

The Nonperiodic Positions We first focus on computing ISA[j]. Let j ̸∈ R and let S be a τ -synchronizing
set of T of size n′ := |S| = O(n/τ) (such S exists and can be quickly constructed using Theorem 2.4). The query
algorithm relies on the following two observations:

Observation 1: S induces a partitioning of SA into blocks. The density condition of S implies S ∩ [j . . j + τ) ̸= ∅,
i.e., the successor of j in S, denoted s := succS(j), satisfies s < j + τ . Hence, the string X := T [j . . s+ 2τ),
called the distinguishing prefix of T [j . . n], is of length |X| ≤ 3τ − 1. By the local consistency of S, the set D
of distinguishing prefixes of all suffixes T [j . . n] with j /∈ R is prefix-free (i.e., no string in D is a prefix of
another). All positions in [1 . . n] \ R in the SA of T can thus be partitioned into disjoint blocks according
to distinguishing prefixes. Since D ⊆ [0 . . σ)≤3τ−1, the number of blocks is O(σ3τ−1), so we can store their
boundaries in a lookup table of size O(σ3τ−1) = O(n3µ) = o(n/ logσ n). To efficiently determine succS(j),
we store a bitvector marking positions in S, augmented with O(1)-time rank and select queries. Once the
block SA(b . . e] for X = T [j . . succS(j) + 2τ) is found, it remains to locate j within that block.

Observation 2: The order in each block is consistent with S. Assume SA(b . . e] represents all suffixes of T having
X = T [j . . succS(j)+2τ) as a prefix. By the consistency condition, letting δtext = |X|−2τ , for every i ∈ (b . . e],
we have succS(SA[i]) = SA[i]+δtext. Thus, letting (slexi)i∈[1. .n′] contain S sorted by the corresponding suffixes
T [slexi . . n], positions in SA(b . . e] increased by δtext occur in (slexi)i∈[1. .n′] in the same relative order. Hence,
if we define W [i] = Xi, where Xi = T∞[slexi − τ . . slexi + 2τ), and select W [y] as the kth string in W having
X as a prefix, then slexy − δtext = SA[b+ k] is the kth position in SA(b . . e]. Thus, to obtain ISA[j], it suffices
to find the index y such that slexy = succS(j). Then, the offset of j in the block SA(b . . e] is rankW,X(y). To
efficiently determine y, we store the permutation that maps elements of S sorted left-to-right to elements of
(slexi)i∈[1. .n′]. This lets us determine y in O(1) time. We then compute rankW,X(y) in O(logϵ n) time using
Theorem 2.2; see Proposition 5.4.

Let us now turn to the computation of SA[i] when SA[i] ̸∈ R. Using a rank query on B3τ−1 and an access to
Ashort, we first determine the length-(3τ−1) prefix of T [SA[i] . . n]. A lookup table lets us retrieve the prefix X ∈ D
of T [SA[i] . . n] and the boundaries of the corresponding block SA(b . . e]. By Observation 2 above, it remains to
determine the index y of the (i− b)th leftmost string in W having X as a prefix, which we compute in O(logϵ n)
time as y = selectW,X(i− b) using Theorem 2.2. We then have SA[i] = slexy − δtext, where δtext = |X| − 2τ . See
Proposition 5.5 for details.

The Periodic Positions Let j ∈ R. We again first focus on computing ISA[j]. As before, we aim to find the
location of j in the block SA(b . . e] containing all suffixes of T prefixed with X = T [j . . j + 3τ − 1). Note that
all positions in SA(b . . e] are in R. The challenge is thus to devise a way to compare suffixes starting in R. The
problem with applying a similar approach as before is that the size of R can reach Θ(n). There exists, however, a
subset of R that, when combined with a bitvector representing remaining positions in R, can be applied here. We
derive it as follows:

Structure of R in the left-to-right (text) order: The gap between |X| = 3τ − 1 and per(X) ≤ 1
3τ ensures that every

maximal block of positions in R corresponds to a τ -run, i.e., a maximal substring of T of length ≥ 3τ − 1
whose shortest period is ≤ 1

3τ (Lemma 5.3). Since any two τ -runs overlap by at most 2
3τ positions (see the

proof of Lemma 5.6), their number is O(n/τ). We can thus succinctly encode R by storing the set R′ of
τ -run starting positions.

Structure of R in the lexicographic order: For x ∈ R, let e(x) denote the position following the τ -run containing x.
Observe that, for every x ∈ R, we can uniquely write T [x . . e(x)) = H ′HkH ′′, where H is the lexicographically
smallest rotation of T [x . . x+ p), p = per(T [x . . e(x))), and H ′ (resp. H ′′) is a proper suffix (resp. prefix) of
H (Section 5.3.1). Denote L-root(x) = H, L-head(x) = |H ′|, L-exp(x) = k, and L-tail(x) = |H ′′|. Let also
type(x) = −1 if T [e(x)] ≺ T [e(x) − |H|] and type(x) = +1 otherwise. Then, in SA(b . . e], all positions x
with type(x) = −1 precede all x with type(x) = +1. Moreover, the value of e(x)− x is non-decreasing (resp.

Copyright © 2023
Copyright for this paper is retained by the authors5128

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

non-increasing) among the positions x with type(x) = −1 (resp. type(x) = +1); see Lemma 5.4.

Denote R− = {x ∈ R : type(x) = −1}, R′− = R′ ∩ R−, RH = {x ∈ R : L-root(x) = H}, R′−
H = R′− ∩ RH ,

Rs,H = {x ∈ RH : L-head(x) = s}, and R−
s,H = R− ∩ Rs,H . Assume type(j) = −1 (the case of type(j) = +1

is symmetric), L-head(j) = s, and L-root(j) = H. Given the above structural insights, we can phrase locating
j in SA(b . . e] as counting the positions x ∈ R−

s,H satisfying T [x . . n] ⪯ T [j . . n]. By the analysis above, all
such positions satisfy e(x) − x ≤ e(j) − j and hence L-exp(x) ≤ L-exp(j). We first compute the size of
Posa(j) := {x ∈ R−

s,H : L-exp(x) ≤ L-exp(j)} and then subtract the size of Poss(j) := {x ∈ R−
s,H : L-exp(x) =

L-exp(j) and T [x . . n] ≻ T [j . . n]} as follows:6

• Since |Posa(j)| only depends on L-exp(j), it suffices to store a bitvector Bexp marking the boundaries in SA
between blocks of positions with subsequent values of L-exp. Computing |Posa(j)| then reduces to O(1)-time
rank and selection queries on Bexp (Proposition 5.9).

• As for |Poss(j)|, we observe that Poss(j) contains at most one position in each τ -run (Lemma 5.10). We
store all x ∈ R′−

H sorted by the suffix starting right after the last occurrence of H, i.e., T [efull(x) . . n],
where efull(x) := e(x) − L-tail(x). In a separate array, we also record efull(x) − x at the corresponding
position. This lets us compute |Poss(j)| by first locating the block of positions x ∈ R′−

H for which
T [efull(x) . . n] ≻ T [efull(j) . . n], and then counting the ones with efull(x)− x ≥ efull(j)− j (Proposition 5.10).
Since the sum of efull(x)− x over all x ∈ R′ is O(n) (Section 5.3.2), we use a specialized structure for range
counting (Proposition 2.1), bypassing the general Ω(logn

log logn)-time lower bound [76].

Let us now turn to an SA[i] query with SA[i] ∈ R−. First, we determine T [SA[i] . .SA[i] + 3τ − 1) using
B3τ−1 and Ashort, as well as s = L-head(SA[i]) and H = L-root(SA[i]) using a lookup table (Proposition 5.8).
Then, rank and selection queries on Bexp let us easily determine L-exp(SA[i]) and |Poss(SA[i])| (Proposition 5.12).
As explained above, to compute SA[i], it remains to first select the kth (where k = |Poss(SA[i])| + 1) largest
element j ∈ R′−

H according to the string T [efull(j) . . n], among positions j′′ ∈ R′−
H satisfying efull(j′′) − j′′ ≥

L-head(SA[i]) + L-exp(SA[i]) · |H|. The position j′ ∈ [j . . e(j) − 3τ + 2) with L-exp(j′) = L-exp(SA[i]) and
L-head(j′) = L-head(SA[i]) must then satisfy SA[i] = j′. To compute j, we use our specialized data structure for
range queries (Proposition 2.1). Position j′ is then obtained by subtracting L-head(SA[i]) + L-exp(SA[i]) · |H|
from efull(j) (Proposition 5.13).

In total, the query time for periodic positions is O(log log n) (Propositions 5.11 and 5.14).

Summary of New Techniques The key distinctive feature of our technique is the use of local consistency
without general orthogonal range queries, present in prior approaches [20, 50, 51, 52]. This lets us sidestep
Pǎtraşcu’s Ω(logn

log logn) lower bound [76], which is achieved in three steps:

• We replace range counting/selection in the nonperiodic case with prefix rank and prefix selection, for which
we propose a new tradeoff by plugging in the technique of Belazzougui and Puglisi [9]. This reveals the power
of our reduction: we achieve a non-trivial tradeoff for complex queries by solving a simple bit-permuting
problem (note that the tradeoff behind Theorem 2.2, e.g., occupies only 1.5 pages in Section 4.3; the bulk of
our paper is the reduction).

• We replace range counting/selection in the periodic case by observing that the sum of coordinates is small
(Section 5.3.2). This lets us use a specialized solution (Section 4.4).

• The above two cases occur at query time. The third case concerns the construction of the structure. More
precisely, we completely eliminate range queries naturally occurring during the construction of components
for periodic positions [50, 51] by a complex bit-optimal algorithm for the construction of the bitvector Bexp

(see Section 5.3.6).

As a result, we obtain a very general reduction stated in Theorem 5.2.

3.2 Pattern Matching Queries
Let ϵ ∈ (0, 1) and T ∈ [0 . . σ)n be as in Section 3.1. We now give an overview of our data structure
that, given a packed representation of any pattern P ∈ [0 . . σ)m, returns the pair of indexes (b, e) =
(RangeBeg(P, T),RangeEnd(P, T)), i.e., the boundaries of the SA block containing all suffixes having P as

6Note that here we first overestimate the number of smaller suffixes in SA(b . . e] and then subtract the larger suffixes. We explain
the reason for this counterintuitive approach in Remark 5.1.

Copyright © 2023
Copyright for this paper is retained by the authors5129

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

a prefix, in O(m/ logσ n+ logϵ n) time. Note that having this range immediately gives us |Occ(P, T)| = e− b, i.e.,
it implements pattern counting. Moreover, combined with the result from Section 3.1, we obtain pattern reporting,
i.e., we can enumerate Occ(P, T) in O(m/ logσ n+ (|Occ(P, T)|+ 1) logϵ n) time.

Let τ be as in Section 3.1. Our structure to compute (RangeBeg(P, T),RangeEnd(P, T)) works differently
depending on whether m ≥ 3τ−1 and whether per(P [1 . . 3τ−1]) ≤ 1

3τ (such P is called periodic) or not. Checking
if P is periodic is easily implemented via a lookup table.

The Nonperiodic Patterns Let us assume m ≥ 3τ − 1 (shorter patterns are handled using a precomputed
array) and let S be as in Section 3.1. The basic idea of the pattern matching query is to decompose P = XY , where
X ∈ D, and then utilize the following observation about S (generalizing the second observation in Section 3.1):

Observation: The order in the suffix array range corresponding to Occ(P, T) is consistent with S. Let
(b, e) = (RangeBeg(P, T),RangeEnd(P, T)). By the consistency condition, for every i ∈ (b . . e], we have
succS(SA[i]) = SA[i] + δtext, where δtext = |X| − 2τ . Thus, letting (slexi)i∈[1. .n′] be defined as in Section 3.1,
the positions in SA(b . . e] increased by δtext occur in (slexi)i∈[1. .n′] in the same relative order. Therefore, to
compute |Occ(P, T)|, it suffices to first locate a range of (slexi)i∈[1. .n′] consisting of positions followed by
P (δtext . .m] in T , and then count those which are additionally preceded with X[1 . . δtext]. The first goal is
implemented in O(m/ logσ n+ log log n) time via a compact trie over the set of strings {T [slexi . . n]}i∈[1. .n′],
reinterpreted as strings over alphabet of size nΘ(1). The second step reduces to a prefix rank query over
W [1 . . n′] (Section 3.1). This approach easily generalizes to return (b, e) instead of |Occ(P, T)|; see Lemma 6.1.

The Periodic Patterns Let us now assume that m ≥ 3τ − 1 and per(P [1 . . 3τ − 1]) ≤ 1
3τ . We first generalize

the notion of L-root(x), e(x), and all other functions from positions to strings (Section 6.3.1). The main idea is to
decompose P into the periodic prefix P [1 . . e(P)) and the remaining suffix P [e(P) . . |P |]. Let us consider the harder
case when e(P) = |P |+1 (see Lemma 6.6). We define Occa(P, T) = {j ∈ Rs,H ∩Occ(P, T) : L-exp(j) > L-exp(P)}
and Occs(P, T) = {j ∈ Rs,H ∩Occ(P, T) : L-exp(j) = L-exp(P)}, where H = L-root(P) and s = L-head(P). The
value |Occ(P, T)| is determined in two steps:

• First, we compute the size of Occa−(P, T) := Occa(P, T) ∩ R− (the size of Occa+(P, T) is computed
symmetrically) as in Section 3.1 by utilizing rank and selection queries on Bexp (Proposition 6.7). This only
requires knowing L-exp(P), which can be retrieved in O(1 +m/ logσ n) time (Proposition 6.6).

• Next, we compute the size of Occs−(P, T) := Occs(P, T) ∩ R−. We first show that Occs−(P, T) contains
at most one position in every τ -run (Lemma 6.7), i.e., an analogue of Lemma 5.10. The computation
is similar as in Section 3.1, except that we use a trie over meta-symbols to find the range of positions
x ∈ R′−

H with T [efull(x) . . n] prefixed by P [efull(P) . .m]. We then perform an O(log log n)-time range query
(Proposition 6.8). A small complication is to separate positions x ∈ R′− with different L-root(x) in the trie.
For this, we insert into the trie suffixes starting slightly earlier than efull(x); see Section 6.3.2.

The above algorithm generalizes to the computation of (b, e), rather than |Occ(P, T)|, except that handling
“fully periodic” patterns (with e(P) = |P |+ 1) requires some care (see Remark 6.2).

Summary of New Techniques Our key technical contributions are as follows:

• We show how to directly apply string synchronizing sets [50] to the problem of pattern matching (not by
simply using SA/ISA queries) and consequently obtain a very efficient reduction from pattern matching to
prefix rank and prefix selection queries.

• To achieve this, we prove several new combinatorial results for periodic patterns (Section 6.3.1), and then
show for efficiently apply them (Sections 6.3.2 to 6.3.4).

• As a result, we obtain the first optimal-size pattern matching index that is constructible in o(n) time and
supports:

– pattern occurrence counting in O(m/ logσ n+ logϵ n) time, and
– pattern occurrence reporting in O(m/ logσ n+ (|Occ(P, T)|+ 1) logϵ n) time.

This improves over [62, 63] in either construction or query time and, perhaps more importantly, provides a
very general reduction that enables achieving further time-space tradeoffs much easier (Theorem 6.3).

Copyright © 2023
Copyright for this paper is retained by the authors5130

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

3.3 Suffix Tree Queries

Let ϵ ∈ (0, 1) and T ∈ [0 . . σ)n be as in Section 3.1. In this section, we outline how to extend the techniques presented
in Sections 3.1 and 3.2 to obtain the full suffix tree functionality in optimal O(n/ logσ n) space. All operations (see
Table 1) are supported in O(logϵ n) time, and the data structure can be constructed in O(nmin(1, log σ/

√
log n))

time and O(n/ logσ n) working space. Thus, e.g., for σ = 2, our construction takes O(n/
√
log n) = o(n) time.

Each node v of the suffix tree of T , denoted Tst, is encoded either as (j, ℓ) such that T [j . . j + ℓ) = str(v) or as
(b, e) = (RangeBeg(str(v), T),RangeEnd(str(v), T)), where str(v) is the string represented by v. Since the latter
representation is more common (e.g. [31]), we adopt it as the default interface and denote repr(v).

In this overview, we focus on the child operation, which illustrates some of our key techniques. We remark,
however, that other operations require different combinatorial insights.

Let τ be as in Section 3.1. Our structure works differently depending on whether the operation is performed
on a node v such that str(v) is periodic or not (see Section 3.2).

The Nonperiodic Nodes Let v be a node of Tst such that str(v) is nonperiodic and let c ∈ Σ. Our goal
is to compute repr(child(v, c)) given repr(v). Let S again be as in Section 3.1. The basic idea is to reduce the
computation concerning the SA-interval for string str(v) to the computation involving only positions in S. For this
purpose, we store the compact trie TS for {T [slexi . . n]}i∈[1. .n′]. Typically, each operation on Tst then involves the
following steps:

1. Map the input node v of Tst (given as repr(v)) to some node u of TS,
2. Perform some operation in TS resulting in a node u′ (in our case, u′ = child(u, c)),
3. Map u′ back to some node v′ of Tst (producing repr(v′) as output).

Mapping from Tst to TS: Let (b, e) = repr(v) and let X ∈ D be the distinguishing prefix of str(v). By the
observation for nonperiodic patterns in Section 3.2, the left-to-right order of leaves of TS corresponding to
suffixes in SA(b . . e] shifted by δtext = |X| − 2τ is consistent with their order in SA(b . . e]. Moreover, since
we know how to compute the position in (slexi)i∈[1. .n′] corresponding to suffix T [SA[i] . . n] for any i ∈ [1 . . n]
such that SA[i] ∈ [1 . . n] \ R (see Section 3.1), we can compute the pointer to the leaf of TS corresponding
to any suffix in SA(b . . e]. This implies that: (1) there exists a node mapTst,TS

(v) := u in TS such that
str(v) = X[1 . . δtext] · str(u), and (2) a pointer to u can be computed via a lowest common ancestor (LCA)
query from the leaves of TS corresponding to first and last suffix in SA(b . . e] (see Section 7.2.2).

Mapping from TS to Tst: After computing u′ = child(u, c), the next step is to go back to Tst. Our approach
exploits a similar principle as when computing ISA[j]: knowing X ∈ D and a position in (slexi)i∈[1. .n′] lets us
determine the corresponding position in SA. More generally, given X ∈ D and an interval of (slexi)i∈[1. .n′],
we can retrieve the corresponding interval in SA. The former is precomputed and stored with each node
of TS. Note, however, the following complication: TS may have extra nodes between u = mapTst,TS

(v) and
û = mapTst,TS

(child(v, c)), and then mapTst,TS
(child(v, c)) ̸= child(mapTst,TS

(v), c) (see also Remark 7.3). We
thus need to first prove that applying the inverse mapping to any node between u and û (in particular, to u′)
yields repr(child(v, c)) (Lemma 7.9). This exploits properties of S specific to the child operation; we omit
the details here but remark that this step differs among core operations (see, e.g., Lemmas 7.8 and 7.11).

The Periodic Nodes Let us now assume that str(v) is periodic. The basic idea is similar as above: we
keep a compact trie (denoted TZ) letting us search the suffixes in the set {T [efull(j) . . n]}j∈R′− . Although the
implementation of mapping and combinatorial proofs are more technical, establishing these higher-level navigation
primitives results in simpler and more concise implementation of queries (see, e.g., Lemma 7.20).

Summary of New Techniques Our key technical contributions are as follows:

• We show how to reduce all operations of a suffix tree to prefix rank and selection queries, resulting in the first
o(n)-time construction of optimal-size compressed suffix tree, with all operations simultaneously matching
the state-of-the-art [14, 16, 31, 34, 75, 77, 80].

• To achieve this, we first define and efficiently implement mappings between the nodes of Tst and of two
auxiliary tries TS and TZ. We then prove new combinatorial results (see, e.g., Lemmas 7.8 to 7.11, 7.16,
and 7.18 to 7.21) showing that these high-level navigation primitives correctly handle all suffix tree operations.

Copyright © 2023
Copyright for this paper is retained by the authors5131

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

4 Auxiliary Tools

4.1 Weighted Ancestors

Consider a rooted tree T . Let root(T) denote the node at depth 0 and let parent(v) denote the immediate ancestor
of each node v ̸= root(T). We let parent(root(T)) = ⊥. Assume that each node v has an associated weight w(v)
such that w(root(T)) = 0 and, for every v ̸= root(T), it holds w(parent(v)) < w(v). We then say that the weight
function w is monotone. Given any node v of T and an integer 0 ≤ d ≤ w(v), we define v′ = WA(v, d) (the
weighted ancestor [25]) as the (unique) ancestor of v in T that satisfies w(v′) ≥ d and for which w(v′) is minimized.

Theorem 4.1. ([2, Section 6.2.1]) Let T be a rooted tree with n ≤ N nodes and a monotone weight function
w mapping nodes to [0 . . N). There exists a data structure of size O(n) that answers weighted ancestor queries in
T in O(log logN) time after O(n logn N)-time preprocessing.

Proof. A solution for N = n was presented in [2, Section 6.2.1]. To generalize it to the case of N ≥ n, it suffices to
map all node weights to their ranks. For this, we sort all the node weights in O(n logn N) time (radix sort) and
build a deterministic predecessor structure [30, Proposition 2] in O(n) time so that the rank of a query threshold
can be computed in O(log logN) time. □

4.2 Tries and Compact Tries

A set of strings S ⊆ Σ+ is prefix-free if there are no S, S′ ∈ S such that S is a proper prefix of S′. For any
prefix-free set of string S ⊆ Σ+, its trie is a minimal rooted tree T , with each edge labelled by some c ∈ Σ, such
that: (1) no two edges outgoing from the same node have the same label, (2) for each S ∈ S there exists a path
from root(T) to some node such that the concatenation of edge-labels on that path is equal to S, and (3) children
of every node are ordered according to the lexicographical rank of the connecting edge. A compact trie of S is a
trie of S in which all maximal unary paths have been replaced with edges labelled by substrings of elements of S.
The nodes of the trie omitted in the compact trie are referred to as implicit. All other nodes are explicit. Unless
explicitly stated otherwise, by node we always mean an explicit node.

For any node v of a (compact) trie T , by str(v) we denote the label of v, i.e., the string obtained by concatenating
the labels of all edges on the path from root(T) to v. We denote sdepth(v) = |str(v)|. The parent of v in denoted
parent(v). For any c ∈ Σ, we define child(v, c) as a child v′ of v such that str(v′)[|str(v)|+ 1] = c, or ⊥ if no such
node exists. For any c ∈ Σ, we also define pred(v, c) as follows:

• If there exists c′ < c such that child(v, c′) ̸= ⊥, then we let pred(v, c) = child(v, cmax), where
cmax = max{c′ ∈ [0 . . c) : child(v, c′) ̸= ⊥}.

• Otherwise, we let pred(v, c) = ⊥.

We define (lrank(v), rrank(v)) as a pair of integers satisfying lrank(v) = |{S ∈ S : S ≺ str(v)}| and
rrank(v) − lrank(v) = |{S ∈ S : str(v) is a prefix of S}|. Observe that then collecting every ith leftmost leaf of
T , where i ∈ (lrank(v) . . rrank(v)] results in precisely the set of leaves in the subtree rooted in v. Given any
node v of T and an integer 0 ≤ d ≤ |str(v)|, we let v′ = WA(v, d) to be the weighted ancestor of v assuming the
weight of each node is defined as w(v) = sdepth(v). Thus, v′ is the (unique) ancestor of v in T that satisfies
sdepth(v′) ≥ d and for which sdepth(v′) is minimized. For any two nodes v1 and v2, the node v = LCA(v1, v2)
(the lowest common ancestor) is defined as the (unique) ancestor of both v1 and v2 with the maximal depth.

Observation 4.1. If v1 and v2 are nodes of a (compact) trie, then letting v = LCA(v1, v2) and ℓ =
lcp(str(v1), str(v2)), it holds sdepth(v) = ℓ and str(v) = str(v1)[1 . . ℓ] = str(v2)[1 . . ℓ].

4.2.1 Small Alphabet

Proposition 4.1. Given a packed representation of T ∈ [0 . . σ)n with 2 ≤ σ ≤ n and an array A[1 . . q] of q
positions in T such that, for any 1 ≤ i < j ≤ q, it holds T [A[i] . . n] ≺ T [A[j] . . n], we can in O(q + n/ logσ n) time
construct a representation of the compact trie T of the set {T [A[i] . . n] : i ∈ [1 . . q]}, augmented with auxiliary data
structures to support the following operations on T in O(1) time:

• Given i ∈ [1 . . q] return the ith leftmost leaf of T ,

Copyright © 2023
Copyright for this paper is retained by the authors5132

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

• Given pointers to nodes v1 and v2 return a pointer to LCA(v1, v2),
• Given a pointer to node v, return (lrank(v), rrank(v)) and sdepth(v).

It also supports the following operations in O(log log n) time:

• Given a pointer to node v and d such that 0 ≤ d ≤ |str(v)|, return the pointer to WA(v, d),
• Given a pointer to node v and c ∈ Σ, check if pred(v, c) ̸= ⊥ (resp. child(v, c) ̸= ⊥), and if so, return the

pointer to pred(v, c) (resp. child(v, c)).

Proof. The data structure consists of five components:

1. The packed representation of T using O(n/ logσ n) space.
2. The compact trie T . Since we assumed that T [n] is unique in T (see Section 2), the set {T [A[i] . . n]}i∈[1. .q]

is prefix-free, and hence T has exactly q leaves. Each node v of T stores the precomputed values sdepth(v),
(lrank(v), rrank(v)), and a predecessor data structure that, given any c ∈ [0 . . σ), returns a pointer to
pred(v, c). Using the structure from [30, Proposition 2], we achieve linear space and O(log log n) query time.

3. The array of pointers L[1 . . q] such that L[i] is the pointer to the ith leftmost leaf of T .
4. The data structure of Bender and Farach-Colton [10] that augments T with support for LCA queries. The

structure needs O(q) space and answers queries in O(1) time.
5. The data structure from Theorem 4.1 for T with the weight function sdepth(v) ∈ [0 . . n]. The structure

needs O(q) space and answers queries in O(log log n) time.

In total, the data structure takes O(q + n/ logσ n) space.
Using the above structures, the implementation of all queries in the claim follows immediately (note that

child(v, c) can be determined using pred(v, c+ 1) and the packed representation of T).

Construction algorithm The data structure is constructed as follows. We start by building a data structure
that supports LCE queries for suffixes of T . Using [50, Theorem 5.4], the construction takes O(n/ logσ n) time,
and the resulting data structure answers queries in O(1) time. We then construct T by inserting elements of
{T [A[i] . . n]}i∈[1. .q] in the order given by A. We maintain a stack containing the internal nodes on the rightmost
path, with the deepest node on top. When inserting each string, we first determine the depth at which that string
branches from the rightmost path using LCE queries on T . We then update the rightmost path of the trie. Adding
each string first removes some elements from the stack, and then adds at most two new elements. Since the total
number of elements pushed on stack is O(q), the construction of T takes O(q) time. During the construction,
we record the value sdepth(v) in each node and collect pointers to consecutive leaves in the L[1 . . q] array. With
the single traversal of T , we then precompute in O(q) time the values lrank(v) and rrank(v) for every node v
(note that at this point, pointers to all children of each node are stored simply using a list, since this traversal
does not require fast lookups or predecessor queries). Next, we construct the predecessor data structure for every
node. Since the keys in every node are sorted, using [30, Proposition 2], over all nodes of T , the construction
takes O(q) time. Finally, we construct the data structures supporting LCA and WA queries on T . Using [10] and
Theorem 4.1, this takes O(q) and O(q logq n) = O((q +

√
n) logq+

√
n n) = O(q +

√
n) = O(q + n/ logσ n) time,

respectively. □

4.2.2 Large Alphabet

Proposition 4.2. Given a packed representation of T ∈ [0 . . σ)n with 2 ≤ σ < n1/7 and an array A[1 . . q]
of q positions in T such that, for any 1 ≤ i < j ≤ q, it holds T [A[i] . . n] ≺ T [A[j] . . n], we can in
O(q + n/ logσ n) time construct a data structure that, given the packed representation of any P ∈ [0 . . σ)m,
returns in O(m/ logσ n+ log log n) time a pair of integers (bpre, epre) satisfying:

• bpre = |{i ∈ [1 . . q] : T [A[i] . . n] ≺ P}|, and
• (bpre . . epre] = {i ∈ [1 . . q] : P is a prefix of T [A[i] . . n]}.

Proof. The basic idea is to construct the compact trie of strings in {T [A[i] . . n]}i∈[1. .q] converted into strings over
the alphabet of metasymbols (of Θ(logσ n) original symbols each). Our mapping of symbols to metasymbols does
not, however, simply group symbols into blocks. We instead introduce a special mapping that will allow us to
deduce the output range (bpre, epre) using two predecessor queries in the image of the set {T [A[i] . . n]}i∈[1. .q] and

Copyright © 2023
Copyright for this paper is retained by the authors5133

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

some carefully crafted patterns. This will allow us to use the augmentation of tries of Fischer and Gawrychowski [30,
Theorem 1] in a black-box manner.

Definitions First, we introduce the mapping of strings over [0 . . σ) into strings over metasymbols. Let
τ = ⌊ 1

7 logσ n⌋ and κ = 3τ − 1. For any X ∈ [0 . . σ)≤3τ−1, let int(X) denote an integer constructed by
appending 6τ − 2|X| zeros and |X| cs (where c = σ − 1) to X, and then interpreting the resulting string as a
base-σ representation of a number in [0 . . σ6τ). Note that X ̸= X ′ implies int(X) ̸= int(X ′). Let also int′(X)
denote an integer constructed by appending 6τ − 2|X| cs (where c = σ − 1) and |X| zeros to X, and then
interpreting the resulting string as a base-σ representation of a number in [0 . . σ6τ). For any string S ∈ [0 . . σ)∗

of length ℓ ≥ 0, we define mstr(S) as a string of length ℓ′ = ⌈ ℓ+1
κ ⌉ > 0 over alphabet [0 . . σ6τ) such that, for

any i ∈ [1 . . ℓ′], it holds mstr(S)[i] = int(S((i−1) · κ . .min(ℓ, i · κ)]). For S ∈ [0 . . σ)∗ of length ℓ ≥ 0, we define
mstr′(S) as a string of length ℓ′ = ⌈ ℓ+1

κ ⌉ > 0 over alphabet [0 . . σ6τ) such that mstr′(S)[1 . . ℓ′) = mstr(S)[1 . . ℓ′)
and mstr′(S)[ℓ′] = int′(S((ℓ′ − 1) · κ . .min(ℓ, ℓ′ · κ)]). Note that if ℓ is a multiple of κ, then the last symbol of
mstr(S) is int(ε) = 0, whereas the last symbol of mstr′(S) is int′(ε) = σ6τ − 1. Observe that

• For any set of strings S ⊆ [0 . . σ)∗, the set {mstr(X) : X ∈ S} is prefix-free.
• For any strings X,Y ∈ [0 . . σ)∗, X ≺ Y holds if and only if mstr(X) ≺ mstr(Y).
• A string P ∈ [0 . . σ)∗ is a prefix of X ∈ [0 . . σ)∗ if and only if mstr(P) ⪯ mstr(X) ≺ mstr′(P).

For any set of strings S and any string Y , denote rankS(Y) := |{X ∈ S : X ≺ Y }|. Observe that by
the above properties, letting P1 = mstr(P), P2 = mstr′(P), and A = {mstr(T [A[i] . . n])}i∈[1. .q], we have
(bpre, epre) = (rankA(P1), rankA(P2)). Let T denote the compact trie of the set A.

Components The data structure consists of two components:

1. The packed representation of T using O(n/ logσ n) space.
2. The trie T augmented using [30, Theorem 1]. Note that this result requires that the alphabet of strings

in A is of size |A|O(1), which may be violated for q = no(1). Thus, we actually define the alphabet to be
[0 . . σ′), where σ′ = σ6τ + ⌈

√
n⌉, and insert to A additional ⌈

√
n⌉ dummy length-1 strings corresponding to

the ⌈
√
n⌉ largest characters in [0 . . σ′). As a result, we must have σ′ = O(n) = O(|A|2). At the same time,

the dummy strings do not change rankA(Q) for any Q ∈ [0 . . σ6τ)∗. By [30, Theorem 1], such augmented T
needs O(q +

√
n) space.

In total, the data structure takes O(q + n/ logσ n) space.

Implementation of queries Using T and T , given the packed representation of P ∈ [0 . . σ)m, we compute the
output pair (bpre, epre) as follows. First, note that, given the packed representation of P and T , we can in O(1)
time access any symbol of mstr(P), mstr′(P), and mstr(T [i . . n]) for any i ∈ [1 . . n]. We start by computing P1

and P2 from P in O(m/ logσ n+ 1) time. Then, using [30, Theorem 1], we compute rankA(P1) and rankA(P2) in
O(|P1|+log log σ′) = O(m/ logσ n+log log n) and O(|P2|+log log σ′) = O(m/ logσ n+log logn) time, respectively.
By the above discussion, this gives us the output pair (bpre, epre). During the query, the algorithm may want
to access symbols of strings from A. We do not store them explicitly (note that storing mstr(T) would not be
enough), but instead perform the mapping on-the-fly.

Construction algorithm We start by building a data structure that supports LCE queries for suffixes of T .
Using [50, Theorem 5.4], the construction takes O(n/ logσ n) time, and the resulting data structure answers
queries in O(1) time. Denote the length of the longest common prefix between suffixes T [i . . n] and T [j . . n] as
LCE(i, j). Observe that for any i, j ∈ [1 . . n] such that i ̸= j, the longest common prefix of mstr(T [i . . n]) and
mstr(T [j . . n]) has length ⌊LCE(i,j)

κ ⌋, which can be computed in O(1) time. We construct T by inserting elements
of {mstr(T [A[i] . . n])}i∈[1. .q] in the order given by A. The construction proceeds as in the proof of Proposition 4.1
and takes O(q) time. Once the trie is constructed, we add the ⌈

√
n⌉ dummy length-1 strings and augment T

using [30, Theorem 1] in O(q +
√
n) time. In total, the construction takes O(q + n/ logσ n) time.

4.3 (Prefix) Rank and Selection Queries

We start with an implementation of rank and selection queries for larger alphabets.

Lemma 4.1. (Belazzougui and Puglisi [9]) For all integers N ≥ n ≥ σ ≥ 2 and every string S ∈ [0 . . σ)≤n,

Copyright © 2023
Copyright for this paper is retained by the authors5134

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

there exists a data structure of O(n log σ) bits that answers rank queries in O(log logN) time and selection
queries in O(1) time. Moreover, given a table precomputed in O(N) time (shareable across all instances
with common parameter N) and the packed representation of S, the data structure can be constructed in
O(min(n, σ + n log σ/

√
logN)) time using O(n log σ) bits of space.

Proof. If log2 σ ≥ logN , we use the data structure of [9, Lemma C.2], which occupies O(n log σ) bits, answers
rank queries in O(log log n) time and selection queries in O(1) time, and can be constructed in O(n) time using
O(n log σ) bits of space.7 Otherwise, we use the data structure of [9, Lemma C.3], which occupies O(n log σ)
bits, answers rank queries in O(log logN) time and selection queries in O(1) time, and can be constructed in
O(σ + n log2 σ/ logN) time using O(n log σ) bits of space. □

The following proposition, instantiated with h = ⌈ℓϵ/2⌉, immediately yields Theorem 2.2.

Proposition 4.3. For all integers h,m, ℓ, σ ∈ Z≥1 satisfying h ≥ 2 and m ≥ σℓ ≥ 2, and every string
W ∈ ([0 . . σ)ℓ)≤m, there exists a data structure of size O(m logh(hℓ)) that answers prefix rank queries in
O(h log logm logh(hℓ)) time and prefix selection queries in O(h logh(hℓ)) time. Moreover, it can be constructed
in O(mmin(ℓ,

√
logm) logh(hℓ)) time using O(m logh(hℓ)) space given the packed representation of W and the

parameter h.

Proof. The data structure consists in the wavelet tree of W and, when h ≤ ℓ, an instance constructed recursively
for an auxiliary string W̃ defined below.

Wavelet tree Let Σ = [0 . . σ) so that the alphabet of W is Σℓ. The wavelet tree of W [41] is the trie of Σℓ

with each internal node vX (representing a string X ∈ Σ≤ℓ−1) associated to a string BX [1 . . rankW,X(|W |)] ∈ Σ∗

such that BX [r] = W [selectW,X(r)][|X|+ 1] for r ∈ [1 . . rankW,X(|W |)]. The strings BX are augmented with the
component of Lemma 4.1 (for rank and selection queries) with parameter N := m.

Recursive instance We shall define W̃ as a string of length |W | over the alphabet Σ̃ℓ̃, where ℓ̃ := ⌊ℓ/h⌋, σ̃ = σh,
and Σ̃ := [0 . . σ̃). We identify Σ̃ with Σh, treating each string in Σh as the h-digit base-σ representation of
an integer in Σ̃. For every string X ∈ Σ∗, define X̃ ∈ Σ̃∗ so that |X̃| = ⌊|X|/h⌋ and X̃[i] = X(h(i − 1) . . hi]
for i ∈ [1 . . |X̃|]. Moreover, we set W̃ [1 . . |W |] so that W̃ [j] = W̃ [j] for j ∈ [1 . . |W |]. Note that the recursive
application of Proposition 4.3 to W̃ is possible because 2 ≤ σ̃ℓ̃ ≤ σℓ ≤ m and ℓ̃ ≥ 1 hold when h ≤ ℓ.

Data structure size It is easy to see that, for a fixed length d ∈ [0 . . ℓ), the strings BX for X ∈ Σd are of total
length m. Across all X ∈ Σ≤ℓ−1, this sums up to mℓ, so the raw strings BX occupy O(mℓ log σ) = O(m logm)
bits. The augmentation of BX using Lemma 4.1 adds O((σ + |BX |) log σ) extra bits (we set n := max(σ, |BX |) =
Θ(σ + |BX |) to ensure σ ≤ n), which sums up to O((σℓ +mℓ) log σ) = O(m logm) bits, i.e., O(m) machine words.
The recursion depth is O(logh(hℓ)), so the overall size is O(m logh(hℓ)).

Answering queries To handle any query concerning X ∈ Σ≤ℓ, we compute auxiliary strings X̃ (as defined above)
and X ′ := X[1 . . |X| − (|X| mod h)] (obtained by expanding the letters in X̃ into length-h strings).

Answering a prefix rank query rankW,X(j), we traverse the path from vX′ to vX , maintaining a value r
such that r = rankW,Y (j) holds while the algorithm visits vY . We initialize r := j = rankW,ε(j) if X ′ = ε and
r := rankW̃ ,X̃(j) (computed recursively) otherwise; this is valid due to rankW̃ ,X̃(j) = rankW,X′(j). Upon entering
a node vY a from its parent vY , we set r := rankBY ,a(r) since rankW,Y a(j) = rankBY ,a(rankW,Y (j)); see [41]. When
reaching vX , we return r = rankW,X(j). The running time is O(h log logm) per recursive level, for a total of
O(h log logm · logh(hℓ)).

Answering a prefix selection query selectW,X(r), we traverse the path from vX to vX′ , maintaining a value
q such that selectW,Y (q) = selectW,X(r) holds while the algorithm visits vY . We initialize q := r and, upon
entering a node vY from its child vY a, we set q := selectBY ,a(q) since selectW,Y a(r) = selectW,Y (selectBY ,a(r));

7The statement of [9, Lemma C.2] does not bound the space consumption of the construction algorithm. Nevertheless, it is
straightforward to implement the underlying construction procedure in O(n log σ) bits of working space. The original algorithm
scans the input sequence S from left to right and, for each a ∈ Σ, builds an array Pa[1 . . na] such that na = rankS,a(|S|) and
Pa[r] = selectS,a(r) for r ∈ [1 . . na]. The array Pa[1 . . na] is then converted to the Elias–Fano representation: an array Aa[1 . . na] with
Aa[r] = Pa[r] mod σ for r ∈ [1 . . na] and a bit vector Va = unary((⌊Pa[r]/σ⌋− ⌊Pa[r− 1]/σ⌋)r∈[1. .na]), where we assume Pa[0] = 0 to
streamline the formula. To achieve O(n log σ) bits of working space, instead of storing Pa explicitly, we convert Pa to the Elias–Fano
representation on the fly as subsequent positions are appended to Pa.

Copyright © 2023
Copyright for this paper is retained by the authors5135

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

see [41]. When reaching vX′ , we return q = selectW,ε(q) if X ′ = ε and selectW̃ ,X̃(q) otherwise; this is valid due to
selectW̃ ,X̃(q) = selectW,X′(q). The running time is O(h) per recursive level, for a total of O(h · logh(hℓ)).

Construction algorithm If ℓ ≤
√
logm, we use the original wavelet tree construction algorithm [41], which takes

O(mℓ) time and O(m) space. Building the data structure of Lemma 4.1 for BX takes O(σ + |BX |) time and
O((σ + |BX |) log σ/ logm) space, which sums up to O(σℓ +mℓ) = O(mℓ) time and O(mℓ log σ/ logm) = O(m)
space across X ∈ Σ≤ℓ−1 (due to ℓ log σ ≤ logm). Precomputing the table shared by all instances of Lemma 4.1 takes
O(m) time and space. Considering all levels of recursion, we get O(mℓ) time (due to ℓ̃ ≤ 1

2ℓ) and O(m logh(hℓ))
space.

If ℓ >
√
logm, on the other hand, we apply the bit-parallel wavelet tree construction algorithm of [64, 3],

which has been adapted to large alphabets in [50, Lemma 6.4]. Due to ℓ log σ ≤ logm, this procedure
takes O(mℓ log σ/

√
logm + mℓ log2 σ/ logm) = O(m

√
logm) time and O(m) space. Building the data

structure of Lemma 4.1 for BX takes O(σ + (σ + |BX |) log σ/
√
logm) = O(σ + |BX | log σ/

√
logm) time and

O((σ + |BX |) log σ/ logm) space, which sums up to O(m
√
logm) time and O(m) space across X ∈ Σ≤ℓ−1.

Precomputing the table shared by all instances of Lemma 4.1 takes O(m) time and space. Considering all
levels of recursion, we get a multiplicative overhead of O(logh(hℓ)), for a total of O(m

√
logm logh(hℓ)) time and

O(m logh(hℓ)) space. □

4.4 Range Counting and Selection

Proposition 2.1. An array A[1. .m′] of m′ ∈ [2. .m] nonnegative integers satisfying
∑m′

i=1 A[i] = O(m logm) can
be preprocessed in O(m) time so that range counting and selection queries can be answered in O(log logm) time
and O(1) time, respectively.

Proof. We use the following definitions. Denote h = ⌊logm⌋. For any k ≥ 0, by Pk[1 . .mk], where
mk = rcountA(kh,m), we denote the array defined by Pk[i] = rselectA(kh, i). Let v ≥ 0. We define a bitvector
Mv[1 . .mk], where k = ⌊ v

h⌋ as follows. For any i ∈ [1 . .mk], Mv[i] = 1 holds if and only if A[Pk[i]] ≥ v. For any
k ≥ 0, we define the concatenation M ′

k = MkhMkh+1 · · ·M(k+1)h−1. Let kmax = max{k ≥ 0 : mk > 0}. Since
all elements of A are nonnegative, and

∑m′

i=1 A[i] ∈ O(m logm), we obtain maxi∈[1. .m′] A[i] ∈ O(m logm), and
consequently, kmax = ⌊ 1

h maxi∈[1. .m′] A[i]⌋ ∈ O(m).

Components The data structure consists of two components:

1. First, for k ∈ [0 . . kmax], we store a plain representation of the sequence Pk[1 . .mk] using O(mk) space.
Each array is augmented with a static predecessor data structure. We use [30, Proposition 2], and hence
achieve linear space and O(log logm) query time. Each i ∈ [1 . .m′] occurs in ⌈A[i]+1

h ⌉ arrays. Thus,∑
k≥0 mk =

∑m′

i=1⌈
A[i]+1

h ⌉ ≤ 2m′ +
∑m′

i=1⌊
A[i]
h ⌋ ≤ 2m′ + 1

h

∑m′

i=1 A[i] ∈ O(m) and hence we can store the
arrays Pk (including the associated predecessor data structures) using O((kmax + 1) +

∑
k≥0 mk) ⊆ O(m)

space, so that we can access each array in O(1) time.
2. Second, for every k ∈ [0 . . kmax], we store the plain representation of bitvector M ′

k, augmented using
Theorem 2.1. By |M ′

k| = h ·mk, the total length of bitvectors M ′
k is

∑
k≥0 |M ′

k| = h
∑

k≥0 mk ∈ O(m logm).
All bitvectors M ′

k can thus be stored in O((kmax + 1) + 1
logm

∑
k≥0 |M ′

k|) ⊆ O(m) words of space, so that
we can access each in O(1) time. For a bitvector of length t, the augmentation of Theorem 2.1 adds only
O(logm+ t) bits of space, and hence does not increase the space usage.

In total, the data structure takes O(m) space.

Implementation of queries Using the above two components, we answer range counting/selection queries on
A as follows. To compute rcountA(v, j), we first let k = ⌊ v

h⌋. If k > kmax, then we return rcountA(v, j) = 0.
Otherwise, we observe that if j′ = |{i ∈ [1 . .mk] : Pk[i] ≤ j}|, then rcountA(v, j) = rankMv,1(j

′). Computing
j′ using the predecessor data structure takes O(log logm) time, and then rankMv,1(j

′) is computed using
the rank support data structure of the bitvector M ′

k as rankM ′
k,1

(j′ + (v − kh)mk) − rankM ′
k,1

((v − kh)mk)
in O(1) time. To compute rselectA(v, r), we observe that letting again k = ⌊ v

h⌋, it holds rselectA(v, r) =
Pk[selectMv,1(r)]. The value selectMv,1(r) is computed using the select support data structure of the bitvector M ′

k

as selectM ′
k,1

(rankM ′
k,1

((v − kh)mk) + r)− (v − kh)mk in O(1) time.

Copyright © 2023
Copyright for this paper is retained by the authors5136

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Construction algorithm We start by initializing P0[i] = i for i ∈ [1 . .m′]. For k ∈ [1 . . kmax], the array
Pk is computed by iterating over Pk−1 and including only elements Pk−1[i] satisfying A[Pk−1[i]] ≥ kh. By∑

k≥0 mk ∈ O(m), this takes O(m) time in total. We then augment all arrays Pk with the predecessor data
structures. Since the arrays are sorted, using [30, Proposition 2], the construction altogether again takes O(m)
time. We then construct bitvectors M ′

k in the order of increasing k ∈ [0 . . kmax]. To build M ′
k we first scan Pk and

check if there exists i ∈ [1 . .mk] such that A[Pk[i]] < (k + 1)h.

1. If there is no such i, we set M ′
k := 1hmk in O(1 + 1

logmhmk) = O(mk) time.
2. Otherwise, we scan again Pk[1 . .mk] and prepare h lists L0, L1, . . . , Lh−1 such that Ly contains all i ∈ [1 . .mk]

satisfying A[Pk[i]] = kh+y. Construction of all lists takes O(mk+h) time. The bitvector M ′
k is then obtained

as the concatenation of bitvectors Mkh,Mkh+1, . . . ,M(k+1)h−1 computed in this order. We first initialize
Mkh := 1mk in O(1 + mk

logm) time. The bitvector Mkh+y for y > 0 is obtained by first copying the bitvector
Mkh+y−1 in O(1 + mk

logm) time, and then setting Mkh+y[i] = 0 for every position i stored in Ly−1. The total
length of all lists Ly is bounded by mk. Thus, the construction of M ′

k takes O(h+mk+
1

logmhmk) ⊆ O(h+mk)
time.

To bound the total time spent constructing bitvectors M ′
k, we consider two cases:

• k ≤ m
h : The total time spent in the construction of bitvectors M ′

k for such k is bounded by the sum∑⌊m/h⌋
k=0 O(h+mk) ⊆ O(m+

∑
k≥0 mk) ⊆ O(m).

• k > m
h : Let k′ = ⌊m

h ⌋ + 1. Note that for any t, it holds mt+1 ≤ mt. Moreover, whenever Case 2
above happens for some t, it holds mt+1 < mt. Thus, Case 2 above can happen for k > m

h only
mk′ times. Since for every i ∈ [1 . .mk′] we have A[Pk′ [i]] ≥ m, by

∑
i∈[1. .m′] A[i] ∈ O(m logm)

it holds mk′ ∈ O(logm). The total time spend computing M ′
k for k > m

h is thus bounded by
O(mk′(h+mk′) +

∑
k≥k′ mk) ⊆ O(log2 m+

∑
k≥0 mk) ⊆ O(m).

The total length of bitvectors M ′
k for k ∈ [0 . . kmax], is

∑
k∈[0. .kmax]

hmk ∈ O(hm). Thus, augmenting them all
using Theorem 2.1 takes O((kmax + 1) + 1

logmhm) ⊆ O(m) time. □

5 SA and ISA Queries

Let ϵ ∈ (0, 1) be any fixed constant and let T ∈ [0 . . σ)n, where 2 ≤ σ < n1/7. In this section, we show how,
given the packed representation of T , in O(nmin(1, log σ/

√
log n)) time and using O(n/ logσ n) working space, to

construct a data structure of size O(n/ logσ n) that answers SA and ISA queries in O(logϵ n) time. We also derive
a general reduction depending on prefix rank and selection queries.

Let τ = ⌊µ logσ n⌋, where µ is any positive constant smaller than 1
6 such that τ ≥ 1 (such µ exists by σ < n1/7),

be fixed for the duration of this section. Throughout, we also use R as a shorthand for R(τ, T).

Definition 5.1. Let j ∈ [1 . . n]. We call position j periodic if j ∈ R. Otherwise, j is nonperiodic.

Organization The structure and the query algorithm to compute SA[i] (resp. ISA[j]), given any i ∈ [1 . . n]
(resp. j ∈ [1 . . n]), are different depending on whether SA[i] (resp. j) is periodic (Definition 5.1). Our description
is thus split as follows. First (Section 5.1), we describe the set of data structures called collectively the index “core”
that enables efficiently checking if SA[i] ∈ R (resp. j ∈ R); the core also contain some common components utilized
by the remaining parts. In the following two parts (Sections 5.2 and 5.3), we describe structures handling each of
the two cases. All ingredients are then put together in Section 5.4. Finally, we present our result in the general
form (Section 5.5).

5.1 The Index Core

In this section, we present a data structure that, given any j ∈ [1 . . n] (resp. i ∈ [1 . . n]), lets us in O(1) time
determine if j ∈ R (resp. SA[i] ∈ R).

The section is organized as follows. First, we introduce the components of the data structure (Section 5.1.1).
Next, we describe the query algorithms (Section 5.1.2). Finally, we show the construction algorithm (Section 5.1.3).

Copyright © 2023
Copyright for this paper is retained by the authors5137

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

5.1.1 The Data Structure

Definitions Let Lrange be a mapping from X ∈ [0 . . σ)≤3τ−1 := {ε} ∪ [0 . . σ) ∪ . . . ∪ [0 . . σ)3τ−1 to the pair of
integers (b, e) := (RangeBeg(X,T),RangeEnd(X,T)). Let also Lper denote the mapping from [0 . . σ)3τ−1 to Z+

such that every X is mapped to per(X).
Let B3τ−1[1 . . n] be a bitvector defined such that B3τ−1[i] = 1 holds if and only if i = n, or i < n and

XSA[i] ̸= XSA[i+1], where Xj = T [j . .min(n+ 1, j + 3τ − 1)) for every j ∈ [1 . . n].
Let Ashort[1 . . t] (t= rankB3τ−1,1(n)) be defined by Ashort[i] =XSA[j], where j = selectB3τ−1,1(i).

Components The index core, denoted CSA(T), consists of five components:

1. The packed representation of T using O(n/ logσ n) space.
2. The lookup table Lrange. When accessing Lrange, strings X ∈ [0 . . σ)≤3τ−1 are converted to small integers

using the mapping int(X) defined in the proof of Proposition 4.2. By int(X) ∈ [0 . . σ6τ), Lrange needs
O(σ6τ) = O(n6µ) = O(n/ logσ n) space.

3. The lookup table Lper. Similarly as above, we utilize the mapping int(X). Lper thus also needs
O(σ6τ) = O(n/ logσ n) space.

4. The bitvector B3τ−1 augmented using Theorem 2.1 for rank and selection queries. The augmented bitvector
takes O(n/ log n) space.

5. The array Ashort. Every string X ∈ {Ashort[i]}i∈[1. .t] is encoded as int(X) using 6τ log σ = O(log n) bits.
This implicitly encodes the length of the string and ensures that all strings are encoded using the same
number of bits. By {Ashort[i]}i∈[1. .t] ⊆ [0 . . σ)≤3τ−1, we have t = O(n1/2), and hence the array Ashort needs
O(n1/2) = O(n/ log n) space.

In total, CSA(T) takes O(n/ logσ n) space.

5.1.2 Navigation Primitives

Proposition 5.1. Given CSA(T), for any j ∈ [1 . . n] we can in O(1) time determine if j ∈ R.

Proof. If j > n− 3τ + 2, we return that j ̸∈ R (Definition 2.1). Otherwise, we use the packed encoding of T to
extract X = T [j . . j + 3τ − 1) in O(1) time and convert it to x = int(X). We then use the lookup table Lper, to
determine p = per(X), and return that j ∈ R if p ≤ 1

3τ . □

Proposition 5.2. Given CSA(T), for any i ∈ [1 . . n] we can in O(1) time determine if SA[i] ∈ R.

Proof. Given the position i ∈ [1 . . n], we first compute y = rankB3τ−1,1(i− 1). The string X = Ashort[y+ 1] is then
a prefix of T [SA[i] . . n]. If |X| < 3τ−1, we must have SA[i] > n−3τ+2, and thus we return that SA[i] ∈ [1 . . n]\R
(see Definition 2.1). Otherwise (i.e., |X| = 3τ − 1), using Lper we determine p = per(X) and return that SA[i] ∈ R
if p ≤ 1

3τ . □

5.1.3 Construction Algorithm

Proposition 5.3. Given the packed representation of T ∈ [0 . . σ)n, we can construct CSA(T) in O(n/ logσ n)
time.

Proof. To compute Lrange, we first compute for every X ∈ [0 . . σ)ℓ (where ℓ = 3τ − 1), its frequency
fX := |Occ(X,T)|. Using the simple generalization of the algorithm described in [50, Section 6.1.2], this
takes O(n/ logσ n) time (note that the algorithm requires ℓσ2ℓ−1 = O(n/ logσ n), which is satisfied here, since
2ℓ − 1 < 6µ logσ n and µ < 1

6). From the frequencies of X ∈ [0 . . σ)3τ−1 we then compute the values of fX for
all X ∈ [0 . . σ)<3τ−1 by observing that unless X is a nonempty suffix of T , it holds fX =

∑
c∈[0. .σ) fXc, i.e., the

frequency of each string shorter than 3τ − 1 is obtained in O(σ) time. If X is a nonempty suffix of T (which we can
check in O(1) time), we additionally add one to the count. Since each string contributes exactly once to the frequency
of another string, over all X ∈ [0 . . σ)<3τ−1, this takes O(σ3τ−1) = O(n/ logσ n) time. Once fX is computed for
all X ∈ [0 . . σ)≤3τ−1, we compute Lrange as follows. Denote Σ = [0 . . σ). Assume that Lrange[int(X)] = (b, e)
holds for some X ∈ [0 . . σ)<3τ−1. Then, for any c ∈ Σ, it holds Lrange[int(Xc)] = (e − x − fXc, e − x), where
x =

∑
c′∈Σ,c′>c fXc′ , e.g., for σ = 2, Lrange[int(X0)] = (e−fX1−fX0, e−fX1). We thus compute Lrange[int(X)] by

Copyright © 2023
Copyright for this paper is retained by the authors5138

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

initializing Lrange[int(ε)] = (0, n), and then enumerating all X ∈ [0 . . σ)≤3τ−1 in the order of non-decreasing length
(and, in case of ties, in the reverse lexicographical order). During the enumeration of strings of the form Xc, where
c ∈ Σ, we maintain the sum x =

∑
c′∈Σ,c′>c fXc′ . Then, using the above formula, the value of Lrange[int(Xc)]

can be obtained in O(1) time. Over all X, the computation of Lrange[int(X)] thus takes O(σ3τ−1) = O(n/ logσ n)
time.

To construct Lper, we enumerate all X ∈ [0 . . σ)3τ−1, and for each X in O(τ2) time we compute per(X) by
trying all ℓ ∈ [1 . . 3τ − 1). Initializing Lper takes O(σ6τ) = O(n/ logσ n). Over all X ∈ [0 . . σ)3τ−1, we spend
O(σ3τ−1τ2) = O(n1/2 log2 n) = O(n/ logσ n) time.

We finish with the construction of B3τ−1 and Ashort. First, in O(n/ log n) time we initialize B3τ−1 to zeros.
Next, we initialize temporary counters k and f to zero, and simulate a preorder traversal of the trie of [0 . . σ)3τ−1.
For each visited node with label X, we consider two cases:

• If |X| < 3τ − 1, we check if X is a suffix of T . If so, increment k and f by one, and report X.
• Otherwise (i.e., if |X| = 3τ − 1), if fX > 0, we increment k by one, f by fX , and report X.

Each time some string X is reported, we set Ashort[k] = X and B3τ−1[f] = 1. The correctness of this procedure
follows by noting that labels of nodes visited during the preorder traversal are lexicographically sorted. The
traversal takes O(σ3τ) = O(n3µ) = O(n/ log n) time. Finally, using Theorem 2.1, in O(n/ log n) time we augment
B3τ−1 with O(1)-time rank and select queries. □

5.2 The Nonperiodic Positions

In this section, we describe a data structure that, given any j ∈ [1 . . n] (resp. i ∈ [1 . . n]) satisfying j ∈ [1 . . n] \ R
(resp. SA[i] ∈ [1 . . n] \ R) computes ISA[j] (resp. SA[i]) in O(logϵ n) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 5.2.1).
Next, we describe the query algorithms (Sections 5.2.2 and 5.2.3). Finally, we show the construction algorithm
(Section 5.2.4).

5.2.1 The Data Structure

Definitions We fix some τ -synchronizing set S of T obtained using Theorem 2.4 (recall, that τ = ⌊µ logσ n⌋ is
fixed for Section 5). We denote n′ = |S| = O(n/τ). Let (stextt)t∈[1. .n′] be the sequence containing the elements of S
in sorted order, i.e., if i < j then stexti < stextj . Let also (slext)t∈[1. .n′] be the sequence containing elements of S sorted
according to the lexicographical order of the corresponding suffixes, i.e., if i < j then T [slexi . . n] ≺ T [slexj . . n]. Let
W [1 . . n′] be a sequence of length-3τ strings such that W [i] = Xi, where Xi = T∞[slexi − τ . . slexi + 2τ).

For any i ∈ [1 . . n−2τ+1], we define succS(i) = min{j ∈ S ∪ {n−2τ+2} : j ≥ i} and denote D :=
{T [i . . succS(i) + 2τ) : i ∈ [1 . . n−3τ+2] \ R}. Let LD be a mapping from [0 . . σ)3τ−1 to [0 . . σ)≤3τ−1 such
that for any Y ∈ [0 . . σ)3τ−1, if there exists X ∈ D that is a prefix of Y (by the consistency of S, there can be at
most one such X), then LD maps Y to X. Otherwise (i.e., there is no such X), LD maps Y to ε. Let Lrev be a
mapping that for every string X ∈ [0 . . σ)≤3τ−1, returns the packed representation of X.

Let BS[1 . . n] be a bitvector defined so that BS[i] = 1 holds if and only if i ∈ S.
Let Asmap[1 . . n

′] be an array storing a permutation of [1 . . n′] such that Asmap[i] = j holds if and only if
stextj = slexi . Let A−1

smap[1 . . n
′] be an array storing a permutation of [1 . . n′] such that A−1

smap[j] = i holds if and
only if stextj = slexi .

Components The data structure to handle nonperiodic positions consists of seven components:

1. The index core CSA(T) (Section 5.1.1). It takes O(n/ logσ n) space.
2. The lookup table Lrev. When accessing Lrev, strings X ∈ [0 . . σ)≤3τ−1 are converted to int(X). Thus, the

mapping Lrev needs O(σ6τ) = O(n6µ) = O(n/ logσ n) space.
3. The lookup table LD. As above, LD needs O(σ6τ) = O(n/ logσ n) space.
4. The bitvector BS augmented using Theorem 2.1. It needs O(n/ log n) space.
5. The array Asmap[1 . . n

′] in plain form, using n′ = O(n/ logσ n) words of space.
6. The array A−1

smap[1 . . n
′] in plain form, using n′ = O(n/ logσ n) words of space.

7. The data structure of Theorem 2.2 for the sequence W [1 . . n′]. By n′ = O(n/ logσ n) and σ3τ = O(
√
n) =

o(n/ log n), it needs O(n/ logσ n) space.

Copyright © 2023
Copyright for this paper is retained by the authors5139

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

In total, the data structure takes O(n/ logσ n) space.

5.2.2 Implementation of ISA Queries

For any j ∈ [1 . . n− 3τ + 2] \ R, letting X ∈ D be a prefix of T [j . . n] (by [50, Lemma 6.1], D is prefix-free, and
hence there is exactly one such X), we define

Pos(j) = {j′ ∈ [1 . . n] : LCE(j, j′) ≥ |X| and T [j′ . . n] ⪯ T [j . . n]},

and denote δ(j) := |Pos(j)|.

Lemma 5.1. Let j ∈ [1 . . n − 3τ + 2] \ R and X ∈ D be a prefix of T [j . . n]. Denote δtext = |X| − 2τ and
bX = RangeBeg(X,T). Then:

1. It holds ISA[j] = bX + δ(j).
2. If y ∈ [1 . . n′] is such that slexy = j + δtext, then δ(j) = rankW,X(y).

Proof. 1. Observe that j′ ∈ Occ(X,T) holds if and only if LCE(j, j′) ≥ |X|. Thus, by definition of ISA, we
have ISA[j] = RangeBeg(X,T) + |{j′ ∈ Occ(X,T) : T [j′ . . n] ⪯ T [j . . n]}| = bX + |{j′ ∈ [1 . . n] : LCE(j, j′) ≥
|X| and T [j′ . . n] ⪯ T [j . . n]}| = bX + δ(j).

2. Denote s = j + δtext. By definition of D, we have s ∈ S. By the consistency of S, there exists a bijection
(given by the mapping j′ 7→ j′ + δtext) between positions j′ ∈ [1 . . n] \ R satisfying T [j′ . . succS(j

′) + 2τ) = X and
T [j′ . . n] ⪯ T [j . . n], and positions s′ ∈ S such that T∞[s′ − δtext . . s

′ + 2τ) = X and T [s′ . . n] ⪯ T [s . . n]. Thus,
letting y ∈ [1 . . n′] be such that slexy = s, we obtain that δ(j) = |{i ∈ [1 . . y] : T∞[slexi − δtext . . s

lex
i + 2τ) = X}|.

Since we defined W [i] = Xi, where Xi = T∞[slexi − τ . . slexi + 2τ), we conclude that δ(j) = rankW,X(y). □

Proposition 5.4. Let j ∈ [1 . . n] be such that j ∈ [1 . . n] \ R. Given the data structure from Section 5.2.1 and
the position j, we can compute ISA[j] in O(logϵ n) time.

Proof. Given j ∈ [1 . . n] \ R, we compute ISA[j] as follows. If j > n− 3τ + 2, then letting X = T [j . . n], in O(1)
time we compute (bX , eX) = (RangeBeg(X,T),RangeEnd(X,T)) using the lookup table Lrange. By definition of
the lexicographical order, we then have SA[b+ 1] = j, and hence we return ISA[j] = b+ 1. Let us thus assume
j ≤ n− 3τ − 2. By j ̸∈ R and the density condition of S (see Definition 2.1), this implies that S∩ [j . . j+ τ) ̸= ∅. In
O(1) time we compute x = rankBS,1(j−1). Then, in O(1) we compute s = selectBS,1(x+1) = succS(j) ∈ S. We then
have X = T [j . . s+2τ) ∈ D, and in particular, |X| = s+2τ − j. In O(1) time we lookup (bX , eX) = Lrange[int(X)],
i.e., bX = RangeBeg(X,T). Letting y = A−1

smap[x+ 1], we then have slexy = s = j + |X| − 2τ . By Lemma 5.1, it
thus remains to determine rankW,X(y). In O(1) time we compute X using the lookup table Lrev. In O(logϵ n)
time, we then compute δ(j) = rankW,X(y) using Theorem 2.2, and finally return ISA[j] = bX + δ(j). □

5.2.3 Implementation of SA Queries

Lemma 5.2. Let i ∈ [1 . . n] be such that SA[i] ∈ [1 . . n− 3τ +2] \R and X ∈ D be a prefix of T [SA[i] . . n]. Denote
δtext = |X| − 2τ and bX = RangeBeg(X,T). Then:

1. It holds i = bX + δ(SA[i]).
2. If y = selectW,X(i− bX), then slexy = SA[i] + δtext.

Proof. 1. Denote j = SA[i]. By Lemma 5.1(1), i = ISA[j] = bX + δ(j) = bX + δ(SA[i]).
2. By the consistency of S, we have SA[i]+δtext ∈ S. Thus, there exists y ∈ [1 . . n′] such that slexy = SA[i]+δtext.

By Lemma 5.1(2) applied for j = SA[i], for any such y it holds δ(SA[i]) = rankW,X(y). By (1), we thus have
i− bX = rankW,X(y). Since X is a prefix of T [SA[i] . . n], such y must also satisfy T [slexy − δtext . . s

lex
y + 2τ) = X,

or equivalently, X must be a prefix of W [y]. The only y ∈ [1 . . n′] for which X is a prefix of W [y] and that satisfies
rankW,X(y) = i− bX , is y = selectW,X(i− bX). □

Proposition 5.5. Let i ∈ [1 . . n] be such that SA[i] ∈ [1 . . n] \R. Given the data structure from Section 5.2.1 and
the index i, we can compute SA[i] in O(logϵ n) time.

Copyright © 2023
Copyright for this paper is retained by the authors5140

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Given i ∈ [1 . . n] such that SA[i] ∈ [1 . . n] \ R, we compute SA[i] as follows. First, we compute
y = rankB3τ−1,1(i− 1). The string Y = Ashort[y+1] is then a prefix of T [SA[i] . . n] of length min(3τ − 1, n+1− i).
If |Y | < 3τ − 1, we therefore have SA[i] > n − 3τ + 2 and moreover, SA[i] + |Y | = n + 1. Thus, we return
SA[i] = n + 1 − |Y |. Otherwise (i.e., |Y | = 3τ − 1), using LD on Y we determine x = int(X), where X ∈ D is
a prefix of T [SA[i] . . n]. In O(1) time we lookup (bX , eX) = Lrange[x], i.e., bX = RangeBeg(X,T). In O(logϵ n)
time, we then compute y = selectW,X(i− bX) using Theorem 2.2 (the packed representation of X is obtained using
the lookup table Lrev in O(1) time). By Lemma 5.2(2), we then have SA[i] = slexy − δtext, where δtext = |X| − 2τ .
Using BS, in O(1) time we compute j′ = selectBS,1(Asmap[y]). We then have j′ = slexy , and hence we return
SA[i] = j′ − δtext. Altogether, the query takes O(logϵ n) time. □

5.2.4 Construction Algorithm

Proposition 5.6. Given CSA(T), we can augment it into a data structure from Section 5.2.1 in
O(nmin(1, log σ/

√
log n)) time and using O(n/ logσ n) working space.

Proof. First, using Theorem 2.4, we construct a τ -synchronizing set S of size O(n/τ) in O(n/τ) = O(n/ logσ n)
time from a packed representation of T . The set S is returned as an array taking O(n/ logσ n) space. Using this
array, we initialize the bitvector BS in O(n/ logσ n) time. Augmenting BS with Theorem 2.1 takes O(n/ log n)
time.

Next, we construct the arrays A−1
smap and Asmap. We start by creating the sequence (stextt)t∈[1. .n′] using select

queries on BS. This takes O(n/ logσ n) time. Then, given (stextt)t∈[1. .n′], and the packed representation of T ,
by [50, Theorem 4.3], we compute the sequence (slext)t∈[1. .n′] in O(n/ logσ n) time. Given (slext)t∈[1. .n′], we then
easily obtain the arrays A−1

smap and Asmap: simply scan the sequence (slext)t∈[1. .n′] and for each i ∈ [1 . . n′], let
j = rankBS,1(s

lex
i) and note that then stextj = slexi and hence we can set A−1

smap[j] = i and Asmap[i] = j.
Next, we initialize Lrev. In the RAM model, such array is easily initialized in O(σ6τ) = O(n/ logσ n) time.

The sequence W [1 . . n′] is then obtained from (slext)t∈[1. .n′] using Lrev in O(n/ logσ n) time. We then process W
using Theorem 2.2, which takes O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space.

Finally, to construct LD, we first compute a lookup table that for every Z ∈ [0 . . σ)2τ tells whether
T [j . . j + 2τ) = Z implies j ∈ S (by consistency of S this does not depend on j). Given the array containing the
positions in S and the packed representation of T , this takes O(σ2τ + |S|) = O(n/ logσ n) time. Given such lookup
table, we iterate through every Y ∈ [0 . . σ)3τ−1 and in O(τ) time we compute the shortest prefix X of Y whose
length-2τ suffix is marked true in the above lookup table. If such X exists, we have X ∈ D. Accounting for the
initialization of LD, over all Y ∈ [0 . . σ)3τ−1, this takes O(σ6τ + σ3τ−1 logσ n) = O(n/ logσ n) time. □

5.3 The Periodic Positions

In this section, we describe a data structure that, given any j ∈ [1 . . n] (resp. i ∈ [1 . . n]) satisfying j ∈ R (resp.
SA[i] ∈ R) computes ISA[j] (resp. SA[i]) in O(log log n) time.

The section is organized as follows. First, we present the toolbox of combinatorial properties for periodic
positions (Section 5.3.1). Next, we introduce the components of the data structure (Section 5.3.2). We then show
how using this structure to implement some basic navigational routines (Section 5.3.3). Next, we describe the
query algorithms (Sections 5.3.4 and 5.3.5). Finally, we show the construction algorithm (Section 5.3.6).

5.3.1 Preliminaries

We start by introducing the definitions to express the properties utilized in our data structures. For any j ∈ R,
we define L-root(j) = min{T [j + t . . j + t + p) : t ∈ [0 . . p)}, where p = per(T [j . . j + 3τ − 1)). We denote
Roots = {L-root(j) : j ∈ R}. For any j ∈ R, let e(j) = min{j′ ≥ j : j′ ̸∈ R}+ 3τ − 2.

Lemma 5.3. Let j ∈ R and p = per(T [j . . j + 3τ − 1)). Then:

1. If j + 1 ∈ R then per(T [j + 1 . . j + 3τ)) = p,
2. It holds e(j) = j + p+ LCE(j, j + p).

Proof. 1. Denote P = T [j . . j + 3τ − 1), P ′ = T [j + 1 . . j + 3τ), and p′ = per(P ′). Our goal is to show that p′ = p.
For a proof by contradiction, assume p′ ̸= p. By the assumption, per(P) = p. Denote Y = P ′[1 . . τ], and note that

Copyright © 2023
Copyright for this paper is retained by the authors5141

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

since P and P ′ overlap by 3τ − 2 ≥ τ symbols, Y is a substring of P , and hence has periods p and p′. Observe that
we cannot have p | p′ since this would imply that Y [1 . . p′] is not primitive which would contradict p′ = per(P ′).
Observe now that we have p, p′ ≤ 1

3τ . By the Weak Periodicity Lemma [29], we thus have that Y has period
p′′ = gcd(p, p′). By our assumptions, this implies p′′ < p′ and p′′ | p′. Thus, again we obtain that Y [1 . . p′] is not
primitive. Therefore, we must have p′ = p.

2. Denote j′ = e(j)− 3τ + 2. By definition, we then have [j . . j′) ⊆ R and j′ ̸∈ R. By the above, for every
t ∈ [0 . . j′ − j), it holds per(T [j + t . . j + t + 3τ − 1)) = p. Thus, for every j′′ ∈ [j . . j′ + 3τ − 2 − p), we have
T [j′′] = T [j′′+p], i.e., the substring T [j . . j′+3τ−2) has period p, and thus LCE(j, j+p) ≥ (j′+3τ−2)−j−p, or
equivalently, j+p+LCE(j, j+p) ≥ j′+3τ−2 = e(j). To show that this lower bound on j+p+LCE(j, j+p) is tight, let
us assume that e(j) ≤ n (otherwise, the claim follows immediately). Equivalently, we then have j′+3τ−2 = e(j) ≤ n
and to finish the proof, it remains to show T [e(j)] ̸= T [e(j) − p]. Recall that per(T [j′ − 1 . . j′ + 3τ − 2)) = p.
Thus, T [j′ + 3τ − 2] = T [e(j)] = T [e(j)− p] = T [j′ + 3τ − 2− p] would imply that per(T [j′ . . j′ + 3τ − 1)) = p, or
equivalently, that j′ ∈ R, a contradiction. □

Observe that by definition of L-root, letting p = |L-root(j)|, there exists s ∈ [0 . . p) such that T [j+s . . j+s+p) =
L-root(j). Combining this with Lemma 5.3 implies that for every j ∈ R, we can write T [j . . e(j)) = H ′HkH ′′,
where H = L-root(j), and H ′ (resp. H ′′) is a proper suffix (resp. prefix) of H. We call such factorization the
L-decomposition of T [j . . e(j)). Note that the L-decomposition is unique, since otherwise would contradict the
synchronization property of primitive strings [24, Lemma 1.11]. We denote L-head(j) = |H ′|, L-exp(j) = k,
and L-tail(j) = |H ′′|. For j ∈ R, we let type(j) = +1 if e(j) ≤ n and T [e(j)] ≻ T [e(j) − p] (where
p = |L-root(j)|), and type(j) = −1 otherwise. For any j ∈ R, we denote efull(j) = e(j)− L-tail(j). Observe that
efull(j) = j + L-head(j) + L-exp(j) · |L-root(j)|.

We repeatedly refer to the following subsets of R. First, denote R− = {j ∈ R : type(j) = −1} and R+ = R \R−.
For any H ∈ Σ+ and any s ∈ Z≥0 we then let RH = {j ∈ R : L-root(j) = H}, R−

H = R− ∩ RH , R+
H = R+ ∩ RH ,

Rs,H = {j ∈ RH : L-head(j) = s}, R−
s,H = R− ∩ Rs,H , and R+

s,H = R+ ∩ Rs,H .
The following lemmas establish the key properties of periodic positions. First, we prove that the set of positions

Rs,H occupies a contiguous block in SA and describe the structure of such block.

Lemma 5.4. Let j ∈ Rs,H . For any j′ ∈ [1 . . n], LCE(j, j′) ≥ 3τ − 1 holds if and only if j′ ∈ Rs,H . Moreover, if
j′ ∈ Rs,H then, letting t = e(j)− j and t′ = e(j′)− j′, it holds LCE(j, j′) ≥ min(t, t′) and:

1. If type(j) ̸= type(j′), then T [j . . n] ≺ T [j′ . . n] if and only if type(j) < type(j′),
2. If type(j) = type(j′) = −1 and t ̸= t′, then T [j . . n] ≺ T [j′ . . n] if and only if t < t′,
3. If type(j) = type(j′) = +1 and t ̸= t′, then T [j . . n] ≺ T [j′ . . n] if and only if t > t′,
4. If type(j) ̸= type(j′) or t ̸= t′, then LCE(j, j′) = min(t, t′).

Proof. Let j′ ∈ [1 . . n] be such that LCE(j, j′) ≥ 3τ − 1. Denoting p = per(T [j . . j + 3τ − 1)) and
p′ = per(T [j′ . . j′ + 3τ − 1)) we then have p′ = p ≤ 1

3 . Thus, j′ ∈ R and L-root(j′) = min{T [j′ + t . . j′ + t+ p′) :
t ∈ [0 . . p′)} = min{T [j′ + t . . j′ + t + p) : t ∈ [0 . . p)} = min{T [j + t . . j + t + p) : t ∈ [0 . . p)} = H. To show
that L-head(j′) = s, note that by |H| ≤ τ , the string H ′H2 (where H ′ is a length-s suffix of H) is a prefix of
T [j . . j + 3τ − 1) = T [j′ . . j′ + 3τ − 1). On the other hand, L-head(j′) = s′ implies that Ĥ ′H2 (where Ĥ ′ is a
length-s′ suffix of H) is a prefix of T [j′ . . j′+3τ−1). Thus, by the synchronization property of primitive strings [24,
Lemma 1.11] applied to the two copies of H, we have s′ = s, and consequently, j′ ∈ Rs,H . For the converse
implication, assume j′ ∈ Rs,H . This implies that both T [j . . e(j)) and T [j′ . . e(j′)) are prefixes of H ′ ·H∞[1 . .)
(where H ′ is as above). Thus, by e(j)− j, e(j′)− j′ ≥ 3τ − 1, we obtain LCE(j, j′) ≥ 3τ − 1.

Let us now assume j′ ∈ Rs,H . Since, as noted above, both T [j . . e(j)) = T [j . . j + t) and T [j′ . . e(j′)) =
T [j′ . . j′ + t′) are prefixes of H ′ ·H∞[1 . .), we have LCE(j, j′) ≥ min(t, t′).

1. Assume type(j) < type(j′). Let Q = H ′ · H∞[1 . .), where H ′ is a length-s suffix of H. We will prove
T [j . . n] ≺ Q ≺ T [j′ . . n], which implies the claim. First, we note that type(j) = −1 implies that either
e(j) = n + 1, or e(j) ≤ n and T [e(j)] ≺ T [e(j) − |H|]. In the first case, T [j . . e(j)) = T [j . . n] is a proper
prefix of Q and hence T [j . . n] ≺ Q. In the second case, we have T [j . . e(j)) = T [j . . j + t) = Q[1 . . t] and
T [j + t] ≺ T [j + t − |H|] = Q[1 + t − |H|] = Q[1 + t]. Consequently, T [j . . n] ≺ Q. To show Q ≺ T [j′ . . n]
we observe that type(j′) = +1 implies e(j′) ≤ n. Thus, we have Q[1 . . t′] = T [j′ . . e(j′)) = T [j′ . . j′ + t′) and
Q[1 + t′] = Q[1 + t′ − |H|] = T [j′ + t′ − |H|] ≺ T [j′ + t′]. Hence, we obtain Q ≺ T [j′ . . n]. We have thus obtained
T [j . . n] ≺ Q ≺ T [j′ . . n] which implies T [j . . n] ≺ T [j′ . . n]. The opposite implication follows easily by symmetry.

Copyright © 2023
Copyright for this paper is retained by the authors5142

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

More precisely, in a proof by contraposition, assuming type(j) ≥ type(j′) we immediately obtain type(j) > type(j′)
from the assumption. By the analogous argument as above we then have T [j . . n] ≻ T [j′ . . n].

2. Assume t < t′. Similarly as above, we consider two cases for e(j). If e(j) = n + 1, then by
t < t′, the string T [j . . e(j)) = T [j . . n] is a proper prefix of T [j′ . . e(j′)) = T [j′ . . j′ + t′) and hence
T [j . . n] ≺ T [j′ . . j′ + t′) ⪯ T [j′ . . n]. On the other hand, if e(j) ≤ n, then we have T [j . . j + t) = T [j′ . . j′ + t)
and by t < t′, T [j + t] ≺ T [j + t− |H|] = T [j′ + t− |H|] = T [j′ + t]. Hence, T [j . . n] ≺ T [j′ . . n]. The opposite
implication follows by symmetry similarly as in Item 1.

3. Assume t > t′. By type(j′) = +1 we have e(j′) ≤ n. Thus, by t > t′, we have T [j . . j + t′) = T [j′ . . j′ + t′)
and T [j + t′] = T [j + t′ − |H|] = T [j′ + t′ − |H|] ≺ T [j′ + t′]. Hence, T [j . . n] ≺ T [j′ . . n]. The opposite implication
follows by symmetry similarly as in Item 1.

4. By the earlier implication, LCE(j, j′) ≥ min(t, t′). Thus, it remains to show LCE(j, j′) ≤ min(t, t′). First,
let type(j) ̸= type(j′) and without the loss of generality let us assume type(j) < type(j′) (i.e., type(j) = −1 and
type(j′) = +1). Consider two cases:

• First, assume t ≤ t′. Our goal is to prove LCE(j, j′) ≤ t. If j + t = n+ 1, then we immediately obtain the
claim. Let us thus assume j + t ≤ n. In the proof of Item 1 we showed that in this case type(j) = −1 implies
T [j+t] ≺ Q[1+t]. On the other hand, there we also proved that type(j′) = +1 implies Q[1 . . t′] = T [j′ . . j′+t′)
and Q[1 + t′] ≺ T [j′ + t′]. By t ≤ t′, we thus obtain Q[1 + t] ⪯ T [j′ + t]. Consequently, T [j + t] ̸= T [j′ + t]
and hence LCE(j, j′) ≤ t.

• Let us now assume t > t′. Our goal is to prove LCE(j, j′) ≤ t′. In the proof of Item 1 we showed that
type(j) = −1 implies that T [j . . j + t) = Q[1 . . t]. Thus, by t > t′ we have T [j + t′] = Q[1 + t′]. On the other
hand, in the proof of Item 1 we also proved that type(j′) = +1 implies Q[1+ t′] ≺ T [j′ + t′]. Thus, we obtain
T [j + t′] ̸= T [j′ + t′] and hence LCE(j, j′) ≤ t′.

This concludes the proof of the claim in the case type(j) ̸= type(j′). Let us thus assume type(j) = type(j′)
and t ̸= t′. First, consider the case type(j) = type(j′) = −1 and assume without the loss of generality that
t < t′ (to match the assumption in Item 2). Our goal is thus to show LCE(j, j′) ≤ t. In the proof of Item 2,
we showed that we then either have T [j . . j + t) = T [j . . n] (in which case LCE(j, j′) ≤ n − j + 1 = t), or
T [j . . j + t) = T [j′ . . j′ + t) and T [j + t] ≺ T [j′ + t] (which also immediately implies LCE(j, j′) ≤ t). Let us now
consider the case type(j) = type(j′) = +1 and assume without the loss of generality that t > t′ (to match the
assumption in Item 3). Our goal is thus to show LCE(j, j′) ≤ t′. In the proof of Item 3, we showed that we then
have T [j . . j + t′) = T [j′ . . j′ + t′) and T [j + t′] ≺ T [j′ + t′]. This implies LCE(j, j′) ≤ t′. □

The key to the efficient computation of SA and ISA values for periodic positions is processing of the elements
of R in blocks (note that unlike in Lemma 5.4, which describes the structure of blocks in SA, here we mean blocks
of positions in the text). The starting positions of these blocks are defined as R′ := {j ∈ R : j− 1 /∈ R}. We also let
R′− = R′ ∩ R−, R′+ = R′ ∩ R+, R′−

H = R′ ∩ R−
H , and R′+

H = R′ ∩ R+
H for any H ∈ Σ+. The following lemma justifies

this strategy.

Lemma 5.5. For every j ∈ R \ R′ it holds:

• L-root(j − 1) = L-root(j),
• e(j − 1) = e(j),
• L-tail(j − 1) = L-tail(j),
• efull(j − 1) = efull(j),
• type(j − 1) = type(j).

Proof. Denote p = per(T [j−1 . . j−1+3τ−1)). By Lemma 5.3(1), it holds per(T [j . . j + 3τ − 1)) = p. By p ≤ τ
3 ,

we thus have T [j−1 . . j−1+p) = T [j−1+p . . j−1+2p). Consequently, {T [j−1+t . . j−1+t+p) : t ∈ [0 . . p)} =
{T [j+t . . j+t+p) : t ∈ [0 . . p)}, and hence L-root(j − 1) = L-root(j).

Denote p′ = per(T [j . . j+3τ−1)). By Lemma 5.3(2), e(j − 1) = j − 1 + p + LCE(j − 1, j − 1 + p) and
e(j) = j + p′ + LCE(j, j + p′). Thus, by p = p′ (following by the above) and T [j − 1] = T [j − 1 + p], we have
e(j − 1) = j − 1 + p+ LCE(j − 1, j − 1 + p) = j + p+ LCE(j, j + p) = j + p′ + LCE(j, j + p′) = e(j).

Assume T [j− 1 . . e(j− 1)) = H ′HkH ′′, where H = L-root(j−1), |H ′| = L-head(j−1), and |H ′′| = L-tail(j−1).
By e(j−1) = e(j) and the uniqueness of L-decomposition, this implies that either T [j . . e(j)) = H ′[2 . . |H ′|]HkH ′′

(if |H ′| > 0) or T [j . . e(j)) = H[2 . . |H|]Hk−1H ′′ (otherwise) is the L-decomposition of T [j . . e(j)). In both cases,
L-tail(j−1) = L-tail(j) = |H ′′|.

Copyright © 2023
Copyright for this paper is retained by the authors5143

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

By the above two properties, efull(j−1) = e(j−1)− L-tail(j−1) = e(j)− L-tail(j) = efull(j).
The last claim follows from the definition of type and equalities e(j−1) = e(j) and p = p′. □

The above is complemented by the following results establishing the lower bound on the gap between blocks of
positions in R, and that a mapping from j to efull(j) establishes an injective mapping of blocks of positions in R to
positions in T .

Lemma 5.6. Let j, j′, j′′ ∈ [1 . . n] be such that j, j′′ ∈ R, j′ ̸∈ R, and j < j′ < j′′. Then, it holds e(j) ≤ j′′ + τ − 1
and j′′ − j ≥ 2τ .

Proof. Let r = min{i ∈ (j′ . . j′′] : i ∈ R}. Then, r ∈ R′. Observe that by Lemma 5.3 (resp. by r − 1 ̸∈ R), it
holds per(T [j . . e(j))) ≤ ⌊1

3τ⌋ (resp. per(T [r . . e(r))) ≤ ⌊ 1
3τ⌋), e(j) − j ≥ 3τ − 1 (resp. e(r) − r ≥ 3τ − 1), and

the substring T [j . . e(j)) (resp. T [r . . e(r)) cannot be extended in T to the right (resp. left) without changing its
shortest period. By [54, Fact 2.2.4], the fragments T [j . . e(j)) and T [r . . e(r)) must therefore overlap by less than
2⌊ 1

3τ⌋ symbols. In other words, e(j)− r < 2⌊ 1
3τ⌋. By r ≤ j′′ we thus obtain e(j) ≤ r + 2⌊ 1

3τ⌋ ≤ j′′ + τ − 1, i.e.,
the first claim. Equivalently, we can state that j′′ ≥ e(j)− τ + 1. By combining this with e(j)− j ≥ 3τ − 1, we
then obtain j′′ ≥ e(j)− τ + 1 ≥ j + 3τ − 1− τ + 1 = j + 2τ , i.e., the second claim. □

Lemma 5.7. For any j, j′ ∈ R′, j ̸= j′ implies efull(j) ̸= efull(j′).

Proof. Assume without the loss of generality that j < j′. Then, j′−1 ̸∈ R. By Lemma 5.6 applied for j, j′−1, and
j′ we obtain e(j) ≤ j′ + τ − 1. Consequently, efull(j) ≤ e(j) ≤ j′ + τ − 1. Let now r′ = min{t ∈ (j′ . . n] : t ̸∈ R}.
We then have e(j′) = r′ + 3τ − 2. Since for every t ∈ R, it holds e(t)− efull(t) = L-tail(t) = |L-root(t)| ≤ ⌊1

3τ⌋, we
thus have efull(j′) ≥ e(j′)− ⌊ 1

3τ⌋ = r′ + 3τ − 2− ⌊ 1
3τ⌋ ≥ j′ + 2τ − 1. Combining this with the earlier upper bound

on efull(j), we thus obtain efull(j) ≤ j′ + τ − 1 < j′ + 2τ − 1 ≤ efull(j′). In particular, efull(j) ̸= efull(j′). □

5.3.2 The Data Structure

Definitions Let q = |R′−| and let (rtexti)i∈[1. .q] be a sequence containing all elements of R′− in sorted order, i.e,
for any i, i′ ∈ [1 . . q], i < i′ implies rtexti < rtexti′ . Let (rlexi)i∈[1. .q] also be a sequence containing all elements k ∈ R′−,
but sorted first according to L-root(k) and in case of ties, by T [efull(k) . . n]. Formally, for any i, i′ ∈ [1 . . q], i < i′

implies that L-root(rlexi) ≺ L-root(rlexi′), or L-root(rlexi) = L-root(rlexi′) and T [efull(rlexi) . . n] ≺ T [efull(rlexi′) . . n].
Note that by Lemma 5.7, the sequence (rlexi)i∈[1. .q] is well-defined. Based on (rlexi)i∈[1. .q] we define the sequence
of integers (ℓi)i∈[1. .q] as ℓi = efull(rlexi)− rlexi .

Let Lroot denote the mapping from [0 . . σ)3τ−1 to N2 such that for any X ∈ [0 . . σ)3τ−1 satisfying per(X) ≤ 1
3τ ,

Lroot maps X to a pair (s, p), where p = per(X) and s ∈ [0 . . p) is such that X[1+s . . 1+s+p) = min{X[1+t . . 1+t+
p) : t ∈ [0 . . p)}. We also define Lminexp : [0 . . σ)3τ−1 → [1 . . n] as the mapping such that for every X ∈ [0 . . σ)3τ−1

satisfying per(X) ≤ 1
3τ , if we let p = per(X), H = min{X[1 + t . . 1 + t + p) : t ∈ [0 . . p)} and s ∈ [0 . . p)

be such that X[1+s . . 1+s+p) = H, then assuming R−
s,H ̸= ∅, Lminexp maps X to min{L-exp(j) : j ∈ R−

s,H}.
Let Lruns be a mapping, such that for every H ∈ [0 . . σ)≤τ and every H ′ ∈ [0 . . σ)≤τ , Lruns maps the pair
(H,H ′) to (b, e) defined by b = |{k ∈ R′− : L-root(k) ≺ H, or L-root(k) = H and T [efull(k) . . n] ≺ H ′}| and
e = b + |{k ∈ R′−

H : H ′ is a prefix of T [efull(k) . . n]}|. Note that then the set {rlexi : i ∈ (b . . e]} consists of all
positions k ∈ R′−

H such that H ′ is a prefix of T [efull(k) . . n]. In particular, every (H, ε) maps to a pair (b, e) such
that e =

∑
H′⪯H |R′−

H′ |. For any ℓ > 0, H ∈ [0 . . σ)+, and s ∈ [0 . . |H|), we define Prefℓ(s,H) as the length-ℓ prefix
of H ′ ·H∞[1 . .), where H ′ is a length-s suffix of H. Let Lpref denote the mapping that, given the pair (H, s),
where H ∈ [0 . . σ)≤τ , and s ∈ [0 . . |H|), returns the packed encoding of Pref3τ−1(s,H).

Let Bexp[1 . . n] be a bitvector such that for every i ∈ [1 . . n], it holds Bexp[i] = 0 if and only if SA[i] ∈ [1 . . n]\R−,
or i < n and the positions j = SA[i] and j′ = SA[i + 1] satisfy j, j′ ∈ R−

s,H and L-exp(j) = L-exp(j′) for some
H ∈ Roots and s ∈ [0 . . |H|). Let BR′ [1 . . n] be a bitvector defined such that BR′ [i] = 1 holds if and only if i ∈ R′.

Let Alen[1 . . q] by an array defined by Alen[i] = ℓi. Let Armap[1 . . q] be an array containing a permutation of
[1 . . q] such that Armap[i] = i′ holds if and only if rtexti = rlexi′ . By A−1

rmap[1 . . q] we denote an array containing a
permutation of [1 . . q] such that A−1

rmap[i
′] = i holds if and only if rtexti = rlexi′ .

Components The data structure consists of two parts. The first part, designed to compute SA[i] (resp. ISA[j])
for i ∈ [1 . . n] (resp. j ∈ [1 . . n]) satisfying SA[i] ∈ R− (resp. j ∈ R−), consists of the following eleven components:

Copyright © 2023
Copyright for this paper is retained by the authors5144

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

1. CSA(T) (Section 5.1.1). It takes O(n/ logσ n) space.
2. The lookup table Lroot. When accessing Lroot, strings X ∈ [0 . . σ)3τ−1 are converted to int(X). Thus, Lroot

needs O(σ6τ) = O(n6µ) = O(n/ logσ n) space.
3. The lookup table Lminexp. As above, Lminexp also needs O(σ6τ) = O(n/ logσ n) space.
4. The lookup table Lruns. When storing the mapping from the key (H,H ′), we first concatenate H and H ′

and convert it to an integer x = int(HH ′) in the range [0 . . σ6τ). We then create a triple (x, |H|) (this
contains enough information to decode H and H ′) and injectively map it to a positive integer not exceeding
σ6ττ < σ6τ logσ n. Thus, Lruns can be stored using O(n6µ log n) = O(n/ logσ n) space.

5. The lookup table Lpref . When storing the mapping, we convert the string H to int(H). By int(H) ∈ [0 . . σ6τ)
and |H| ≤ τ , each pair (int(H), s) can then be injectively encoded as an integer in the range of size
σ6ττ < σ6τ logσ n and hence Lpref needs O(n6µ log n) = O(n/ logσ n) space.

6. The bitvector Bexp augmented using Theorem 2.1. It needs O(n/ log n) space.
7. The bitvector BR′ augmented using Theorem 2.1. It needs O(n/ log n) space.
8. The array Alen[1 . . q] augmented with a structure from Proposition 2.1. To analyze its space usage, consider

any j1, j2, j3 ∈ R′ such that j1 < j2 < j3. Then, j2 − 1 ̸∈ R and j3 − 1 ̸∈ R. By Lemma 5.6 applied first for
j1, j2 − 1, and j2 we have e(j1) ≤ j2 + τ − 1. Applying it again for j2, j3 − 1, and j3, we obtain j3 − j2 ≥ 2τ ,
or equivalently, j2 ≤ j3 − 2τ . Combining the two inequalities, we thus obtain that e(j1) ≤ j3 − τ − 1 < j3.
This implies that each position of T belongs to at most two intervals in the collection {[j . . e(j)) : j ∈ R′},
and consequently,

∑q
i=1 ℓi ≤ 2n. On the other hand, by Lemma 5.6, for every j, j′ ∈ R′, j ̸= j′ implies

|j′ − j| ≥ 2τ . Thus, q = O(n/τ) = O(n/ logσ n). The array A augmented using Proposition 2.1 thus needs
O(n/ logσ n) space.

9. The array Armap in plain form using O(1 + q) = O(n/ logσ n) space.
10. The array A−1

rmap in plain form using O(1 + q) = O(n/ logσ n) space
11. The O(n/ logσ n)-space data structure from [50, Theorem 5.4] that, given any i, i′ ∈ [1 . . n], returns LCE(i, i′)

in O(1) time.

The second part of the structure, designed to compute SA[i] (resp. ISA[j]) for i ∈ [1 . . n] (resp. j ∈ [1 . . n])
satisfying SA[i] ∈ R+ (resp. j ∈ R+), consists of the symmetric counterparts adapted according to Lemma 5.4.

In total, the data structure takes O(n/ logσ n) space.

5.3.3 Navigation Primitives

Proposition 5.7. Given the data structure from Section 5.3.2 and any position j ∈ R, we can in O(1) time
compute the values L-root(j), L-head(j), L-exp(j), L-tail(j), and type(j).

Proof. We first compute x ∈ [0 . . σ6τ) such that x = int(T [j . . j+3τ−1)). Given the packed encoding of text T , such
x is obtained in O(1) time. We then look up (s, p) = Lroot[x], and in O(1) time obtain L-root(j) = T [j+s . . j+s+p)
and L-head(j) = s. Next, we compute L-exp(j) and L-tail(j). For this we recall that by Lemma 5.3(2), it holds
e(j) = j + p + LCE(j, j + p). Thus, given j and p, we can compute e(j) in O(1) time. We then obtain
L-exp(j) = ⌊ e(j)−j−s

p ⌋ and L-tail(j) = (e(j) − j − s) mod p. Finally, to test if type(j) = +1, we check whether
e(j) ≤ n, and if so, whether T [e(j)] ≻ T [e(j)− p]. □

Proposition 5.8. Let i ∈ [1 . . n] be such that SA[i] ∈ R. Given the data structure from Section 5.3.2 and the
index i, in O(1) time we can compute L-root(SA[i]) and L-head(SA[i]).

Proof. We first compute y = rankB3τ−1,1(i−1). The string X = Ashort[y+1] is then a prefix of T [SA[i] . . n] of length
3τ−1. Let x = int(X). We then look up (s, p) = Lroot[x], and in O(1) time obtain L-root(SA[i]) = X[1+s . . 1+s+p)
and L-head(SA[i]) = s. □

5.3.4 Implementation of ISA Queries

For any j ∈ R, we define

Pos(j) = {j′ ∈ [1 . . n] : LCE(j, j′) ≥ 3τ − 1 and T [j′ . . n] ⪯ T [j . . n]},

and denote δ(j) = |Pos(j)|.

Copyright © 2023
Copyright for this paper is retained by the authors5145

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 5.8. Let j ∈ R and X = T [j . . j + 3τ − 1). Then, ISA[j] = RangeBeg(X,T) + δ(j).

Proof. It suffices to observe that j′ ∈ Occ(X,T) holds if and only if LCE(j, j′) ≥ 3τ−1. Thus, it holds by definition
of ISA[j] that ISA[j] = RangeBeg(X,T) + |{j′ ∈ Occ(X,T) : T [j′ . . n] ⪯ T [j . . n]}| = RangeBeg(X,T) + |{j′ ∈
[1 . . n] : LCE(j, j′) ≥ 3τ − 1 and T [j′ . . n] ⪯ T [j . . n]}| = RangeBeg(X,T) + δ(j). □

We focus on computing δ(j) for j ∈ R−. The elements of R+ are processed symmetrically (see the proof of
Proposition 5.11). For any H ∈ Roots, s ∈ [0 . . |H|), and j ∈ R−

s,H , we define Posa(j) = {j′ ∈ R−
s,H : L-exp(j′) ≤

L-exp(j)} and Poss(j) = {j′ ∈ R−
s,H : L-exp(j′) = L-exp(j) and T [j′ . . n] ≻ T [j . . n]}. For any j ∈ R−, we denote

δa(j) = |Posa(j)| and δs(j) = |Poss(j)|.

Lemma 5.9. For any j ∈ R−, it holds δ(j) = δa(j)− δs(j).

Proof. We will prove that Posa(j) is a disjoint union of Pos(j) and Poss(j). This implies δ(j) + δs(j) = δa(j), and
consequently, the equality in the claim.

By Lemma 5.4, letting j ∈ R−
s,H , we have Pos(j) = {j′ ∈ R−

s,H : T [j′ . . n] ⪯ T [j . . n]}, and moreover, if
j′ ∈ Pos(j), then e(j′) − j′ ≤ e(j) − j. In particular, L-exp(j′) = ⌊ e(j′)−j′−s

|H| ⌋ ≤ ⌊ e(j)−j−s
|H| ⌋ = L-exp(j). Hence,

Pos(j) ⊆ Posa(j). On the other hand, clearly Poss(j) ⊆ Posa(j) and Poss(j) ∩ Pos(j) = ∅. Thus, to obtain the
claim, it suffices to show that Posa(j) \ Poss(j) ⊆ Pos(j).

Let j′ ∈ Posa(j) \ Poss(j). Consider two cases. If L-exp(j′) = L-exp(j), then by definition of Poss(j), it
must hold T [j′ . . n] ⪯ T [j . . n]. Thus, we have j′ ∈ Pos(j). Let us therefore assume L-exp(j′) < L-exp(j). Then,
e(j′)−j′ = s+L-exp(j′)·|H|+L-tail(j′) < s+L-exp(j′)·|H|+|H| ≤ s+L-exp(j)·|H| ≤ s+L-exp(j)·|H|+L-tail(j) =
e(j)− j. By Lemma 5.4(2), this implies T [j′ . . n] ≺ T [j . . n], and consequently, j′ ∈ Pos(j). □

Computing δa(j) We now describe the algorithm to compute δa(j) for j ∈ R−.

Proposition 5.9. Given the data structure from Section 5.3.2 and any j ∈ R−, in O(1) time we can compute
δa(j).

Proof. Let X = T [j . . j + 3τ − 1). First, using the lookup table Lrange, we compute (bX , eX) =
(RangeBeg(X,T),RangeEnd(X,T)). Then, by Lemma 5.4, SA(bX . . eX] contains all positions from Rs,H , where
H = L-root(j) and s = L-head(j). Next, using Proposition 5.7, we compute in O(1) time the value k = L-exp(j).
Finally, we retrieve kmin = Lminexp[int(X)]. Observe now that by Lemma 5.4, all positions in R−

s,H oc-
cur in SA(bX . . eX] before R+

s,H . Furthermore, by Lemma 5.4(2), [kmin . . k] ⊆ {L-exp(j′) : j′ ∈ R−
s,H} (for

k′ ∈ (kmin . . k], we can take j′ = j + (k − k′)|H|). Thus, by the definition of Bexp, we can finally return
δa(j) = selectBexp,1(rankBexp,1(bX) + (k − kmin) + 1)− bX in O(1) time. □

Computing δs(j) Next, we describe the algorithm to compute δs(j) for any position j ∈ R−.

Lemma 5.10. Assume i, j ∈ R−
H and let ℓ = e(i) − i − 3τ + 2. Then |Poss(j) ∩ [i . . i + ℓ)| ≤ 1. Moreover,

|Poss(j) ∩ [i . . i+ ℓ)| = 1 if and only if T [efull(i) . . n] ≻ T [efull(j) . . n] and efull(i)− i ≥ efull(j)− j.

Proof. By Lemma 5.5, we have [i . . i + ℓ) ⊆ R−
H with e(i + δ) = e(i) for every δ ∈ [0 . . ℓ). Moreover, by the

uniqueness of L-decomposition, L-tail(i + δ) = L-tail(i). Together, these imply that efull(i + δ) = efull(i), and
consequently efull(i+ δ)− (i+ δ) = efull(i)− i− δ. It remains to observe that, letting j ∈ R−

s,H , for j′ ∈ Poss(j)
it holds efull(j′) − j′ = s + L-exp(j′) · |H| = s + L-exp(j) · |H| = efull(j) − j. Thus, i + δ ∈ Poss(j) implies
efull(i+ δ)− (i+ δ) = efull(i)− (i+ δ) = efull(j)− j, or equivalently, δ = (efull(i)− i)− (efull(j)− j), and therefore,
|Poss(j) ∩ [i . . i+ ℓ)| ≤ 1.

For the second part, assume first that i + δ ∈ Poss(j) holds for some δ ∈ [0 . . ℓ). Then, as noted above,
we have efull(j) − j = efull(i) − (i + δ) ≤ efull(i) − i. Moreover, letting j ∈ R−

s,H , by definition of Poss(j),
we have i + δ ∈ R−

s,H , L-exp(j) = L-exp(i + δ), and T [i+δ . . n] ≻ T [j . . n]. Therefore, we obtain that
T [i+δ . . efull(i + δ)) = T [i+δ . . efull(i)) = T [j . . efull(j)) = H ′Hk (where k = L-exp(j) and H ′ is the length-
s suffix of H), and consequently, T [efull(i) . . n] ≻ T [efull(j) . . n]. To show the converse implication, assume
T [efull(i) . . n] ≻ T [efull(j) . . n] and efull(i) − i ≥ efull(j) − j. Let δ = (efull(i) − i) − (efull(j) − j). We will prove
that δ ∈ [0 . . ℓ) and i+ δ ∈ Poss(j). Clearly δ ≥ 0. To show δ < ℓ, we first prove e(i)− efull(i) ≥ e(j)− efull(j).

Copyright © 2023
Copyright for this paper is retained by the authors5146

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Suppose that q = e(i) − efull(i) < e(j) − efull(j). By i ∈ R−
H , we then either have efull(i) + q = n + 1, or

efull(i) + q ≤ n and T [efull(i) + q] ≺ T [efull(i) + q − |H|] = T [efull(j) + q − |H|] = T [efull(j) + q], both
of which contradict T [efull(i) . . n] ≻ T [efull(j) . . n]. Thus, e(i) − efull(i) ≥ e(j) − efull(j). This implies,
e(i)− (i+δ) = (efull(i)− (i+δ))+(e(i)−efull(i)) = (efull(j)−j)+(e(i)−efull(i)) ≥ (efull(j)−j)+(e(j)−efull(j)) =
e(j)− j ≥ 3τ − 1, or equivalently δ ≤ e(i)− i− 3τ + 1 < ℓ. To show i+ δ ∈ Poss(j), it remains to observe that
efull(i+ δ)− (i+ δ) = efull(i)− (i+ δ) = efull(j)− j and i+ δ, j ∈ R−

H imply T [i+ δ . . efull(i)) = T [j . . efull(j)). This
in particular gives, letting j ∈ Rs,H , that i+ δ ∈ Rs,H and L-exp(i+ δ) = L-exp(j). Moreover, combining it with
T [efull(i) . . n] ≻ T [efull(j) . . n] yields T [i+ δ . . n] ≻ T [j . . n]. Finally, by Lemma 5.5, type(i+ δ) = type(i) = −1.
Therefore, i+ δ ∈ Poss(j). □

Proposition 5.10. Given the data structure from Section 5.3.2 and any j ∈ R−, in O(log log n) time we can
compute δs(j).

Proof. Given j ∈ R−, we first compute H = L-root(j), s = L-head(j), and k = L-exp(j). By Proposition 5.7,
this takes O(1) time. This lets us deduce efull(j) = j + s + k|H|. Then, we compute i ∈ [1 . . q] satisfying
j ∈ [rtexti . . e(rtexti) − 3τ + 2), i.e., j is in the maximal block of positions from R− starting at position
rtexti . Using BR′ we obtain i = rankBR′ ,1(j) in O(1) time. Observe now that, letting j′ = rtexti , by
efull(j′) = efull(j), we have T [efull(j′) . . n] = T [efull(j) . . n]. Therefore, letting x = Armap[i] and x′ =

∑
H′⪯H |R′−

H′ |
(obtained in O(1) time using Lruns), by Lemma 5.10 we have δs(j) = |{i′ ∈ (x . . x′] : ℓi′ ≥ efull(j) − j}| =
rcountAlen

(efull(j) − j, x′) − rcountAlen
(efull(j) − j, x), which we compute in O(log log n) time using the data

structure from Proposition 2.1. □

Remark 5.1. In Lemma 5.9, we presented an equation relating the sizes of Posa(j) and Poss(j), and the
size of Pos(j), where j ∈ R−. In this formula, some positions are first counted as part of Posa(j), and
then canceled when subtracting the size of Poss(j). To see the reason for this counterintuitive formula, let
J := {j′ ∈ R−

s,H : L-exp(j′) = L-exp(j)}, where s = L-head(j) and H = L-root(j), and consider the problem
of computing the size of J ′ = {j′ ∈ J : T [j′ . . n] ⪰ T [j . . n]}. As shown in Lemma 5.10, to count such
positions, it suffices to first align all j′′ ∈ R′− by the position efull(j′′), and then count those j′′ that satisfy
(1) T [efull(j′′) . . n] ⪰ T [efull(j) . . n], and (2) efull(j′′) − j′′ ≥ efull(j) − j. For every j′′ ∈ R′− satisfying these
conditions, there exists exactly one j′ ∈ R−

s,H such that [j′′ . . j′] ⊆ R, L-exp(j′) = L-exp(j) and T [j′ . . n] ⪰ T [j . . n],
because for j, j′′ ∈ R−, T [efull(j′′) . . n] ⪰ T [efull(j) . . n] implies e(j′′) − efull(j′′) ≥ e(j) − efull(j) (Lemma 5.4).
Thus, letting ℓ = efull(j)− j, such j′ is given by j′ = efull(j′′)− ℓ. In particular, such j′ satisfies j′ ∈ R because
(e(j′′)− efull(j′′)) + ℓ ≥ e(j)− efull(j) + ℓ = e(j)− j ≥ 3τ − 1.

Consider now the problem of computing the size of J ′′ = {j′ ∈ J : T [j′ . . n] ≺ T [j . . n]} (defining Poss(j) as
J ′′ may seem like a simpler alternative to the current definition). Observe that the above method does not work
for this problem. The reason for this is that position j′′ ∈ R′− satisfying T [efull(j′) . . n] ≺ T [efull(j) . . n] does not
necessarily imply that efull(j′′) − ℓ ∈ R. This is because we may have e(j′′) − efull(j′′) < e(j) − efull(j), which
implies that it is possible that (e(j′′)− efull(j′′)) + ℓ < 3τ − 1. This motivates the current definition of Poss(j).

Summary By combining all above results, we obtain the following algorithm to compute ISA[j] for periodic
positions.

Proposition 5.11. Given the data structure from Section 5.3.2 and any j ∈ R, in O(log log n) time we can
compute ISA[j].

Proof. First, in O(1) time we compute x = int(X), where X = T [j . . j + 3τ − 1). In O(1) we then look
up (bX , eX) = Lrange[x]. In particular, we have bX = RangeBeg(X,T). Then, using Proposition 5.7 we
determine type(j). Depending on whether j ∈ R− or j ∈ R+ we use either a combination of Propositions 5.9
and 5.10, or their symmetric counterparts (more precisely, if j ∈ R+, letting s = L-head(j) and H = L-root(j),
we have δa(j) = |Posa(j)| and δs(j) = |Poss(j)|, where Posa(j) = {j′ ∈ R+

s,H : L-exp(j′) ≤ L-exp(j)} and
Poss(j) = {j′ ∈ R+

s,H : L-exp(j) = L-exp(j) and T [j′ . . n] ≺ T [j . . n]}), to compute δa(j) and δs(j) in O(1) and
O(log log n) time, respectively. If j ∈ R−, then by Lemma 5.9 we have δ(j) = δa(j) − δs(j). Otherwise, by the
counterpart of Lemma 5.9, δ(j) = (eX − bX)− (δa(j)− δs(j)). Finally, we return ISA[j] = bX + δ(j) as the answer.
In total, the query takes O(log log n) time. □

Copyright © 2023
Copyright for this paper is retained by the authors5147

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

5.3.5 Implementation of SA Queries

We focus on positions i ∈ [1 . . n] satisfying SA[i] ∈ R−. Positions satisfying SA[i] ∈ R+ are processed symmetrically
(see the proof of Proposition 5.14). The algorithm to query SA[i] for i ∈ [1 . . n] satisfying SA[i] ∈ R− proceeds in
two steps. First, we compute L-exp(SA[i]) and δs(SA[i]). In the second steps, these values are used to compute
SA[i].

Computing L-exp(SA[i]) and δs(SA[i]) We now describe the first step during the computation of SA[i] for
i ∈ [1 . . n] satisfying SA[i] ∈ R.

Proposition 5.12. Let i ∈ [1 . . n] be such that SA[i] ∈ R. Given the data structure from Section 5.3.2 and the
index i, in O(1) time we can check if type(SA[i]) = −1, and if so, return L-exp(SA[i]) and δs(SA[i]).

Proof. To check if type(SA[i]) = −1, we first compute y = rankB3τ−1,1(i − 1). The string X = Ashort[y + 1]
is then a prefix of T [SA[i] . . n] of length 3τ − 1. Let x = int(X). In O(1) time we then look up
(bX , eX) = Lrange[x]. By Lemma 5.4 we then have type(SA[i]) = −1 if and only if Bexp[i . . eX] contains a
bit with value 1. This can be checked in O(1) time by checking if rankBexp,1(eX) > rankBexp,1(i − 1). Let us
assume type(SA[i]) = −1. To compute L-exp(SA[i]), we first in O(1) retrieve kmin = Lminexp[x], and then compute
L-exp(SA[i]) = kmin + (rankBexp,1(i − 1) − rankBexp,1(bX)). Then, δa(SA[i]) can be computed in O(1) time as
δa(SA[i]) = selectBexp,1(rankBexp,1(i− 1) + 1)− bX . Finally, by applying Lemma 5.8 and Lemma 5.9 for j = SA[i],
it holds i− bX = δa(SA[i])− δs(SA[i]). Thus, we obtain δs(SA[i]) = bX + δa(SA[i])− i. □

Computing SA[i] We now describe the algorithm to complete the computation of SA[i] for any i ∈ [1 . . n] such
that SA[i] ∈ R−.

Proposition 5.13. In O(n/ logσ n) time, we can augment the structure of Proposition 5.8 so that, given any
i ∈ [1 . . n] such that SA[i] ∈ R−, along with L-exp(SA[i]) and δs(SA[i]), we can compute SA[i] in O(log log n) time.

Proof. First, we compute H = L-root(SA[i]) and L-head(SA[i]) in O(1) time using Proposition 5.8. This lets us
deduce that efull(SA[i])− SA[i] = ℓ, where ℓ = L-head(SA[i]) + L-exp(SA[i])|H|. Let x =

∑
H′⪯H |R′−

H′ | (obtained
using Lruns in O(1) time). Next, we compute δ = rcountAlen

(ℓ, x). Using the structure from Proposition 2.1, this
takes O(log log n) time. Let k = δ−δs(SA[i]). We then compute the position p ∈ [1 . . q] of the kth leftmost element
in Alen that is greater or equal than ℓ. Using Proposition 2.1, we compute p = rselectAlen

(ℓ, k) in O(1) time. By
Lemma 5.7 and Lemma 5.10, we then have efull(rlexp) = efull(SA[i]). By combining Lemma 5.5 and Lemma 5.7, for
any j′, j′′ ∈ R such that j′ < j′′ and efull(j′) = efull(j′′), it holds [j′ . . j′′] ⊆ R, i.e., j′ and j′′ must belong to the
same contiguous block of positions from R. Since rlexp ∈ R′, we thus have SA[i] ∈ [rlexp . . e(rlexp)− 3τ + 2) ⊆ R−

H . In
O(1) time we obtain p′ = A−1

rmap[p] and j := selectBR′ ,1(p
′) = rlexp . Observe now that in the block [j . . e(j)− 3τ +2)

there is at most one element with given values of L-exp and L-head, and we already have values L-exp(SA[i]) and
L-head(SA[i]). We thus proceed as follows. First, we compute e(j). For this, we recall that by Lemma 5.3(2), it holds
e(j) = j + |H|+LCE(j, j + |H|). Thus, given j and |H|, we can compute e(j) in O(1) time. We then in O(1) time
compute s = L-head(j) using the lookup table Lroot. This lets us determine efull(j) = e(j)−((e(j)−j−s) mod |H|).
In O(1) time we then obtain SA[i] = efull(j)−L-head(SA[i])−L-exp(SA[i])|H|. In total, the query takes O(log log n)
time. □

Summary By combining all above results, we obtain the following algorithm to compute SA[i] for periodic
positions.

Proposition 5.14. Let i ∈ [1 . . n] be such that SA[i] ∈ R. Given the data structure from Section 5.3.2 and the
index i, in O(log log n) time we can compute SA[i].

Proof. First, using Proposition 5.12, in O(1) time we compute type(SA[i]). Depending on whether SA[i] ∈ R− or
SA[i] ∈ R+, we use either a combination of Propositions 5.12 and 5.13 or their symmetric counterparts (see the
proof of Proposition 5.11), to first compute L-exp(SA[i]) and δs(SA[i]) in O(1) time, and then SA[i] in O(log log n)
time. □

Copyright © 2023
Copyright for this paper is retained by the authors5148

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

5.3.6 Construction Algorithm

Proposition 5.15. Given CSA(T), we can in O(n/ logσ n) time augment it into a data structure from
Section 5.3.2.

Proof. Due to a large number of components, as well as dependency of some components on others, we present
the description in separate paragraphs, in the order in which it occurs.

Construction of Lroot To compute Lroot, we observe that, given X ∈ [0 . . σ)3τ−1, we can check in O(τ2) time if
per(X) ≤ 1

3τ , and if so, determine the value Lroot[int(X)] = (s, p). To compute per(X), we try all ℓ ∈ [1 . . ⌊ τ
3 ⌋]

until we find that ℓ is a period of X, or that there is no such ℓ. Assuming p := per(X) ≤ 1
3τ , finding s ∈ [0 . . p)

satisfying X[1 + s . . 1 + s + p) = min{X[t . . t + p) : t ∈ [1 . . p]} also takes O(τ2) time. Initializing Lroot takes
O(σ6τ) = O(n/ logσ n). Over all X ∈ [0 . . σ)3τ−1, we spend O(σ3τ−1τ2) = O(n1/2 log2 n) = O(n/ logσ n) time.

Construction of the structure for LCE queries By [50, Theorem 5.4], the data structure for LCE queries on T
can be constructed from the packed representation of T in O(n/ logσ n) time.

Construction of Bexp To simplify the notation, for the duration of this proof, we denote E := Bexp. We use
the following definitions. For any H ∈ Roots and s ∈ [0 . . |H|), let E−

s,H denote the block of E corresponding
to suffixes starting in R−

s,H , i.e., E−
s,H = E(b . . e], where (b . . e] ⊆ [1 . . n] is such that R−

s,H = {SA[i] : i ∈ (b . . e]}
(such (b . . e] exists by Lemma 5.4(1)). Finally, let unary(x) := 0x1 denote the unary encoding of an integer x ≥ 0,
and let unary+(x) be unary(x) with the first symbol removed (in particular, unary+(0) is the empty string). If
(ai)i∈[1. .k] is a sequence of non-negative integers, we define unary((ai)i∈[1. .k]) :=

⊙k
i=1 unary(ai), where

⊙
denotes

concatenation. Analogously, unary+((ai)i∈[1. .k]) :=
⊙k

i=1 unary
+(ai). The definitions of unary and unary+ are

naturally extended to infinite sequences (ai)i∈[1. .∞).
Let α < 1 be a positive constant. We first show an algorithm that, given the set of positions R′−

H (where
H ∈ Roots) as input, computes all bitvectors E−

0,H , . . . , E−
|H|−1,H in O(|R′−

H | + |R−
H |/ log n + nα) time. For any

s ∈ [0 . . |H|) and k ≥ 0, denote es,k,H = |{j′ ∈ R−
s,H : L-exp(j′) = k}|. We start by observing that by Lemma 5.4(2),

E−
s,H = unary+((es,k,H)k∈[0. .∞)). The values es,k,H can be efficiently determined based on the following observation.

First, note that if j ∈ R′−
H , then [j . . e(j)−3τ+2) ⊆ R−

H , and j−1, e(j)−3τ+2 ̸∈ R, i.e., the block of positions in R−
H

is maximal. By Lemma 5.5, for any j′ ∈ [j . . e(j)−3τ+2), it holds e(j′) = e(j). Thus, for any j′ ∈ [j . . e(j)−3τ+2),
we have L-exp(j′) = ⌊ e−j′

|H| ⌋ and L-head(j′) = (e− j′) mod |H|, where e = e(j)− L-tail(j). With this in mind, for
any j ∈ R′−

H , we let Ij = (3τ − 2− t . . s + k|H|], where s = L-head(j), k = L-exp(j), and t = L-tail(j). By the
above discussion, for any s ∈ [0 . . |H|) and k ≥ 0, we have es,k,H = |{j ∈ R′−

H : s+ k|H| ∈ Ij}|. The algorithm
consists of three steps:

1. First, we compute the string unary((e0,k,H)kmax

k=0), where kmax = max{L-exp(j′) : j′ ∈ R−
H}. We start

by computing kmax. For this we observe that kmax = max{L-exp(j′) : j′ ∈ R′−
H }. Thus, using

Proposition 5.7, we can compute kmax in O(|R′−
H |) time. To compute unary((e0,k,H)k∈[0. .kmax]), we

generate the sequence of “events” from R′−
H , sort them, and then output unary((e0,k,H)k∈[0. .kmax]) left-

to-right. More precisely, let m = |R′−
H |, and let (pi, vi)i∈[0. .2m] be a sequence containing the multiset

{(0, 0), (kmax +1, 0)}∪ {(⌈min Ij/|H|⌉,+1) : j ∈ R′−
H }∪ {(⌊max Ij/|H|⌋+1,−1) : j ∈ R′−

H } such that for any
i ∈ [1 . . 2m], it holds pi−1 ≤ pi. To compute the sequence (pi, vi)i∈[0. .2m], we observe that, given j ∈ R′−

H ,
we can compute Ij in O(1) time using Proposition 5.7. Thus, in O(m) time we can generate all pairs in
the above multiset. We then sort the pairs by the first element. Using ⌈1/α⌉-round radix sort, this takes
O(m+ nα) time. Consequently, we can compute (pi, vi)i∈[0. .2m] in O(|R′−

H |+ nα) time. Given the sequence
(pi, vi)i∈[0. .2m], we compute unary((e0,k,H)k∈[0. .kmax]) as follows. First, we initialize the output bitvector
to the empty string and set v = 0. We then iterate through i = 1, . . . , 2m. For every i, we first append
pi − pi−1 copies of the string unary(v) to the output string. We then add vi to v. To efficiently append
multiple copies of unary(v) to the output, we first precompute (in O(log2 n) = O(nα) time) the prefix of
length log n of the string unary(x)∞[1 . .) for every x ∈ [0 . . log n). This way, we can append unary(v)ℓ to
the output in O(1 + (v + 1)ℓ/ log n) time. Consequently, the construction of unary((e0,k,H)k∈[0. .kmax])
takes O(|R′−

H | + |unary((e0,k,H)k∈[0. .kmax])|/ log n + nα) = O(|R′−
H | + |E−

0,H |/ log n + nα) = O(|R′−
H | +

|R−
H |/ log n + nα) time. To show the first upper bound, observe that kmax ≤ |E−

0,H | + O(τ/|H|). Thus,
|unary((e0,k,H)k∈[0. .kmax])| = |unary+((e0,k,H)k∈[0. .∞))|+ kmax +1 = |E−

0,H |+ kmax +1 ≤ 2|E−
0,H |+O(log n).

The second upper bound follows by observing that |E−
0,H |+ · · ·+ |E−

|H|−1,H | = |R−
H |.

Copyright © 2023
Copyright for this paper is retained by the authors5149

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

2. The second step of the algorithm is to compute the strings unary((es,k,H)k∈[0. .kmax]) for s ∈ [1 . . |H|). For
any s ∈ [1 . . |H|), let (q

(s)
i , p

(s)
i , v

(s)
i)i∈[0. .ms] denote the sequence containing all the elements (q, p, v) of the

multiset {(q, 0, 0) : q ∈ [1 . . |H|)} ∪ {(q, kmax + 1, 0) : q ∈ [1 . . |H|)} ∪ {(min Ij mod |H|, ⌊min Ij/|H|⌋,+1) :
j ∈ R′−

H } ∪ {((max Ij + 1) mod |H|, ⌊(max Ij + 1)/|H|⌋,−1) : j ∈ R′−
H } that satisfy q = s, and for any

i ∈ [1 . .ms], it holds p
(s)
i−1 ≤ p

(s)
i (note that the elements of this multiset satisfying q = 0 are not included in

any sequence). To compute the sequences (q
(s)
i , p

(s)
i , v

(s)
i)i∈[0. .ms] for all s ∈ [1 . . |H|), we first enumerate

all triples in the above multiset. Using Proposition 5.7, this takes O(m) time. We then sort the triples
lexicographically. Using ⌈1/α⌉-round radix sort, this takes O(m + nα) time. This yields all sequences
concatenated together. It is easy to discard unused elements, and to detect boundaries between lists with a
single scan. Consequently, we can construct all sequences in O(|R′−

H |+ nα) time. Given the above sequences,
we can compute the strings unary((es,k,H)k∈[0. .kmax]) for s ∈ [1 . . |H|) as follows. The algorithm computes
the strings in the order of increasing s. More precisely, given the string U := unary((es−1,k,H)k∈[0. .kmax]) and
the sequence (q

(s)
i , p

(s)
i , v

(s)
i)i∈[0. .ms] (where s ∈ [1 . . |H|)), we compute the string unary((es,k,H)k∈[0. .kmax])

in O(ms + |U |/ log n) time as follows. First, we initialize the output bitvector to the empty string, and set
v = 0 and y = 0. We then iterate through i = 1, . . . ,ms. For every i, we first check if p(s)i > p

(s)
i−1. If yes,

we perform the following three steps. First, find the position y′ of the p
(s)
i th 1-bit in U . Second, append

the substring U(y . . y′] to the output, except we first prepend it with v zeros (if v ≥ 0) or discard its first
−v bits (if v < 0). Finally, we set y = y′ and v = 0. Then (regardless of whether p

(s)
i > p

(s)
i−1), we add

v
(s)
i to v. To efficiently compute y′ we observe that the arguments of the consecutive select queries are

increasing. We can thus precompute in O(nα) time a lookup table such that the computation of y′ takes
O(1 + (y′ − y)/ log n) time (these lookup tables can be shared among algorithms for different s). Note that
for any s ∈ [0 . . |H|), we have kmax ≤ |E−

s,H |+O(τ/|H|). Thus, |U | ≤ 2|E−
s−1,H |+O(log n), and hence the

algorithm runs in O(ms + |E−
s−1,H |/ log n) time. Consequently, by m0 + · · ·+m|H|−1 ≤ 2|R′−

H |+ 2|H| and
|E−

0,H |+ · · ·+ |E−
|H|−1,H | = |R−

H |, over all s ∈ [1 . . |H|), we spend O(|R′−
H |+ |R−

H |/ log n+ nα) time.
3. The third and final step of the algorithm is to convert the string unary((es,k,H)k∈[0. .kmax]) into

unary+((es,k,H)k∈[0. .kmax]) = E−
s,H for every s ∈ [0 . . |H|). Let us fix some s ∈ [0 . . |H|). Observe

that to implement the conversion, it suffices to remove the first bit, as well as every bit following
a 1-bit in unary((es,k,H)k∈[0. .kmax]). In the RAM model, such local operation is easy implemented in
O(1 + |unary((es,k,H)k∈[0. .kmax])|/ log n) time after a O(nα)-time preprocessing (we do the preprocessing
once for all s ∈ [0 . . |H|)). As observed above, |unary((es,k,H)k∈[0. .kmax])| ≤ 2|E−

s,H |+O(log n). Thus, the
total time to perform the conversion for all s is O(|R−

H |/ log n+ nα).

Using the above algorithm, we construct E as follows. We start by computing the set {(int(L-root(j)), j)}j∈R′− .
For this, observe that for every τ -synchronizing set P of T , by the density condition (see also [50, Section 6.1.2]),
i ∈ R′ implies that either i = 1 or i > 1 and i − 1 ∈ P. In particular, |R′−| ≤ |R′| ≤ 1 + |P|. We thus
proceed as follows. First, using [50, Theorem 8.11] in O(n/ logσ n) time we construct any τ -synchronizing set
P of T of size O(n/τ). Then, using the above observation together with Proposition 5.7, we enumerate the set
{(int(L-root(j)), j)}j∈R′− in O(1 + |P|) = O(n/ logσ n) time. We then discard P. Using ⌈1/α⌉-round radix sort
we then sort in O(|R′−| + nα) = O(n/ logσ n + nα) time the set of pairs by the first coordinate. This yields
the representation of sets R′−

H for all H ∈ Roots. For each H ∈ Roots, we then use the above algorithm to
compute bitvectors E−

0,H , . . . , E−
|H|−1,H in O(|R′−

H |+ |R−
H |/ log n+nα) time. By Roots ⊆ [0 . . σ)≤τ , over all H, this

takes O(|R′−|+ |R−|/ log n+ nα+µ) time (recall that τ = ⌊µ logσ n⌋ and µ < 1
6). Choosing α < 1− µ results in

O(n/ logσ n) total time. When bitvectors E−
s,H are computed for all H ∈ Roots and s ∈ [0 . . |H|), we initialize E

to the string 0n in O(n/ log n) time, and then “paste” all the non-empty bitvectors E−
s,H into their correct positions.

Given H ∈ Roots and s ∈ [0 . . |H|), we first compute in O(log n) time the corresponding string X ∈ [0 . . σ)3τ−1,
and then compute the position to paste E−

s,H using the lookup table Lrange. Over all H ∈ Roots and s ∈ [0 . . |H|),
this takes O(nµ log2 n+ n/ log n) = O(n/ logσ n) time. Thus, altogether, constructing E and augmenting it using
Theorem 2.1 takes O(n/ logσ n) time.

Construction of Lminexp Observe that in the above algorithm, if i is the position of the leftmost 0-bit
in unary((es,k,H)k∈[0. .kmax]), then min{L-exp(j) : j ∈ R−

s,H} = i − 1. Given the packed representation of
unary((es,k,H)k∈[0. .kmax]), the position i can be easily found in O(1+ |unary((es,k,H)k∈[0. .kmax])|/ log n) time. Thus,
accounting for the computation of X ∈ [0 . . σ)3τ−1 corresponding to the choice of H ∈ Roots and s ∈ [0 . . |H|), we
can initialize Lminexp in O(n/ log n+ nµ log2 n) = O(n/ logσ n) time.

Copyright © 2023
Copyright for this paper is retained by the authors5150

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Construction of BR′ As seen above, we can enumerate R′, and thereby compute BR′ , in O(n/ logσ n) time.
Augmenting BR′ with Theorem 2.1 takes O(n/ log n) time.

Construction of Armap Since for any j ∈ R, we can in O(1) compute L-root(j), e(j), s = L-head(j), and
k = L-exp(j), in O(n/ logσ n) time we can also enumerate all j ∈ R′−. The key challenge is computing the
sequence (rlexi)i∈[1. .q]. By the density condition, for every τ -synchronizing set P of T , it holds that if j ∈ R, then
e(j)− 2τ + 1 ∈ P (for a proof, simply compare the claims of Lemma 5.3 and [50, Fact 3.2]). This lets us compute
(rlexi)i∈[1. .q] as follows. First, using [50, Theorem 8.11], in O(n/ logσ n) time we construct any τ -synchronizing set
P of T of size O(n/τ). The set P is returned as an array of size |P|. In O(n/ logσ n) time we then create a bitvector
BP[1 . . n] such that BP[i] = 1 holds if and only if i ∈ P. In O(n/ log n) time we augment BP using Theorem 2.1.
Let (ptextt)t∈[1. .|P|] denote a sequence containing elements of P in increasing order and let (plext)t∈[1. .|P|] denote
a sequence containing P sorted according to the lexicographical order of the corresponding suffixes in T , i.e.,
such that for any i, i′ ∈ [1 . . |P|], i < i′ implies T [plexi . . n] ≺ T [plexi′ . . n]. Given the array containing P, we
compute the sequence (plext)t∈[1. .|P|] in O(n/ logσ n) time using [50, Theorem 4.3]. Let ISAP[1 . . |P|] be an array
storing a permutation of [1 . . |P|] such that ISAP[j] = i holds if and only if ptextj = plexi . Using the sequence
(plext)t∈[1. .|P|] and the bitvector BP, we compute ISAP in O(|P|) = O(n/ logσ n) time: For every i ∈ [1 . . |P|], we
first compute j = rankBP,1(p

lex
i) and then set ISAP[j] = i. Next, for each j ∈ R′−, letting H = L-root(j) and

jP = rankBP,1(e(j) − 2τ + 1), we form a tuple (int(H), e(j) − efull(j), ISAP[jP], j). Observe, that X ≺ X ′ holds
if and only if int(X) < int(X ′). Let j, j′ ∈ R′−

H . Note that since both T [efull(j) . . e(j)) and T [efull(j′) . . e(j′))
are prefixes of H, by definition of R−, e(j)− efull(j) < e(j′)− efull(j′) implies T [efull(j) . . n] ≺ T [efull(j′) . . n]. If
e(j)− efull(j) = e(j′)− efull(j′), then T [e(j)− 2τ + 1 . . efull(j)) = T [e(j′)− 2τ + 1 . . efull(j′)), and consequently,
T [efull(j) . . n] ≺ T [efull(j′) . . n] holds if and only if ISAP[jP] < ISAP[j

′
P]. We have thus shown that sorting the

tuples lexicographically yields a sequence (rlexi)i∈[1. .q] on the fourth coordinate. Given j ∈ R′−, we can compute
the corresponding tuple in O(1) time. Thus, since all its elements are integers in the range [1 . . n], using LSD
radix-sort, we can compute (rlexi)i∈[1. .q] in O(n/ logσ n) time. With a single scan of (rlexi)i∈[1. .q] and the help of
rank queries on BR′ we can then compute table Armap in O(n/ logσ n) time.

Construction of A−1
rmap Given Armap, we can compute A−1

rmap in O(q) = O(n/ logσ n) time, since these two arrays
are inverses of each other.

Construction of Lruns In O(στ + |R′−|) time we perform a synchronized enumeration of all H ∈ [0 . . σ)≤τ

in lexicographical order and the L-root values (obtained using Proposition 5.7) for positions in the sequence
(rlexi)i∈[1. .q]. This lets us obtain the pair (bH , eH) satisfying {rlexi : i ∈ (bH . . eH]} = R′−

H for every H ∈ [0 . . σ)≤τ

satisfying R′−
H ̸= ∅. For each such H, we then enumerate all H ′ ∈ [0 . . σ)≤τ and for each we find corresponding

subrange of (bH . . eH] in O(τ log n) time using binary search. Overall, the initialization of Lruns takes
O(σ6ττ + |R′−|+ σ2ττ log n) = O(n/ logσ n) time.

Construction of Lpref To construct Lpref , we enumerate all possible H ∈ [0 . . σ)≤τ . For each H, we try all
s ∈ [0 . . |H|), and for each we construct the string Pref3τ−1(s,H) in O(τ) time. Over all H, and including the
initialization of Lpref , this takes O(σ6ττ + σττ2) = O(n6µ log n) = O(n/ logσ n) time.

Construction of range counting/selection for A From (rlexi)i∈[1. .q] we construct in O(n/ logσ n) time the sequence
(ℓi)i∈[1. .q], and then build the array Alen[1 . . q] and augment it with a range counting/selection data structure.
Using Proposition 2.1, by q = O(n/ logσ n) and

∑q
i=1 Alen[i] = O(n), this takes O(n/ logσ n) time.

Construction of the remaining components After the above components are constructed, we then analogously
construct their symmetric counterparts (adapted according to Lemma 5.4). □

5.4 The Final Data Structure

In this section, we put together Sections 5.1 to 5.3 to obtain a data structure that, given any j ∈ [1 . . n] (resp.
i ∈ [1 . . n]) computes ISA[j] (resp. SA[i]) in O(logϵ n) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 5.4.1).
Next, we describe the query algorithms (Sections 5.4.2 and 5.4.3). Finally, we show the construction algorithm
(Section 5.4.4).

Copyright © 2023
Copyright for this paper is retained by the authors5151

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

5.4.1 The Data Structure

The data structure consists of two components:

1. The structure from Section 5.2.1 (used to handle nonperiodic positions).
2. The structure from Section 5.3.2 (used to handle periodic positions).

In total, the data structure needs O(n/ logσ n) space.

5.4.2 Implementation of ISA Queries

Proposition 5.16. Given the data structure from Section 5.4.1 and any j ∈ [1 . . n], in O(logϵ n) time we can
compute ISA[j].

Proof. First, we use Proposition 5.1 to check in O(1) time if j ∈ R. Depending on whether j ∈ R or not, we use
Proposition 5.4 or Proposition 5.11 to compute ISA[j] in O(logϵ n) or O(log log n) time (respectively). □

5.4.3 Implementation of SA Queries

Proposition 5.17. Given the data structure from Section 5.4.1 and any i ∈ [1 . . n], in O(logϵ n) time we can
compute SA[i].

Proof. First, we use Proposition 5.2 to check in O(1) time if SA[i] ∈ R. Depending on whether SA[i] ∈ R or not,
we use Proposition 5.5 or Proposition 5.14 to compute SA[i] in O(logϵ n) or O(log log n) time (respectively). □

5.4.4 Construction Algorithm

Proposition 5.18. Given the packed representation of T ∈ [0 . . σ)n, we can construct the data structure from
Section 5.4.1 in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space.

Proof. First, from a packed representation of T , we construct CSA(T) in O(n/ logσ n) time using Proposition 5.3.
Then, using Propositions 5.6 and 5.15, we augment CSA(T) into the two components of the structure from
Section 5.4.1 in O(nmin(1, log σ/

√
log n)) and O(n/ logσ n) time (respectively) and using O(n/ logσ n) working

space. □

5.5 Summary

By combining Propositions 5.16 to 5.18 we obtain the following final result of this section.

Theorem 5.1. Given any constant ϵ ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n with 2 ≤ σ < n1/7,
in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space we can construct a data structure of size

O(n/ logσ n) that:

• Given any i ∈ [1 . . n] returns SA[i] in O(logϵ n) time,
• Given any j ∈ [1 . . n] returns ISA[j] in O(logϵ n) time.

We also immediately obtain the following more general result.

Theorem 5.2. Consider a data structure answering prefix rank and selection queries that, for any string of length
m over alphabet [0 . . σ)ℓ, achieves the following complexities:

1. Space usage S(m, ℓ, σ),
2. Preprocessing time Pt(m, ℓ, σ),
3. Preprocessing space Ps(m, ℓ, σ),
4. Query time Q(m, ℓ, σ).

For every T ∈ [0 . . σ)n with 2 ≤ σ < n1/7, there exist m = O(n/ logσ n) and ℓ = O(logσ n) such that, given the
packed representation of T , we can in O(n/ logσ n+Pt(m, ℓ, σ)) time and O(n/ logσ n+Ps(m, ℓ, σ)) working space
build a structure of size O(n/ logσ n+ S(m, ℓ, σ)) that:

• Given any i ∈ [1 . . n] returns SA[i] in O(log log n+Q(m, ℓ, σ)) time,
• Given any j ∈ [1 . . n] returns ISA[j] in O(log log n+Q(m, ℓ, σ)) time.

Copyright © 2023
Copyright for this paper is retained by the authors5152

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

6 Pattern Matching Queries

Let ϵ ∈ (0, 1) be any fixed constant and let T ∈ [0 . . σ)n, where 2 ≤ σ < n1/7. In this section we show how,
given the packed representation of T , to construct in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working

space a structure of size O(n/ logσ n) that, given the packed representation of a pattern P ∈ [0 . . σ)m, returns
RangeBeg(P, T) and RangeEnd(P, T) in O(m/ logσ n+ logϵ n) time. We also derive a general reduction depending
on prefix rank and selection queries.

As in Section 5, we let τ = ⌊µ logσ n⌋, where µ is some positive constant smaller than 1
6 such that τ ≥ 1, be

fixed for the duration of this section. Throughout, we also use R as a shorthand for R(τ, T).

Definition 6.1. Let P ∈ [0 . . σ)m. We call pattern P periodic if it holds that m ≥ 3τ −1 and per(P [1 . . 3τ−1]) ≤
1
3τ . Otherwise, P is nonperiodic.

Organization The structure and the query algorithm for a pattern P are different depending on whether P
is periodic (Definition 6.1). Our description is thus split as follows. First (Section 6.1), we describe the set of
data structures called collectively the index “core” that enables efficiently checking if P is periodic (it is also used
to handle very short patterns and contains some common components utilized by the remaining parts). In the
following two parts (Sections 6.2 and 6.3), we describe structures handling each of the two cases. All ingredients
are then put together in Section 6.4. Finally, we present our result in the general form (Section 6.5).

6.1 The Index Core

In this section, we present a data structure that, given a packed representation of any pattern P ∈ [0 . . σ)m, lets
us in O(1) time check if P is periodic. It also let us compute (RangeBeg(P, T),RangeEnd(P, T)) if m < 3τ − 1.

The section is organized as follows. First, we introduce the components of the data structure (Section 6.1.1).
We then show how using this structure to implement the periodicity check (Section 6.1.2). Next, we describe the
query algorithm for short patterns (Section 6.1.3). Finally, we show the construction algorithm (Section 6.1.4).

6.1.1 The Data Structure

The index core, denoted CPM(T) consists of the following subset of components of CSA(T):

1. The packed representation of T using O(n/ logσ n) space.
2. The lookup table Lrange using O(σ6τ) = O(n/ logσ n) space.
3. The lookup table Lper using O(σ6τ) = O(n/ logσ n) space.

In total, CPM(T) needs O(n/ logσ n) space.

6.1.2 Navigation Primitives

Proposition 6.1. Given CPM(T) and a packed representation of P ∈ [0 . . σ)m, we can in O(1) time determine
whether P is periodic (Definition 6.1).

Proof. If m < 3τ − 1, we return false. Otherwise, in O(1) time we compute x = int(X), where X = P [1 . . 3τ−1].
We then look up p = Lper[x] and return true if and only if p ≤ 1

3τ . □

6.1.3 Implementation of Queries

Proposition 6.2. Let P ∈ [0 . . σ)m be a pattern satisfying m < 3τ − 1. Given CPM(T) and the packed
representation of P , in O(1) time we can compute (RangeBeg(P, T),RangeEnd(P, T)).

Proof. Using Lrange on P , we immediately obtain and return (RangeBeg(P, T),RangeEnd(P, T)) in O(1) time. □

6.1.4 Construction Algorithm

Proposition 6.3. Given the packed representation of T ∈ [0 . . σ)n, we can construct CPM(T) in O(n/ logσ n)
time.

Proof. Since CPM(T) contains a subset of components of CSA(T), this follows by Proposition 5.3. □

Copyright © 2023
Copyright for this paper is retained by the authors5153

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

6.2 The Nonperiodic Patterns

In this section, we describe a data structure that, given a packed representation of any nonperiodic pattern
P ∈ [0 . . σ)m (see Definition 6.1), computes (RangeBeg(P, T),RangeEnd(P, T)) in O(m/ logσ n+ logϵ n) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 6.2.1).
Next, we describe the query algorithm (Section 6.2.2). Finally, we show the construction algorithm (Section 6.2.3).

6.2.1 The Data Structure

Definitions Let S be a τ -synchronizing set, as defined in Section 5.2.1. Let AS[1 . . n
′] be an array defined by

AS[i] = slexi (where (slext)t∈[1. .n′] is a sequence as defined in Section 5.2.1).

Components The data structure to handle nonperiodic patterns consists of three components:

1. The index core CPM(T) (Section 6.1.1) using O(n/ logσ n) space.
2. The data structure from Section 5.2.1 using O(n/ logσ n) space.
3. The data structure from Proposition 4.2 for the array AS[1 . . n

′]. By n′ = O(n/ logσ n) and Proposition 4.2,
it needs O(n/ logσ n) space.

In total, the data structure takes O(n/ logσ n) space.

6.2.2 Implementation of Queries

Lemma 6.1. Let P ∈ [0 . . σ)m be a nonperiodic pattern satisfying m ≥ 3τ − 1, and let X ∈ D be a prefix of P .
Denote δtext = |X| − 2τ and P ′ = P (δtext . .m]. Let (bpre, epre) be such that bpre = |{i ∈ [1 . . n′] : T [slexi . . n] ≺ P ′}|
and (bpre . . epre] = {i ∈ [1 . . n′] : P ′ is a prefix of T [slexi . . n]}. Then, it holds

(RangeBeg(P, T),RangeEnd(P, T)) = (bX + δ1, bX + δ2),

where bX = RangeBeg(X,T), δ1 = rankW,X(bpre), and δ2 = rankW,X(epre).

Proof. Observe that by the consistency of S and X ∈ D, j ∈ Occ(X,T) implies j + δtext ∈ S. Thus,
Occ(X,T) = {s − δtext : s ∈ S and s − δtext ∈ Occ(X,T)}. Note also that if S1 is a prefix of S2 then
RangeBeg(S2, T) = RangeBeg(S1, T) + |{j ∈ Occ(S1, T) : T [j . . n] ≺ S2}|. Together with the definition of
bpre, this implies

RangeBeg(P, T) = RangeBeg(X,T) + |{j ∈ Occ(X,T) : T [j . . n] ≺ P}|
= bX + |{s− δtext : s ∈ S, s− δtext ∈ Occ(X,T), and T [s− δtext . . n] ≺ P}|
= bX + |{s ∈ S : s− δtext ∈ Occ(X,T) and T [s− δtext . . n] ≺ P}|
= bX + |{s ∈ S : s− δtext ∈ Occ(X,T) and T [s . . n] ≺ P ′}|
= bX + |{i ∈ [1 . . n′] : slexi − δtext ∈ Occ(X,T) and T [slexi . . n] ≺ P ′}|
= bX + |{i ∈ [1 . . n′] : slexi − δtext ∈ Occ(X,T) and i ≤ bpre}|
= bX + |{i ∈ [1 . . bpre] : s

lex
i − δtext ∈ Occ(X,T)}|

= bX + rankW,X(bpre)

= bX + δ1,

where the second-to-last equality follows by W [i] = Xi, where Xi = T∞[slexi − τ . . slexi + 2τ), since slexi − δtext ∈
Occ(X,T) holds if and only if X if a suffix of Xi (i.e., if X is a prefix of Xi).

Next, we show that |Occ(P, T)| = δ2 − δ1. We start by observing that (similarly as above, except applied
to P) by the consistency of S and X ∈ D being a prefix of P , j ∈ Occ(P, T) implies j + δtext ∈ S. Thus,
Occ(P, T) = {s− δtext : s ∈ S and s− δtext ∈ Occ(P, T)} and hence,

|Occ(P, T)| = |{s− δtext : s ∈ S, s− δtext ∈ Occ(P, T)}|

Copyright © 2023
Copyright for this paper is retained by the authors5154

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

= |{s ∈ S : s− δtext ∈ Occ(P, T)}|
= |{i ∈ [1 . . n′] : slexi − δtext ∈ Occ(P, T)}|
= |{i ∈ [1 . . n′] : slexi − δtext ∈ Occ(X,T) and slexi ∈ Occ(P ′, T)}|
= |{i ∈ [1 . . n′] : slexi − δtext ∈ Occ(X,T) and bpre < i ≤ epre}|
= |{i ∈ (bpre . . epre] : s

lex
i − δtext ∈ Occ(X,T)}|

= rankW,X(bpre)− rankW,X(epre)

= δ1 − δ2.

Combining the above with the earlier equality, we obtain RangeEnd(P, T) = RangeBeg(P, T)+|Occ(P, T)| = bX+δ2,
i.e., the second part of the claim. □

Remark 6.1. Note that since the range (bpre . . epre] is well-defined even if epre − bpre = 0, the above lemma holds
even if |Occ(P, T)| = 0.

Proposition 6.4. Let P ∈ [0 . . σ)m be a nonperiodic pattern satisfying m ≥ 3τ − 1. Given the data
structure from Section 6.2.1 and the packed representation of P , in O(m/ logσ n+ logϵ n) time we can compute
(RangeBeg(P, T),RangeEnd(P, T)).

Proof. Let Y = P [1 . . 3τ−1]. First, using the lookup table Lrange on Y , in O(1) time we compute (bY , eY) =
(RangeBeg(Y, T),RangeEnd(Y, T)). If eY − bY = 0, then Occ(Y, T) = ∅, and it is easy to see that then we have
RangeBeg(P, T) = RangeBeg(Y, T) and RangeEnd(P, T) = RangeEnd(Y, T). We thus return (bY , eY). Let us thus
assume bY ̸= eY , i.e., Occ(Y, T) ̸= ∅. Together with per(Y) > 1

3τ , this implies (see Section 5.2.1) that there exists a
unique prefix X ∈ D of P . Using LD on Y in O(1) time we compute the prefix X ∈ D of P . Let δ = |X|−2τ . Using
again the lookup table Lrange, in O(1) time we compute (bX , eX) = (RangeBeg(X,T),RangeEnd(X,T)). Using
Proposition 4.2, we then compute in O(m/ logσ n+log logn) time the pair (bpre, epre) for the pattern P ′ := P (δ . .m].
By Lemma 6.1, we then return (RangeBeg(P, T),RangeEnd(P, T)) = (bX + rankW,X(bpre), bX + rankW,X(epre)),
with the two prefix rank queries implemented using Theorem 2.2, in O(logϵ n) time each (the string X is obtained
using the lookup table Lrev). Altogether, the query time is O(m/ logσ n+ logϵ n). □

6.2.3 Construction Algorithm

Proposition 6.5. Given CPM(T), we can in O(nmin(1, log σ/
√
log n)) time and in O(n/ logσ n) working space

augment it into a data structure from Section 6.2.1.

Proof. First, we combine Propositions 5.3 and 5.6 (recall that the packed representation of T is a component of
CPM(T)) to construct the structure from Section 5.2.1 in O(nmin(1, log σ/

√
log n)) time and using O(n/ logσ n)

working space. In particular, this constructs (slexi)i∈[1. .n′]. We thus initialize AS[i] = slexi for i ∈ [1 . . n′] and in
O(n/ logσ n) time and O(n/ logσ n) working space construct the data structure from Proposition 4.2. The overall
runtime is O(nmin(1, log σ/

√
log n)). The working space never exceed O(n/ logσ n) words. □

6.3 The Periodic Patterns

In this section, we describe a data structure that, given a packed representation of any periodic pattern P ∈ [0 . . σ)m

(see Definition 6.1), computes (RangeBeg(P, T),RangeEnd(P, T)) in O(m/ logσ n+ log log n) time.
The section is organized as follows. First, we present the toolbox of combinatorial properties for periodic

patterns (Section 6.3.1). Next, we introduce the components of the data structure (Section 6.3.2). We then show
how using this structure to implement some basic navigational routines (Section 6.3.3). Next, we describe the
query algorithm (Section 6.3.4). Finally, we show the construction algorithm (Section 6.3.5).

6.3.1 Preliminaries

Let P ∈ [0 . . σ)m be a periodic pattern (see Definition 6.1). We define L-root(P) = min{P [1 + t . . 1 + t+ p) : t ∈
[0 . . p)}, where p = per(P [1 . . 3τ − 1]). Let H = L-root(P). We define e(P) = 1 + p+ lcp(P [1 . .m], P [1 + p . .m]),
where p = |H|. By definition, there exists s ∈ [0 . . p) such that P [1 + s . . 1 + s + p) = H. Thus, we can write

Copyright © 2023
Copyright for this paper is retained by the authors5155

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

P [1 . . e(P)) = H ′HkH ′′, where H ′ (resp. H ′′) is a proper suffix (resp. prefix) of H. By e(P) ≥ 3τ and |H| ≤ τ , such
decomposition is unique (see also Section 5.3.1). We denote L-head(P) = |H ′|, L-exp(P) = k, and L-tail(P) = |H ′′|.
We also let efull(P) = e(P)− L-tail(P). We define type(P) = +1 if e(P) ≤ m and P [e(P)] ≻ P [e(P)− p] (where
p = |L-root(P)|), and type(P) = −1 otherwise.

Lemma 6.2. Let P ∈ [0 . . σ)m be a periodic pattern and let s = L-head(P) and H = L-root(P). For any
j ∈ [1 . . n], lcp(P, T [j . . n]) ≥ 3τ − 1 holds if and only if j ∈ Rs,H . Moreover, if j ∈ Rs,H then, letting t = e(P)− 1
and t′ = e(j)− j, it holds lcp(P, T [j . . n]) ≥ min(t, t′) and:

1. If type(P) ̸= type(j), then P ≺ T [j . . n] if and only if type(P) < type(j),
2. If type(P) = type(j) = −1 and t ̸= t′, then P ≺ T [j . . n] if and only if t < t′,
3. If type(P) = type(j) = +1 and t ̸= t′, then P ≺ T [j . . n] if and only if t > t′,
4. If type(P) ̸= type(j) or t ̸= t′, then P ̸= T [j . . n] and lcp(P, T [j . . n]) = min(t, t′).

Proof. Let j ∈ [1 . . n] be such that lcp(P, T [j . . n]) ≥ 3τ − 1. Denoting p = per(P [1 . . 3τ − 1]) and
p′ = per(T [j . . j + 3τ − 1)) we then have p′ = p ≤ 1

3τ . Thus, j ∈ R. Moreover, this implies L-root(j) = min{T [j +
δ . . j + δ+ p′) : δ ∈ [0 . . p′)} = min{T [j + δ . . j + δ+ p) : δ ∈ [0 . . p)} = min{P [1 + δ . . 1+ δ+ p) : δ ∈ [0 . . p)} = H.
To show that L-head(j) = s, note that by |H| ≤ τ , the string H ′H2 (where H ′ is a length-s suffix of H) is a
prefix of P [1 . . 3τ − 1] = T [j . . j + 3τ − 1). On the other hand, L-head(j) = s′ implies that Ĥ ′H2 (where Ĥ ′ is a
length-s′ suffix of H) is a prefix of T [j . . j+3τ − 1). Thus, by the synchronization property of primitive strings [24,
Lemma 1.11] applied to the two copies of H, we have s′ = s, and hence, j ∈ Rs,H . For the converse implication,
assume j ∈ Rs,H . This implies that both P [1 . . e(P)) and T [j . . e(j)) are prefixes of H ′ ·H∞[1 . .) (where H ′ is as
above). Thus, by e(P)− 1, e(j)− j ≥ 3τ − 1, we obtain lcp(P, T [j . . n]) ≥ 3τ − 1.

Let us now assume j ∈ Rs,H . Since, as noted above, both P [1 . . e(P)) = P [1 . . t] and T [j . . e(j)) = T [j . . j+ t′)
are prefixes of H ′ ·H∞[1 . .), we have lcp(P, T [j . . n]) ≥ min(t, t′).

1. Let Q = H ′ ·H∞[1 . .), where H ′ is a length-s suffix of H. In the proof of Lemma 5.4, it is shown that
type(j) = −1 implies T [j . . n] ≺ Q, and type(j) = +1 implies Q ≺ T [j . . n]. We now prove an analogous fact for P .
We first note that type(P) = −1 implies that either e(P) = m+1, or e(P) ≤ m and P [e(P)] ≺ P [e(P)−|H|]. In the
first case, P [1 . . e(P)) = P is a proper prefix of Q and hence P ≺ Q. In the second case, we have P [1 . . t] = Q[1 . . t]
and P [1 + t] ≺ P [1 + t − |H|] = Q[1 + t − |H|] = Q[1 + t]. Consequently, P ≺ Q. If type(P) = +1 holds, then
e(P) ≤ m. Thus, we have Q[1 . . t] = P [1 . . t] and Q[1 + t] = Q[1 + t− |H|] = P [1 + t− |H|] ≺ P [1 + t]. Hence, we
obtain Q ≺ P . We are now ready to prove the claim. Assume first that type(P) < type(j). By the above we then
have P ≺ Q ≺ T [j . . n]. The opposite implication is proved by contraposition. Assume type(P) > type(j). By the
above we then have T [j . . n] ≺ Q ≺ P .

2. Assume t < t′. If e(P) = m+1, then P [1 . . t] = P [1 . . e(P)) = P is proper prefix of T [j . . j+t′) = T [j . . e(j)),
and hence P ≺ T [j . . e(j)) ⪯ T [j . . n]. If e(P) ≤ m, then we have P [1 . . t] = T [j . . j + t) and by t < t′, P [1 + t] ≺
P [1 + t− |H|] = T [j + t− |H|] = T [j + t]. Thus, we also obtain P ≺ T [j . . n]. The opposite implication is proved
by contraposition. Assume t > t′. If e(j) = n+ 1, then by t > t′, the string T [j . . j + t′) = T [j . . e(j)) = T [j . . n]
is a proper prefix of P [1 . . t] = P [1 . . e(P)), and hence T [j . . n] ≺ P [1 . . e(P)) ⪯ P . If e(j) ≤ n, then we have
T [j . . j + t′) = P [1 . . t′] and by t > t′, T [j + t′] ≺ T [j + t′ − |H|] = P [1 + t′ − |H|] = P [1 + t′]. Consequently, we
also obtain T [j . . n] ≺ P .

3. Assume t > t′. By type(j) = +1, we have e(j) ≤ n. Thus, by t > t′ we have P [1 . . t′] = T [j . . j + t′) and
P [1 + t′] = P [1 + t′ − |H|] = T [j + t′ − |H|] ≺ T [j + t′]. Consequently, P ≺ T [j . . n]. The opposite implication
is proved by contraposition. Assume t < t′. By type(P) = +1, we have e(P) ≤ m. Thus, by t < t′ we have
T [j . . j + t) = P [1 . . t] and T [j + t] = T [j + t − |H|] = P [1 + t − |H|] ≺ P [1 + t]. Consequently, we obtain
T [j . . n] ≺ P .

4. By the earlier implication, lcp(P, T [j . . n]) ≥ min(t, t′). Thus, it remains to show that P ̸= T [j . . n] and
lcp(P, T [j . . n]) ≤ min(t, t′). First, let us assume type(P) < type(j) (i.e., type(P) = −1 and type(j) = +1).
Consider two cases:

• First, assume t ≤ t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t. First, recall from the proof
of Lemma 5.4(1) that type(j) = +1 implies j + t′ ≤ n, Q[1 . . t′] = T [j . . j + t′), and Q[1 + t′] ≺ T [j + t′].
Consider now two subcases. If e(P) = m+ 1, then t = m, and hence lcp(P, T [j . . n]) ≤ m = t. By t′ ≤ n− j
we then also have |P | = t < t′+1 ≤ n− j+1 = |T [j . . n]|. Thus, P ̸= T [j . . n]. Let us thus assume e(P) ≤ m.
In the proof of Item 1 we showed that in this case type(P) = −1 implies P [1 + t] ≺ Q[1 + t]. On the other

Copyright © 2023
Copyright for this paper is retained by the authors5156

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

hand, as noted above, type(j) = +1 implies Q[1 . . t′] = T [j . . j + t′), and Q[1 + t′] ≺ T [j + t′]. By t ≤ t′ we
thus have Q[1 + t] ⪯ T [j + t]. Consequently, P [1 + t] ̸= T [j + t]. This immediately implies P ̸= T [j . . n] and
lcp(P, T [j . . n]) ≤ t.

• Let us now assume t > t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t′. In the proof of Item 1
we showed that type(P) = −1 implies P [1 . . t] = Q[1 . . t]. Thus, by t > t′ we have P [1 + t′] = Q[1 + t′]. On
the other hand, in the proof of Lemma 5.4(1) we showed that type(j) = +1 implies Q[1 + t′] ≺ T [j + t′].
Thus, we obtain P [1 + t′] ̸= T [j + t′]. This immediately implies P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t′.

Assume now type(P) > type(j) (i.e., type(P) = +1 and type(j) = −1). Consider two cases:

• First, assume t < t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t. In the proof of Lemma 5.4(1)
we showed that type(j) = −1 implies T [j . . j + t′) = Q[1 . . t′]. Thus, by t < t′ we have T [j + t] = Q[1 + t].
On the other hand, in the proof of Item 1 we showed that type(P) = +1 implies Q[1 + t] ≺ P [1 + t]. Thus,
we obtain T [j + t] ̸= P [1 + t]. This immediately implies P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t.

• Let us now assume t ≥ t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t′. First, recall from the
proof of Item 1 that type(P) = +1 implies t+ 1 = e(P) ≤ m, Q[1 . . t] = P [1 . . t], and Q[1 + t] ≺ P [1 + t].
Consider now two subcases. If e(j) = n + 1, then j + t′ = n + 1 (or equivalently, t′ = n − j + 1) and
hence lcp(P, T [j . . n]) ≤ |T [j . . n]| = t′. By t+ 1 ≤ m we then also have |T [j . . n]| = t′ < t+ 1 ≤ m = |P |.
Thus, P ̸= T [j . . n]. Let us thus assume e(j) ≤ n. In the proof of Lemma 5.4(1) we showed that in this
case type(j) = −1 implies T [j + t′] ≺ Q[1 + t′]. On the other hand, as noted above, type(P) = +1 implies
Q[1 . . t] = P [1 . . t] and Q[1 + t] ≺ P [1 + t]. By t ≥ t′ we thus have Q[1 + t′] ⪯ P [1 + t′]. Consequently,
T [j + t′] ̸= P [1 + t′]. This immediately implies P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t′.

This concludes the proof of the claim if type(P) ̸= type(j). Let us now assume type(P) = type(j) = −1 and t ̸= t′.
Consider two cases:

• First, assume t < t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t. In the proof of
Item 2 we showed that either it holds P [1 . . t] = P (in which case lcp(P, T [j . . n]) ≤ |P | = t and
|P | = t < t′ = e(j)− j ≤ n+ 1− j = |T [j . . n]| which in turn implies P ̸= T [j . . n]), or P [1 + t] ≺ T [j + t]
(which also implies P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t).

• Let us now assume t > t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t′. In the proof of Item 2,
we showed that either it holds T [j . . j + t′) = T [j . . n] (in which case lcp(P, T [j . . n]) ≤ n− j + 1 = t′ and
|T [j . . n]| = n− j + 1 = t′ < t = e(P)− 1 ≤ |P | which in turn implies P ̸= T [j . . n]), or T [j + t′] ≺ P [1 + t′]
(which also implies P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t′).

Let us now assume type(P) = type(j) = +1 and t ̸= t′. Consider two cases:

• First, assume t < t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t. In the proof of Item 3 we
showed that T [j + t] ≺ P [1 + t]. This immediately implies the claims.

• Let us now assume t > t′. Our goal is to prove P ̸= T [j . . n] and lcp(P, T [j . . n]) ≤ t′. In the proof of Item 3
we showed that P [1 + t′] ≺ T [j + t′]. This immediately implies the claims. □

Lemma 6.3. Let P ∈ [0 . . σ)m be a periodic pattern. For every S ∈ [0 . . σ)+, lcp(P, S) ≥ 3τ − 1 implies that S is
periodic, and that it holds L-root(S) = L-root(P) and L-head(S) = L-head(P).

Proof. Denote X = P [1 . . 3τ − 1]. Letting p := per(X) we then have p ≤ 1
3τ . By lcp(P, S) ≥ 3τ − 1, X

is thus a prefix of S and hence per(S[1 . . 3τ − 1]) = p ≤ 1
3τ , i.e., S is periodic. Moreover, we then have

L-root(S) = min{S[1+ t . . 1+ t+p) : t ∈ [0 . . p)} = min{X[1+ t . . 1+ t+p) : t ∈ [0 . . p)} = min{P [1+ t . . 1+ t+p) :
t ∈ [0 . . p)} = L-root(P). To show the last claim, denote s = L-head(P) and s′ = L-head(S). Then, letting
H = L-root(P) = L-root(S), the string H ′H2 (resp. Ĥ ′H2) is a prefix of P (resp. S), where H ′ (resp. Ĥ ′) is
a length-s (resp. length-s′) suffix of H. Note, however, that s, s′ < |H| = p ≤ 1

3τ and |X| ≥ τ ≥ 3|H|. This
implies that H ′H2 and Ĥ ′H2 are both prefixes of X. By the synchronization property of primitive strings [24,
Lemma 1.11], this implies |H ′| = |Ĥ ′|. Thus, we obtain L-head(P) = s = |H ′| = |Ĥ ′| = s′ = L-head(S). □

Lemma 6.4. Let P ∈ [0 . . σ)+ be a periodic pattern satisfying e(P) ≤ |P |. Then:

1. For every S ∈ [0 . . σ)+, lcp(P, S) ≥ e(P) (in particular, P being a prefix of S) implies that S is periodic and
it holds:

Copyright © 2023
Copyright for this paper is retained by the authors5157

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

• e(S) = e(P),
• L-tail(S) = L-tail(P),
• efull(S) = efull(P),
• L-exp(S) = L-exp(P),
• type(S) = type(P).

2. If j ∈ Occ(P, T), then j ∈ R and it holds:

• e(j)− j = e(P)− 1,
• L-tail(j) = L-tail(P),
• efull(j)− j = efull(P)− 1,
• L-exp(j) = L-exp(P),
• type(j) = type(P).

Proof. Denote X = P [1 . . 3τ − 1], H = L-root(P), s = L-head(P), and p = per(X) = |H| ≤ 1
3τ .

1. First, observe that by definition, e(P) = 1+ p+ lcp(P, P [1+ p . . |P |]) > |X|. Thus, lcp(P, S) ≥ e(P) implies
that X is a prefix of S, and hence S is periodic. By Lemma 6.3, we then also have L-root(S) = H and L-head(S) = s.
To show e(S) = e(P), observe that by e(P) ≤ |P | and the definition of e(P), we have P [e(P)] ̸= P [e(P) − p].
Consequently, lcp(P, S) ≥ e(P) yields lcp(P, P [1 + p . . |P |]) = lcp(S, S[1 + p . . |S|]). Combining this with
|L-root(S)| = p we thus obtain e(S) = 1 + p+ lcp(S, S[1 + p . . |S|]) = 1 + p+ lcp(P, P [1 + p . . |P |]) = e(P). By
L-head(S) = s we then also obtain L-tail(S) = (e(S)−1−L-head(S)) mod |L-root(S)| = (e(P)−1−s) mod |H| =
L-tail(P), and consequently efull(S) = e(S) − L-tail(S) = e(P) − L-tail(P) = efull(P). We then also have
L-exp(S) = ⌊ e(S)−1−L-head(S)

|L-root(S)| ⌋ = ⌊ e(P)−1−s
|H| ⌋ = L-exp(P). Finally, by e(P) ≤ |P | and lcp(P, S) ≥ e(P), we then

also have S[e(S)] = P [e(P)]. Consequently, S[e(S)] ≺ S[e(S) − p] holds if and only of P [e(P)] ≺ P [e(P) − p].
Therefore, type(S) = type(P).

2. We start by noting that j ∈ Occ(P, T) implies j ∈ Occ(X,T). Thus, per(T [j . . j + 3τ − 1)) =
per(X) = p ≤ 1

3τ , and hence j ∈ R. By Lemma 6.2, we then also have L-root(j) = H and L-head(j) = s.
To show e(j) − j = e(P) − 1, denote S = T [j . . n]. Since P is a prefix of S, by Item 1, it follows
that e(S) = e(P). By L-root(S) = L-root(P) (Lemma 6.3) and the definition of e(S), we thus have
1 + p + lcp(S, S[1 + p . . |S|]) = e(S) = e(P), or equivalently, lcp(S, S[1 + p . . |S|]) = e(P) − p − 1. Since
lcp(S, S[1 + p . . |S|]) = LCE(j, j + p), we thus obtain p + LCE(j, j + p) = e(P) − 1. It remains to note
that for j ∈ R, by Lemma 5.3(2), e(j) − j = p + LCE(j, j + p). Therefore, we have e(j) − j = e(P) − 1.
Combining this with L-root(j) = H and L-head(j) = s yields L-tail(j) = (e(j)− j − L-head(j)) mod |L-root(j)| =
(e(P)− 1− s) mod |H| = L-tail(P), efull(j)− j = e(j)− j − L-tail(j) = e(P)− 1− L-tail(P) = efull(P)− 1, and
L-exp(j) = ⌊ e(j)−j−s

|L-root(j)|⌋ = ⌊ e(P)−1−s
|H| ⌋ = L-exp(P). Finally, by e(P) ≤ |P | we have e(j) ≤ n and T [e(j)] = P [e(P)].

Consequently, T [e(j)] ≺ T [e(j)− p] holds if and only if P [e(P)] ≺ P [e(P)− p]. Therefore, type(j) = type(P). □

6.3.2 The Data Structure

Definitions Let q = |R′−|. Recall (Section 5.3.2), that (rlexi)i∈[1. .q] denotes the sequence containing all positions
j ∈ R′− sorted first by L-root(j), and in case of ties, by T [efull(j) . . n]. Recall also that Roots = {L-root(j) : j ∈ R}.
For any string H ∈ Roots, let pow(H) = H∞[1 . . |H|⌈ τ

|H|⌉]. This function satisfies the following properties:

• The set {pow(H) : H ∈ Roots} is prefix-free.
• For any X,Y ∈ Roots, X ≺ Y implies pow(X) ≺ pow(Y).

For a proof, consider X,Y ∈ Roots such that X ≺ Y . By [54, Fact 9.1.6], it holds X ⪯ pow(X) ≺ X∞[1 . .) ≺
Y ⪯ pow(Y). Since |Y | < τ ≤ |pow(X)|, the set {pow(X),pow(Y)} is prefix-free.

We define Z = {efull(j) − |pow(L-root(j))| : j ∈ R′−}. We also define an array AZ[1 . . q] so that, for any
i ∈ [1 . . q], AZ[i] = efull(j)− |pow(Hi)|, where j = rlexi and Hi = L-root(rlexi). Note that {AZ[i] : i ∈ [1 . . q]} = Z.
Observe also that T [AZ[i] . . n] = pow(Hi) · T [efull(j) . . n]. Together with the properties of the pow function and
with the definition of (rlexi)i∈[1. .q], this implies that the positions in AZ are sorted according to the lexicographic
order of the corresponding suffixes of T , i.e., i < i′ implies T [AZ[i] . . n] ≺ T [AZ[i

′] . . n].

Components The data structure to handle periodic patterns consists of two parts. The first part (designed to
handle periodic patterns P satisfying type(P) = −1) consists of three components:

Copyright © 2023
Copyright for this paper is retained by the authors5158

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

1. The index core CPM(T) (Section 6.1.1) using O(n/ logσ n) space.
2. The first part of the structure from Section 5.3.2 using O(n/ logσ n) space.
3. The data structure from Proposition 4.2 for the array AZ[1 . . q]. By q = O(n/ logσ n) and Proposition 4.2, it

needs O(n/ logσ n) space.

The second part of the structure (to handle P satisfying type(P) = +1) consists of the symmetric counterparts
of the above components adapted according to Lemma 6.2.

In total, the data structure takes O(n/ logσ n) space.

6.3.3 Navigation Primitives

Proposition 6.6. Let P ∈ [0 . . σ)m be a periodic pattern. Given the data structure from Section 6.3.2 and the
packed representation of P , we can in O(1+m/ logσ n) time compute L-root(P), L-head(P), L-exp(P), L-tail(P),
and type(P).

Proof. We first compute x ∈ [0 . . σ6τ) such that x = int(P [1 . . 3τ−1]). Given the packed encoding of P , such x is
obtained in O(1) time. We then look up (s, p) = Lroot[x], and in O(1) time obtain L-root(P) = P [1+s . . 1+s+p)
and L-head(P) = s. Next, we compute L-exp(P) and L-tail(P). For this, we first determine the length ℓ of the
longest common prefix of P and P (p . .m]. Using the packed representation of P , we can do this in O(1+m/ logσ n)
time (see, e.g., [50, Proposition 2.3]). Consequently, we obtain e(P) = 1 + p + ℓ, L-exp(P) = ⌊ e(P)−1−s

p ⌋, and
L-tail(P) = (e(P)− 1− s) mod p. Finally, to test if type(P) = +1, we check whether e(P) ≤ m, and if so, whether
P [e(P)] ≻ P [e(P)− p]. □

6.3.4 Implementation of Queries

Overview The query algorithm is derived in two steps. First, we establish how, given the structure from
Section 6.3.2 and a packed representation of any periodic pattern P ∈ [0 . . σ)m to compute |Occ(P, T)| in
O(m/ logσ n+ log log n) time. This culminates in Proposition 6.9. We then show how to extend this algorithm to
instead return (RangeBeg(P, T),RangeEnd(P, T)) in the same time complexity, culminating in Proposition 6.12.
The reason for this two-step approach is explained in Remark 6.2.

Computing |Occ(P, T)| Let P ∈ [0 . . σ)m be a periodic pattern. Denote s = L-head(P) and H = L-root(P).
We define Occa(P, T) = {j ∈ Rs,H ∩Occ(P, T) : L-exp(j) > L-exp(P)} and Occs(P, T) = {j ∈ Rs,H ∩Occ(P, T) :
L-exp(j) = L-exp(P)}.

Lemma 6.5. For any periodic pattern P ∈ [0 . . σ)m, the set Occ(P, T) is a disjoint union of Occa(P, T) and
Occs(P, T).

Proof. By definition, Occa(P, T) ∩ Occs(P, T) = ∅ and Occa(P, T) ∪ Occs(P, T) ⊆ Occ(P, T). Thus, it suffices
to show Occ(P, T) ⊆ Occa(P, T) ∪ Occs(P, T). Assume j ∈ Occ(P, T). By m ≥ 3τ − 1, this implies
lcp(T [j . . n], P) ≥ 3τ − 1. Thus, by Lemma 6.2, it holds j ∈ Rs,H , where s = L-head(P) and H = L-root(P). To
obtain j ∈ Occa(P, T) ∪Occs(P, T) it remains to show L-exp(j) ≥ L-exp(P). First, note that for any t ∈ [1 . .m),
j ∈ Occ(P, T) implies LCE(j, j + t) ≥ lcp(P [1 . .m], P [1 + t . .m]). In particular, letting p = |H|, by definition
of e(P) and Lemma 5.3(2), we have e(j) − j = p+ LCE(j, j + p) ≥ p+ lcp(P [1 . .m], P [1 + p . .m]) = e(P) − 1.
Consequently, L-exp(j) = ⌊ e(j)−j−s

p ⌋ ≥ ⌊ e(P)−1−s
p ⌋ = L-exp(P). □

By the above lemma, if P ∈ [0 . . σ)m is periodic, then Occ(P, T) ⊆ R. We focus on computing sizes of
sets Occa−(P, T) := Occa(P, T) ∩ R− and Occs−(P, T) := Occs(P, T) ∩ R−. The sizes of the sets Occa+(P, T) :=
Occa(P, T) ∩ R+ and Occs+(P, T) := Occs(P, T) ∩ R+ are computed analogously (see Proposition 6.9).

We now describe the algorithm to compute |Occa−(P, T)| for any periodic pattern P ∈ [0 . . σ)m.

Lemma 6.6. Assume that P ∈ [0 . . σ)m is periodic. If e(P) ≤ m, then it holds Occa−(P, T) = ∅. Otherwise, it
holds Occa−(P, T) = {j ∈ R−

s,H : L-exp(j) > L-exp(P)}, where s = L-head(P) and H = L-root(P).

Proof. Let e(P) ≤ m. Denote k = L-exp(P). Suppose Occa−(P, T) ̸= ∅, and let j ∈ Occa−(P, T). By definition,
s + k|H| ≤ e(P) − 1 < s + (k + 1)|H| and P [e(P)] ̸= P [e(P) − |H|]. On the other hand, by j ∈ Rs,H and

Copyright © 2023
Copyright for this paper is retained by the authors5159

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

L-exp(j) > k, the string H ′Hk+1 (where H ′ is a length-s suffix of H) is a prefix of T [j . . n]. Thus, we have
T [j + e(P) − 1] = T [j + e(P) − 1 − |H|] = P [e(P) − |H|] ̸= P [e(P)]. This implies j ̸∈ Occ(P, T), contradicting
j ∈ Occa−(P, T). Thus, Occa−(P, T) = ∅.

Let e(P) > m. The inclusion Occa−(P, T) ⊆ {j ∈ R−
s,H : L-exp(j) > L-exp(P)} follows by definition. To

show the opposite inclusion, let j ∈ R−
s,H be such that L-exp(j) > L-exp(P). Denote k = L-exp(P). Then,

P = H ′HkH ′′, where |H ′| = s, and H ′ (resp. H ′′) is a suffix (resp. prefix) of H. Thus, P is a prefix of H ′Hk+1.
The latter string, on the other hand, is by L-exp(j) ≥ k+1 and j ∈ Rs,H , a prefix of T [j . . n]. Thus, j ∈ Occ(P, T).
By j ∈ R−

s,H and L-exp(j) > L-exp(P), we therefore also have j ∈ Occa−(P, T). □

Proposition 6.7. Let P ∈ [0 . . σ)m be a periodic pattern. Given the data structure from Section 6.3.2 and the
packed representation of P , we can compute |Occa−(P, T)| in O(1 +m/ logσ n) time.

Proof. First, using Proposition 6.6, we compute s = L-head(P), H = L-root(P), k = L-exp(P), and t = L-tail(P)
in O(1 +m/ logσ n) time. This lets us determine e(P) = 1+s+k|H|+t. If e(P) ≤ m, then by Lemma 6.6, we
return |Occa−(P, T)| = 0. Otherwise, using the array Lrange, we compute in O(1) time a pair of integers b, e such
that SA(b . . e] contains the starting positions of all suffixes of T prefixed with X = P [1 . . 3τ−1]. Equivalently,
by Lemma 5.4 (see also the implementation of queries in Proposition 5.9), SA(b . . e] contains all positions from
Rs,H . If b = e, then it holds Rs,H = ∅, and thus we return |Occa−(P, T)| = 0. Let us thus assume b < e. Our goal
now is to determine the subrange of SA(b . . e] containing all positions in {j ∈ R−

s,H : L-exp(j) > L-exp(P)} (these
positions form a subrange by Lemma 5.4). For that, we first compute d = rankBexp,1(e)− rankBexp,1(b) in O(1) time.
If d = 0, then R−

s,H = ∅, and hence we return |Occa−(P, T)| = 0. Otherwise, we retrieve kmin = Lminexp[int(X)] in
O(1) time. Then, letting kmax = kmin + d − 1, we have kmin ≤ kmax and [kmin . . kmax] = {L-exp(j) : j ∈ R−

s,H}
(see the proof of Proposition 5.9). If k ≥ kmax, by Lemma 6.6, we return |Occa−(P, T)| = 0. Otherwise, we have
two cases. Let p = rankBexp,1(b). If k < kmin, then we return |Occa−(P, T)| = |R−

s,H | = selectBexp,1(p + d) − b.
Otherwise (i.e., k ≥ kmin), we return |Occa−(P, T)| = selectBexp,1(p+ d)− selectBexp,1(p+ k − kmin + 1). In total,
the query takes O(1 +m/ logσ n) time. □

Next, we now describe the algorithm compute |Occs−(P, T)| for any periodic pattern P ∈ [0 . . σ)m.

Lemma 6.7. Let P ∈ [0 . . σ)m be a periodic pattern. Denote H = L-root(P). Assume i ∈ R−
H and let

ℓ = e(i) − i − 3τ + 2. Then, |Occs−(P, T) ∩ [i . . i + ℓ)| ≤ 1. Moreover, |Occs−(P, T) ∩ [i . . i + ℓ)| = 1 holds
if and only if P [efull(P) . .m] is a prefix of T [efull(i) . . n] and efull(i)− i ≥ efull(P)− 1.

Proof. As observed in the proof of Lemma 5.10, [i . . i+ ℓ) ⊆ R−
H , and for any δ ∈ [0 . . ℓ), it holds e(i+ δ) = e(i),

L-tail(i+δ) = L-tail(i), and consequently, efull(i+δ) = efull(i) and efull(i+δ)−(i+δ) = efull(i)−i−δ. Moreover, by
definition of Occs−(P, T), letting L-head(P) = s, for any j ∈ Occs−(P, T) it holds efull(j)− j = s+L-exp(j) · |H| =
s+L-exp(P)·|H| = efull(P)−1. Thus, i+δ ∈ Occs−(P, T) implies efull(i+δ)−(i+δ) = efull(i)−(i+δ) = efull(P)−1,
or equivalently, δ = (efull(i)− i)− (efull(P)− 1), and therefore, |Occs−(P, T) ∩ [i . . i+ ℓ)| ≤ 1.

For the second part, assume first that i + δ ∈ Occs−(P, T) holds for some δ ∈ [0 . . ℓ). Then, as noted
above, we have efull(P) − 1 = efull(i) − (i + δ) ≤ efull(i) − i. Moreover, letting L-head(P) = s, by definition of
Occs−(P, T), we have i+ δ ∈ R−

s,H , L-exp(P) = L-exp(i+ δ), and T [i+δ . . i+δ+m) = P . Therefore, we obtain that
T [i+δ . . efull(i+δ)) = T [i+δ . . efull(i)) = P [1 . . efull(P)) = H ′Hk (where k = L-exp(P) and H ′ is the length-s suffix
of H), and consequently, P [efull(P) . .m] is a prefix of T [efull(i) . . n]. To show the converse implication, assume
that P [efull(P) . .m] is a prefix of T [efull(i) . . n] and efull(i)− i ≥ efull(P)− 1. Let δ = (efull(i)− i)− (efull(P)− 1).
We will prove that δ ∈ [0 . . ℓ) and i + δ ∈ Occs−(P, T). Clearly δ ≥ 0. To show δ < ℓ, we first prove
e(i)− efull(i) ≥ e(P)− efull(P). Suppose that q = e(i)− efull(i) < e(P)− efull(P). By i ∈ R−

H , we then either have
efull(i)+q = n+1, or efull(i)+q ≤ n and T [efull(i)+q] ̸= T [efull(i)+q−|H|] = P [efull(P)+q−|H|] = P [efull(P)+q],
both of which contradict that P [efull(P) . .m] is a prefix of T [efull(i) . . n]. Thus, e(i)− efull(i) ≥ e(P)− efull(P).
This implies, e(i) − (i + δ) = (efull(i) − (i + δ)) + (e(i) − efull(i)) = (efull(P) − 1) + (e(i) − efull(i)) ≥
(efull(P) − 1) + (e(P) − efull(P)) = e(P) − 1 ≥ 3τ − 1, or equivalently δ ≤ e(i) − i − 3τ + 1 < ℓ. To show
i + δ ∈ Occs−(P, T), it remains to observe that efull(i + δ) − (i + δ) = efull(i) − (i + δ) = efull(P) − 1 and
L-root(i+ δ) = L-root(i) = H = L-root(P) (following from Lemma 5.5) imply T [i+ δ . . efull(i)) = P [1 . . efull(P)).
This in particular gives, letting L-head(P) = s, that i + δ ∈ Rs,H and L-exp(i + δ) = L-exp(P). Moreover,
combining it with P [efull(P) . .m] being a prefix of T [efull(i) . . n] yields T [i + δ . . i + δ + m) = P . Finally, by
Lemma 5.5, type(i+ δ) = type(i) = −1. Therefore, i+ δ ∈ Occs−(P, T). □

Copyright © 2023
Copyright for this paper is retained by the authors5160

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proposition 6.8. Let P ∈ [0 . . σ)m be a periodic pattern. Given the data structure from Section 6.3.2 and the
packed representation of P , we can compute |Occs−(P, T)| in O(m/ logσ n+ log log n) time.

Proof. First, using Proposition 6.6, we compute s = L-head(P), H = L-root(P), and k = L-exp(P) in
O(1 + m/ logσ n) time. This lets us determine efull(P) = 1+s+k|H| and P ′ := P [efull(P) − |pow(H)| . .m].
Then, using Proposition 4.2, we compute in O(m/ logσ n + log log n) time a range (bpre . . epre] = {i ∈ [1 . . q] :
P ′ is a prefix of T [AZ[i] . . n]}. Observe that the set {rlexi : i ∈ (bpre . . epre]} consists of all positions j ∈ R′−

H such
that P [efull(P) . .m] is a prefix of T [efull(j) . . n]. Thus, by Lemma 6.7, we have |Occs−(P, T)| = |{i ∈ (bpre . . epre] :
efull(rlexi) − rlexi ≥ efull(P) − 1}|, which we compute in O(log log n) time using the range counting structure as
rcountAlen

(efull(P)− 1, epre)− rcountAlen
(efull(P)− 1, bpre) (recall, that Alen[i] = efull(rlexi)− rlexi ; see Section 5.3.2).

□

By combining all above results, we obtain the following algorithm to compute |Occ(P, T)| for any periodic
pattern P .

Proposition 6.9. Let P ∈ [0 . . σ)m be a periodic pattern. Given the data structure from Section 6.3.2 and the
packed representation of P , we can compute |Occ(P, T)| in O(m/ logσ n+ log log n) time.

Proof. Given a packed representation of a periodic pattern P , we compute |Occ(P, T)| = |Occa−(P, T)| +
|Occs−(P, T)|+ |Occa+(P, T)|+ |Occs+(P, T)| using Propositions 6.7 and 6.8 and their symmetric counterparts
(adapted according to Lemma 6.2). The total time is O(m/ logσ n+ log log n). □

Generalizing the Query Algorithm We now show how to generalize the above algorithms to compute
|Occ(P, T)|, to instead return (RangeBeg(P, T),RangeEnd(P, T)).

For any periodic pattern P ∈ [0 . . σ)m we define

Pos(P, T) = {j ∈ [1 . . n] : lcp(T [j . . n], P) ≥ 3τ − 1 and T [j . . n] ≺ P},

and denote δ(P, T) = |Pos(P, T)|.

Lemma 6.8. Let P ∈ [0 . . σ)m be a periodic pattern and let X = P [1 . . 3τ−1]. Then, it holds RangeBeg(P, T) =
RangeBeg(X,T) + δ(P, T).

Proof. It suffices to observe that j ∈ Occ(X,T) holds if and only if lcp(T [j . . n], P) ≥ 3τ − 1. Thus, it holds
by definition of RangeBeg(P, T) that RangeBeg(P, T) = RangeBeg(X,T) + |{j ∈ Occ(X,T) : T [j . . n] ≺ P}| =
RangeBeg(X,T) + |{j ∈ [1 . . n] : lcp(T [j . . n], P) ≥ 3τ − 1 and T [j . . n] ≺ P}| = RangeBeg(X,T) + δ(P, T). □

We focus on computing δ(P, T) for P satisfying type(P) = −1 (the structure for P satisfying type(P) = +1
is symmetric; see the proof of Proposition 6.12). We define Posa(P, T) = {j ∈ R−

s,H : L-exp(j) ≤ L-exp(P)} and
Poss(P, T) = {j ∈ R−

s,H : L-exp(j) = L-exp(P) and T [j . . n] ⪰ P}, where s = L-head(P) and H = L-root(P). We
denote δa(P, T) = |Posa(P, T)| and δs(P, T) = |Poss(P, T)|.

Lemma 6.9. For any periodic pattern P ∈ [0 . . σ)m that satisfies type(P) = −1, it holds δ(P, T) = δa(P, T) −
δs(P, T).

Proof. We will prove that Posa(P, T) is a disjoint union of Pos(P, T) and Poss(P, T). This implies δ(P, T) +
δs(P, T) = δa(P, T), and consequently, the equality in the claim.

Denote s = L-head(P) and H = L-root(P). By Lemma 6.2, letting j ∈ R−
s,H , we have Pos(P, T) =

{j ∈ R−
s,H : T [j . . n] ≺ P}, and moreover, if j ∈ Pos(P, T), then e(j) − j ≤ e(P) − 1. In particular,

L-exp(j) = ⌊ e(j)−j−s
|H| ⌋ ≤ ⌊ e(P)−1−s

|H| ⌋ = L-exp(P). Hence, Pos(P, T) ⊆ Posa(P, T). On the other hand, clearly
Poss(P, T) ⊆ Posa(P, T) and Poss(P, T) ∩ Pos(P, T) = ∅. Thus, to obtain the claim, it suffices to show that
Posa(P, T) \ Poss(P, T) ⊆ Pos(P, T).

Let j ∈ Posa(P, T) \ Poss(P, T). Consider two cases. If L-exp(j) = L-exp(P), then by definition of Poss(P, T),
it must hold T [j . . n] ≺ P . Thus, we have j ∈ Pos(P, T). Let us therefore assume L-exp(j) < L-exp(P). Then,
e(j)−j = s+L-exp(j)·|H|+L-tail(j) < s+L-exp(j)·|H|+|H| ≤ s+L-exp(P)·|H| ≤ s+L-exp(P)·|H|+L-tail(P) =
e(P)− 1. By Lemma 6.2(2) and Lemma 6.2(4), this implies T [j . . n] ≺ P , and consequently, j ∈ Pos(P, T). □

Copyright © 2023
Copyright for this paper is retained by the authors5161

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

We now describe how, given any periodic pattern P ∈ [0 . . σ)m that satisfies type(P) = −1, to compute
δa(P, T).

Proposition 6.10. Let P ∈ [0 . . σ)m be a periodic pattern satisfying type(P) = −1. Given the data structure
from Section 6.3.2 and the packed representation of P , we can in O(1 +m/ logσ n) time compute δa(P, T).

Proof. First, using Proposition 6.6, we compute H = L-root(P) and k = L-exp(P) in O(1+m/ logσ n) time. Then,
using Lrange, we compute in O(1) time a pair of integers b, e such that SA(b . . e] contains the starting positions of all
suffixes of T prefixed with X = P [1 . . 3τ−1]. Equivalently, by Lemma 6.2, SA(b . . e] contains all positions from Rs,H ,
where s = L-head(P). If b = e, then it holds Rs,H = ∅, and thus we return δa(P, T) = 0. Let us thus assume b < e.
Our goal now is to determine the subrange of SA(b . . e] containing all positions in {j ∈ R−

s,H : L-exp(j) ≤ L-exp(P)}
(these positions form a subrange by Lemma 5.4). For that, we first compute d = rankBexp,1(e)−rankBexp,1(b) in O(1)
time. If d = 0, then R−

s,H = ∅, and hence we return δa(P, T) = 0. Otherwise, we retrieve kmin = Lminexp[int(X)] in
O(1) time. Then, letting kmax = kmin + d − 1, we have kmin ≤ kmax and [kmin . . kmax] = {L-exp(j) : j ∈ R−

s,H}
(see the proof of Proposition 5.9). If k < kmin, we return δa(P, T) = 0. Otherwise, we have two cases. Let
p = rankBexp,1(b). If k ≥ kmax, then we return δa(P, T) = |R−

s,H | = selectBexp,1(p+d)−b. Otherwise (i.e., k < kmax),
we return δa(P, T) = selectBexp,1(p+ k − kmin + 1)− b. In total, the query takes O(1 +m/ logσ n) time. □

We now describe how, given any periodic pattern P ∈ [0 . . σ)m that satisfies type(P) = −1, to compute
δs(P, T).

Lemma 6.10. Let P ∈ [0 . . σ)m be a periodic pattern that satisfies type(P) = −1. Denote H = L-root(P). Assume
i ∈ R−

H and let ℓ = e(i)−i−3τ+2. Then, we have |Poss(P, T)∩[i . . i+ℓ)| ≤ 1. Moreover, |Poss(P, T)∩[i . . i+ℓ)| = 1
holds if and only if T [efull(i) . . n] ⪰ P [efull(P) . .m] and efull(i)− i ≥ efull(P)− 1.

Proof. In the proof of Lemma 6.7, it is shown that [i . . i + ℓ) ⊆ R−
H , and for any δ ∈ [0 . . ℓ), it holds

efull(i+ δ)− (i+ δ) = efull(i)− i− δ. By definition of Poss(P, T), letting s = L-head(P), for any j ∈ Poss(P, T)
it holds efull(j) − j = s + L-exp(j) · |H| = s + L-exp(P) · |H| = efull(P) − 1. Thus, i + δ ∈ Poss(P, T) implies
efull(i+ δ)− (i+ δ) = efull(i)− (i+ δ) = efull(P)− 1, or equivalently, δ = (efull(i)− i)− (efull(P)− 1), and therefore,
|Poss(P, T) ∩ [i . . i+ ℓ)| ≤ 1.

For the second part, assume first that i + δ ∈ Poss(P, T) holds for some δ ∈ [0 . . ℓ). Then, as noted
above, we have efull(P) − 1 = efull(i) − (i + δ) ≤ efull(i) − i. Moreover, letting L-head(P) = s, by definition
of Poss(P, T), we have i + δ ∈ R−

s,H , L-exp(P) = L-exp(i + δ), and T [i+δ . . n] ⪰ P . Therefore, we obtain that
T [i+δ . . efull(i + δ)) = T [i+δ . . efull(i)) = P [1 . . efull(P)) = H ′Hk (where k = L-exp(P) and H ′ is the length-s
suffix of H), and consequently, T [efull(i) . . n] ⪰ P [efull(P) . .m]. To show the converse implication, assume that
T [efull(i) . . n] ⪰ P [efull(P) . .m] and efull(i)− i ≥ efull(P)− 1. Let δ = (efull(i)− i)− (efull(P)− 1). We will prove
that δ ∈ [0 . . ℓ) and i+ δ ∈ Poss(P, T). Clearly δ ≥ 0. To show δ < ℓ, we first prove e(i)− efull(i) ≥ e(P)− efull(P).
Suppose that q = e(i) − efull(i) < e(P) − efull(P). By i ∈ R−

H , we then either have efull(i) + q = n + 1,
or efull(i) + q ≤ n and T [efull(i) + q] ≺ T [efull(i) + q − |H|] = P [efull(P) + q − |H|] = P [efull(P) + q], both
of which contradict T [efull(i) . . n] ⪰ P [efull(P) . .m]. Thus, e(i) − efull(i) ≥ e(P) − efull(P). This implies,
e(i)−(i+δ) = (efull(i)−(i+δ))+(e(i)−efull(i)) = (efull(P)−1)+(e(i)−efull(i)) ≥ (efull(P)−1)+(e(P)−efull(P)) =
e(P)− 1 ≥ 3τ − 1, or equivalently δ ≤ e(i)− i− 3τ +1 < ℓ. To show i+ δ ∈ Poss(P, T), it remains to observe that
efull(i+ δ)− (i+ δ) = efull(i)− (i+ δ) = efull(P)− 1 and L-root(i+ δ) = L-root(i) = H = L-root(P) (following
from Lemma 5.5) imply T [i+ δ . . efull(i)) = P [1 . . efull(P)). This in particular gives, letting L-head(P) = s, that
i + δ ∈ Rs,H and L-exp(i + δ) = L-exp(P). Moreover, combining it with T [efull(i) . . n] ⪰ P [efull(P) . .m] yields
T [i+ δ . . n] ⪰ P . Finally, by Lemma 5.5, type(i+ δ) = type(i) = −1. Therefore, i+ δ ∈ Poss(P, T). □

Proposition 6.11. Let P ∈ [0 . . σ)m be a periodic pattern satisfying type(P) = −1. Given the data structure
from Section 6.3.2 and the packed representation of P , we can in O(m/ logσ n+ log log n) time compute δs(P, T).

Proof. First, using Proposition 6.6, we compute s = L-head(P), H = L-root(P), and k = L-exp(P) in
O(1 +m/ logσ n) time. This lets us determine efull(P) = 1+s+k|H| and P ′ := P [efull(P)− |pow(H)| . .m]. Then,
using Proposition 4.2, we compute in O(m/ logσ n+ log log n) time a value x = |{i ∈ [1 . . q] : T [AZ[i] . . n] ≺ P ′}|.
Then, letting x′ =

∑
H′⪯H |R′−

H′ | (obtained from Lruns in O(1) time as explained in the proof of Proposition 5.10),
by definition of AZ and properties of function pow (see the proof of Proposition 6.8), the set {rlexi : i ∈ (x . . x′]}

Copyright © 2023
Copyright for this paper is retained by the authors5162

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

(where rlexi is defined as in the proof of Proposition 6.8) consists of all positions j ∈ R′−
H satisfying T [efull(j) . . n] ⪰

P [efull(P) . .m]. Thus, by Lemma 6.10, it holds δs(P, T) = |Poss(P, T)| = |{i ∈ (x . . x′] : ℓi ≥ efull(P)− 1}| (where
ℓi is defined as in Proposition 6.8), which we compute in O(log log n) time using the range counting structure as
rcountAlen

(efull(P)− 1, x′)− rcountAlen
(efull(P)− 1, x). □

By combining the above results, we obtain the algorithm to efficiently compute the pair
(RangeBeg(P, T),RangeEnd(P, T)) for periodic patterns.

Proposition 6.12. Let P ∈ [0 . . σ)m be a periodic pattern. Given the data structure from Section 6.3.2 and
the packed representation of P , we can in O(m/ logσ n + log log n) time compute the pair (RangeBeg(P, T),
RangeEnd(P, T)).

Proof. First, using Proposition 6.9 in O(m/ logσ n+log log n) time we compute |Occ(P, T)|. Next, using the lookup
table Lrange, in O(1) time we compute (bX , eX) = (RangeBeg(X,T),RangeEnd(X,T)), where X = P [1 . . 3τ−1].
Then, in O(1+m/ logσ n) time using Proposition 6.6 we determine type(P). Depending on whether type(P) = −1
or type(P) = +1, we use either a combination of Propositions 6.10 and 6.11, or their symmetric counterparts (more
precisely, if type(P) = +1, we have δa(P, T) = |Posa(P, T)| and δs(P, T) = |Poss(P, T)|, where Posa(P, T) = {j ∈
R+
s,H : L-exp(j) ≤ L-exp(P)} and Poss(P, T) = {j ∈ R+

s,H : L-exp(j) = L-exp(j) and T [j . . n] ≺ P}), to compute
δa(P, T) and δs(P, T) in O(1 + m/ logσ n) and O(m/ logσ n + log log n) time, respectively. If type(P) = −1,
then by Lemma 6.9 we have δ(P, T) = δa(P, T) − δs(P, T). Otherwise, by the counterpart of Lemma 6.9,
δ(P, T) = (eX − bX) − (δa(P, T) − δs(P, T)). Finally, we return (RangeBeg(P, T),RangeEnd(P, T)) = (bX +
δ(P, T), bX+δ(P, T)+|Occ(P, T)|) (see Lemma 6.8) as the answer. In total, the query takes O(m/ logσ n+log log n)
time. □

Remark 6.2. Note the subtle difference in the type of symmetry used during the computation of |Pos(P, T)| and
|Occ(P, T)|. When computing δ(P, T) = |Pos(P, T)|, by Lemma 6.2 we have Pos(P, T) ⊆ R− for any P satisfying
type(P) = −1 (and Pos(P, T) ⊆ R+ for P satisfying type(P) = +1). However, when computing |Occ(P, T)| for P
satisfying type(P) = −1, it is possible that Occ(P, T)∩R− ̸= ∅ and Occ(P, T)∩R+ ̸= ∅. Consequently, during the
computation of |Occ(P, T)|, we partition the output set Occa(P, T) (resp. Occs(P, T)) into two subsets Occa−(P, T)
and Occa+(P, T) (resp. Occs−(P, T) and Occs+(P, T)), but the computation is always performed regardless of
type(P), leading to two queries for each periodic pattern P . During the computation of δ(P, T), on the other
hand, the computation is performed separately for P satisfying type(P) = −1 and P satisfying type(P) = +1,
without the need to partition Pos(P, T) within each case, leading to a single query but only on the appropriate
structure depending on type(P). This is the reason for why the seemingly related computation of |Pos(P, T)| and
|Occ(P, T)| is (unlike for nonperiodic patterns; see Section 6.2.2) described separately.

6.3.5 Construction Algorithm

Proposition 6.13. Given CPM(T), we can in O(n/ logσ n) time augment it into a data structure from
Section 6.3.2.

Proof. First, we combine Propositions 5.3 and 5.15 (recall that the packed representation of T is a component of
CPM(T)) to construct the data structure from Section 5.3.2 in O(n/ logσ n) time. In particular, this constructs
(rlexi)i∈[1. .q]. Using Proposition 5.7, we can now compute AZ[i] for any i ∈ [1 . . q] in O(1) time. Then, in
O(n/ logσ n) time, we construct the data structure from Proposition 4.2.

After the above components are constructed, we then analogously construct their symmetric counterparts
(adapted according to Lemma 6.2). □

6.4 The Final Data Structure

In this section, we put together Sections 6.1 to 6.3 to obtain a data structure that, given a packed representation
of any pattern P ∈ [0 . . σ)m, computes (RangeBeg(P, T),RangeEnd(P, T)) in O(m/ logσ n+ logϵ n) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 6.4.1).
Next, we describe the query algorithms (Section 6.4.2). Finally, we show the construction algorithm (Section 6.4.3).

Copyright © 2023
Copyright for this paper is retained by the authors5163

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

6.4.1 The Data Structure

The data structure consists of two components:

1. The structure from Section 6.2.1 (used to handle nonperiodic patterns).
2. The structure from Section 6.3.2 (used to handle periodic patterns).

In total, the data structure takes O(n/ logσ n) space.

6.4.2 Implementation of Queries

Proposition 6.14. Given the data structure from Section 6.4.1 and the packed representation of any P ∈ [0 . . σ)m,
we can in O(m/ logσ n+ logϵ n) time compute the pair (RangeBeg(P, T),RangeEnd(P, T)).

Proof. First, using Proposition 6.1, in O(1) time we check if P is periodic. If so, we obtain (RangeBeg(P, T),
RangeEnd(P, T)) in O(m/ logσ n+ log log n) time using Proposition 6.12. Otherwise (i.e., if P is not periodic),
we consider two cases, depending on whether it holds m < 3τ − 1. If so, then we obtain (RangeBeg(P, T),
RangeEnd(P, T)) in O(1) time using Proposition 6.2. Otherwise, we obtain (RangeBeg(P, T),RangeEnd(P, T)) in
O(m/ logσ n+ logϵ n) time using Proposition 6.4. □

6.4.3 Construction Algorithm

Proposition 6.15. Given the packed representation of T ∈ [0 . . σ)n, we can construct the data structure from
Section 6.4.1 in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space.

Proof. First, from a packed representation of T , we construct CPM(T) in O(n/ logσ n) time using Proposition 6.3.
Then, using Propositions 6.5 and 6.13, we augment CPM(T) into the two components of the structure from
Section 6.4.1 in O(nmin(1, log σ/

√
log n)) and O(n/ logσ n) time (respectively) and using O(n/ logσ n) working

space. The overall runtime is thus O(nmin(1, log σ/
√
log n)). □

6.5 Summary

By combining Proposition 6.14 and Proposition 6.15 we obtain the following final result of this section.

Theorem 6.1. Given any constant ϵ ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n with
2 ≤ σ < n1/7, we can in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space construct a data

structure of size O(n/ logσ n) that, given the packed representation of any P ∈ [0 . . σ)m, returns the pair
(RangeBeg(P, T),RangeEnd(P, T)) (and hence, in particular, the value |Occ(P, T)|) in O(m/ logσ n + logϵ n)
time.

By combining the above result with Theorem 5.1, we moreover obtain the following result.

Theorem 6.2. Given any constant ϵ ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n with
2 ≤ σ < n1/7, we can in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space construct a data

structure of size O(n/ logσ n) that, given the packed representation of any P ∈ [0 . . σ)m, returns the set Occ(P, T)
in O(m/ logσ n+ (|Occ(P, T)|+ 1) logϵ n) time.

By observing that the dominating operations in the above index are prefix rank and selection queries, we
obtain the following more general result.

Theorem 6.3. Consider a data structure answering prefix rank and selection queries that, for any string of length
m over alphabet [0 . . σ)ℓ, achieves the following complexities:

1. Space usage S(m, ℓ, σ),
2. Preprocessing time Pt(m, ℓ, σ),
3. Preprocessing space Ps(m, ℓ, σ),
4. Query time Q(m, ℓ, σ).

Copyright © 2023
Copyright for this paper is retained by the authors5164

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Operation Description

isleaf(v) Return true if and only if v is a leaf
index(v) Any position j ∈ Occ(str(v), T)
findleaf(j) The leaf v satisfying str(v) = T [j . . n]
count(v) The number of leaves in the subtree rooted in v
sdepth(v) The string-depth of node v, i.e., |str(v)|
parent(v) The parent of v ̸= root(Tst)
firstchild(v) The leftmost child of v, or ⊥ if v is a leaf
lastchild(v) The rightmost child of v, or ⊥ if v is a leaf
rightsibling(v) The right sibling of v, or ⊥ if there is no such node
leftsibling(v) The left sibling of v, or ⊥ if there is no such node
slink(v) A node v′ satisfying str(v′) = str(v)[2 . . |str(v)|]
slink(v, i) A node v′ satisfying str(v′) = str(v)[i+1 . . |str(v)|], i.e., iterated slink
wlink(v, c) A node v′ satisfying str(v′) = c · str(v), or ⊥ if there is no such node 8

child(v, c) A child v′ of v satisfying str(v′)[|str(v)|+1]= c, or ⊥ if there is no such node
pred(v, c) A node child(v, c′), where c′ = max{c′′ ∈ [0 . . c) : child(v, c′′) ̸= ⊥} (or ⊥)
letter(v, i) The ith leftmost character of str(v)
WA(v, d) The most shallow ancestor of v satisfying sdepth(v) ≥ d
LCA(u, v) The lowest common ancestor of nodes u and v
isancestor(u, v) Return true if and only if u is an ancestor of v

Table 1: Operations on suffix tree Tst supported by our data structure.

For every T ∈ [0 . . σ)n with 2 ≤ σ < n1/7, there exist m = O(n/ logσ n) and ℓ = O(logσ n) such that, given the
packed representation of T , we can in O(n/ logσ n + Pt(m, ℓ, σ)) time and O(n/ logσ n + Ps(m, ℓ, σ)) working
space build a structure of size O(n/ logσ n+ S(m, ℓ, σ)) that, given the packed representation of any P ∈ [0 . . σ)m,
performs the following queries:

• Return (RangeBeg(P, T),RangeEnd(P, T)) in O(m/ logσ n+ log log n+Q(m, ℓ, σ)) time,
• Return Occ(P, T) in O(m/ logσ n+ (|Occ(P, T)|+ 1)(log log n+Q(m, ℓ, σ))) time.

7 Suffix Tree Queries

Let ϵ ∈ (0, 1) be any fixed constant and let T ∈ [0 . . σ)n, where 2 ≤ σ < n1/7. Let Tst denote the suffix tree of
T , i.e., a compact trie of the set {T [1 . . n], T [2 . . n], . . . , T [n]}. In this section, we show how given the packed
representation of T , to construct in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space a representation

of Tst occupying O(n/ logσ n) space, and supporting each of the operations listed in Table 1 in O(logϵ n) time. 9

We also derive a general reduction depending on prefix rank and selection queries.
As in Sections 5 and 6, we let τ = ⌊µ logσ n⌋, where µ is any positive constant smaller than 1

6 such that τ ≥ 1,
be fixed for the duration of this section. Throughout, we also use R as a shorthand for R(τ, T).

Definition 7.1. Let v be an explicit node of Tst. The node v is said to be periodic if str(v) is periodic
(Definition 6.1). Otherwise, v is nonperiodic.

Representation of a Node For any explicit node v of Tst we denote Occ(v) := Occ(str(v), T). In our data
structure we represent each explicit node v of Tst in one of two ways:

8Our data structure supports also a slightly stronger operation wlink′(v, c) (see Proposition 7.31), that returns a node v′ satisfying
repr(v′) = (RangeBeg(c · str(v), T),RangeEnd(c · str(v), T)), if such node exists. This generalizes wlink(v, c), since wlink(v, c) ̸= ⊥
holds if and only if wlink′(v, c) ̸= ⊥ and sdepth(wlink′(v, c)) = sdepth(v)+1. Therefore, we can use wlink′(v, c) to compute wlink(v, c).
Note, however, that it is possible that wlink(v, c) = ⊥ and yet wlink′(v, c) ̸= ⊥. In that case, there exists a node corresponding to
wlink(v, c) in the suffix trie of T , but in Tst this node is not explicit.

9Similarly as in prior CST implementations [79, 31, 77, 34, 14, 16], the time complexity of some operations is actually O(1). We
also note that some prior CST implementations (e.g., [79, 77, 34, 16]) support two additional operations called tree depth and tree
level ancestor which are analogous to sdepth(v) and WA(v, d) but with distance to the root defined by the number of ancestor nodes
rather than the total length of edge labels.

Copyright © 2023
Copyright for this paper is retained by the authors5165

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

• A pair (j, ℓ), where j ∈ Occ(v) (i.e., j is the starting position of some occurrence of str(v) in T) and
ℓ = sdepth(v)).

• A pair (lrank(v), rrank(v)). Note that since v is a node of suffix tree, in this special case
we have (lrank(v), rrank(v)) = (RangeBeg(str(v), T),RangeEnd(str(v), T)). Thus, letting (b, e) =
(lrank(v), rrank(v)), we then have {SA[i]}i∈(b. .e] = Occ(v). Note also that b < e.

In most cases, the latter representation leads to a more convenient implementation. Thus, we adopt it as a default
and denote repr(v) := (lrank(v), rrank(v)) (while using the first one mostly as a temporary internal representation).
We also define repr(⊥) = (0, 0).

Organization The structure and query algorithms for a node v are different depending on whether v is periodic
(Definition 7.1). Our description is thus split as follows. First (Section 7.1), we describe the set of data structures
called collectively the index “core” that enables efficiently checking if v is periodic (it is also used to perform
operations on nodes with very small depth and contains some common components utilized by the remaining
parts). In the following two parts (Sections 7.2 and 7.3), we describe structures handling each of the two cases. All
ingredients are then put together in Section 7.4. Finally, we present our result in the general form (Section 7.5).

7.1 The Index Core

In this section, we describe a data structure used to check in O(1) time if a given node is periodic. It also lets us
perform operations concerning nodes at depth smaller than 3τ − 1 in O(1) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 7.1.1).
We then show how using this structure to implement some basic navigational routines (Section 7.1.2). Next,
we describe the query algorithms for the fundamental operations (Sections 7.1.3 to 7.1.6). Finally, we show the
construction algorithm (Section 7.1.7).

7.1.1 The Data Structure

Definitions For any k ≥ 1, let Sk := {S ∈ [0 . . σ)k : S occurs in T} denote the set of length-k substrings of T .
Let T3τ−1 denote the compact trie of S3τ−1.

Components The index core, denoted CST(T), consists of two components:

1. The index core CSA(T) (Section 5.1.1). It takes O(n/ logσ n) space.
2. The compact trie T3τ−1. All nodes of T3τ−1 are stored in an array and pointers to nodes are implemented as

indexes to this array. Each node v of T3τ−1 stores the string str(v) encoded as an integer int(str(v)), the
pointer parent(v), the value sdepth(v), and the doubly linked list containing pointers to all children of v,
in ascending order of the first letter on the connecting edge. Since each node v of T3τ−1 corresponds to a
unique string S ∈ [0 . . σ)≤3τ−1, in total T3τ−1 needs O(σ3τ) = O(

√
n) space. The trie T3τ−1 is augmented

with the following structures:

(a) A linear-space data structure answering the LCA queries in T3τ−1 in O(1) time [10]. By the above
bound, the data structure uses O(

√
n) space.

(b) A lookup table Lchild that for each edge of T3τ−1 connecting a node v to its parent p and labeled with a
string starting with the character c, maps the pair (ip, c) to iv, where ip and iv are pointers to p and v.
T3τ−1 has less than 2σ3τ−1 nodes and thus iv < 2σ3τ−1. On the other hand, c ∈ [0 . . σ). Thus, each
pair (iv, c) can be (in O(1) time) injectively mapped to an integer not exceeding 2σ3τ = O(

√
n) and

hence Lchild needs O(n/ logσ n) space.
(c) A lookup table LWA that for every node v of T3τ−1 and every d ∈ [0 . . 3τ −1), maps the pair (iv, d) to iu,

where u = WA(v, d) and iv (resp. iu) is the pointer to v (resp. u). Since iv < 2σ3τ−1 and τ = O(log n),
each pair (iv, d) can be injectively mapped to an integer not exceeding O(

√
n log n) and hence LWA

needs O(n/ logσ n) space.
(d) An array storing the pointers to leaves of T3τ−1 in the left-to-right order. Since the number of leaves is

O(σ3τ−1), the array needs O(n/ logσ n) space.

In total, CST(T) takes O(n/ logσ n) space.

Copyright © 2023
Copyright for this paper is retained by the authors5166

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Remark 7.1. Note that T3τ−1 corresponds to Tst truncated at depth 3τ − 1. The key reason motivating this
definition is that the pair (b, e) = (RangeBeg(str(v), T),RangeEnd(str(v), T)) for every node v of T3τ−1 at depth
3τ − 1 that corresponds to an implicit node of Tst (in the middle of an edge connecting some node v′ of Tst to one
of its children v′′) satisfies (b, e) = (RangeBeg(str(v′′), T),RangeEnd(str(v′′), T)). In all our uses, this is sufficient,
and the value sdepth(v′′) is never needed.

7.1.2 Navigation Primitives

Mapping from Tst to T3τ−1 For any explicit node v of Tst, we define mapTst,T3τ−1
(v) as the deepest explicit

node u of T3τ−1 such that str(u) is a prefix of str(v).

Lemma 7.1. Let v be an explicit node of Tst and u = mapTst,T3τ−1
(v). Then, sdepth(v) ≥ 3τ − 1 holds if and only

if sdepth(u) = 3τ − 1. Moreover,

1. If sdepth(v) ≥ 3τ − 1 then str(u) = str(v)[1 . . 3τ−1].
2. Otherwise (i.e., if sdepth(v) < 3τ − 1), str(u) = str(v).

Proof. 1. If sdepth(v) ≥ 3τ − 1 then str(v)[1 . . 3τ−1] ∈ S3τ−1. Therefore, by definition of T3τ−1, there exists a
node u′ in T3τ−1 satisfying str(u′) = str(v)[1 . . 3τ−1]. Since str(u′) is a prefix of str(v) and u′ is a leaf of T3τ−1,
we thus have u′ = u, and hence str(u) = str(v)[1 . . 3τ−1].

2. Let sdepth(v) < 3τ − 1 and X = str(v). Since v is explicit, there exists distinct c, c′ ∈ Σ such that
Xc and Xc′ occur in T . By |X| < 3τ − 1, T3τ−1 therefore has an explicit node u′ satisfying str(u′) = X. By
sdepth(u′) = sdepth(v), we thus have u′ = u and hence str(u) = str(v).

The equivalence follows immediately from the two items. □

Lemma 7.2. Let v be an explicit node of Tst. Let i1 = lrank(v) + 1, i2 = rrank(v), y1 = rankB3τ−1,1(i1 − 1) + 1,
y2 = rankB3τ−1,1(i2 − 1) + 1, u1 (resp. u2) be the y1th (resp. y2th) leftmost leaf of T3τ−1, and u = LCA(u1, u2).
Then, mapTst,T3τ−1

(v) = u.

Proof. By definition of T3τ−1 and Ashort (Section 5.1), if û is the kth leftmost leaf of T3τ−1, then str(û) = Ashort[k].
Thus, str(u1) = Ashort[y1] and str(u2) = Ashort[y2]. Denote Q = str(v) and consider two cases:

• Let sdepth(v) ≥ 3τ − 1. Denote X = Q[1 . . 3τ−1]. By i1 = lrank(v) + 1 and i2 = rrank(v),
we then have SA[i1],SA[i2] ∈ Occ(Q,T) ⊆ Occ(X,T). By definition of B3τ−1 and Ashort, positions
y1 = rankB3τ−1,1(i1−1)+1 and y2 = rankB3τ−1,1(i2−1)+1 then satisfy Ashort[y1] = Ashort[y2] = X. Thus, by
the above observation, str(u1) = str(u2) = X and hence, by Observation 4.1, str(u) = X = str(v)[1 . . 3τ − 1].
Consequently, by Lemma 7.1(1) and since all nodes of T3τ−1 have different value of str, this yields
mapTst,T3τ−1

(v) = u.
• Let us now assume sdepth(v) < 3τ − 1. Let v1 (resp. v2) be the i1th (resp. i2th) leftmost leaf of Tst.

Then, str(v1) = T [SA[i1] . . n] and str(v2) = T [SA[i2] . . n]. By i1 = lrank(v) + 1 and i2 = rrank(v) we have
v = LCA(v1, v2). Thus, by Observation 4.1, lcp(T [SA[i1] . . n], T [SA[i2] . . n]) = sdepth(v) = |Q|. Observe
now that:

– By definition of Ashort and B3τ−1, the string Ashort[y1] (resp. Ashort[y2]) is a prefix of T [SA[i1] . . n]
(resp. T [SA[i2] . . n]). Thus, it holds lcp(Ashort[y1], Ashort[y2]) ≤ lcp(T [SA[i1] . . n], T [SA[i2] . . n]) = |Q|.

– On the other hand, since Q is a prefix of str(v1) = T [SA[i1] . . n] and str(v2) = T [SA[i2] . . n], and it holds
|Ashort[y1]| = min(3τ − 1, n− SA[i1] + 1), |Ashort[y2]| = min(3τ − 1, n− SA[i2] + 1), and |Q| < 3τ − 1,
we obtain that Q is a prefix of Ashort[y1] and Ashort[y2]. Thus, lcp(Ashort[y1], Ashort[y2]) ≥ |Q|.

We thus proved that Q is a prefix of Ashort[y1] and Ashort[y2], and lcp(Ashort[y1], Ashort[y2]) = |Q|. Thus,
since str(u1) = Ashort[y1] and str(u2) = Ashort[y2], we obtain from Observation 4.1, that u = LCA(u1, u2)
satisfies str(u) = Q. By Lemma 7.1(2) and since all nodes of T3τ−1 have different value of str, this yields
mapTst,T3τ−1

(v) = u. □

Proposition 7.1. Let v be an explicit node of Tst. Given CST(T) and repr(v), in O(1) time we can compute the
pointer to the node mapTst,T3τ−1

(v).

Copyright © 2023
Copyright for this paper is retained by the authors5167

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Denote (b, e) = repr(v), i1 = b+ 1, and i2 = e. First, in O(1) time we compute y1 = rankB3τ−1,1(i1 − 1) + 1
and y2 = rankB3τ−1,1(i2 − 1) + 1. In O(1) time we then retrieve the y1th and y2th leftmost leaves u1 and u2 of
T3τ−1 (respectively). Finally, using the LCA structure for T3τ−1, we compute in O(1) time the pointer to node
u = LCA(u1, u2) of T3τ−1. By Lemma 7.2, we then have mapTst,T3τ−1

(v) = u. □

Proposition 7.2. Let v be an explicit node of Tst. Given CST(T) and repr(v), we can in O(1) time check if v is
periodic. If v is not periodic, then in O(1) we can additionally determine if it holds sdepth(v) < 3τ − 1.

Proof. First, using Proposition 7.1, in O(1) time we compute the pointer to u = mapTst,T3τ−1
(v). If

sdepth(u) = 3τ − 1 then by Lemma 7.1 it holds sdepth(v) ≥ 3τ − 1, and we can in O(1) time determine if
v is periodic by checking if per(X) ≤ 1

3τ for X = str(v)[1 . . 3τ−1] = str(u) (stored with u) using the lookup table
Lper. If sdepth(u) < 3τ − 1, then by Lemma 7.1, we have sdepth(v) < 3τ − 1, and hence v is nonperiodic. Note
that in the above algorithm, whenever v is nonperiodic, we always know if sdepth(v) < 3τ − 1. Thus, we can
additionally return this information at no extra cost. Each of the steps takes O(1) time. □

7.1.3 Implementation of LCA(u, v)

Lemma 7.3. Let v1 and v2 be explicit nodes of Tst. Then,

mapTst,T3τ−1
(LCA(v1, v2)) = LCA(mapTst,T3τ−1

(v1),mapTst,T3τ−1
(v2)).

Proof. Let u1 = mapTst,T3τ−1
(v1), u2 = mapTst,T3τ−1

(v2), v = LCA(v1, v2), and u = LCA(u1, u2). Then, the
claim is that mapTst,T3τ−1

(v) = u. Denote ℓ = lcp(str(v1), str(v2)) and recall that by Observation 4.1, we have
sdepth(v) = ℓ. We consider two cases:

• First, assume sdepth(v) ≥ 3τ − 1. By sdepth(v1) ≥ sdepth(v) ≥ 3τ − 1, we obtain from Lemma 7.1(1) and
Observation 4.1 that str(u1) = str(v1)[1 . . 3τ−1] = str(v)[1 . . 3τ−1]. Analogously, str(u2) = str(v)[1 . . 3τ−1],
and consequently, str(u) = str(v)[1 . . 3τ−1]. Since all nodes in T3τ−1 have different values of str, by
Lemma 7.1(1), this implies u = mapTst,T3τ−1

(v).
• Let us now assume sdepth(v) < 3τ − 1. We will show that then str(u) = str(v). Since all nodes in
T3τ−1 have different values of str, by Lemma 7.1(2), this immediately implies u = mapTst,T3τ−1

(v). We
first show that sdepth(u1) ≥ ℓ. Consider two cases. If sdepth(v1) ≥ 3τ − 1, then by Lemma 7.1(1),
str(u1) = str(v1)[1 . . 3τ − 1], i.e., sdepth(u1) = 3τ − 1 > sdepth(v) = ℓ. Otherwise, by Lemma 7.1(2),
it holds str(u1) = str(v1), and thus also sdepth(u1) = sdepth(v1) ≥ sdepth(v) = ℓ. By the analogous
argument, sdepth(u2) ≥ ℓ. Recall now that, by definition, str(u1) (resp. str(u2)) is a prefix of
str(v1) (resp. str(v2)). Thus, str(u1)[1 . . ℓ] = str(v1)[1 . . ℓ] = str(v2)[1 . . ℓ] = str(u2)[1 . . ℓ]. Denoting
ℓ′ = lcp(str(u1), str(u2)), we therefore have ℓ′ ≥ ℓ. On the other hand, str(u1) (resp. str(u2)) being a prefix
of str(v1) (resp. str(v2)), implies ℓ′ ≤ ℓ. Consequently, ℓ′ = ℓ. By Observation 4.1, we therefore obtain
str(u) = str(LCA(u1, u2)) = str(u1)[1 . . ℓ

′] = str(v1)[1 . . ℓ] = str(LCA(v1, v2)) = str(v). □

Proposition 7.3. Let v1 and v2 be explicit nodes of Tst. Given CST(T) and the pairs repr(v1) and repr(v2),
we can in O(1) time check if sdepth(LCA(v1, v2)) ≥ 3τ − 1. If so, in O(1) time we can additionally determine
if LCA(v1, v2) is periodic. Otherwise (i.e., if sdepth(LCA(v1, v2)) < 3τ − 1) in O(1) time we can compute
repr(LCA(v1, v2)).

Proof. Denote v = LCA(v1, v2). First, using Proposition 7.1, in O(1) time we compute pointers to u1 =
mapTst,T3τ−1

(v1) and u2 = mapTst,T3τ−1
(v2) of T3τ−1. Then, using the LCA structure for T3τ−1, we compute in

O(1) time the pointer to node u = LCA(u1, u2) of T3τ−1. By Lemma 7.3, we now have mapTst,T3τ−1
(v) = u.

If sdepth(u) = 3τ − 1, by Lemma 7.1 it holds sdepth(v) ≥ 3τ − 1 and str(u) = str(v)[1 . . 3τ−1], and thus
we can in O(1) determine if v is periodic by checking if per(X) ≤ 1

3τ for X = str(u) (stored with u) using
the lookup table Lper. Otherwise (i.e., if sdepth(u) < 3τ − 1), by Lemma 7.1 we have sdepth(v) < 3τ − 1
and str(u) = str(v). Thus, we return that v is nonperiodic and in O(1) time we obtain the pair repr(v) =
(RangeBeg(str(v), T),RangeEnd(str(v), T)) = (RangeBeg(str(u), T),RangeEnd(str(u), T)) using the lookup table
Lrange on str(u). Each of the steps takes O(1) time. □

Copyright © 2023
Copyright for this paper is retained by the authors5168

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7.1.4 Implementation of child(v, c)

Lemma 7.4. Let v be an explicit internal node of Tst satisfying sdepth(v) < 3τ − 1. Let u = mapTst,T3τ−1
(v). For

any c ∈ [0 . . σ), child(v, c) = ⊥ holds if and only if child(u, c) = ⊥. Moreover, if child(v, c) ̸= ⊥ then, letting
u′ = child(u, c), it holds

repr(child(v, c)) = (RangeBeg(str(u′), T),RangeEnd(str(u′), T)).

Proof. By Lemma 7.1(2), u satisfies str(u) = str(v). Thus, since T3τ−1 is a compact trie of substrings of T of
length 3τ − 1, we immediately obtain that for any c ∈ [0 . . σ), child(v, c) ̸= ⊥ if and only if child(u, c). Let
us assume for some c ∈ [0 . . σ), it holds child(v, c) = v′ ̸= ⊥. If sdepth(v′) ≤ 3τ − 1, then by definition of
T3τ−1, the node u′ = child(u, c) must satisfy str(v′) = str(u′). This implies the claim immediately. Otherwise
(sdepth(v′) > 3τ − 1), u′ satisfies sdepth(u′) = 3τ − 1, and corresponds to the implicit node of Tst on the edge con-
necting v to v′. By definition of suffix tree, however, letting S be such that str(v)S = str(v′)[1 . . 3τ−1],
we have (RangeBeg(str(v′), T),RangeEnd(str(v′), T))=(RangeBeg(str(v)S, T),RangeEnd(str(v)S, T)) =
(RangeBeg(str(u′), T),RangeEnd(str(u′), T)), which by definition of repr implies the claim. □

Proposition 7.4. Let v be an explicit internal node of Tst satisfying sdepth(v) < 3τ − 1. Given CST(T), repr(v),
and c ∈ [0 . . σ), we can in O(1) time compute repr(child(v, c)).

Proof. First, using Proposition 7.1, in O(1) time we compute a pointer to u = mapTst,T3τ−1
(v). Using the lookup

table Lchild, in O(1) time we check if child(u, c) = ⊥. If so, then by Lemma 7.4, it holds child(v, c) = ⊥ and
we return repr(child(v, c)) = (0, 0). Otherwise (i.e., child(u, c) ̸= ⊥), we obtain a pointer to u′ = child(u, c). By
Lemma 7.4, we then have repr(child(v, c)) = (RangeBeg(str(u′), T),RangeEnd(str(u′), T)), which we obtain using
the lookup table Lrange on str(u′). Each of the steps takes O(1) time. □

7.1.5 Implementation of pred(v, c)

Proposition 7.5. Let v be an explicit internal node of Tst satisfying sdepth(v) < 3τ − 1. Given CST(T), repr(v),
and c ∈ [0 . . σ), we can in O(1) time compute RangeBeg(str(v)c, T).

Proof. First, using Proposition 7.1 we compute a pointer to u = mapTst,T3τ−1
(v). By sdepth(v) < 3τ − 1 and

Lemma 7.1(2), node u satisfies str(u) = str(v). Thus, we have RangeBeg(str(v)c, T) = RangeBeg(str(u)c, T).
Next, we compute Y = str(u)c (recall, that str(u) is stored with u). Using the lookup table Lrange, we then
compute and return RangeBeg(Y, T). Each of the steps takes O(1) time. □

7.1.6 Implementation of WA(v, d)

Lemma 7.5. Let v be an explicit node of Tst and d be such that 0 ≤ d ≤ |str(v)| and d < 3τ − 1. Then, letting
u = mapTst,T3τ−1

(v) and u′ = WA(u, d), it holds

repr(WA(v, d)) = (RangeBeg(str(u′), T),RangeEnd(str(u′), T)).

Proof. Denote v′ = WA(v, d). We consider two cases:

• First, assume sdepth(v) ≥ 3τ − 1. By Lemma 7.1(1), we then have str(u) = str(v)[1 . . 3τ−1]. Therefore,
utilizing one of the assumptions about d, we have d < 3τ − 1 = sdepth(u), i.e., u′ is well-defined (see
Section 4.1). Moreover, this implies that for any ancestor v̄ of v at depth at most 3τ − 1, there exist
a corresponding ancestor ū of u and there exists a one-to-one mapping between ancestors of v̄ in Tst
and ancestors of ū in T3τ−1 (with corresponding nodes having equal root-to-node labels). Therefore, if
sdepth(v′) ≤ 3τ − 1 then str(u′) = str(v′) and the claim follows. Otherwise (sdepth(v′) > 3τ − 1), by
d < 3τ − 1, we must have u′ = u and u′ then corresponds to the implicit node on the edge connecting v′ to
parent(v′). This implies repr(v′) = (RangeBeg(str(u′), T),RangeEnd(str(u′), T)).

• Let us now assume sdepth(v) < 3τ − 1. By Lemma 7.1(2), we then have str(u) = str(v). In particular,
utilizing one of the assumptions on d, we have d ≤ sdepth(v) = sdepth(u), i.e., u′ is well-defined (see
Section 4.1). Moreover, this implies that there is a one-to-one correspondence between ancestors of v in Tst
and ancestors or u in T3τ−1. In particular, str(v′) = str(u′), which implies the claim. □

Copyright © 2023
Copyright for this paper is retained by the authors5169

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proposition 7.6. Let v be an explicit node of Tst. Given CST(T), repr(v), and an integer d satisfying
0 ≤ d ≤ |str(v)| and d < 3τ − 1, in O(1) time we can compute repr(WA(v, d)).

Proof. First, using Proposition 7.1, we compute a pointer to node u = mapTst,T3τ−1
(v). Then, using the

lookup table LWA, in O(1) time we obtain the pointer to u′ = WA(u, d). By Lemma 7.5, we then have
repr(WA(v, d)) = (RangeBeg(str(u′), T),RangeEnd(str(u′), T)), which is obtained using the lookup table Lrange

on str(u′). Each of the steps takes O(1) time. □

7.1.7 Construction Algorithm

Proposition 7.7. Given the packed representation of T ∈ [0 . . σ)n, we can construct CST(T) in O(n/ logσ n)
time.

Proof. First, in O(n/ logσ n) time we construct CSA(T) using Proposition 5.3. Note that during the construction,
we compute the frequency fX = |Occ(X,T)| for every X ∈ [0 . . σ)≤3τ−1 (note that by definition of Occ(X,T)
(Section 2), we have fX = n for the empty string X = ε).

Next, we construct the trie T3τ−1 and the associated data structures. Observe that for every X ∈ [0 . . σ)≤3τ−1,
the trie T3τ−1 contains an explicit node v satisfying str(v) = X if and only if fX > 0, and either |X| = 3τ − 1
or |X| < 3τ − 1 and there exist distinct c, c′ ∈ [0 . . σ) such that fXc > 0 and fXc′ > 0. 10 Thus, given any
X, we can in O(σ) time check if there exists a node of T3τ−1 corresponding to X. Moreover, if such v exists
and |X| > 0 then to find X ′ satisfying str(parent(v)) = X ′, it suffices to compute the longest prefix X ′ of X
such that Lrange for X ′ is different from Lrange for X. Thus, such X ′ can be computed in O(τ) = O(log n) time.
Using the above observations, we construct T3τ−1 as follows. We maintain a lookup table Lnode that for any
X ∈ [0 . . σ)≤3τ−1 maps the integer int(X) to a pointer to the node v of T3τ−1 satisfying str(v) = X if such v
exists. By int(X) ∈ [0 . . σ6τ), the table needs O(σ6τ) = O(n/ logσ n) space and its initialization takes O(n/ logσ n)
time. During the construction, nodes are stored in a dynamic array with amortized O(1)-time insertion at the
end, and pointers are implemented as indexes of this array. We enumerate all X ∈ [0 . . σ)≤3τ−1 in the order of
non-decreasing length, and in case of ties, in lexicographical order. For each X, using the above method in O(σ)
time we check whether there should be a node in T3τ−1 satisfying str(v) = X. If so, we create a new node v, add
it to the array of nodes, and update the lookup table Lnode. Associated with v we store the string X encoded as
int(X) and the length |X| = sdepth(v). If |X| > 0, in O(log n) time we then compute the longest prefix X ′ of X
for which (RangeBeg(X ′, T),RangeEnd(X ′, T)) ̸= (RangeBeg(X,T),RangeEnd(X,T)) (utilizing the lookup table
Lrange), and then using Lnode obtain v′ satisfying str(v′) = X ′. We then set parent(v) = v′ and add v to the list
of children of v′, updating also the links between children of v′. Over all X ∈ [0 . . σ)≤3τ−1, the construction takes
O(σ3τ−1(σ + log n)) = O(n/ logσ n) time. After constructing T3τ−1, we augment it with auxiliary structures as
follows:

(a) In O(σ3τ−1) = O(n/ logσ n) time we preprocess T3τ−1 for O(1)-time LCA queries using the structure
from [10].

(b) Next, we perform a traversal of T3τ−1. For each node v different from the root, we obtain the pointer to
p = parent(v) and c = str(v)[|str(p)|+ 1]. We then injectively map (ip, c) (where ip is the pointer to p) to an
integer x not exceeding 2σ3τ = O(

√
n) and set Lchild[x] := iv, where iv is the pointer to v. The construction

takes O(
√
n) = O(n/ logσ n) time.

(c) Next, starting from each node v of T3τ−1 we compute the pointer to WA(v, d) for every d ∈ [0 . . 3τ − 1). It
suffices to perform one traversal towards the roots and thus this takes O(log n) time per node (in total for
all d). For each computed node v′, we map the pair (iv, d) (where iv is the pointer to v) to an integer x not
exceeding O(

√
n log n) and set LWA[x] := iv′ , where iv′ is the pointer to v′. Including the initialization of

LWA, the construction takes O(
√
n log n) = O(n/ logσ n) time.

(d) Finally, we perform the in-order traversal of the tree, collecting the leaves of T3τ−1 in an array. By the
bound on the number of nodes, this takes O(n/ logσ n) time. □

10Note, that this holds also for X = ε because we defined fε = n and assumed in Section 2 that T contains at least two distinct
symbols.

Copyright © 2023
Copyright for this paper is retained by the authors5170

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7.2 The Nonperiodic Nodes

In this section, we describe a data structure used to perform operations on nonperiodic nodes (see Definition 7.1)
in O(logϵ n) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 7.2.1).
We then show how using this structure to implement some basic navigational routines (Section 7.2.2). Next,
we describe the query algorithms for the fundamental operations (Sections 7.2.3 to 7.2.6). Finally, we show the
construction algorithm (Section 7.2.7).

7.2.1 The Data Structure

Definitions Let S be a τ -synchronizing set, as defined in Section 5.2.1. Recall (Section 6.2.1) that AS[1 . . n
′] is

an array defined by AS[i] = slexi . Let TS denote the compact trie of the set {T [i . . n] : i ∈ S}.

Components The data structure to handle nonperiodic nodes consists of three components:

1. The index core CST(T) (Section 7.1.1). It takes O(n/ logσ n) space.
2. The data structure from Section 5.2.1 using O(n/ logσ n) space.
3. The compact trie TS represented as in Proposition 4.1 (i.e., for the array AS[1 . . n

′] defined above). By
n′ = O(n/ logσ n) and Proposition 4.1, it needs O(n/ logσ n) space.

In total, the data structure takes O(n/ logσ n) space.

7.2.2 Navigation Primitives

Mapping from Tst to TS For any explicit nonperiodic node v of Tst satisfying sdepth(v) ≥ 3τ − 1, we define
mapTst,TS

(v) = u as a node of TS satisfying str(v) = X[1 . . δtext] · str(u), where X ∈ D is a prefix of str(v)
and δtext = |X| − 2τ (such X exists and is unique, since for Y = str(v)[1 . . 3τ−1] it holds Occ(Y, T) ̸= ∅ and
per(Y) > 1

3τ ; see Section 5.2).

Lemma 7.6. Let v be an explicit nonperiodic node of Tst satisfying sdepth(v) ≥ 3τ − 1.

1. The node mapTst,TS
(v) is well-defined.

2. Let X ∈ D be a prefix of str(v), bX = RangeBeg(X,T), i1 = lrank(v) + 1, i2 = rrank(v), y1 =
selectW,X(i1 − bX), y2 = selectW,X(i2 − bX), u1 (resp. u2) be the y1th (resp. y2th) leftmost leaf of TS,
and u = LCA(u1, u2). Then, mapTst,TS

(v) = u.

Proof. 1. Let X ∈ D be a prefix of str(v) and let δtext = |X| − 2τ . If v is a leaf of Tst, then for i ∈ Occ(str(v), T),
it holds that X is a prefix of T [i . . n]. Thus, by the consistency of S, i + δtext ∈ S, and consequently, there
exist u in TS such that str(v) = X[1 . . δtext] · str(u). Otherwise (i.e., v is an internal node), consider any two
different leaves v1 and v2 in the subtree rooted in v such that v = LCA(v1, v2). Let i1 ∈ Occ(str(v1), T)
and i2 ∈ Occ(str(v2), T). Then, str(v) is a prefix of both T [i1 . . n] and T [i2 . . n]. Since X is a prefix of
str(v), X is therefore also a prefix of T [i1 . . n] and T [i2 . . n]. Thus, again by the consistency of S, we have
i1 + δtext, i2 + δtext ∈ S. Consequently, there exist nodes u1 and u2 in TS satisfying str(v1) = X[1 . . δtext] · str(u1)
and str(v2) = X[1 . . δtext] · str(u2). By Observation 4.1 applied to v1 and v2, for ℓ = lcp(str(v1), str(v2)) it
holds str(v) = str(v1)[1 . . ℓ]. On the other hand, applying Observation 4.1 to u1 and u2 implies that for
ℓ′ = lcp(str(u1), str(u2)) and u = LCA(u1, u2), it holds str(u) = str(u1)[1 . . ℓ

′]. Finally, by δtext < |X|, we have
ℓ = lcp(str(v1), str(v2)) = lcp(X[1 . . δtext] · str(u1), X[1 . . δtext] · str(u2)) = δtext + lcp(str(u1), str(u2)) = δtext + ℓ′.
Thus,

str(v) = str(v1)[1 . . ℓ]

= X[1 . . δtext] · str(u1)[1 . . ℓ− δtext]

= X[1 . . δtext] · str(u1)[1 . . ℓ
′]

= X[1 . . δtext] · str(u),

i.e., there exists u in TS satisfying str(v) = X[1 . . δtext] · str(u), i.e., mapTst,TS
(v) is well-defined.

Copyright © 2023
Copyright for this paper is retained by the authors5171

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

2. Let δtext = |X| − 2τ . To see that y1 and y2 in the definition are well-defined (i.e., that i1 − bX , i2 − bX ∈
[1 . . rankW,X(n′)]), recall first that (similarly as in the proof of Lemmas 5.1 and 6.1) by consistency of S, there exists
a bijection (given by j 7→ j + δtext) between Occ(X,T) and positions s ∈ S such that T∞[s− δtext . . s+ 2τ) = X.
In particular, by definition of W [1 . . n′], this implies rankW,X(n′) = |Occ(X,T)| = eX − bX , where eX =
RangeEnd(X,T). Observe now that in Tst, for any node v, it holds lrank(v) = RangeBeg(str(v), T) and
rrank(v) = RangeEnd(str(v), T) (this property does not hold, e.g., in TS). Thus, since X is a prefix of str(v), we
have bX < i1 ≤ i2 ≤ eX . Combining with the above, we thus obtain 1 ≤ i1 − bX ≤ i2 − bX ≤ rankW,X(n′).

Let v1 (resp. v2) be the i1th (resp. i2th) leftmost leaf of Tst. Denote str(v) = Q. By i1, i2 ∈ (bX . . eX], the
string X is a prefix of str(v1) and str(v2). Since v = LCA(v1, v2), X is therefore also a prefix of str(v). To
show str(v) = X[1 . . δtext] · str(u), it thus suffices to show str(u) = Q(δtext . . |Q|]. To this end, we will prove
that Q(δtext . . |Q|] is a prefix of str(u1) and str(u2), and that it holds lcp(str(u1), str(u1)) = |Q| − δtext. By
u = LCA(u1, u2), this immediately implies the claim. Let i ∈ (bX . . eX]. By Lemma 5.1 for j = SA[i], if
slexy = SA[i] + δtext then δ(SA[i]) = rankW,X(y). Since by definition of bX it holds δ(SA[i]) = i− bX , we obtain
i − bX = rankW,X(y). Since y also satisfies T [slexy − δtext . . s

lex
y + 2τ) = X, it must hold y = selectW,X(i − bX).

For such y we have slexy = SA[i] + δtext. Applied for i1 and i2, we obtain slexy1
= SA[i1] + δtext and

slexy2
= SA[i2] + δtext. Recall now that the sequence (slexi)i∈[1. .n′] contain the positions in S sorted according

to the lexicographical order of the corresponding suffixes of T . This implies that the y1th (resp. y2th) leftmost
leaf u1 (resp. u2) of TS satisfies str(u1) = T [slexy1

. . n] = T [SA[i1] + δtext . . n] (resp. str(u2) = T [slexy2
. . n] =

T [SA[i2] + δtext . . n]). Since all suffixes of T with starting positions in SA(lrank(v) . . rrank(v)] have Q as a
prefix, and we clearly have i1, i2 ∈ (lrank(v) . . rrank(v)], we immediately obtain that Q(δtext . . |Q|] is a prefix
of both T [SA[i1] + δtext . . n] = str(u1) and T [SA[i2] + δtext . . n] = str(u2). To show the second claim, we first
note that we have lcp(T [SA[i1] . . n], T [SA[i2] . . n]) = lcp(str(v1), str(v2)) = |str(LCA(v1, v2))| = |str(v)| = |Q|.
Together with δtext ≤ |X| ≤ |Q|, this implies lcp(str(u1), str(u2)) = lcp(T [SA[i1]+δtext . . n], T [SA[i2]+δtext . . n]) =
lcp(T [SA[i1] . . n], T [SA[i2] . . n])−δtext = |Q|−δtext. As noticed earlier, these two facts yield str(u) = Q(δtext . . |Q|],
and consequently str(v) = X[1 . . δtext] · str(u). Thus, mapTst,TS

(v) = u. □

Proposition 7.8. Let v be an explicit nonperiodic node of Tst satisfying sdepth(v) ≥ 3τ − 1. Given the data
structure from Section 7.2.1 and the pair repr(v), we can in O(logϵ n) time compute the pointer to mapTst,TS

(v).

Proof. Denote (b, e) = repr(v). First, using Proposition 7.1, in O(1) time we compute pointer to u = mapTst,T3τ−1
(v).

By Lemma 7.1(1), we have str(u) = str(v)[1 . . 3τ−1]. Letting Y = str(u), we then have per(Y) > 1
3τ and

Occ(Y, T) ̸= ∅. This implies (see Section 5.2.1) that there exists a unique prefix X ∈ D of str(v). Using LD on Y ,
in O(1) time we obtain X. Using the lookup table Lrange (stored as part of CST(T); see Section 7.1), in O(1) time
we compute bX = RangeBeg(X,T). Using the lookup table Lrev stored in the structure from Section 7.2.1, we
then obtain X. Next, letting i1 = b+ 1 and i2 = e (recall that repr(v) = (lrank(v), rrank(v))), using Theorem 2.2
in O(logϵ n) time we compute y1 = selectW,X(i1 − bX) and y2 = selectW,X(i2 − bX). Then, using Proposition 4.1 in
O(1) time we compute the pointers to the y1th and y2th leftmost leaves u1 and u2 (respectively) of TS. Then, again
using Proposition 4.1, in O(1) time we compute and return the pointer to u = LCA(u1, u2). By Lemma 7.6(2), it
holds mapTst,TS

(v) = u. □

Mapping from TS to Tst For any string X ∈ [0 . . σ)≤3τ−1 and any node u of the trie TS, we define
pseudoinvTS

(X,u) = (bX + δ1, bX + δ2), where bX = RangeBeg(X,T), z1 = lrank(u), z2 = rrank(u),
δ1 = rankW,X(z1), and δ2 = rankW,X(z2).

Remark 7.2. Note that the mapping from Tst to TS is not necessarily injective, and hence it may not have an
inverse. To perform the mapping from TS to Tst, we will use the above function. Note, however, that although the
pair pseudoinvTS

(X,u) is always defined, not for every X and u it yields repr(v) for some node v of Tst. Below
we show a simple but useful condition where it does. In the following sections we show more subtle uses of
pseudoinvTS

(X,u) (see, e.g., Remark 7.3).

Lemma 7.7. Let v be an explicit nonperiodic node of Tst satisfying sdepth(v) ≥ 3τ − 1 and let u = mapTst,TS
(v).

Then, letting X ∈ D be a prefix of str(v), it holds repr(v) = pseudoinvTS
(X,u).

Proof. First, recall that D ⊆ [0 . . σ)≤3τ−1 (Section 5.2.1). Thus, pseudoinvTS
(X,u) is well-defined. Denote

bX = RangeBeg(X,T), Q = str(v), δtext = |X| − 2τ , Qsuf = Q(δtext . . |Q|]. Note that str(u) = Qsuf . Since

Copyright © 2023
Copyright for this paper is retained by the authors5172

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

{slexi }i∈[1. .n′] = S and (T [slexi . . n])i∈[1. .n′] is lexicographically sorted, it holds by definition of TS that lrank(u) =
|{i ∈ [1 . . n′] : T [slexi . . n] ≺ Qsuf}| and (lrank(u) . . rrank(u)] = {i ∈ [1 . . n′] : Qsuf is a prefix of T [slexi . . n]} (in
particular, we have {slexi }i∈(lrank(u). .rrank(u)] = Occ(Qsuf , T)). Therefore, letting δ1 = rankW,X(lrank(u)) and
δ2 = rankW,X(rrank(u)), by Lemma 6.1, it holds repr(v) = (RangeBeg(Q,T),RangeEnd(Q,T)) = (bX + δ1, bX +
δ2) = pseudoinvTS

(X,u). □

Proposition 7.9. Let u be a node of TS. Given the data structure from Section 7.2.1, a pointer to u, and the
value int(X) for some X ∈ [0 . . σ)≤3τ−1, we can in O(logϵ n) time compute the pair pseudoinvTS

(X,u).

Proof. First, using the Lrange lookup table (stored as part of CST(T); see Section 7.1), we compute bX =
RangeBeg(X,T). Using the lookup table Lrev stored in the structure from Section 7.2.1, we compute X. In O(1)
we obtain z1 = lrank(u) and z2 = rrank(u) (Proposition 4.1). Finally, using Theorem 2.2, in O(logϵ n) time we
compute δ1 = rankW,X(z1) and δ2 = rankW,X(z2), and return pseudoinvTS

(X,u) = (bX + δ1, bX + δ2). □

7.2.3 Implementation of LCA(u, v)

Lemma 7.8. Let v1 and v2 be explicit nodes of Tst such that LCA(v1, v2) is nonperiodic and it holds
sdepth(LCA(v1, v2)) ≥ 3τ − 1. Then, v1 and v2 are nonperiodic and it holds sdepth(v1) ≥ 3τ − 1 and
sdepth(v2) ≥ 3τ − 1. Moreover,

mapTst,TS
(LCA(v1, v2)) = LCA(mapTst,TS

(v1),mapTst,TS
(v2)).

Proof. Denote v = LCA(v1, v2) and Y = str(v)[1 . . 3τ−1]. By the assumption, we have per(Y) > 1
3τ . Since by

definition of v, the string Y is a prefix of str(v1) and str(v2), we thus obtain that v1 and v2 are nonperiodic and
it holds sdepth(v1) ≥ 3τ − 1 and sdepth(v2) ≥ 3τ − 1. Thus, u1 = mapTst,TS

(v1) and u2 = mapTst,TS
(v2) are

well-defined (see Section 7.2.2).
Let u = LCA(u1, u2), ℓ′ = sdepth(u), and ℓ = sdepth(v). By Observation 4.1, we have ℓ =

lcp(str(v1), str(v2)), ℓ
′ = lcp(str(u1), str(u2)), str(v) = str(v1)[1 . . ℓ], and str(u) = str(u1)[1 . . ℓ

′]. Let now X ∈ D
be a prefix of str(v) (such X exists and is unique since per(Y) > 1

3τ and since str(v) being a substring of
T implies Occ(Y, T) ̸= ∅; see also Section 5.2.1). By definition of mapTst,TS

(v1) and mapTst,TS
(v2), we have

str(v1) = X[1 . . δtext] · str(u1) and str(v2) = X[1 . . δtext] · str(u2), where δtext = |X|−2τ . This implies ℓ = δtext+ ℓ′,
and consequently, str(v) = str(v1)[1 . . ℓ] = X[1 . . δtext] · str(u1)[1 . . ℓ − δtext] = X[1 . . δtext] · str(u1)[1 . . ℓ

′] =
X[1 . . δtext] · str(u). Since v is an explicit node of Tst, and no two nodes of TS have the same value of str, we
therefore obtain mapTst,TS

(v) = u. □

Proposition 7.10. Let v1 and v2 be explicit nodes of Tst such that LCA(v1, v2) is nonperiodic and satisfies
sdepth(LCA(v1, v2)) ≥ 3τ − 1. Given the data structure from Section 7.2.1 and the pairs repr(v1) and repr(v2),
we can in O(logϵ n) time compute repr(LCA(v1, v2)).

Proof. Denote v = LCA(v1, v2). By Lemma 7.8, v1 and v2 are nonperiodic and it holds sdepth(v1) ≥ 3τ − 1
and sdepth(v2) ≥ 3τ − 1. Thus, u1 = mapTst,TS

(v1) and u2 = mapTst,TS
(v2) are well-defined (see Section 7.2.2).

Using Proposition 7.8, in O(logϵ n) time we compute pointers to u1 and u2. Next, using the representation of
TS stored as part of the structure in Section 7.2.1, and Proposition 4.1, in O(1) time we compute a pointer to
u = LCA(u1, u2). By Lemma 7.8, it holds mapTst,TS

(v) = u. We exploit this connection to compute repr(v). Since
v is nonperiodic, letting Y = str(v)[1 . . 3τ−1], it holds per(Y) > 1

3τ . Since str(v) is a substring of T , we have
Occ(Y, T) ̸= ∅. Together with per(Y) > 1

3τ , this implies (see Section 5.2.1) that there exists a unique prefix
X ∈ D of str(v). We compute X as follows. First, using Proposition 7.1, in O(1) time we compute pointers to
u′
1 = mapTst,T3τ−1

(v1) and u′
2 = mapTst,T3τ−1

(v2) of T3τ−1. Then, using the LCA structure for T3τ−1, we compute
in O(1) time the pointer to node u′ = LCA(u′

1, u
′
2) of T3τ−1. By Lemma 7.3, we now have mapTst,T3τ−1

(v) = u′.
Moreover, by sdepth(v) ≥ 3τ − 1 and Lemma 7.1(1), str(u′) = Y . Using LD on Y , in O(1) time we thus obtain X.
Using Proposition 7.9, in O(logϵ n) time, we then compute the pair (b, e) = pseudoinvTS

(X,u). As noted above,
mapTst,TS

(v) = u. By Lemma 7.7, we therefore have repr(v) = (b, e). □

7.2.4 Implementation of child(v, c)

Lemma 7.9. Let c ∈ [0 . . σ) and v be an explicit nonperiodic internal node of Tst satisfying sdepth(v) ≥ 3τ − 1.
Let u = mapTst,TS

(v). If child(u, c) = ⊥ then child(v, c) = ⊥. Otherwise, letting u′ = child(u, c), it holds

Copyright © 2023
Copyright for this paper is retained by the authors5173

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

repr(child(v, c)) =

{
(b, e) if b ̸= e,

(0, 0) otherwise,

where (b, e) = pseudoinvTS
(X,u′) and X ∈ D is a prefix of str(v).

Proof. Denote P = str(v)c, δtext = |X| − 2τ , and P ′ = P (δtext . . |P |]. Observe that since str(v) is nonperiodic
and it holds sdepth(v) ≥ 3τ − 1, P is also nonperiodic and satisfies |P | ≥ 3τ − 1. Let (bpre, epre) be such
that bpre = |{i ∈ [1 . . n′] : T [slexi . . n] ≺ P ′}| and (bpre . . epre] = {i ∈ [1 . . n′] : P ′ is a prefix of T [slexi . . n]}.
Recall now that u satisfies str(u) = str(v)(δtext . . |str(v)|], or equivalently, str(u)c = P ′. By definition of TS
and child(u, c), we thus obtain that child(u, c) = ⊥ implies epre − bpre = 0. Consequently, by Lemma 6.1,
it holds |Occ(P, T)| = RangeEnd(P, T) − RangeBeg(P, T) = (bX + rankW,X(epre)) − (bX + rankW,X(bpre)) =
rankW,X(bpre)− rankW,X(bpre) = 0, and thus child(v, c) = ⊥.

Let us now assume child(u, c) = u′ ̸= ⊥. By definition of pseudoinvTS
(X,u′), we then have (b, e) =

(bX + rankW,X(lrank(u′)), bX + rankW,X(rrank(u′))), where bX = RangeBeg(X,T). By definition of TS and
child(u, c), however, we also have bpre = lrank(u′) and epre = rrank(u′). Thus, by Lemma 6.1,

(RangeBeg(P, T),RangeEnd(P, T)) = (bX + rankW,X(bpre), bX + rankW,X(epre))

= (bX + rankW,X(lrank(u′)), bX + rankW,X(rrank(u′)))

= (b, e).

By the above, if b ̸= e, then Occ(P, T) ̸= ∅. This implies child(v, c) ̸= ⊥ and repr(child(v, c)) =
(RangeBeg(P, T),RangeEnd(P, T)). We thus indeed have repr(child(v, c)) = (b, e). Otherwise (i.e., if b = e), by the
above we have Occ(P, T) = ∅. This implies child(v, c) = ⊥ and hence indeed we also have repr(child(v, c)) = (0, 0).
□

Remark 7.3. Note that even though in the above result we have mapTst,TS
(v) = u and child(u, c) contains

information used to determine child(v, c), it does not necessarily hold that mapTst,TS
(child(v, c)) = child(u, c).

The procedure is nevertheless correct, because such one-to-one correspondence is not required. The details of
this mapping, however, become relevant for the WA(v, d) operation and are explained in detail in the proof of
Lemma 7.11.

Proposition 7.11. Let v be an explicit nonperiodic internal node of Tst satisfying sdepth(v) ≥ 3τ − 1. Given the
data structure from Section 7.2.1, repr(v), and c ∈ [0 . . σ), in O(logϵ n) time we can compute repr(child(v, c)).

Proof. First, using Proposition 7.8, in O(logϵ n) time we compute a pointer to u = mapTst,TS
(v). Then, using the

representation of TS stored as part of the structure in Section 7.2.1, and Proposition 4.1, in O(log log n) time we
check if child(u, c) = ⊥. If so, by Lemma 7.9 we have child(v, c) = ⊥, and thus we return repr(child(v, c)) = (0, 0).
Otherwise (child(u, c) ̸= ⊥), we obtain a pointer to u′ = child(u, c). Next, using Proposition 7.1 in O(1) time we
compute a pointer to u′′ = mapTst,T3τ−1

(v). By Lemma 7.1(1), sdepth(v) ≥ 3τ − 1 implies sdepth(u′′) = 3τ − 1
and str(u′′) = str(v)[1 . . 3τ−1]. We obtain Y = str(u′′) (stored with u′′) in O(1) time. Using LD on Y , in O(1)
time we then compute a prefix X ∈ D of Y (see Section 7.2.2). Finally, using Proposition 7.9, in O(logϵ n) time
we compute the pair (b, e) = pseudoinvTS

(X,u′). If b = e then by Lemma 7.9 we return repr(child(v, c)) = (0, 0).
Otherwise, we return repr(child(v, c)) = (b, e). □

7.2.5 Implementation of pred(v, c)

Lemma 7.10. Let c ∈ [0 . . σ) and v be an explicit nonperiodic internal node of Tst satisfying sdepth(v) ≥ 3τ − 1.
Let u = mapTst,TS

(v). If pred(u, c) = ⊥ then RangeBeg(str(v)c, T) = RangeBeg(str(v), T). Otherwise, letting
u′ = pred(u, c), it holds

RangeBeg(str(v)c, T) = e,

where (b, e) = pseudoinvTS
(X,u′) and X ∈ D is a prefix of str(v).

Copyright © 2023
Copyright for this paper is retained by the authors5174

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. We start by characterizing RangeBeg(str(v), T) using Lemma 6.1 for pattern str(v). First, note that
v is nonperiodic and it holds sdepth(v) ≥ 3τ − 1. On the other hand, by definition, we have str(u) =
str(v)(δtext . . |str(v)|], where δtext = |X| − 2τ . Finally, by definition of TS, we have |{i ∈ [1 . . n′] : T [slexi . . n] ≺
str(v)(δtext . . |str(v)|]}| = lrank(u). Thus, by Lemma 6.1, we have RangeBeg(str(v), T) = bX + rankW,X(lrank(u)),
where bX = RangeBeg(X,T).

Denote P = str(v)c and P ′ = P (δtext . . |P |]. Since str(v) is nonperiodic and satisfies |str(v)| ≥ 3τ − 1, P is
also nonperiodic and it holds |P | ≥ 3τ − 1. Note also that by str(u) = str(v)(δtext . . |str(v)|], we have str(u)c = P ′.

Let us first assume pred(u, c) = ⊥. By definition, this implies that |{i ∈ [1 . . n′] : T [slexi . . n] ≺ str(u)c}| =
lrank(u). Equivalently, by str(u)c = P ′, |{i ∈ [1 . . n′] : T [slexi . . n] ≺ P ′}| = lrank(u). By Lemma 6.1 for
pattern P = str(v)c we thus obtain RangeBeg(str(v)c, T) = bX + rankW,X(lrank(u)). Since above we also
established that RangeBeg(str(v), T) = bX + rankW,X(lrank(u)), we have thus proved that pred(u, c) = ⊥ implies
RangeBeg(str(v)c, T) = RangeBeg(str(v), T).

Let us now assume pred(u, c) = u′ ̸= ⊥. Observe that by definition of pred(u, c), this implies |{i ∈
[1 . . n′] : T [slexi . . n] ≺ str(u)c}| = rrank(u′). By Lemma 6.1 applied for pattern P = str(v)c, we thus
obtain RangeBeg(str(v)c, T) = bX + rankW,X(rrank(u′)). On the other hand, observe that by definition of
(b, e) = pseudoinvTS

(X,u′), we have e = bX + rankW,X(rrank(u′)). We thus obtain RangeBeg(str(v)c, T) = e. □

Proposition 7.12. Let v be an explicit nonperiodic internal node of Tst satisfying sdepth(v) ≥ 3τ − 1. Given the
data structure from Section 7.2.1, repr(v), and c ∈ [0 . . σ), in O(logϵ n) time we can compute RangeBeg(str(v)c, T).

Proof. First, using Proposition 7.8, in O(logϵ n) time we compute a pointer to u = mapTst,TS
(v). Then, using the

representation of TS stored as part of the structure in Section 7.2.1, and Proposition 4.1, in O(log log n) time we
check if pred(u, c) = ⊥. If so, by Lemma 7.10 we have RangeBeg(str(v)c, T) = RangeBeg(str(v), T) and hence
we return RangeBeg(str(v), T) (given as input) as the result. Otherwise (pred(u, c) ̸= ⊥), we obtain a pointer
to u′ = pred(u, c). Next, using Proposition 7.1 in O(1) time we compute a pointer to u′′ = mapTst,T3τ−1

(v).
By Lemma 7.1(1), sdepth(v) ≥ 3τ − 1 implies sdepth(u′′) = 3τ − 1 and str(u′′) = str(v)[1 . . 3τ−1]. We obtain
Y = str(u′′) (stored with u′′) in O(1) time. Using LD on Y , in O(1) time we then compute a prefix X ∈ D of Y (see
Section 7.2.2). Finally, using Proposition 7.9, in O(logϵ n) time we compute the pair (b, e) = pseudoinvTS

(X,u′).
By Lemma 7.10, it holds RangeBeg(str(v)c, T) = e. We thus return e as the answer. □

7.2.6 Implementation of WA(v, d)

Lemma 7.11. Let v be an explicit nonperiodic node of Tst and d be an integer satisfying 3τ − 1 ≤ d ≤ |str(v)|.
Then, letting u = mapTst,TS

(v), it holds

repr(WA(v, d)) = pseudoinvTS
(X, û),

where X ∈ D is a prefix of str(v), δtext = |X| − 2τ , and û = WA(u, d− δtext).

Proof. Denote f (0)(x) = x and f (i)(x) = f(f (i−1)(x)) for i ∈ Z+. Let

V := {parent(i)(v) : i ∈ Z≥0 and sdepth(parent(i)(v)) ≥ |X|} and
U := {parent(i)(u) : i ∈ Z≥0 and sdepth(parent(i)(u)) ≥ 2τ}

For any v′ ∈ V, the node u′ = mapTst,TS
(v′) satisfies str(v′) = X[1 . . δtext] · str(u′). In particular, str(u) =

str(v)(δtext . . |str(v)|]. Since for any v′ ∈ V , str(v′) = str(v)[1 . . |str(v′)|], we thus obtain that for u′ = mapTst,TS
(v′)

it holds str(u′) = str(v′)(δtext . . |str(v′)|] = str(v)(δtext . . |str(v′)|] = str(u)[1 . . |str(u′)|], i.e., u′ is an ancestor of u.
Moreover, sdepth(u′) = |str(v′)| − δtext ≥ |X| − δtext = 2τ . Consequently, U ′ := {mapTst,TS

(v′) : v′ ∈ V} satisfies
U ′ ⊆ U . Note also, that v′ ̸= v′′ implies mapTst,TS

(v′) ̸= mapTst,TS
(v′′).

For any u′ ∈ U , denote (s(u′), t(u′)) = pseudoinvTS
(X,u′). We prove the following property of U ′. Let

w,w′ ∈ U be such that w′ = parent(w). We claim, that (s(w), t(w)) ̸= (s(w′), t(w′)) implies w′ ∈ U ′. Denote
Q′ = str(w′) and Q = X[1 . . δtext] ·Q′. The proof consists of three steps:

• First, we show that it holds {SA[i]}i∈(s′. .t′] = Occ(Q,T), where s′ = s(w′) and t′ = t(w′). By the above
discussion, we have str(v) = X[1 . . δtext] · str(u). Thus, X(δtext . . |X|] is a prefix of str(u). On the other hand,

Copyright © 2023
Copyright for this paper is retained by the authors5175

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

by w′ ∈ U , str(w′) is a prefix of str(u) and we have |str(w′)| ≥ 2τ . Consequently, X(δtext . . |X|] is a prefix of
Q′. As noted in the proof of Lemma 7.7, by the consistency of S we then have {slexi }i∈(lrank(w′). .rrank(w′)] =
Occ(Q′, T) and consequently {SA[i]}i∈(s′. .t′] = Occ(X[1 . . δtext] ·Q′, T) = Occ(Q,T).

• Second, we prove that there exists a node v′ in Tst such that str(v′) = Q. First, note that {SA[i]}i∈(s′. .t′] =
Occ(Q,T) already implies that there exists some node v′ of Tst such that repr(v′) = (s′, t′) and Q is a prefix
of str(v′). It thus remains to show that str(v′) = Q. For this, it suffices to show that there exists c, c′ ∈ [0 . . σ)
such that c ̸= c′, Occ(Qc, T) ̸= ∅, and Occ(Qc′, T) ̸= ∅. Observe that by (s(w′), t(w′)) ̸= (s(w), t(w)), there
exists a child w′′ ̸= w of w′ such that t(w′′) > s(w′′). This yields an occurrence of str(w′) preceded in
T with X[1 . . δtext]. The same holds for str(w), since s(w′) ≤ s(u) < t(u) ≤ t(w′). In other words, for
c = str(w)[|Q′|+ 1] and c′ = str(w′′)[|Q′|+ 1] we have c ̸= c′, Occ(Qc, T) ̸= ∅, and Occ(Qc′, T) ̸= ∅. This
concludes the proof of str(v′) = Q.

• Finally, recall that by definition, the node mapTst,TS
(v′) satisfies str(v′) = X[1 . . δtext] · str(mapTst,TS

(v′)).
Thus, by str(v′) = Q = X[1 . . δtext] · Q′ and str(w′) = Q′, we must have mapTst,TS

(v′) = w′. This implies
w′ ∈ U ′.

We are now ready to prove the main claim. Let v′ = WA(v, d) and v′′ = parent(v′). We then have
sdepth(v′′) < d ≤ sdepth(v′). Moreover, by |X| ≤ 3τ − 1 ≤ d, we have v′ ∈ V. Let u′ = mapTst,TS

(v′). Then,
u′ ∈ U ′. By the above discussion, we also have d − δtext ≤ sdepth(û) ≤ sdepth(u′). By 3τ − 1 ≤ d this implies
2τ = |X| − δtext ≤ 3τ − 1− δtext ≤ d− δtext ≤ sdepth(û), i.e., û ∈ U . Let k ∈ Z≥0 be such that û = parent(k)(u′).
This implies that parent(i)(u′) ̸∈ U ′ holds for i ∈ [1 . . k], since otherwise it would contradict v′ = WA(v, d). If
k = 0 then we trivially have (s(u′), t(u′)) = (s(û), t(û)). Otherwise, by (the contraposition of) the above property
of U ′ we have

(s(u′), t(u′)) = (s(parent(u′)), t(parent(u′)))

= . . .

= (s(parent(k)(u′)), t(parent(k)(u′)))

= (s(û), t(û)).

By Lemma 7.7, we obtain repr(WA(v, d)) = repr(v′) = pseudoinvTS
(X,u′) = (s(u′), t(u′)) = (s(û), t(û)) =

pseudoinvTS
(X, û). □

Proposition 7.13. Let v be an explicit nonperiodic node of Tst satisfying 3τ − 1 ≤ |str(v)|. Given the data
structure from Section 7.2.1, repr(v), and an integer d satisfying 3τ − 1 ≤ d ≤ |str(v)|, in O(logϵ n) time we can
compute repr(WA(v, d)).

Proof. First, using Proposition 7.8, in O(logϵ n) time we compute a pointer to u = mapTst,TS
(v). Next, using

Proposition 7.1 in O(1) time we compute a pointer to u′ = mapTst,T3τ−1
(v). By Lemma 7.1(1), sdepth(v) ≥ 3τ − 1

implies sdepth(u′) = 3τ − 1 and str(u′) = str(v)[1 . . 3τ−1]. We obtain Y = str(u′) (stored with u′) in O(1) time.
Using LD on Y , in O(1) time we then compute a prefix X ∈ D of Y (see Section 7.2.2). Let δtext = |X| − 2τ .
Finally, using the representation of TS stored as part of the structure in Section 7.2.1, and Proposition 4.1, in
O(log log n) time we compute a pointer to û = WA(u, d− δtext). Using Proposition 7.9, in O(logϵ n) time we then
compute and return pseudoinvTS

(X, û), which by Lemma 7.11 is equal to repr(WA(v, d)). □

7.2.7 Construction Algorithm

Proposition 7.14. Given CST(T), we can in O(nmin(1, log σ/
√
log n)) time and O(n/ logσ n) working space

augment it into a data structure from Section 7.2.1.

Proof. First, we combine Propositions 5.3 and 5.6 (recall that the packed representation of T is a component of
CST(T)) to construct in O(nmin(1, log σ/

√
log n)) time and using O(n/ logσ n) working space the data structure

from Section 5.2.1. In particular, this constructs (slexi)i∈[1. .n′]. We then initialize AS[i] = slexi for i ∈ [1 . . n′] and
in O(n/ logσ n) time construct TS represented using Proposition 4.1. □

Copyright © 2023
Copyright for this paper is retained by the authors5176

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7.3 The Periodic Nodes

In this section, we describe a data structure used to perform operations on periodic nodes (see Definition 7.1) in
O(log log n) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 7.3.1).
We then show how using this structure to implement some basic navigational routines (Section 7.3.2). Next,
we describe the query algorithms for the fundamental operations (Sections 7.3.3 to 7.3.6). Finally, we show the
construction algorithm (Section 7.3.7).

7.3.1 The Data Structure

Definitions Let v be a periodic node of Tst. We define L-root(v) := L-root(str(v)), e(v) := e(str(v)),
L-head(v) := L-head(str(v)), L-exp(v) := L-exp(str(v)), L-tail(v) := L-tail(str(v)), efull(v) := efull(str(v)), and
type(v) := type(str(v)). Let q = |R′−|. Recall (Section 5.3.2) that (rlexi)i∈[1. .q] is a sequence containing all elements
k ∈ R′− sorted first according to L-root(k) and in case of ties, by T [efull(k) . . n]. Recall also (Section 6.3.2) that
Z = {efull(j)−|pow(L-root(j))| : j ∈ R′−} and AZ[1 . . q] is an array defined by AZ[i] = efull(rlexi)−|pow(Hi)|, where
Hi = L-root(rlexi) and pow(Hi) = H∞

i [1 . . |Hi|⌈ τ
|Hi|⌉]. Let TZ denote the compact trie of the set {T [i . . n] : i ∈ Z}.

Components The data structure consists of two parts. The first part consists of the following three components:

1. The index core CST(T) (Section 7.1). It takes O(n/ logσ n) space.
2. The first part of the structure from Section 5.3.2 using O(n/ logσ n) space.
3. The compact trie TZ represented as in Proposition 4.1 (i.e., for the array AZ[1 . . q] defined as above). By

q = O(n/ logσ n) and Proposition 4.1, it needs O(n/ logσ n) space.

The second part of the structure consists of the symmetric counterparts of the above components adapted
according to Lemma 5.4 (see also Section 5.3.2)

In total, the data structure takes O(n/ logσ n) space.

7.3.2 Navigation Primitives

Mapping from Tst to TZ For any periodic explicit node v of Tst satisfying e(v) ≤ |str(v)| and type(v) = −1, we
define mapTst,TZ

(v) = u as a node of TZ satisfying str(u) = pow(H) · str(v)[efull(v) . . |str(v)|], where H = L-root(v).

Lemma 7.12. Let v be a periodic explicit node v of Tst such that e(v) ≤ |str(v)| and type(v) = −1.

1. The node mapTst,TZ
(v) is well-defined.

2. Let i1 = lrank(v) + 1, i2 = rrank(v), y1 and y2 be such that efull(rlexy1
) = efull(SA[i1]) and efull(rlexy2

) =
efull(SA[i2]) (respectively), u1 and u2 be the y1th and y2th leftmost leaf of TZ (respectively), and u =
LCA(u1, u2). Then, mapTst,TZ

(v) = u.

Proof. Denote s = L-head(v), H = L-root(v), p = |H|, Q = str(v), and Qsuf = Q[efull(Q) . . |Q|]. Note that by
efull(Q) ≤ e(Q) ≤ |Q|, it holds Qsuf ̸= ε.

1. We start by observing that by Lemma 6.2 and Lemma 6.4(2), for every i ∈ Occ(Q,T), it holds i ∈ R−
s,H and

efull(i)− i = efull(Q)− 1. Note that this implies efull(i) ∈ Occ(Qsuf , T). To show that TZ has a node u satisfying
str(u) = pow(H) ·Qsuf , consider two cases:

• Assume that v is a leaf. Let i ∈ Occ(str(v), T). By the above, i ∈ R−
H . Let j be the smallest integer

such that [j . . i] ⊆ R. It holds j ∈ R′ and moreover, by Lemma 5.5, j ∈ R−
H and efull(j) = efull(i). Thus,

by efull(i) ∈ Occ(Qsuf , T) (see above), we have efull(j) ∈ Occ(Qsuf , T). Finally, by i ∈ Occ(Q,T) and
|Q| = n − i + 1, we have |Qsuf | = |Q| − efull(Q) + 1 = |Q| − (efull(Q) − 1) = (n − i + 1) − (efull(i) − i) =
n−efull(i)+1 = n−efull(j)+1. We have thus shown that there exists j ∈ R′−

H such that efull(j) ∈ Occ(Qsuf , T)
and n− efull(j) + 1 = |Qsuf |. By definition of AZ[1 . . q] (see Section 6.3.2) this implies that there exists a leaf
u of TZ such that str(u) = pow(H) · T [efull(j) . . n] = pow(H) ·Qsuf .

• Assume that v is an internal node. Consider the leftmost and the rightmost leaves v1 and v2 (respectively)
in the subtree rooted in v. Letting i1 ∈ Occ(str(v1), T) and i2 ∈ Occ(str(v2), T), we have i1 ̸= i2
and i1, i2 ∈ Occ(Q,T). Thus, i1, i2 ∈ R−

H and efull(i1) − i1 = efull(Q) − 1 = efull(i2) − i2. Therefore,
efull(i1) ̸= efull(i2) and, by Lemma 5.5, i1 and i2 are in different maximal contiguous blocks of positions

Copyright © 2023
Copyright for this paper is retained by the authors5177

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

from R, i.e., letting j1 (resp. j2) be the smallest integer such that [j1 . . i1] ⊆ R (resp. [j2 . . i2] ⊆ R),
we have j1, j2 ∈ R′ and j1 ̸= j2. By Lemma 5.5, it then holds j1, j2 ∈ R−

H , efull(j1) = efull(i1), and
efull(j2) = efull(i2). Thus, by efull(i1), e

full(i2) ∈ Occ(Qsuf , T) (following from i1, i2 ∈ Occ(Q,T)), we
obtain efull(j1), e

full(j2) ∈ Occ(Qsuf , T). Next, we show LCE(efull(j1), e
full(j2)) = |Qsuf |. As noted earlier,

efull(i1) − i1 = efull(i2) − i2 = efull(Q) − 1. Thus, by LCE(i1, i2) = |str(LCA(v1, v2))| = |str(v)| = |Q| and
efull(Q)−1 ≤ e(Q)−1 < |Q|, we have |Q| = LCE(i1, i2) = efull(Q)−1+LCE(efull(i1), e

full(i2)). Equivalently,
LCE(efull(i1), e

full(i2)) = |Q| − efull(Q) + 1 = |Qsuf |, which by efull(j1) = efull(i1) and efull(j2) = efull(i2)
yields LCE(efull(j1), e

full(j2)) = |Qsuf |. We have thus shown that there exist distinct positions j1, j2 ∈ R′−
H

satisfying efull(j1), e
full(j2) ∈ Occ(Qsuf , T) and LCE(efull(j1), e

full(j1)) = |Qsuf |. By definition of AZ[1 . . q],
this implies that there exists leaves u1 and u2 of TZ such that str(u1) = pow(H) · T [efull(j1) . . n] and
str(u2) = pow(H) · T [efull(j2) . . n] (see the proof of Proposition 6.8) and consequently, by Observation 4.1,
the node u = LCA(u1, u2) satisfies str(u) = pow(H) ·Qsuf .

2. To show that y1 and y2 are well-defined note that for every i ∈ R−, letting j be the smallest integer satisfying
[j . . i] ⊆ R, we have j ∈ R′− and (by Lemma 5.5) efull(j) = efull(i). Consequently, since {rlexi }i∈[1. .q] = R′−,
taking y ∈ [1 . . q] such that rlexy = j, it holds efull(rlexy) = efull(i). Therefore, by SA[i1],SA[i2] ∈ Occ(Q,T) ⊆ R−,
y1, y2 ∈ [1 . . q] are (uniquely) defined.

We start by showing that str(u1) = pow(H) · T [efull(SA[i1]) . . n] and str(u2) = pow(H) · T [efull(SA[i2]) . . n].
As noted in Section 6.3.2, the sequence (T [AZ[i] . . n])i∈[1. .q] is lexicographically sorted. Thus, by definition of
u1 and u2, we have str(u1) = T [AZ[y1] . . n] and str(u2) = T [AZ[y2] . . n]. As also noted in Section 6.3.2, for
every i ∈ [1 . . q], T [AZ[i] . . n] = pow(Hi) · T [efull(rlexi) . . n], where Hi = L-root(rlexi). Combining that with the
assumptions efull(rlexy1

) = efull(SA[i1]) and efull(rlexy2
) = efull(SA[i2]), we therefore obtain

str(u1) = pow(Hy1) · T [efull(SA[i1]) . . n],

str(u2) = pow(Hy2) · T [efull(SA[i2]) . . n].

To obtain str(u1) = pow(H) ·T [efull(SA[i1]) . . n] and str(u2) = pow(H) ·T [efull(SA[i2]) . . n] it thus remains to show
Hy1

= Hy2
= H. To this end, we first note that by efull(rlexy1

) = efull(SA[i1]), (resp. efull(rlexy2
) = efull(SA[i2])), and

Lemmas 5.5 and 5.7, the positions efull(rlexy1
) and SA[i1] (resp. efull(rlexy2

) and SA[i2]) belong to the same contiguous
block of elements from R. Next, by |Q| ≥ 3τ − 1 and SA[i1] ∈ Occ(Q,T), we obtain lcp(T [SA[i1] . . n], Q) ≥ 3τ − 1.
Thus, by combining Lemma 5.5 and Lemma 6.2, we have Hy1 = L-root(rlexy1

) = L-root(SA[i1]) = L-root(Q) =
L-root(v) = H. Analogously, Hy2 = H.

By the above and Observation 4.1, we thus have str(u) = str(LCA(u1, u2)) = pow(H) ·
T [efull(SA[i1]) . . e

full(SA[i1]) + ℓ), where ℓ = LCE(efull(SA[i1]), e
full(SA[i2])). Moreover, by SA[i1] ∈ Occ(Q,T),

we have efull(SA[i1]) ∈ Occ(Qsuf , T). Thus, it remains to show that ℓ = |Qsuf |. For this, recall that by
SA[i1],SA[i2] ∈ Occ(Q,T) we also have efull(SA[i1])− SA[i1] = efull(SA[i2])− SA[i2] = efull(Q)− 1. Therefore, by
efull(Q)− 1 ≤ e(Q)− 1 < |Q|, we have |Q| = LCE(SA[i1],SA[i2]) = efull(Q)− 1 + LCE(efull(SA[i1]), e

full(SA[i2])).
Equivalently, LCE(efull(SA[i1]), e

full(SA[i2])) = |Q| − efull(Q) + 1 = |Qsuf |. We therefore obtained str(u) =
pow(H) ·Qsuf , i.e., mapTst,TZ

(v) = u. □

Proposition 7.15. Let v be a periodic explicit node v of Tst satisfying e(v) ≤ |str(v)| and type(v) = −1. Given
the data structure from Section 7.3.1 and repr(v), we can in O(log log n) time compute the pointer to the node
mapTst,TZ

(v).

Proof. Denote (b, e) = repr(v), i1 = b + 1, and i2 = e. First, using Proposition 5.12 in O(1) time we compute
the L-exp(SA[i1]) and δs(SA[i1]). Next, as explained in the proof of Proposition 5.13, given i1, L-exp(SA[i1]),
and δs(SA[i1]), in O(log log n) time we compute y1 ∈ [1 . . q] satisfying efull(rlexy1

) = efull(SA[i1]). Note that
Proposition 5.13 requires that SA[i1] ∈ R−, which holds by SA[i1] ∈ Occ(Q,T), where Q = str(v) (see the proof of
Lemma 7.12). Analogously we compute y2 ∈ [1 . . q] satisfying efull(rlexy2

) = efull(SA[i2]). Then, using Proposition 4.1
in O(1) time we compute the pointers to the y1th and y2th leftmost leaves u1 and u2 (respectively) of TZ. Then,
again using Proposition 4.1, in O(1) time we compute and return the pointer to u = LCA(u1, u2). By Lemma 7.12,
it holds mapTst,TZ

(v) = u. □

Mapping from TZ to Tst Let u be a node of TZ such that there exists H ∈ Roots for which pow(H) is a
prefix of str(u). For any ℓ ≥ 0, we define pseudoinvTZ

(ℓ, u) as follows. If, letting s = ℓ mod |H| and k = ⌊ ℓ
|H|⌋,

Copyright © 2023
Copyright for this paper is retained by the authors5178

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

it holds P := {j ∈ R−
s,H : L-exp(j) = k} = ∅, then pseudoinvTZ

(ℓ, u) := (0, 0). Otherwise (i.e., P ̸= ∅), letting
bP, eP ∈ [0 . . n] be such that {SA[i]}i∈(bP. .eP] = P, bH , eH ∈ [0 . . q] be such that {rlexi }i∈(bH . .eH] = R′−

H , and letting
z1 = lrank(u) and z2 = rrank(u), we define pseudoinvTZ

(ℓ, u) := (eP − c1, eP − c2), where

c1 := rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, z1),

c2 := rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, z2).

Remark 7.4. To see that H is well-defined, recall (see the proof of Proposition 6.8) that {pow(H)}H∈Roots is
prefix-free. Thus, at most one element of {pow(H)}H∈Roots can be a prefix of str(u). Furthermore, since X ̸= Y
implies pow(X) ̸= pow(Y), pow(H) uniquely identifies H.

To see that bP and eP are well-defined, recall that by Lemma 5.4, if P ̸= ∅, then all positions in P occupy a
contiguous block in SA (see also the proof of Proposition 5.9).

Finally, to show that bH and eH are well-defined, note that pow(H) being a prefix of str(u) implies, by
definition of TZ, that there exists i ∈ [1 . . q] such that H = L-root(rlexi). Recall (see the proof of Proposition 5.10),
that for any i, i′ ∈ [1 . . q], i < i′ implies L-root(rlexi) ⪯ L-root(rlexi′). Thus, there exists a unique (bH , eH) (with
0 ≤ bH < eH ≤ q) such that {rlexi }i∈(bH . .eH] = R′−

H .

Remark 7.5. Note that similarly as for mapTst,TS
(see Section 7.2.2), the mapping mapTst,TZ

is not necessarily
injective, and hence it may not have an inverse (see also Remark 7.2). To perform the mapping from TZ to Tst,
we will use the above function. Although it is well-defined for every ℓ and u (specified as above), its value is not
always meaningful. Below we show a simple but useful condition where it is, and in the following sections we show
the more subtle uses.

Lemma 7.13. Let P ∈ [0 . . σ)m be a periodic pattern satisfying e(P) ≤ m and type(P) = −1. Denote
H = L-root(P), s = L-head(P), k = L-exp(P), ℓ = efull(P) − 1, and P ′ = pow(H) · P (ℓ . .m]. Assume that
P := {j ∈ R−

s,H : L-exp(j) = k} ≠ ∅ and let bP, eP ∈ [0 . . n] be such that {SA[i]}i∈(bP. .eP] = P and bH , eH ∈ [0 . . q]
be such that {rlexi }i∈(bH . .eH] = R′−

H . Finally, let (bpre, epre) be such that bpre = |{i ∈ [1 . . q] : T [AZ[i] . . n] ≺ P ′}|
and (bpre . . epre] = {i ∈ [1 . . q] : P ′ is a prefix of T [AZ[i] . . n]}. Then, it holds

(RangeBeg(P, T),RangeEnd(P, T)) = (eP − c1, eP − c2),

where c1 = rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, bpre) and c2 = rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, epre).

Proof. The proof consists of two steps:

1. First, we prove that |Occ(P, T)| = c1 − c2 = rcountAlen
(ℓ, epre) − rcountAlen

(ℓ, bpre). By Lemma 6.5,
Occ(P, T) is a disjoint union of Occa(P, T) and Occs(P, T) (see the beginning of Section 6.3.4 for definitions).
Moreover, since e(P) ≤ m, Lemma 6.6 and its symmetric version (adapted according to Lemma 6.2)
imply that Occa(P, T) = ∅. Thus, we need to prove |Occs(P, T)| = rcountAlen

(ℓ, epre) − rcountAlen
(ℓ, bpre).

By Lemma 6.4(2), it holds Occ(P, T) ⊆ R−. Thus, Occs(P, T) = Occs−(P, T). Recall now that
AZ[i] = efull(rlexi) − |pow(L-root(rlexi))|. Since the set {pow(H) : H ∈ Roots} is prefix-free, it follows,
letting Hj = L-root(j) (where j ∈ R), that

{rlexi }i∈(bpre. .epre] = {j ∈R′− : pow(H) · P (ℓ . .m] is a prefix of T [efull(j)− |pow(Hj)| . . n]}
= {j ∈R′− : pow(H) · P (ℓ . .m] is a prefix of pow(Hj) · T [efull(j) . . n]}
= {j ∈R′−

H : P (ℓ . .m] is a prefix of T [efull(j) . . n]}

By Lemma 6.7, we thus have |Occs−(P, T)| = |{i ∈ (bpre . . epre] : efull(rlexi) − rlexi ≥ efull(P) − 1}| =
rcountAlen

(ℓ, epre)− rcountAlen
(ℓ, bpre) (recall, that Alen[i] = efull(rlexi)− rlexi ; see Section 5.3.2).

2. Second, we prove that RangeBeg(P, T) = eP− c1. We start by observing that since P is periodic and satisfies
type(P) = −1, it follows from Lemmas 6.8 and 6.9 that RangeBeg(P, T) = RangeBeg(X,T) + δ(P, T) =
RangeBeg(X,T) + δa(P, T) − δs(P, T), where X = P [1 . . 3τ − 1]. On the other hand, combining the
equalities L-head(P) = s, L-root(P) = H, L-exp(P) = k, and type(P) = −1 with the definition of P yields

Copyright © 2023
Copyright for this paper is retained by the authors5179

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

RangeBeg(X,T) + δa(P, T) = eP. Consequently, we obtain RangeBeg(P, T) = eP − δs(P, T). It thus remains
to show δs(P, T) = c1. By utilizing that by definition of the sequence (rlexi)i∈[1. .q], for every i, i′ ∈ (bH . . eH],
i < i′ implies T [efull(rlexi) . . n] ⪯ T [efull(rlexi′) . . n], it follows by the above formula for {rlexi }i∈(bpre. .epre] that

{rlexi }i∈(bpre. .eH] = {j ∈ R′−
H : P (ℓ . .m] ⪯ T [efull(j) . . n]}.

By Lemma 6.10, we thus have δs(P, T) = |{i ∈ (bpre . . eH] : efull(rlexi) − rlexi ≥ efull(P) − 1}| =
rcountAlen

(ℓ, eH)− rcountAlen
(ℓ, bpre) = c1. □

Remark 7.6. Note that since the range (bpre . . epre] is well-defined even if epre − bpre = 0, the above lemma holds
even if |Occ(P, T)| = 0.

Lemma 7.14. Let v be an explicit periodic node of Tst such that e(v) ≤ |str(v)| and type(v) = −1. Let
u = mapTst,TZ

(v) and ℓ = efull(v)− 1. Then, it holds repr(v) = pseudoinvTZ
(ℓ, u).

Proof. Denote H = L-root(v), P = str(v), and (b, e) = pseudoinvTZ
(ℓ, u). Let s = ℓ mod |H|, k = ⌊ ℓ

|H|⌋, and
P = {j ∈ R−

s,H : L-exp(j) = k}. Note that we then have L-head(P) = (efull(P)− 1) mod |H| = s and L-exp(P) =
⌊ efull(P)−1

|H| ⌋ = k. Observe that this implies P ̸= ∅. To see this, consider any j ∈ Occ(str(v), T) = Occ(P, T). By
Lemma 6.2, it follows that j ∈ R, L-root(j) = L-root(P) = H, and L-head(j) = L-head(P) = s, i.e., j ∈ Rs,H .
Furthermore, by e(P) ≤ |P | and type(P) = −1 we obtain from Lemma 6.4(2) that L-exp(j) = L-exp(P) = k and
type(j) = type(P) = −1. Thus, j ∈ P and consequently P ̸= ∅. By definition of pseudoinvTZ

(ℓ, u), we thus obtain
that (b, e) = (eP − c1, eP − c2), where bP, eP ∈ [0 . . n] are such that {SA[i]}i∈(bP. .eP] = P, bH , eH ∈ [0 . . q] are such
that {rlexi }i∈(bH . .eH] = R′−

H , z1 = lrank(u), z2 = rrank(u), and

c1 = rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, z1),

c2 = rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, z2).

By definition of mapTst,TZ
(v), we have str(u) = pow(H) · P [efull(P) . . |P |]. Thus, denoting P ′ =

pow(H) · P [efull(P) . . |P |], by definition of TZ, we have lrank(u) = |{i ∈ [1 . . q] : T [AZ[i] . . n] ≺ P ′}|
and (lrank(u) . . rrank(u)] = {i ∈ [1 . . q] : P ′ is a prefix of T [AZ[i] . . n]}. By Lemma 7.13, this implies that
(RangeBeg(P, T),RangeEnd(P, T)) = (eP − (rcountAlen

(ℓ, eH)− rcountAlen
(ℓ, lrank(u))), eP − (rcountAlen

(ℓ, eH)−
rcountAlen

(ℓ, rrank(u)))) = (eP − c1, eP − c2) = (b, e). This immediately implies repr(v) = pseudoinvTZ
(ℓ, u). □

Proposition 7.16. Let H ∈ Roots and let u be a node of TZ such that pow(H) is a prefix of str(u). Given the
data structure from Section 7.3.1, a pointer to u, and integers int(H) and ℓ ≥ 0, we can in O(log log n) time
compute the pair pseudoinvTZ

(ℓ, u).

Proof. Let p := |H|. We first compute s := ℓ mod p and k = ⌊ ℓ
p⌋. Next, using the lookup tables Lpref and Lrange,

we compute in O(1) time the pair (bs,H , es,H) = (RangeBeg(X,T),RangeEnd(X,T)), where X = Pref3τ−1(s,H).
By Lemma 6.2, we then have that bs,H = es,H holds if and only if Rs,H = ∅, and if bs,H ̸= es,H then
{SA[i] : i ∈ (bs,H . . es,H]} = Rs,H . If bs,H = es,H , we return pseudoinvTZ

(ℓ, u) = (0, 0). Let us now assume
bs,H ̸= es,H .

Next, using the data structure from Section 5.3.2, as explained in the proof of Proposition 5.9, in O(1)
time we compute the pair (bP, eP) satisfying {SA[i]}i∈(bP. .eP] = P, where P = {j ∈ R−

s,H : L-exp(j) = k}. More
precisely, first, in O(1) time we compute d = rankBexp,1(es,H) − rankBexp,1(bs,H). If d = 0, then R−

s,H = ∅, and
hence we return pseudoinvTZ

(ℓ, u) = (0, 0). Otherwise, in O(1) time we retrieve kmin = Lminexp[int(X)]. Then,
letting kmax = kmin + d− 1, we have [kmin . . kmax] = {L-exp(j) : j ∈ R−

s,H}. If k ̸∈ [kmin . . kmax], then P = ∅, and
thus we return pseudoinvTZ

(ℓ, u) = (0, 0). Otherwise, we have two cases. Let p = rankBexp,1(bs,H). If k = kmin,
then in O(1) time we compute (bP, eP) = (bs,H , selectBexp,1(p + 1)). If k > kmin, in O(1) time we compute
(bP, eP) = (selectBexp,1(p+ k − kmin), selectBexp,1(p+ k + 1− kmin)).

For the final step, we first in O(1) time compute eH =
∑

H′⪯H |R′−
H′ | using the lookup table Lruns stored as

part of the structure from Section 5.3.2. Then, it holds that there exists bH < eH such that {rlexi }i∈(bH . .eH] = R′−
H .

Then, in O(1) time we obtain z1 = lrank(u) and z2 = rrank(u) (Proposition 4.1). Finally, in O(log log n) time
we compute c1 = rcountAlen

(ℓ, eH) − rcountAlen
(ℓ, z1) and c2 = rcountAlen

(ℓ, eH) − rcountAlen
(ℓ, z2) and return

pseudoinvTZ
(ℓ, u) = (eP − c1, eP − c2). The range counting queries are implemented using the structure from

Proposition 2.1 for the array A, which is stored as part of the structure from Section 5.3.2. □

Copyright © 2023
Copyright for this paper is retained by the authors5180

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Handling Nodes Satisfying e(v) > |str(v)| Next, we present a combinatorial result describing how to compute
the value e(v), and to check if it holds e(v) > |str(v)|. We then show how to compute (RangeBeg(P, T),
RangeEnd(P, T)) and (RangeBeg(Pc, T),RangeEnd(Pc, T)) for any periodic pattern P ∈ [0 . . σ)+ satisfying
e(P) > |P |. We will use it to efficiently perform queries on periodic nodes v of Tst satisfying e(v) > |str(v)|.

Lemma 7.15. Let v be an explicit periodic node of Tst. Let i1 = lrank(v) + 1 and i2 = rrank(v).

1. It holds SA[i1],SA[i2] ∈ R and e(v) = 1 +min(e(SA[i1])− SA[i1], e(SA[i2])− SA[i2]).
2. e(v) ≤ |str(v)| holds if and only if T [SA[i1] + e(v)− 1] = T [SA[i2] + e(v)− 1].

Proof. Denote ℓ = sdepth(v), b = lrank(v), and e = rrank(v).
1. Let s = L-head(v), H = L-root(v), p = |H|, and Q = str(v). By definition, we have b < e and

{SA[i]}i∈(b. .e] = Occ(Q,T). On the other hand, by |Q| ≥ 3τ − 1 and Lemma 6.2, for every j ∈ Occ(Q,T) it holds
j ∈ Rs,H . In particular, we thus obtain SA[i1],SA[i2] ∈ R.

Next, we prove the following two facts.

• First, we show that there exists t ∈ {1, 2} satisfying e(v) − 1 = e(SA[it]) − SA[it]. By definition, it holds
ℓ = LCE(SA[i1],SA[i2]) and T [SA[i1] . .SA[i1] + ℓ) = T [SA[i2] . .SA[i2] + ℓ). If e− b = 1, then any t ∈ {1, 2}
satisfies the claim, since then ℓ = n− SA[it] + 1, and thus it follows from SA[it] ∈ Occ(Q,T) that

e(v)− 1 = p+ lcp(Q(0 . . ℓ− p], Q(p . . ℓ])

= p+ lcp(T [SA[it] . .SA[it] + ℓ− p), T [SA[it] + p . . SA[it] + ℓ))

= p+ lcp(T [SA[it] . . n− p], T [SA[it] + p . . n])

= p+ LCE(SA[it],SA[it] + p)

= e(SA[it])− SA[it].

Assume now e−b > 1. Then, T [SA[i1]+ℓ] ̸= T [SA[i2]+ℓ]. 11 Thus, by T [SA[i1]+ℓ−p] = T [SA[i2]+ℓ−p] there
exists t ∈ {1, 2} such that T [SA[it]+ℓ] ̸= T [SA[it]+ℓ−p]. For such t, we have LCE(SA[it], p+SA[it]) ≤ ℓ−p
and hence e(SA[it]) − SA[it] = p + LCE(SA[it],SA[it] + p) ≤ ℓ. We therefore obtain e(SA[it]) − SA[it] =
p+lcp(T [SA[it] . .SA[it]+ ℓ−p), T [SA[it]+p . . SA[it]+ ℓ)). On the other hand, by Q = T [SA[it] . .SA[it]+ ℓ)
we have e(v)−1 = p+lcp(Q(0 . . ℓ−p], Q(p . . ℓ]) = p+lcp(T [SA[it] . .SA[it]+ℓ−p), T [SA[it]+p . . SA[it]+ℓ)).
Therefore, e(v)− 1 = e(SA[it])− SA[it].

• Second, we show that for every i ∈ (b . . e], it holds e(v) − 1 ≤ e(SA[i]) − SA[i]. For this, recall that
e(SA[i]) − SA[i] = p + LCE(SA[i],SA[i] + p). Therefore, by SA[i] ∈ Occ(Q,T), we obtain e(v) − 1 =
e(Q) − 1 = p + lcp(Q(0 . . ℓ − p], Q(p . . ℓ]) = p + lcp(T [SA[i] . .SA[i] + ℓ − p), T [SA[i] + p . . SA[i] + ℓ)) ≤
p+ LCE(SA[i],SA[i] + p) = e(SA[i])− SA[i].

By the above two facts, we obtain min(e(SA[i1])−SA[i1], e(SA[i2])−SA[i2]) = min(e(SA[it])−SA[it], e(SA[i3−t])−
SA[i3−t]) = e(v)− 1.

2. We start by showing that SA[i1] + e(v)− 1,SA[i2] + e(v)− 1 ≤ n. Observe that for every j ∈ R, by the
uniqueness of T [n], it holds e(j) ≤ n. Consider any i ∈ (b . . e]. Above, we proved e(v) − 1 ≤ e(SA[i]) − SA[i].
Thus, we obtain SA[i] + e(v) − 1 ≤ e(SA[i]) ≤ n. In particular, SA[i1] + e(v) − 1,SA[i2] + e(v) − 1 ≤ n. We
now prove the equivalence. Recall, that |str(v)| = ℓ = LCE(SA[i1],SA[i2]) holds by definition. Let us first
assume e(v) ≤ ℓ. By the assumption T [SA[i1] . .SA[i1] + ℓ) = T [SA[i2] . .SA[i2] + ℓ), this immediately implies
T [SA[i1] + e(v) − 1] = T [SA[i2] + e(v) − 1]. To show the opposite implication, assume by contraposition that
e(v) > ℓ. Since by definition we have e(v) ≤ |str(v)|+ 1, we must have e(v) = ℓ+ 1. Then, by definition of LCE,
we have T [SA[i1] + e(v)− 1] = T [SA[i1] + ℓ] ̸= T [SA[i2] + ℓ] = T [SA[i2] + e(v)− 1]. □

Proposition 7.17. Let P ∈ [0 . . σ)+ be a periodic pattern satisfying e(P) > |P |. Given the structure from
Section 7.3.1, and the values L-head(P), L-root(P), and |P |, we can in O(log log n) time compute the pair
(RangeBeg(P, T),RangeEnd(P, T)).

11To see that symbols T [SA[i1] + ℓ] and T [SA[i2] + ℓ] are well-defined, observe that by ℓ > 0 and b + 1 < e, it follows that
SA[i1] + ℓ− 1 ̸= SA[i2] + ℓ− 1. On the other hand, we have T [SA[i1] + ℓ− 1] = T [SA[i2] + ℓ− 1]. Thus, by the uniqueness of T [n] we
must have SA[i1] + ℓ− 1 < n and SA[i2] + ℓ− 1 < n

Copyright © 2023
Copyright for this paper is retained by the authors5181

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Denote s = L-head(P), H = L-root(P), and m = |P |. First, in O(1) time we compute k := L-exp(P) =
⌊m−s

|H| ⌋ and t := L-tail(P) = m − s − k|H|. Next, using the lookup table Lpref , in O(1) time we compute
X := Pref3τ−1(s,H) = P [1 . . 3τ−1].

Next, we compute |Occ(P, T)|. Recall that by Lemma 6.5, |Occ(P, T)| = |Occa(P, T)| + |Occs(P, T)| =
|Occa−(P, T)|+ |Occa+(P, T)|+ |Occs−(P, T)|+ |Occs+(P, T)| (see Section 6.3.4).

• To compute |Occa−(P, T)|, we proceed as in the proof of Proposition 6.7, except for one modification: Since
we already have L-head(P), L-root(P), and L-exp(P) (note that we do not need L-tail(P) here since we
assumed e(P) = |P |+ 1), we can skip the first step which takes O(1 +m/ logσ n) time. Note that after such
modification, we no longer need the packed representation of the whole pattern P , but only P [1 . . 3τ − 1],
which we computed above. The rest of the algorithm in Proposition 6.7 takes O(1) time. The structures
from Proposition 6.7 that we used (augmented bitvector Bexp and lookup tables Lminexp and Lrange) are
components of the structure from Section 7.3.1.

• To compute |Occs−(P, T)|, we proceed as in Proposition 6.8, except for two modifications. First, we again
already have L-head(P), L-root(P), and L-exp(P), which lets us skip the first step taking O(1 +m/ logσ n)
time. Second, rather than computing bpre and epre in O(m/ logσ n+ log log n) time, we use the lookup table
Lruns stored in the structure from Section 7.3.1. More precisely, bpre and epre are obtained in O(1) time
by looking up in Lruns the pair associated with the key (H,H ′), where H ′ is a length-t prefix of H (note
that P [efull(P) . .m] = H ′). The rest of the algorithm in Proposition 6.8 takes O(log log n) time. Again, the
components used in Proposition 6.8 are present in structure from Section 7.3.1.

The values |Occa+(P, T)| and |Occs+(P, T)| are computed analogously (see the proof of Proposition 6.9) using the
symmetric components of the structure from Section 7.3.1. We can thus compute |Occ(P, T)| in O(log log n) time.

The next step of the algorithm is to compute δ(P, T) (Section 6.3.4). Observe (see Section 6.3.1) that
e(P) > |P | implies type(P) = −1. Recall that for such P , by Lemma 6.9, δ(P, T) = δa(P, T)− δs(P, T).

• To compute δa(P, T), we proceed as in the proof of Proposition 6.10, employing the same modification as
when computing |Occa−(P, T)| above. Thus, the computation takes O(1) time. Proposition 6.10 uses the
structure from Proposition 6.7 and, as above, the used components are already present in the structure from
Section 7.3.1.

• To compute δs(P, T), we observe that for a periodic pattern P satisfying e(P) > |P |, it holds by Lemma 6.2(2)
that Poss(P, T) = Occs−(P, T). Consequently, we can compute δs(P, T) = |Occs−(P, T)| as above in
O(log log n) time.

Combining the above two steps, the computation of δ(P, T) takes O(log log n) time.
We use the above values to obtain (RangeBeg(P, T),RangeEnd(P, T)) as follows. By Lemma 6.8,

RangeBeg(P, T) = RangeBeg(X,T) + δ(P, T), where X = P [1 . . 3τ−1]. The value RangeBeg(X,T) is obtained
in O(1) time using the lookup table Lrange. We thus obtain RangeBeg(P, T). By definition, we then compute
RangeEnd(P, T) = RangeEnd(P, T) + |Occ(P, T)|. In total, the query takes O(log log n) time. □

Remark 7.7. Note that the above result holds even if Occ(P, T) = ∅. Thus, it is more general than the result
needed to support efficient processing of periodic nodes v of Tst satisfying e(v) > |str(v)|, since for such nodes we
have Occ(str(v), T) ̸= ∅.

Proposition 7.18. Let P ∈ [0 . . σ)+ be a periodic pattern satisfying e(P) > |P |. Given any c ∈ [0 . . σ), the
structure from Section 7.3.1, and the values L-head(P), L-root(P), and |P |, we can in O(log log n) time compute
the pair (RangeBeg(Pc, T),RangeEnd(Pc, T)).

Proof. Denote P ′ = Pc and m = |P | + 1 = |P ′|. Observe, that since P is periodic and it is a prefix of P ′, by
Lemma 6.3, P ′ is also periodic and it holds L-head(P) = L-head(P ′) and L-root(P) = L-root(P ′). Let us denote
s = L-head(P) = L-head(P ′) and H = L-root(P) = L-root(P ′). By the assumption, we have e(P) = m. First, in
O(1) time we compute t := L-tail(P) = (m− 1− s) mod |H|. We then check if e(P ′) ≤ |P ′| by comparing c to
H[t+1]. If c = H[t+1], then we have e(P ′) > |P ′|. Since we have L-head(P ′) = s, L-root(P ′) = H, and |P ′| = m,
in O(log log n) time we thus compute and return (RangeBeg(P ′, T),RangeEnd(P ′, T)) using Proposition 7.17. Let
us thus assume c ̸= H[t+ 1], i.e., e(P ′) ≤ |P ′|. We then compute type(P ′) by comparing c with H[t+ 1]. Let us
assume that c ≺ H[t+1], i.e., type(P) = −1 (the case type(P) = +1 is handled symmetrically). We now execute the
modified algorithm from Proposition 6.12 for P ′. The modification is to replace implementation of operations taking

Copyright © 2023
Copyright for this paper is retained by the authors5182

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Θ(m/ logσ n) time with faster alternatives, exploiting the fact that by e(P ′) = e(P), L-head(P ′) = L-head(P), and
L-root(P ′) = L-root(P) it follows that efull(P ′) = efull(P) = e(P)− L-tail(P) = m− t and thus P ′[efull(P ′) . .m]
is of length t+ 1 ≤ τ (importantly, the modified algorithm will not use the components of the data structures in
Section 6.3 which are not part of the structure from Section 7.3.1). More precisely:

• First, using Lpref , in O(1) time we compute X = Pref3τ−1(s,H) = P ′[1 . . 3τ−1].
• We then compute |Occ(P ′, T)|. First, note that since e(P ′) ≤ |P ′| and type(P ′) = −1, it follows by

Lemma 6.4(2) that Occ(P ′, T) ⊆ R−, and that for every j ∈ Occ(P ′, T) it holds L-exp(j) = L-exp(P ′).
Thus, the sets Occa(P ′, T) and Occs+(P ′, T) are empty, and hence it remains to explain the computation of
|Occs−(P ′, T)| (Proposition 6.8). Observe, that the expensive operations are the computation of L-head(P ′),
L-root(P ′), L-exp(P ′), and the pair (bpre, epre). Observe, however, that here we already have s = L-head(P ′),
H = L-root(P ′), and e(P ′) = m. This lets us deduce k := L-exp(P ′) = ⌊m−1−s

|H| ⌋ in O(1) time. As for the
computation of (bpre, epre), we first in O(1) time compute H ′ := P ′[efull(P ′) . .m] = H[1 . . t+ 1], and then
obtain (bpre, epre) by looking up the pair associated with the key (H,H ′) in the lookup table Lruns. The rest
of the algorithm in Proposition 6.8 takes O(log log n) time.

• Finally, we compute δ(P ′, T). By type(P ′) = −1 and Lemma 6.9, it holds δ(P ′, T) = δa(P ′, T)−δs(P ′, T). To
compute δa(P ′, T), we proceed as in the proof of Proposition 6.10. The string X was already obtained above.
The expensive step in Proposition 6.10 is the computation of L-root(P ′) and L-exp(P ′). As noted above,
here we already have L-root(P ′) = H, and in O(1) time we can compute L-exp(P ′) = ⌊ e(P ′)−1−L-head(P ′)

|L-root(P ′)| ⌋ =
⌊m−1−s

|H| ⌋. The rest of the algorithm in Proposition 6.10 takes O(1) time. We then compute δs(P ′, T) using a
modified Proposition 6.11. The expensive part is the computation of x and x′. After those are computed,
the rest takes O(log log n) time. Here, we obtain x by observing that it is equal to bpre (which was computed
above), and then obtain x′ using Lruns (this only requires knowing L-root(P ′), which we already have).

Note that all components of the structure from Propositions 6.8, 6.10, and 6.11 that we used are also components
of the structure from Section 7.3.1. Using the above values, we now obtain (RangeBeg(P ′, T),RangeEnd(P ′, T))
as follows. By Lemma 6.8, it holds RangeBeg(P ′, T) = RangeBeg(X,T) + δ(P ′, T), where X = P ′[1 . . 3τ−1]. The
value RangeBeg(X,T) is obtained in O(1) time using the lookup table Lrange. We thus obtain RangeBeg(P ′, T).
By definition, we then compute RangeEnd(P ′, T) = RangeEnd(P ′, T) + |Occ(P ′, T)|. □

Remark 7.8. Note that, analogously to Proposition 7.17 (see Remark 7.7), the above result holds even if
Occ(Pc, T) = ∅.

7.3.3 Implementation of LCA(u, v)

Lemma 7.16. Let v1 and v2 be explicit nodes of Tst such that LCA(v1, v2) is periodic and it holds e(LCA(v1, v2)) ≤
|str(LCA(v1, v2))| and type(LCA(v1, v2)) = −1. Then, v1 and v2 are periodic and it holds e(v1) ≤ |str(v1)|,
e(v2) ≤ |str(v2)|, and type(v1) = type(v2) = −1. Moreover,

mapTst,TZ
(LCA(v1, v2)) = LCA(mapTst,TZ

(v1),mapTst,TZ
(v2)).

Proof. Denote v = LCA(v1, v2), Q = str(v), H = L-root(v), and s = L-head(v). Let also Q1 = str(v1).
By |Q| ≥ 3τ − 1 and since v is an ancestor of v1, we have lcp(Q,Q1) ≥ 3τ − 1. Consequently, by
Lemma 6.3, the node v1 is periodic and it holds L-root(v1) = L-root(Q1) = L-root(Q) = L-root(v) = H
and L-head(v1) = L-head(Q1) = L-head(Q) = L-head(v) = s. Furthermore, by e(Q) ≤ |Q| and type(Q) = −1, it
holds Q[e(Q)] ≺ Q[e(Q)− p]. Since Q is a prefix of Q1, this immediately implies e(Q1) = e(Q) ≤ |Q| ≤ |Q1| and
Q1[e(Q1)] = Q[e(Q)] ≺ Q[e(Q)− p] = Q1[e(Q1)− p], i.e., type(Q1) = −1. We have thus shown e(v1) ≤ |str(v1)|
and type(v1) = −1. Analogously, we obtain that v2 is periodic and it holds e(v2) = e(v), L-root(v2) = H,
L-head(v2) = s, e(v2) ≤ |str(v2)|, and type(v2) = −1. We have thus shown that u1 = mapTst,TZ

(v1) and
u2 = mapTst,TZ

(v2) are well-defined (see Section 7.3.2).
Let u = LCA(u1, u2), ℓ′ = sdepth(u), and ℓ = sdepth(v). By Observation 4.1, we have ℓ = lcp(str(v1), str(v2)),

ℓ′ = lcp(str(u1), str(u2)), str(v) = str(v1)[1 . . ℓ], and str(u) = str(u1)[1 . . ℓ
′]. Denote δ = efull(v). As observed above,

e(v1) = e(v), L-head(v1) = L-head(v), and L-root(v1) = L-root(v). Thus, efull(v1) = 1+L-head(v1)+ |L-root(v1)| ·
⌊ e(v1)−1−L-head(v1)

|L-root(v1)| ⌋ = 1 + L-head(v) + |L-root(v)| · ⌊ e(v)−1−L-head(v)
|L-root(v)| ⌋ = efull(v) = δ. Analogously, efull(v2) = δ.

By definition of mapTst,TZ
(v1) and mapTst,TZ

(v2), we have str(u1) = pow(H) · str(v1)[efull(v1) . . |str(v1)|] =
pow(H) · str(v1)[δ . . |str(v1)|] and str(u2) = pow(H) · str(v2)[efull(v2) . . |str(v2)|] = pow(H) · str(v2)[δ . . |str(v2)|].

Copyright © 2023
Copyright for this paper is retained by the authors5183

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Thus, ℓ′ = lcp(str(u1), str(u2)) = |pow(H)|+ (lcp(str(v1), str(v2))− δ + 1) = |pow(H)|+ ℓ− δ + 1. Consequently,
str(u) = str(u1)[1 . . ℓ

′] = pow(H)·str(v1)[δ . . δ+ℓ′−|pow(H)|−1] = pow(H)·str(v1)[δ . . ℓ] = pow(H)·str(v)[δ . . ℓ] =
pow(H) · str(v)[efull(v) . . |str(v)|]. Thus, by definition of mapTst,TZ

(u), and since no two nodes of TZ have the same
value of str, we therefore obtain mapTst,TZ

(v) = u. □

Lemma 7.17. Let v1 and v2 be explicit nodes of Tst such that LCA(v1, v2) is periodic. Denote v = LCA(v1, v2),
imin = min(lrank(v1), lrank(v2)) + 1, and imax = max(rrank(v1), rrank(v2)). Then, it holds:

1. SA[imin],SA[imax] ∈ R and e(v) = 1 +min(e(SA[imin])− SA[imin], e(SA[imax])− SA[imax]).
2. e(v) ≤ |str(v)| holds if and only if T [SA[imin] + e(v)− 1] = T [SA[imax] + e(v)− 1].

Proof. Denote i1 = lrank(v1) + 1, i2 = rrank(v1), i3 = lrank(v2) + 1, and i4 = rrank(v2).
1. Let H = L-root(v), and p = |H|. We start by noting that SA[imin],SA[imax] ∈ R follows by Lemma 7.15(1).

Next, we prove the formula for e(v).
First, we show that e(v) = min(e(v1), e(v2)). Observe that if P is a prefix of S, both P and S and periodic,

and L-root(S) = H, then, e(S) = 1 + p+ lcp(S(0 . . |S| − p], S(p . . |S|]) ≥ 1 + p+ lcp(S(0 . . |P | − p], S(p . . |P |]) =
1 + p + lcp(P (0 . . |P | − p], P (p . . |P |]) = e(P). Since str(v) is a prefix of str(v1) and str(v2), we thus obtain
e(v1) ≥ e(v) and e(v2) ≥ e(v). It remains to show that there exists t ∈ {1, 2} such that e(vt) = e(v). Consider two
cases:

• If e(v) = |str(v)|+ 1, then there are two possibilities. Either for some t ∈ {1, 2}, we have |str(vt)| = |str(v)|,
in which case str(vt) = str(v) and thus e(vt) = e(v) follows. The other possibility is that |str(v1)| > |str(v)|
and |str(v2)| > |str(v)|. Since str(v) is the longest common prefix of str(v1) and str(v2), we then have
str(v1)[e(v)] = str(v1)[|str(v)| + 1] ̸= str(v2)[|str(v) + 1] = str(v2)[e(v)]. Thus, there exists t ∈ {1, 2} such
that str(vt)[e(v)] ̸= str(v)[e(v)− p]. By definition, for such t we have e(vt) = e(v).

• Let us now assume e(v) ≤ |str(v)|. This implies that str(v)[e(v)] = str(v1)[e(v)] = str(v2)[e(v)] and
str(v)[e(v)] ̸= str(v)[e(v) − p]. Thus, by str(v)[1 . . e(v)] = str(v1)[1 . . e(v)] = str(v2)[1 . . e(v)] we obtain
e(v1) = e(v2) = e(v).

We have thus shown that there exists t ∈ {1, 2} such that e(v) = e(vt). Combined with e(v1) ≥ e(v) and
e(v2) ≥ e(v), this yields min(e(v1), e(v2)) = min(e(vt), e(v3−t)) = e(v).

By the above and Lemma 7.15(1) for v1 and v2, it holds e(v) = 1 +mint∈[1. .4]{e(SA[it])− SA[it]}. To show
that this is equal to the expression for e(v) from the claim, we first observe that letting X = str(v)[1 . . 3τ − 1]
and (b, e) = (RangeBeg(X,T),RangeEnd(X,T)), we have it ∈ (b . . e] for all t ∈ [1 . . 4]. Observe that
by Lemma 5.4, the sequence (e(SA[i]) − SA[i])ei=b+1 is bitonic, i.e., there exists m ∈ (b . . e] such that
e(SA[b + 1]) − SA[b + 1] ≤ e(SA[b + 2]) − SA[b + 2] ≤ · · · ≤ e(SA[m]) − SA[m] and e(SA[m]) − SA[m] ≥
e(SA[m + 1]) − SA[m + 1] ≥ · · · ≥ e(SA[e]) − SA[e]. This implies that for every triple k1, k2, k3 ∈ (b . . e], the
inequalities k1 ≤ k2 ≤ k3 imply min(e(SA[k1])−SA[k1], e(SA[k3])−SA[k3]) = mint∈[1. .3]{e(SA[kt])−SA[kt]}. For
a proof, consider two cases:

• If k2 < m, then by the bitonic property, we have e(SA[k2]) − SA[k2] ≥ e(SA[k1]) − SA[k1]. Thus, the
expression e(SA[k2])− SA[k2] has no effect on the minimum.

• If k2 ≥ m, then by the bitonic property, we have e(SA[k2]) − SA[k2] ≥ e(SA[k3]) − SA[k3]. Thus, the
expression e(SA[k2])− SA[k2] can again be excluded in the minimum.

By the above, letting i′min = mint∈[1. .4]{it} and i′max = maxi∈[1. .4]{it}, we thus have e(v) = 1 +
mint∈[1. .4]{e(SA[it])− SA[it]} = 1 +min(e(SA[i′min])− SA[i′min], e(SA[i′max])− SA[i′max]).

It remains to show that i′min = imin and i′max = imax. For this, it suffices to note that by definition, we have
i1 ≤ i2 and i3 ≤ i4, thus, i′min = mint∈[1. .4]{it} = min(i1, i3) = imin and analogously, i′max = maxt∈[1. .4]{it} =
max(i2, i4) = imax.

2. As observed in the proof of Lemma 7.15(2), it holds SA[i1] + e(v1) − 1 ≤ n, SA[i2] + e(v1) − 1 ≤ n,
SA[i3] + e(v2) − 1 ≤ n, and SA[i4] + e(v2) − 1 ≤ n. Thus, by e(v) = min(e(v1), e(v2)), for every t ∈ [1 . . 4], we
have SA[it] + e(v) − 1 ≤ n. In particular, SA[imin] + e(v) − 1 ≤ n and SA[imax] + e(v) − 1 ≤ n. We now prove
the equivalence. Let us first assume e(v) ≤ |str(v)|. Then, since str(v) is a prefix of both str(v1) and str(v2)
and SA[imin],SA[imax] ∈ Occ(str(v1), T) ∪ Occ(str(v2), T), it follows that SA[imin],SA[imax] ∈ Occ(str(v), T).
Therefore, T [SA[imin] + e(v)− 1] = T [SA[imax] + e(v)− 1] follows immediately. To show the opposite implication,
assume by contraposition that e(v) = |str(v)|+ 1. Then, there are two possibilities. Either for some t ∈ {1, 2} we

Copyright © 2023
Copyright for this paper is retained by the authors5184

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

have str(vt) = str(v), in which case str(vt) is a prefix of str(v3−t), which in turn implies imin = lrank(vt) + 1 and
imax = rrank(vt). Then, e(v) = e(vt) and by applying Lemma 7.15(2) to vt, we obtain T [SA[imin] + e(v)− 1] =
T [SA[lrank(vt) + 1] + e(vt)− 1] ̸= T [SA[rrank(vt)] + e(vt)− 1] = T [SA[imax] + e(v)− 1]. The other possibility is
that |str(v1)| > |str(v)| and |str(v2)| > |str(v)|. Then, since str(v) is the longest common prefix of str(v1) and
str(v2), neither of v1 or v2 is an ancestor of the other, and hence either it holds imin = i1 ≤ i2 < i3 ≤ i4 = imax or
imin = i3 ≤ i4 < i1 ≤ i2 = imax. In the first case SA[imin] ∈ Occ(str(v1), T) and SA[imax] ∈ Occ(str(v2), T), and
in the second case SA[imin] ∈ Occ(str(v2), T) and SA[imax] ∈ Occ(str(v1), T). Therefore, in both cases we have
T [SA[imin] + e(v)− 1] = T [SA[imin] + |str(v)|] ̸= T [SA[imax] + |str(v)|] = T [SA[imax] + e(v)− 1]. □

Remark 7.9. Observe that in Lemma 7.17, it does not necessarily hold that lrank(LCA(v1, v2)) = imin or
rrank(LCA(v1, v2)) = imax. Thus, the lemma does not immediately follow as a corollary from Lemma 7.15.

Proposition 7.19. Let v1 and v2 be explicit nodes of Tst such that LCA(v1, v2) is periodic. Given the data structure
from Section 7.3.1 and the pairs repr(v1) and repr(v2), we can in O(log log n) time compute repr(LCA(v1, v2)).

Proof. Denote v = LCA(v1, v2), repr(v1) = (b1, e1) and repr(v2) = (b2, e2) (recall that for i ∈ {1, 2}, we have
bi = lrank(vi) and ei = rrank(vi)).

First, in O(1) time we compute imin = min(b1, b2) + 1 and imax = max(e1, e2). By Lemma 7.17(1), we
have SA[imin],SA[imax] ∈ R. Using Proposition 5.14, in O(log log n) time we compute jmin = SA[imin] and
jmax = SA[imax]. Next, using Proposition 5.7 in O(1) time we compute H := L-root(jmin), s := L-head(jmin),
kmin = L-exp(jmin), kmax = L-exp(jmax), tmin = L-tail(jmin), and tmax = L-tail(jmax). Observe that since
v is periodic, and jmin, jmax ∈ Occ(str(v1), T) ∪ Occ(str(v2), T) ⊆ Occ(str(v), T), it follows by Lemmas 5.4
and 6.2, that L-root(v) = L-root(jmax) = H and L-head(v) = L-head(jmax) = s. In O(1) time we thus compute
emin := e(jmin) = jmin + s+ kmin|H|+ tmin and emax := e(jmax) = jmax + s+ kmax|H|+ tmax. Next, in O(1) time
we compute ev := e(v) = 1+min(emin− jmin, emax− jmax) (see Lemma 7.17(1)). Using Lemma 7.17(2), we then in
O(1) time check if it holds e(v) ≤ |str(v)| by comparing T [jmin + ev − 1] with T [jmax + ev − 1]. Consider two cases:

• Let T [jmin + ev − 1] = T [jmax + ev − 1], i.e., e(v) ≤ |str(v)|. Recall now that jmin ∈ Occ(str(v), T). In
O(1) time we thus compute type(v) by comparing T [jmin + ev − 1] with T [jmin + ev − 1 − |H|]. Let us
assume that T [jmin + ev − 1] ≺ T [jmin + ev − 1− |H|], i.e., type(v) = −1 (the case type(v) = +1 is handled
symmetrically, using the part of the structure from Section 7.3.1 adapted according to Lemma 5.4). By
Lemma 7.16, we now have that v1 and v2 are periodic and it holds e(v1) ≤ |str(v1)|, e(v2) ≤ |str(v2)|,
and type(v1) = type(v2) = −1. Using Proposition 7.15, in O(log log n) time we compute pointers to
u1 = mapTst,TZ

(v1) and u2 = mapTst,TZ
(v2). Using the representation of TZ stored as part of the structure in

Section 7.3.1, and Proposition 4.1, in O(1) time we compute a pointer to u = LCA(u1, u2). By Lemma 7.16,
it holds mapTst,TZ

(v) = u. Our goal is to exploit this connection to compute repr(v). In O(1) time we
compute k := L-exp(v) = ⌊ ev−1−s

|H| ⌋ and ℓ := efull(v)− 1 = s+ k|H|. Using Proposition 7.16, in O(log log n)
time we then compute the pair (b, e) = pseudoinvTZ

(ℓ, u). As noted above, it holds mapTst,TZ
(v) = u. Thus,

by Lemma 7.14, we have repr(v) = (b, e).
• Let T [jmin + ev − 1] ̸= T [jmax + ev − 1], i.e., e(v) > |str(v)|. Letting P = str(v), we then have
e(P) > |P |, L-head(P) = s, L-root(P) = H, and |P | = ev − 1. Using Proposition 7.18, we thus compute
(b, e) = (RangeBeg(P, T),RangeEnd(P, T)) in O(log log n) time, and return repr(v) = (b, e). □

7.3.4 Implementation of child(v, c)

Lemma 7.18. Let c ∈ [0 . . σ) and v be an explicit periodic internal node of Tst satisfying e(v) ≤ |str(v)| and
type(v) = −1. Let u = mapTst,TZ

(v). If child(u, c) = ⊥ then child(v, c) = ⊥. Otherwise, letting u′ = child(u, c), it
holds

repr(child(v, c)) =

{
(b, e) if b ̸= e,

(0, 0) otherwise,

where (b, e) = pseudoinvTZ
(ℓ, u′) and ℓ = efull(v)− 1.

Proof. Let H = L-root(v), s = L-head(v), k = L-exp(v), and P = {j ∈ R−
s,H : L-exp(j) = k}. We first

show that P ̸= ∅. Consider any j ∈ Occ(str(v), T). By Lemma 6.2, j ∈ R, L-root(j) = L-root(v) = H, and
L-head(j) = L-head(v) = s, i.e., j ∈ Rs,H . Furthermore, by e(v) ≤ |str(v)| and type(v) = −1 we obtain from

Copyright © 2023
Copyright for this paper is retained by the authors5185

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 6.4(2) that L-exp(j) = L-exp(v) = k and type(j) = type(v) = −1. Thus, j ∈ P, and hence P ̸= ∅. Let
bP, eP ∈ [0 . . n] be such that {SA[i]}i∈(bP. .eP] = P, and bH , eH ∈ [0 . . q] be such that {rlexi }i∈(bH . .eH] = R′−

H .
Denote P = str(v)c and P ′ = pow(H) · P [efull(P) . . |P |]. Using the above notation, we now establish the

characterization of (RangeBeg(P, T),RangeEnd(P, T)) with the help of Lemma 7.13. First, we observe that since
str(v) is periodic, it follows by Lemma 6.3 that P is periodic and it holds L-root(P) = L-root(v) = H and
L-head(P) = L-head(v) = s. Moreover, since e(v) ≤ |str(v)| and type(v) = −1, it follows by Lemma 6.4(1),
that e(P) = e(v), efull(P) − 1 = efull(v) − 1 = ℓ, L-exp(P) = L-exp(v) = k, and type(P) = type(v) = −1.
In particular, this implies that the assumptions of Lemma 7.13 as satisfied. More precisely, e(P) = e(v) ≤
|str(v)| ≤ |P |. On the other hand, as shown above, {j ∈ R−

s,H : L-exp(j) = k} ̸= ∅. Observe also that by
efull(P) − 1 = ℓ, we have P ′ = pow(H) · P (ℓ . . |P |]. Putting all this together, by Lemma 7.13 we obtain
that (RangeBeg(P, T),RangeEnd(P, T)) = (eP − c1, eP − c2), where c1 = rcountAlen

(ℓ, eH) − rcountAlen
(ℓ, bpre),

c2 = rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, epre), bpre = |{i ∈ [1 . . q] : T [AZ[i] . . n] ≺ P ′}|, and (bpre . . epre] = {i ∈ [1 . . q] :
P ′ is a prefix of T [AZ[i] . . n]}.

We are now ready to show the first claim. Recall, that by definition of mapTst,TZ
(v), we have str(u) =

pow(H) · str(v)(ℓ . . |str(v)|]. Thus, it holds str(u)c = P ′. By definition of TZ and child(u, c), we thus obtain that
child(u, c) = ⊥ implies epre − bpre = 0. Consequently, by the above characterization, it holds

|Occ(P, T)| = RangeEnd(P, T)− RangeBeg(P, T)

= (eP − c2)− (eP − c1)

= rcountAlen
(ℓ, epre)− rcountAlen

(ℓ, bpre)

= 0.

Thus, child(v, c) = ⊥.
Let us now assume child(u, c) = u′ ̸= ⊥. Using the above notation, we first show the characterization of

pseudoinvTZ
(ℓ, u′). First, note that pow(H) is a prefix of str(u′) (since it is a prefix of str(u)). Next, note that

ℓ mod |H| = (efull(v) − 1) mod |H| = L-head(v) = s and ⌊ ℓ
|H|⌋ = ⌊ efull(v)−1

|H| ⌋ = L-exp(v) = k. As shown above,
the set {j ∈ R−

s,H : L-exp(j) = k} is nonempty. This implies that pseudoinvTZ
(ℓ, u) = (eP − c′1, eP − c′2), where

c′1 = rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, lrank(u′)) and c′2 = rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, rrank(u′)). It remains to
observe that by definition of TZ and the facts that child(u, c) = u′ and str(u)c = P ′, we have lrank(u′) = bpre and
rrank(u′) = epre. Thus, we have c′1 = c1 and c′2 = c2, and consequently

(RangeBeg(P, T),RangeEnd(P, T)) = (eP − c1, eP − c2)

= (eP − c′1, eP − c′2)

= pseudoinvTZ
(ℓ, u′)

= (b, e).

By the above, if b ̸= e, then Occ(P, T) ̸= ∅. This implies child(v, c) ̸= ⊥ and repr(child(v, c)) =
(RangeBeg(P, T),RangeEnd(P, T)). We thus indeed have repr(child(v, c)) = (b, e). Otherwise (i.e., if b = e), by the
above we have Occ(P, T) = ∅. This implies child(v, c) = ⊥ and hence indeed we also have repr(child(v, c)) = (0, 0).
□

Remark 7.10. Note that, similarly as in Lemma 7.9 (see Remark 7.3), even though in the above result we have
mapTst,TZ

(v) = u and child(u, c) contains information used to determine child(v, c), it does not necessarily hold
that mapTst,TZ

(child(v, c)) = child(u, c).

Proposition 7.20. Let v be an explicit periodic internal node of Tst. Given the data structure from Section 7.3.1,
repr(v), and c ∈ [0 . . σ), in O(log log n) time we can compute repr(child(v, c)).

Proof. Denote i1 = lrank(v) + 1 and i2 = rrank(v). By Lemma 7.15(1), it holds SA[i1],SA[i2] ∈ R. Using
Proposition 5.14, in O(log log n) time we compute j1 = SA[i1] and j2 = SA[i2]. Next, using Proposition 5.7
in O(1) time we compute H = L-root(j1), s = L-head(j1), k1 = L-exp(j1), k2 = L-exp(j2), t1 = L-tail(j1),
and t2 = L-tail(j2). Observe that since v is periodic, and j1, j2 ∈ Occ(str(v), T), it follows by Lemmas 5.4

Copyright © 2023
Copyright for this paper is retained by the authors5186

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

and 6.2 that L-root(v) = L-root(j2) = H and L-head(v) = L-head(j2) = s. In O(1) time we thus compute
e1 := e(j1) = j1 + s + k1|H| + t1 and e2 := e(j2) = j2 + s + k2|H| + t2. Next, in O(1) time we compute
ev := e(v) = 1+min(e1 − j1, e2 − j2) (see Lemma 7.15(1)). Using Lemma 7.15(2), we then in O(1) time check if it
holds e(v) ≤ |str(v)| by comparing T [j1 + ev − 1] with T [j2 + ev − 1]. Consider two cases:

• Let T [j1 + ev − 1] = T [j2 + ev − 1], i.e., e(v) ≤ |str(v)|. In O(1) time we compute type(v) by comparing
T [j1 + ev − 1] with T [j1 + ev − 1 − |H|]. Let us assume that T [j1 + ev − 1] ≺ T [j1 + ev − 1 − |H|], i.e.,
type(v) = −1 (the case type(v) = +1 it handled symmetrically, using the part of the structure from
Section 7.3.1 adapted according to Lemma 5.4). Using Proposition 7.15, in O(log log n) time we compute a
pointer to u = mapTst,TZ

(v). Using the representation of TZ stored as part of the structure in Section 7.3.1,
and Proposition 4.1, in O(log log n) time we check if child(u, c) = ⊥. If so, by Lemma 7.18 we have
child(v, c) = ⊥, and thus we return repr(child(v, c)) = (0, 0). Otherwise (child(u, c) ̸= ⊥), we obtain a pointer
to u′ = child(u, c). In O(1) time we now compute k := L-exp(v) = ⌊ ev−1−s

|H| ⌋ and ℓ := efull(v)− 1 = s+ k|H|.
Using Proposition 7.16, in O(log log n) time we then compute the pair (b, e) = pseudoinvTZ

(ℓ, u′). If b = e
then by Lemma 7.18 it holds child(v, c) = ⊥ and hence we return repr(child(v, c)) = (0, 0). Otherwise, by
Lemma 7.18, it holds repr(child(v, c)) = (b, e). We thus return (b, e).

• Let T [j1 + ev − 1] ̸= T [j2 + ev − 1], i.e., e(v) > |str(v)|. Denote P = str(v). We then have e(P) > |P |,
L-head(P) = s, L-root(P) = H, and |P | = ev − 1. Using Proposition 7.18, in O(log log n) time we compute
(b, e) = (RangeBeg(Pc, T),RangeEnd(Pc, T)). If b = e, then Occ(P, T) = Occ(str(v)c, T) = ∅, and hence
child(v, c) = ⊥. We thus return repr(child(v, c)) = (0, 0). Otherwise, we return that repr(child(v, c)) = (b, e).
□

7.3.5 Implementation of pred(v, c)

Lemma 7.19. Let c ∈ [0 . . σ) and v be an explicit periodic internal node of Tst satisfying e(v) ≤ |str(v)| and
type(v) = −1. Let u = mapTst,TZ

(v). If pred(u, c) = ⊥ then RangeBeg(str(v)c, T) = RangeBeg(str(v), T).
Otherwise, letting u′ = pred(u, c), it holds

RangeBeg(str(v)c, T) = e,

where (b, e) = pseudoinvTZ
(ℓ, u′) and ℓ = efull(v)− 1.

Proof. We start by characterizing RangeBeg(str(v), T). Let H = L-root(v), s = L-head(v), k = L-exp(v), and
P = {j ∈ R−

s,H : L-exp(j) = k}. In the proof of Lemma 7.18, we showed that P ̸= ∅. Let bP, eP ∈ [0 . . n] be such
that {SA[i]}i∈(bP. .eP] = P, and bH , eH ∈ [0 . . q] be such that {rlexi }i∈(bH . .eH] = R′−

H . We now additionally note that
by definition of mapTst,TZ

(v), we have str(u) = pow(H) · str(v)(ℓ . . |str(v)|]. Thus, by definition of TZ, it holds
|{i ∈ [1 . . q] : T [AZ[i] . . n] ≺ pow(H) · str(v)(ℓ . . |str(v)|]}| = lrank(u). By Lemma 7.13 for pattern str(v), we thus
obtain RangeBeg(str(v), T) = eP − (rcountAlen

(ℓ, eH)− rcountAlen
(ℓ, lrank(u))).

Next, we characterize RangeBeg(str(v)c, T). Denote P = str(v)c and P ′ = pow(H) · P [efull(P) . . |P |].
In the proof of Lemma 7.18, we observed that P is periodic and it holds L-root(P) = L-root(v) = H,
L-head(P) = L-head(v) = s, e(P) = e(v), efull(P) − 1 = efull(v) − 1 = ℓ, L-exp(P) = L-exp(v) = k, and
type(P) = type(v) = −1. Moreover, we noted that e(P) ≤ |P | and P ′ = pow(H) · P (ℓ . . |P |]. Finally,
putting all this together, we observed that (RangeBeg(P, T),RangeEnd(P, T)) = (eP − c1, eP − c2), where
c1 = rcountAlen

(ℓ, eH) − rcountAlen
(ℓ, bpre), c2 = rcountAlen

(ℓ, eH) − rcountAlen
(ℓ, epre), bpre = |{i ∈ [1 . . q] :

T [AZ[i] . . n] ≺ P ′}|, and (bpre . . epre] = {i ∈ [1 . . q] : P ′ is a prefix of T [AZ[i] . . n]}.
Let us first assume pred(u, c) = ⊥. By definition, this implies |{i ∈ [1 . . q] : T [AZ[i] . . n] ≺ str(u)c}| = lrank(u).

Recall, however, that str(u) = pow(H)·str(v)(ℓ . . |str(v)|]. Thus, str(u)c = P ′ and consequently bpre = lrank(u). Us-
ing the above characterization, we thus have RangeBeg(str(v)c, T) = eP−(rcountAlen

(ℓ, eH)−rcountAlen
(ℓ, lrank(u))).

Since above we also established that RangeBeg(str(v), T) = eP − (rcountAlen
(ℓ, eH)− rcountAlen

(ℓ, lrank(u))), we
have thus proved that pred(u, c) = ⊥ implies RangeBeg(str(v)c, T) = RangeBeg(str(v), T).

Let us now assume pred(u, c) = u′ ̸= ⊥. By definition of pred(u, c), this implies |{i ∈ [1 . . q] : T [AZ[i] . . n] ≺
str(u)c}| = rrank(u′). By recalling again that str(u)c = P ′, we thus have bpre = rrank(u′). By the above
characterization, we thus have RangeBeg(str(v)c, T) = eP − (rcountAlen

(ℓ, eH)− rcountAlen
(ℓ, rrank(u′))). On the

other hand, by definition of (b, e) = pseudoinvTZ
(ℓ, u′), we have e = eP−(rcountAlen

(ℓ, eH)−rcountAlen
(ℓ, rrank(u′))).

We thus obtain RangeBeg(str(v)c, T) = e. □

Copyright © 2023
Copyright for this paper is retained by the authors5187

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proposition 7.21. Let v be an explicit periodic internal node of Tst. Given the data structure from Section 7.3.1,
repr(v), and c ∈ [0 . . σ), in O(log log n) time we can compute RangeBeg(str(v)c, T).

Proof. Denote i1 = lrank(v) + 1 and i2 = rrank(v). By Lemma 7.15(1), it holds SA[i1],SA[i2] ∈ R. Using
Proposition 5.14, in O(log log n) time we compute j1 = SA[i1] and j2 = SA[i2]. Next, using Proposition 5.7
in O(1) time we compute H = L-root(j1), s = L-head(j1), k1 = L-exp(j1), k2 = L-exp(j2), t1 = L-tail(j1),
and t2 = L-tail(j2). Observe that since v is periodic, and j1, j2 ∈ Occ(str(v), T), it follows by Lemmas 5.4
and 6.2 that L-root(v) = L-root(j2) = H and L-head(v) = L-head(j2) = s. In O(1) time we thus compute
e1 := e(j1) = j1 + s + k1|H| + t1 and e2 := e(j2) = j2 + s + k2|H| + t2. Next, in O(1) time we compute
ev := e(v) = 1+min(e1 − j1, e2 − j2) (see Lemma 7.15(1)). Using Lemma 7.15(2), we then in O(1) time check if it
holds e(v) ≤ |str(v)| by comparing T [j1 + ev − 1] with T [j2 + ev − 1]. Consider two cases:

• Let T [j1 + ev − 1] = T [j2 + ev − 1], i.e., e(v) ≤ |str(v)|. In O(1) time we compute type(v) by comparing
T [j1 + ev − 1] with T [j1 + ev − 1 − |H|]. Let us assume that T [j1 + ev − 1] ≺ T [j1 + ev − 1 − |H|],
i.e., type(v) = −1 (the case type(v) = +1 it handled symmetrically, using the part of the structure
from Section 7.3.1 adapted according to Lemma 5.4). Using Proposition 7.15, in O(log log n) time we
compute a pointer to u = mapTst,TZ

(v). Using the representation of TZ stored as part of the structure
in Section 7.3.1, and Proposition 4.1, in O(log log n) time we check if pred(u, c) = ⊥. If so, by
Lemma 7.19 we have RangeBeg(str(v)c, T) = RangeBeg(str(v), T), and thus we return rrank(v) as the
answer. Otherwise (pred(u, c) ̸= ⊥), we obtain a pointer to u′ = pred(u, c). In O(1) time we now compute
k := L-exp(v) = ⌊ ev−1−s

|H| ⌋ and ℓ := efull(v)− 1 = s+ k|H|. Using Proposition 7.16, in O(log logn) time we
then compute the pair (b, e) = pseudoinvTZ

(ℓ, u′). By Lemma 7.19, we then have RangeBeg(str(v)c, T) = e.
Thus, we return e as the answer.

• Let T [j1 + ev − 1] ̸= T [j2 + ev − 1], i.e., e(v) > |str(v)|. Denote P = str(v). We then have e(P) > |P |,
L-head(P) = s, L-root(P) = H, and |P | = ev − 1. Using Proposition 7.18, in O(log log n) time we compute
(b, e) = (RangeBeg(Pc, T),RangeEnd(Pc, T)). We then return b as the answer. □

7.3.6 Implementation of WA(v, d)

Lemma 7.20. Let v be an explicit periodic node of Tst satisfying type(v) = −1 and d be an integer satisfying
e(v) ≤ d ≤ |str(v)|. Then, letting u = mapTst,TZ

(v), it holds

repr(WA(v, d)) = pseudoinvTZ
(ℓ, û),

where ℓ = efull(v)− 1, H = L-root(v), and û = WA(u, d− ℓ+ |pow(H)|).

Proof. As in the proof of Lemma 7.11, let us denote f (0)(x) = x and f (i)(x) = f(f (i−1)(x)) for i ∈ Z+. Let

V := {parent(i)(v) : i ∈ Z≥0 and sdepth(parent(i)(v)) ≥ e(v)} and
U := {parent(i)(u) : i ∈ Z≥0 and sdepth(parent(i)(u)) ≥ |pow(H)|+L-tail(v)+1}

By e(v) ≤ |str(v)|, type(v) = −1, and Lemma 6.4(1), for every v′ ∈ V it holds that str(v′) is periodic, and
we have e(v′) = e(v) ≤ |str(v′)|, type(v′) = type(v) = −1, and efull(v′) = efull(v) = ℓ + 1. Thus, for every
v′ ∈ V, the node u′ = mapTst,TZ

(v′) is well-defined and satisfies str(u′) = pow(H) · str(v′)[efull(v′) . . |str(v′)|] =
pow(H) · str(v′)(ℓ . . |str(v′)|]. In particular, str(u) = pow(H) · str(v)(ℓ . . |str(v)|]. Since for any v′ ∈ V, str(v′) =
str(v)[1 . . |str(v′)|], we thus obtain that for u′ = mapTst,TZ

(v′) it holds str(u′) = pow(H) · str(v′)(ℓ . . |str(v′)|] =
pow(H) · str(v)(ℓ . . |str(v′)|] = str(u)[1 . . |str(u′)|]. i.e., u′ is an ancestor of u. Moreover, sdepth(u′) =
|pow(H)| + |str(v′)| − efull(v′) + 1 = |pow(H)| + |str(v′)| − efull(v) + 1 ≥ |pow(H)| + e(v) − efull(v) + 1 =
|pow(H)|+ L-tail(v) + 1. Consequently, U ′ := {mapTst,TZ

(v′) : v′ ∈ V} satisfies U ′ ⊆ U . Note also, that v′ ̸= v′′

implies mapTst,TZ
(v′) ̸= mapTst,TZ

(v′′).
For any u′ ∈ U , denote (s(u′), t(u′)) = pseudoinvTZ

(ℓ, u′). We prove the following property of U ′. Let w,w′ ∈ U
be such that w = parent(w′). We claim, that (s(w), t(w)) ̸= (s(w′), t(w′)) implies w ∈ U ′. The proof consists of
five steps:

Copyright © 2023
Copyright for this paper is retained by the authors5188

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

1. For any node y of TZ such that pow(H) is a prefix of str(y), by Sy we denote a string such that
str(y) = pow(H) · Sy. Let P and P ′ be such that PP ′ is a prefix of str(v), and it holds |P | = ℓ and
|P ′| = L-tail(v) + 1 (which is defined by e(v) ≤ |str(v)|). Consider any node y of TZ such that pow(H) · P ′

is a prefix of str(y) (note that although this includes all nodes in U , it is possible that y ̸∈ U). We prove
that for any such y, it holds |Occ(PSy, T)| = rcountAlen

(ℓ, rrank(y))− rcountAlen
(ℓ, lrank(y)). First, observe

that since e(str(v)) = |PP ′|, we obtain by lcp(PSy, str(v)) ≥ |PP ′| and Lemma 6.4(1), that PSy is periodic,
e(PSy) = e(str(v)) = |PP ′| ≤ |PSy|, efull(PSy) = efull(str(v)) = ℓ+ 1, and type(PSy) = type(str(v)) = −1.
By Lemma 6.5, Occ(PSy, T) is thus a disjoint union of Occa(PSy, T) and Occs(PSy, T) (see the beginning of
Section 6.3.4 for definitions). By e(PSy) ≤ |PSy|, Lemma 6.6 and its symmetric version (adapted according
to Lemma 6.2) moreover imply that Occa(PSy, T) = ∅. Finally, by type(PSy) = −1 and Lemma 6.4(2), it
follows that Occ(PSy, T) ⊆ R−. Thus, Occs(PSy, T) = Occs−(PSy, T) and consequently Occ(PSy, T) =
Occs−(PSy, T). It thus remains to prove |Occs−(PSy, T)| = rcountAlen

(ℓ, rrank(y))− rcountAlen
(ℓ, lrank(y)).

Recall that the set {pow(H) : H ∈ Roots} is prefix-free. Letting Hj = L-root(j) (where j ∈ R), it follows by
definition of TZ that:

{rlexi }i∈(lrank(y). .rrank(y)] = {j ∈R′− : pow(H) · Sy is a prefix of T [efull(j)− |pow(Hj)| . . n]}
= {j ∈R′− : pow(H) · Sy is a prefix of pow(Hj) · T [efull(j) . . n]}
= {j ∈R′−

H : Sy is a prefix of T [efull(j) . . n]}.

Finally, note that by efull(PSy) = ℓ + 1, we have (PSy)[e
full(PSy) . . |PSy|] = Sy. Thus, by the above

and Lemma 6.7, |Occs−(PSy, T)| = |{i ∈ (lrank(y) . . rrank(y)] : Alen[i] ≥ efull(PSy) − 1}| = |{i ∈
(lrank(y) . . rrank(y)] : Alen[i] ≥ ℓ}| = rcountAlen

(ℓ, rrank(y))− rcountAlen
(ℓ, lrank(y)).

2. We prove that there exists c′ ∈ [0 . . σ) such that |Occ(PSwc
′, T)| > 0 (where Sw is defined as

above). First, note that by u = mapTst,TZ
(v), it holds str(u) = pow(H) · str(v)[efull(v) . . |str(v)|] =

pow(H) · str(v)(ℓ . . |str(v)|]. On the other hand, by definition of Su, we have str(u) = pow(H) · Su.
Thus, Su = str(v)(ℓ . . |str(v)|]. By P = str(v)[1 . . ℓ], we thus obtain str(v) = PSu. Consequently, since v is a
node of Tst, we have |Occ(PSu, T)| = |Occ(str(v), T)| > 0. Observe now that since w′ is an ancestor of u,
the string str(w′) = pow(H) · Sw′ is a prefix of str(u) = pow(H) · Su. This implies that Sw′ is a prefix of Su,
and hence PSw′ is a prefix of PSu. Consequently, |Occ(PSw′ , T)| ≥ |Occ(PSu, T)| > 0. In particular, since
PSw is a prefix of PSw′ , letting c′ ∈ [0 . . σ) be such that child(w, c′) = w′, we have |Occ(PSwc

′, T)| > 0.
3. Let s = ℓ mod |H|, k = ⌊ ℓ

|H|⌋. Let also P := {j ∈ R−
s,H : L-exp(j) = k}, bP, eP ∈ [0 . . n] be such that

{SA[i]}i∈(bP. .eP] = P, and bH , eH ∈ [0 . . q] be such that {rlexi }i∈(bH . .eH] = R′−
H . Note that L-head(v) = s,

L-root(v) = H, L-exp(v) = k, e(v) ≤ |str(v)|, and type(v) = −1 imply that P ̸= ∅ (it suffices to take
j = SA[i] for any i ∈ (lrank(v) . . rrank(v)], and apply Lemma 6.2 and Lemma 6.4(2)). Therefore, (bP, eP)
and (bH , eH) are well-defined. Denote δ = eP − rcountAlen

(ℓ, eH). By definition of pseudoinvTZ
(ℓ, w) and

pseudoinvTZ
(ℓ, w′), we then have (s(w), t(w)) = (δ + rcountAlen

(ℓ, lrank(w)), δ + rcountAlen
(ℓ, rrank(w)))

and (s(w′), t(w′)) = (δ + rcountAlen
(ℓ, lrank(w′)), δ + rcountAlen

(ℓ, rrank(w′))). Thus, the assumption
(s(w), t(w)) ̸= (s(w′), t(w′)), or equivalently, s(w) ̸= s(w′) or t(w) ̸= t(w′), implies

rcountAlen
(ℓ, lrank(w)) ̸= rcountAlen

(ℓ, lrank(w′)) or
rcountAlen

(ℓ, rrank(w)) ̸= rcountAlen
(ℓ, rrank(w′)).

4. By definition, the values rcountAlen
(ℓ, rrank(ŵ))− rcountAlen

(ℓ, lrank(ŵ)) over all children ŵ of w sum up to
rcountAlen

(ℓ, rrank(w))− rcountAlen
(ℓ, lrank(w)). Thus, it follows by Step 3 that there exists a child w′′ ̸= w′

of w such that rcountAlen
(ℓ, rrank(w′′))− rcountAlen

(ℓ, lrank(w′′)) > 0. By Step 1, for such w′′, we thus have
|Occ(PSw′′ , T)| = rcountAlen

(ℓ, rrank(w′′))− rcountAlen
(ℓ, lrank(w′′)) > 0. In particular, letting c′′ ∈ [0 . . σ)

be such that child(w, c′′) = w′′, it holds |Occ(PSwc
′′, T)| > 0. Note that w′′ ̸= w′ implies c′′ ̸= c′.

5. We have thus proved (Steps 2 and 4) that there exist c′, c′′ ∈ [0 . . σ) such that c′ ̸= c′′, |Occ(PSwc
′, T)| > 0,

and |Occ(PSwc
′′, T)| > 0. This implies that there exists a node v′ in Tst such that str(v′) = PSw. As

observed in Step 1, PSw is periodic, and it holds e(PSw) ≤ |PSw|, type(PSw) = −1, and efull(PSw) = |P |+1.
Thus, the node u′ = mapTst,TZ

(v′) is defined and satisfies str(u′) = pow(H) · Sw. This implies u′ = w, and
consequently, w ∈ U ′.

Copyright © 2023
Copyright for this paper is retained by the authors5189

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

We are now ready to prove the main claim. Let v′ = WA(v, d) and v′′ = parent(v′). We then have
sdepth(v′′) < d ≤ sdepth(v′). Moreover, by e(v) ≤ d, we have v′ ∈ V. Let u′ = mapTst,TZ

(v′). As observed earlier,
we then have u′ ∈ U ′, and hence d− ℓ+ |pow(H)| ≤ sdepth(u′). This implies that û = WA(u′, d− ℓ+ |pow(H)|)
satisfies d − ℓ + |pow(H)| ≤ sdepth(û) ≤ sdepth(u′). By d − ℓ + |pow(H)| ≥ e(v) − ℓ + |pow(H)| =
e(v) − (efull(v) − 1) + |pow(H)| = L-tail(v) + 1 + |pow(H)|, this implies that û ∈ U . Let k ∈ Z≥0 be such
that û = parent(k)(u′). This implies that parent(i)(u′) ̸∈ U ′ holds for i ∈ [1 . . k], since otherwise it would contradict
v′ = WA(v, d). If k = 0 then we trivially have (s(u′), t(u′)) = (s(û), t(û)). Otherwise, by (the contraposition of)
the above property of U ′ we have

(s(u′), t(u′)) = (s(parent(u′)), t(parent(u′)))

= . . .

= (s(parent(k)(u′)), t(parent(k)(u′)))

= (s(û), t(û)).

Recall now that e(v′) ≤ |str(v′)|, type(v′) = −1, and efull(v′) = efull(v) = ℓ+ 1. Thus, by Lemma 7.14, we have
repr(v′) = pseudoinvTZ

(efull(v′)−1, u′) = pseudoinvTZ
(ℓ, u′). Consequently, repr(WA(v, d)) = pseudoinvTZ

(ℓ, u′) =
(s(u′), t(u′)) = (s(û), t(û)) = pseudoinvTZ

(ℓ, û). □

Proposition 7.22. Let v be an explicit periodic node of Tst. Given the data structure from Section 7.3.1, repr(v),
and an integer d satisfying 3τ − 1 ≤ d ≤ |str(v)|, in O(log log n) time we can compute repr(WA(v, d)).

Proof. Denote i1 = lrank(v) + 1 and i2 = rrank(v). By Lemma 7.15(1), it holds SA[i1],SA[i2] ∈ R. Using
Proposition 5.14, in O(log log n) time we first compute j1 = SA[i1] and j2 = SA[i2]. Next, using Proposition 5.7,
in O(1) time we compute H = L-root(j1), s = L-head(j1), k1 = L-exp(j1), k2 = L-exp(j2), t1 = L-tail(j1),
and t2 = L-tail(j2). Since v is periodic, and j1, j2 ∈ Occ(str(v), T), it follows by Lemmas 5.4 and 6.2
that L-root(v) = L-root(j2) = H and L-head(v) = L-head(j2) = s. In O(1) time we thus compute
e1 := e(j1) = j1 + s + k1|H| + t1 and e2 := e(j2) = j2 + s + k2|H| + t2. Next, in O(1) time we compute
ev := e(v) = 1 +min(e1 − j1, e2 − j2) (see Lemma 7.15(1)). We then consider two cases:

• Assume ev ≤ d. Then, to obtain repr(WA(v, d)) we follow Lemma 7.20. First, in O(1) time we compute type(v)
by comparing T [j1+ev−1] with T [j1+ev−1−|H|]. Let us assume that T [j1+ev−1] ≺ T [j1+ev−1−|H|],
i.e., type(v) = −1 (the case type(v) = +1 it handled symmetrically, using the part of the structure from
Section 7.3.1 adapted according to Lemma 5.4). Using Proposition 7.15, in O(log log n) time we compute a
pointer to u = mapTst,TZ

(v). In O(1) time we also calculate |pow(H)| = |H|⌈ τ
|H|⌉. Using the representation

of TZ stored as part of the structure in Section 7.3.1, and Proposition 4.1, in O(log log n) time we compute
a pointer to û = WA(u, d − ℓ + |pow(H)|). In O(1) time we now compute k := L-exp(v) = ⌊ ev−1−s

|H| ⌋
and ℓ := efull(v) − 1 = s + k|H|. Using Proposition 7.16, in O(log log n) time we then compute the pair
(b, e) = pseudoinvTZ

(ℓ, û). By Lemma 7.20, it holds repr(WA(v, d)) = (b, e). We thus return (b, e).
• Assume ev > d. Let v′ = WA(v, d), S = str(v′), and S′ = S[1 . . d]. Since, by definition, v′ does not have

an ancestor v′′ in Tst satisfying sdepth(v′′) ≥ d, it holds repr(v′) = (RangeBeg(S, T),RangeEnd(S, T)) =
(RangeBeg(S′, T),RangeEnd(S′, T)). We thus focus on computing the latter pair. First, we observe that
since v′ is an ancestor v, we have S′ = str(v)[1 . . d]. Therefore, since str(v) is periodic, and it holds
3τ − 1 ≤ d, we obtain by Lemma 6.3 that S′ is periodic, and it holds L-root(S′) = L-root(v) = H and
L-head(S′) = L-head(v) = s. To show e(S′) > |S′|, let us denote Q = str(v)[1 . . e(v)). By definition, we have
e(Q) = 1 + p+ lcp(Q,Q(p . . |Q|]) = |Q|+ 1. Thus, we must have lcp(Q,Q(p . . |Q|]) = |Q| − p. Consequently,
since by ev = e(v) > d the string S′ is a prefix of Q, we have lcp(S′, S′(p . . |S′|]) = |S′| − p, and hence
e(S′) = 1 + p+ lcp(S′, S′(p . . |S′|]) = |S′|+ 1. Considering all the above properties of S′, the next step of
the algorithm is therefore to compute and return the pair (b, e) = (RangeBeg(S′, T),RangeEnd(S′, T)) in
O(log log n) time using Proposition 7.17. As observed above, it holds repr(WA(v, d)) = (b, e). □

7.3.7 Construction Algorithm

Proposition 7.23. Given CST(T), we can in O(n/ logσ n) time we can augment it into a data structure from
Section 7.3.1.

Copyright © 2023
Copyright for this paper is retained by the authors5190

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. First, we combine Propositions 5.3 and 5.15 (recall that the packed representation of T is a component of
CST(T)) to construct the data structure from Section 5.3.2 in O(n/ logσ n) time. In particular, this constructs
(rlexi)i∈[1. .q]. Using Proposition 5.7, we can now compute AZ[i] for any i ∈ [1 . . q] in O(1) time. Then, in
O(n/ logσ n) time we construct the data structure TZ using Proposition 4.1.

After the above components are constructed, we then analogously construct their symmetric counterparts
(adapted according to Lemma 5.4). □

7.4 The Final Data Structure
In this section, we put together Sections 7.1 to 7.3 to obtain a data structure that performs suffix tree operations
in O(logϵ n) time.

The section is organized as follows. First, we introduce the components of the data structure (Section 7.4.1).
We then describe the query algorithms for all operations in Table 1 (Sections 7.4.2 to 7.4.20). Finally, we show the
construction algorithm (Section 7.4.21).

7.4.1 The Data Structure

Definitions Recall (Section 2), that we assumed T [n] = 0, and that 0 that not appear anywhere else in T . We
define T rev as a text obtained by first reversing T , and then moving the symbol 0 from the beginning to the end.
Formally, for every i ∈ [1 . . n]:

T rev[i] =

{
T [n− i] if i ̸= n,

T [n] if i = n.

Observe that for every P not containing the symbol 0, j ∈ Occ(P, T) holds if and only if j′ ∈ Occ(P , T rev), where
j′ = n− (j + |P | − 1).

Remark 7.11. The motivation for defining T rev is that the standard reverse operation on T (denoted T) does
not preserve a unique sentinel at the end.

Components The data structure consists of two parts. The first part is constructed for T and consists of the
following two components:

1. The structure from Section 7.2.1 (used to handle nonperiodic nodes).
2. The structure from Section 7.3.1 (used to handle periodic nodes). Note that similarly as the first component

it also includes CST(T). It suffices, however, to only store one copy.

The second part contains the analogous two components for the text T rev. In this section, unless specified otherwise,
we refer to the part of the structure for text T .

In total, the data structure takes O(n/ logσ n) space.

7.4.2 Implementation of sdepth(v)

Proposition 7.24. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1 and repr(v), we
can in O(logϵ n) time compute sdepth(v).

Proof. Denote i1 = lrank(v) + 1 and i2 = rrank(v). Let v1 and v2 be the i1th and i2th (respectively) leftmost
leaf of Tst. Then, v = LCA(v1, v2). By Observation 4.1, we thus have sdepth(v) = lcp(str(v1), str(v2)) =
LCE(SA[i1],SA[i2]). Consequently, to compute sdepth(v) we proceed as follows. First, in O(logϵ n) time we
compute j1 = SA[i1] and j2 = SA[i2] using Proposition 5.17. Then, using the structure to answer LCE queries
(stored as part of the structure in Section 5.3.2), in O(1) time we compute and return sdepth(v) = LCE(j1, j2). □

7.4.3 Implementation of LCA(u, v)

Proposition 7.25. Let v1 and v2 be explicit nodes of Tst. Given the data structure from Section 7.4.1 and the
pairs repr(v1) and repr(v2), we can in O(logϵ n) time compute the pair repr(LCA(v1, v2)).

Proof. First, using Proposition 7.3, in O(1) time we check if sdepth(LCA(v1, v2)) < 3τ − 1. If so, in O(1) time we
additionally obtain repr(LCA(v1, v2)). Let us thus assume sdepth(LCA(v1, v2)) ≥ 3τ − 1. Then, Proposition 7.3
additionally indicates whether LCA(v1, v2) is periodic. If not, we use Proposition 7.10 to compute repr(LCA(v1, v2))
in O(logϵ n) time. Otherwise, we obtain repr(LCA(v1, v2)) in O(log log n) time using Proposition 7.19. □

Copyright © 2023
Copyright for this paper is retained by the authors5191

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7.4.4 Implementation of child(v, c)

Proposition 7.26. Let v be an explicit internal node of Tst. Given the data structure from Section 7.4.1, repr(v),
and c ∈ [0 . . σ), in O(logϵ n) time we can compute repr(child(v, c)).

Proof. First, using Proposition 7.2, in O(1) time we check if v is periodic. If so, we obtain repr(child(v, c)) in
O(log log n) time using Proposition 7.20. Otherwise (i.e., if v is not periodic), Proposition 7.2 additionally return
the information on whether it holds sdepth(v) < 3τ − 1. If so, then we obtain repr(child(v, c)) in O(1) time using
Proposition 7.4. Otherwise, we obtain repr(child(v, c)) in O(logϵ n) time using Proposition 7.11. □

7.4.5 Implementation of pred(v, c)

Proposition 7.27. Let v be an explicit internal node of Tst. Given the data structure from Section 7.4.1, repr(v),
and c ∈ [0 . . σ), in O(logϵ n) time we can compute RangeBeg(str(v)c, T).

Proof. First, using Proposition 7.2, in O(1) time we check if v is periodic. If so, we obtain RangeBeg(str(v)c, T) in
O(log log n) time using Proposition 7.21. Otherwise (i.e., if v is not periodic), Proposition 7.2 additionally return
the information on whether it holds sdepth(v) < 3τ − 1. If so, then we obtain RangeBeg(str(v)c, T) in O(1) time
using Proposition 7.5. Otherwise, we obtain RangeBeg(str(v)c, T) in O(logϵ n) time using Proposition 7.12. □

Proposition 7.28. Let v be an explicit internal node of Tst. Given the data structure from Section 7.4.1, repr(v),
and c ∈ [0 . . σ), in O(logϵ n) time we can compute repr(pred(v, c)).

Proof. Denote (b, e) = repr(v). First, using Proposition 7.27, in O(logϵ n) time we compute i =
RangeBeg(str(v)c, T). Observe that by definition of pred(v, c) we then have pred(v, c) = ⊥ if and only if
i = b. If i = b, we thus return repr(pred(v, c)) = (0, 0). Let us thus assume i ̸= b. Observe that we then
have SA[i] ∈ Occ(str(pred(v, c)), T), and moreover, pred(v, c) = child(v, c′), where c′ = T [SA[i] + sdepth(v)]. We
thus proceed as follows. First, using Proposition 5.17, in O(logϵ n) time we compute j = SA[i]. Next, using
Proposition 7.24, in O(logϵ n) time we compute ℓ = sdepth(v). In O(1) time we then obtain c′ = T [j + ℓ]. Finally,
using Proposition 7.26, in O(logϵ n) time we compute and return repr(child(v, c′)) = repr(pred(v, c)). □

7.4.6 Implementation of WA(v, d)

Proposition 7.29. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1, repr(v), and an
integer d satisfying 0 ≤ d ≤ |str(v)|, in O(logϵ n) time we can compute repr(WA(v, d)).

Proof. If d < 3τ − 1, we obtain repr(WA(v, d)) in O(1) time using Proposition 7.6. Let us thus assume d ≥ 3τ − 1.
This implies sdepth(v) ≥ 3τ − 1. First, using Proposition 7.2, in O(1) time we determine whether v is periodic. If
not, then in O(logϵ n) time we compute repr(WA(v, d)) using Proposition 7.13. Otherwise, we obtain repr(WA(v, d))
using Proposition 7.22 in O(log log n) time. □

7.4.7 Implementation of wlink(v, c)

Proposition 7.30. Let P ∈ [0 . . σ)m. Given the data structure from Section 7.4.1, the value |P |, any
j ∈ Occ(P, T), and any c ∈ [0 . . σ), in O(logϵ n) time we can check if Occ(Pc, T) ̸= ∅, and if so, return
some position j′ ∈ Occ(Pc, T).

Proof. We start by checking if P contains the symbol 0. For this, we simply check if j + |P | = n+ 1. If so, we
return that Occ(Pc, T) = ∅. Let us thus assume j + |P | ≤ n.

Using Proposition 5.16, in O(logϵ n) time we compute i = ISA[j]. Let (b, e) = (i− 1, i), and observe that we
then have (b, e) = repr(v), where v is a leaf of Tst satisfying str(v) = T [j . . n]. Next, using Proposition 7.29, in
O(logϵ n) time we compute the pair (b′, e′) = repr(WA(v, |P |)) (we can use it, since |P | ≤ n− j + 1 = sdepth(v)).
We then have:

(b′, e′) = (RangeBeg(str(v)[1 . . |P |], T),RangeEnd(str(v)[1 . . |P |], T))

Copyright © 2023
Copyright for this paper is retained by the authors5192

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

= (RangeBeg(T [j . . j + |P |), T),RangeEnd(T [j . . j + |P |), T))
= (RangeBeg(P, T),RangeEnd(P, T)).

Next, note that it holds (b′, e′) = repr(v′) for some node v′ such that sdepth(v′) ≥ |P |. To check if
sdepth(v′) = |P |, in O(logϵ n) time we compute j1 = SA[b′ + 1] and j2 = SA[e′] using Proposition 5.17. As
explained in the proof of Proposition 7.24, we then have sdepth(v′) = |P | if and only if T [j1 + |P |] ̸= T [j2 + |P |],
which we can check in O(1) time (note that T [j1 + |P |] and T [j2 + |P |] are well-defined, since j1, j2 ∈ Occ(P, T)
and we assumed that P does not contain symbol T [n] = 0). Consider two cases:

• If T [j1 + |P |] = T [j2 + |P |], then v′ satisfies sdepth(v′) > |P |. In that case we check if c = T [j1 + |P |]. If so,
we have j1 ∈ Occ(Pc, T) and hence we return j1. Otherwise, we return that Occ(Pc, T) = ∅.

• Otherwise (i.e., if T [j1 + |P |] ̸= T [j2 + |P |]), we have sdepth(v′) = |P |. Using Proposition 7.26, we
then compute the pair (b′′, e′′) = repr(child(v′, c)) in O(logϵ n) time. If (b′′, e′′) = (0, 0), then we return
that Occ(Pc, T) = ∅. Otherwise, we have Occ(Pc, T) ̸= ∅. We then use Proposition 5.17 to compute
j′ = SA[e′′] ∈ Occ(Pc, T) in O(logϵ n) time. □

Proposition 7.31. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1, repr(v), and
c ∈ [0 . . σ), in O(logϵ n) time we can compute repr(wlink′(v, c)).

Proof. Denote (b, e) = repr(v) and P = str(v). The algorithm consists of two steps:

1. The first step is to determine if Occ(cP, T) ̸= ∅, and if so, to compute some j′ ∈ Occ(cP, T). First, using
Proposition 7.24, in O(logϵ n) time we compute ℓ := sdepth(v) = |P |. Using Proposition 5.17, in O(logϵ n)
time we also compute j = SA[e]. We then have j ∈ Occ(P, T). We now check if j + ℓ− 1 = n. If so, then
by the uniqueness of T [n], we have Occ(P, T) = {j}. In that case, we have Occ(cP, T) ̸= ∅ if and only if
T [j − 1] = c, which we can check in O(1) time. If T [j − 1] = c, in O(1) time we then obtain j′ ∈ Occ(cP, T),
where j′ = j − 1. Let us now assume that j + ℓ− 1 ̸= n. We now check if c = 0. If so, then Occ(cP, T) ̸= ∅
holds if and only if ℓ = 0. We can again check this condition in O(1) time. Moreover, if ℓ = 0, then we have
j′ ∈ Occ(cP, T), where j′ = n. Let us thus assume that c ̸= 0. Observe that then, letting jrev := n−(j+ℓ−1),
it holds jrev ∈ Occ(P , T rev). Denote ℓ′ = ℓ+ 1. Using Proposition 7.30 for the text T rev, in O(logϵ n) time
we check if Occ(Pc, T rev) = ∅ (note that we have |Pc| = ℓ′). If so, we have Occ(cP, T) = ∅, since cP = Pc
and hence Occ(Pc, T rev) = ∅ holds if and only if Occ(cP, T) = ∅. Otherwise (i.e., if Occ(Pc, T rev) ̸= ∅),
Proposition 7.30 returns some position jrevc ∈ Occ(Pc, T rev). Letting j′ := n− (jrevc + ℓ′ − 1), we then have
j′ ∈ Occ(cP, T).

2. If in the first step we found that Occ(cP, T) = ∅, then by definition it holds wlink′(v, c) = ⊥, and hence
we return repr(wlink′(v, c)) = (0, 0). Let us thus assume that Occ(cP, T) ̸= ∅ and j′ ∈ Occ(cP, T). We
now compute the SA range containing all elements of Occ(cP, T). For this, we first compute i = ISA[j′]
using Proposition 5.16 in O(logϵ n) time. Letting (b′, e′) = (i− 1, i), we then have (b′, e′) = repr(v′), where
v′ is a leaf of Tst satisfying str(v′) = T [j′ . . n]. Using Proposition 7.29, in O(logϵ n) time, we compute
(b′′, e′′) = repr(WA(v′, ℓ′)). We then have

(b′′, e′′) = (RangeBeg(str(v′)[1 . . ℓ′], T),RangeEnd(str(v′)[1 . . ℓ′], T))

= (RangeBeg(cP, T),RangeEnd(cP, T))

= repr(wlink′(v, c)).

In total, the query takes O(logϵ n) time. □

Proposition 7.32. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1, repr(v), and
c ∈ [0 . . σ), in O(logϵ n) time we can compute repr(wlink(v, c)).

Proof. As observed at the beginning of Section 7, wlink(v, c) ̸= ⊥ holds if and only if wlink′(v, c) ̸= ⊥ and
sdepth(wlink′(v, c)) = sdepth(v) + 1. Therefore, we can use wlink′(v, c) to compute wlink(v, c). First, using
Proposition 7.31, in O(logϵ n) time we compute (b, e) = repr(wlink′(v, c)). If (b, e) = (0, 0), then by the above
we have wlink(v, c) = ⊥, and hence return repr(wlink(v, c)) = (0, 0). Otherwise, using Proposition 7.24, in
O(logϵ n) time we compute ℓ = sdepth(v) and ℓ′ = sdepth(wlink′(v, c)). If ℓ′ = ℓ + 1, then we return that
repr(wlink(v, c)) = (b, e). Otherwise, we have wlink(v, c) = ⊥ and we return repr(wlink(v, c)) = (0, 0). □

Copyright © 2023
Copyright for this paper is retained by the authors5193

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7.4.8 Implementation of slink(v)

Proposition 7.33. Let v ̸= root(Tst) be an explicit node of Tst. Given the data structure from Section 7.4.1 and
repr(v), in O(logϵ n) time we can compute repr(slink(v)).

Proof. Denote (b, e) = repr(v), P = str(v), and P ′ = P [2 . . |P |]. Recall, that for every v ̸= root(Tst), slink(v) is an
explicit node of Tst. Thus, to compute repr(slink(v)), we need to determine (RangeBeg(P ′, T),RangeEnd(P ′, T)).

First, using Proposition 7.24, in O(logϵ n) time we compute ℓ := sdepth(v) = |P |. Next, using Proposition 5.17,
in O(logϵ n) time we compute j = SA[e]. We then have j ∈ Occ(P, T). Then, j′ := j + 1 satisfies j′ ∈ Occ(P ′, T).
Using Proposition 5.16, in O(logϵ n) time we compute i = ISA[j′]. Letting (b′, e′) = (i − 1, i), we then have
(b′, e′) = repr(v′), where v′ is a leaf of Tst satisfying str(v′) = T [j′ . . n]. Using Proposition 7.29, in O(logϵ n) time,
we compute (b′′, e′′) = repr(WA(v′, ℓ− 1)). We then have

(b′′, e′′) = (RangeBeg(str(v′)[1 . . ℓ− 1], T),RangeEnd(str(v′)[1 . . ℓ− 1], T))

= (RangeBeg(T [j′ . . j′ + ℓ− 1), T),RangeEnd(T [j′ . . j′ + ℓ− 1), T))

= (RangeBeg(P ′, T),RangeEnd(P ′, T))

= repr(slink(v)).

In total, the query takes O(logϵ n) time. □

7.4.9 Implementation of slink(v, i)

Proposition 7.34. Let i ∈ Z+ and let v be an explicit node of Tst satisfying sdepth(v) ≥ i. Given the data
structure from Section 7.4.1, repr(v), and the value i, in O(logϵ n) time we can compute repr(slink(v, i)).

Proof. Denote (b, e) = repr(v), P = str(v), and P ′ = P [i+1 . . |P |]. Note that since for every v ̸= root(Tst),
slink(v) is an explicit node of Tst (Proposition 7.33), it follows that for every explicit node v of Tst that satisfies
sdepth(v) ≥ i, slink(v, i) is an explicit node of Tst. Thus, to compute repr(slink(v)), we need to determine
(RangeBeg(P ′, T),RangeEnd(P ′, T)).

The procedure is a generalization of the one explained in the proof of Proposition 7.34. First, using
Proposition 7.24, in O(logϵ n) time we compute ℓ := sdepth(v) = |P |. Next, using Proposition 5.17, in
O(logϵ n) time we compute j = SA[e]. We then have j ∈ Occ(P, T). Then, j′ := j + i satisfies j′ ∈ Occ(P ′, T).
Using Proposition 5.16, in O(logϵ n) time we compute i′ = ISA[j′]. Letting (b′, e′) = (i′ − 1, i′), we then
have (b′, e′) = repr(v′), where v′ is a leaf of Tst satisfying str(v′) = T [j′ . . n]. Using Proposition 7.29, in
O(logϵ n) time, we compute (b′′, e′′) = repr(WA(v′, ℓ − i)). We then have (b′′, e′′) = (RangeBeg(str(v′)[1 . . ℓ −
i], T),RangeEnd(str(v′)[1 . . ℓ − i], T)) = (RangeBeg(T [j′ . . j′ + ℓ − i), T),RangeEnd(T [j′ . . j′ + ℓ − i), T)) =
(RangeBeg(P ′, T),RangeEnd(P ′, T)) = repr(slink(v, i)). □

7.4.10 Implementation of parent(v)

Lemma 7.21. Let v ̸= root(Tst) be an explicit node of Tst. Let repr(v) = (b, e). If b ̸= 0 (resp. e ̸= n) then, letting
v1 and v2 be the bth and (b + 1)st (resp. eth and (e + 1)st) leftmost leaves of Tst, the following conditions are
equivalent:

1. leftsibling(v) ̸= ⊥ (resp. rightsibling(v) ̸= ⊥),
2. parent(v) = LCA(v1, v2).

Proof. Assume leftsibling(v) = vs ̸= ⊥ (resp. rightsibling(v) = vs ̸= ⊥). By repr(v) = (b, e), we have
repr(v1) = (b − 1, b) (resp. repr(v1) = (e − 1, e)), and repr(v2) = (b, b + 1) (resp. repr(v2) = (e, e + 1)). This
implies that v1 is in the subtree rooted in vs (resp. v) and v2 in the subtree rooted in v (resp. vs). Consequently,
LCA(v1, v2) = LCA(v, vs). On the other hand, since vs is a sibling of v, we have LCA(v, vs) = parent(v). Thus,
parent(v) = LCA(v1, v2).

We show that parent(v) = LCA(v1, v2) implies leftsibling(v) ̸= ⊥ (resp. rightsibling(v) ̸= ⊥) by contraposition.
Assume leftsibling(v) = ⊥ (resp. rightsibling(v) = ⊥) and denote vp = parent(v). Observe that then
repr(vp) = (b, ep) for some ep > b (resp. repr(vp) = (bp, e) for some bp < e). By repr(v1) = (b − 1, b) (resp.

Copyright © 2023
Copyright for this paper is retained by the authors5194

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

repr(v2) = (e, e + 1)), the node v1 (resp. v2) is thus not in the subtree rooted in vp. On the other hand,
repr(v2) = (b, b + 1) (resp. repr(v1) = (e − 1, e)) implies that vp is an ancestor of v2 (resp. v1). Therefore, the
node LCA(v1, v2) = LCA(v1, vp) (resp. LCA(v1, v2) = LCA(vp, v2)) is a proper ancestor of vp. In particular,
LCA(v1, v2) ̸= vp. □

Proposition 7.35. Let v ̸= root(Tst) be an explicit node of Tst. Given the data structure from Section 7.4.1 and
repr(v), in O(logϵ n) time we can compute repr(parent(v)).

Proof. Let repr(v) = (b, e). We first construct a set of pairs P as follows.

• If b = 0, we skip this step. Otherwise, let v1 and v2 be the leftmost bth and (b + 1)st leaves of Tst,
(b1, e1) = (b− 1, b), and (b2, e2) = (b, b+ 1). We then have repr(v1) = (b1, e1) and repr(v2) = (b2, e2). Using
Proposition 7.25, in O(logϵ n) we obtain repr(v′), where v′ = LCA(v1, v2). Note that v′ is an ancestor of v.
We add repr(v′) to P.

• If e = n, we skip this step. Otherwise, let v′1 and v′2 be the leftmost eth and (e + 1)st leaves of Tst,
(b′1, e

′
1) = (e− 1, e), and (b′2, e

′
2) = (e, e+ 1). We repeat the same procedure as above, again adding repr(v′′)

(where v′′ = LCA(v′1, v
′
2)) to P.

Recall now that we assumed |T | ≥ 2 and that T [n] is unique in T . This implies that the root of Tst has at least
two children. On the other hand, any other non-leaf node has at least two children by definition. This implies that
for every explicit node v ̸= root(Tst), it holds that either leftsibling(v) ̸= ⊥ or rightsibling(v) ̸= ⊥. Therefore, by
Lemma 7.21, there exists (bp, ep) ∈ P such that (bp, ep) = repr(parent(p)). Since each of the nodes u corresponding
to an element in P is an ancestor of v, to compute parent(v), it suffices to compute sdepth(u) for all candidates u
and return the pair repr(u) corresponding to u with the largest value. We obtain sdepth(u) using Proposition 7.24
in O(logϵ n) time. By |P| ≤ 2, the whole procedure takes O(logϵ n) time. □

Remark 7.12. It might appear that the computation of parent(v) could be implemented by modifying the
definition of the WA(v, d) to instead return the deepest ancestor v′ of v satisfying sdepth(v′) ≤ d (rather than
the most shallow ancestor v′ of v satisfying sdepth(v′) ≥ d). Observe, however that as shown in the proof of
Lemma 7.11 (resp. Lemma 7.20), mapTst,TS

(v) (resp. mapTst,TZ
(v)) always returns the lowest of all nodes u′ of TS

(resp. TZ) satisfying (s(u′), t(u′)) = repr(v). This enforces the current definition of WA(v, d) and implies that the
implementation of parent(v) with WA(v, d) would require a binary search. Thus, to achieve faster time, parent(v)
is implemented as above.

7.4.11 Implementation of firstchild(v)

Proposition 7.36. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1 and repr(v), in
O(logϵ n) time we can compute repr(firstchild(v)).

Proof. Denote (b, e) = repr(v) and P = str(v). First, we check if b+ 1 = e. If so, then v is a leaf and hence we
return repr(firstchild(v)) = (0, 0) (note that here we used that |T | ≥ 2 and that T [n] is unique in T , since this
implies that every non-leaf node of Tst, including the root, has at least two children).

Let us thus assume b+ 1 ̸= e. Denote v′ = firstchild(v) and P ′ = str(v′). We then have v′ ̸= ⊥. Observe that
letting (b′, e′) = (b, b+1), it holds (b′, e′) = repr(v′′), where v′′ is a leaf of Tst such that str(v′) is a prefix of str(v′′).
On the other hand, by definition, we have sdepth(v′) ≥ sdepth(v) + 1, and there is no ancestor of v′ at depth
d ∈ (sdepth(v) . . sdepth(v′)). Therefore, we must have v′ = WA(v′′, sdepth(v) + 1). We thus proceed as follows.
First, using Proposition 7.24, in O(logϵ n) time we compute ℓ := sdepth(v) = |P |. Next, using Proposition 7.29, in
O(logϵ n) time we compute (b′′, e′′) = repr(WA(v′′, ℓ+ 1)). We then have repr(firstchild(v)) = (b′′, e′′). In total,
the query takes O(logϵ n) time. □

7.4.12 Implementation of lastchild(v)

Proposition 7.37. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1 and repr(v), in
O(logϵ n) time we can compute repr(lastchild(v)).

Proof. Denote (b, e) = repr(v) and P = str(v). The algorithm is symmetrical to the one presented in the proof of
Proposition 7.36, i.e., rather than setting (b′, e′) = (b, b+ 1), we set (b′, e′) = (e − 1, e). For such pair, it holds
(b′, e′) = repr(v′′), where v′′ is a leaf of Tst such that, letting v′ = lastchild(v), the string str(v′) is a prefix of
str(v′′). □

Copyright © 2023
Copyright for this paper is retained by the authors5195

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7.4.13 Implementation of rightsibling(v)

Proposition 7.38. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1 and repr(v), in
O(logϵ n) time we can compute repr(rightsibling(v)).

Proof. Denote (b, e) = repr(v). We start by checking if (b, e) = (0, n). If so, then v = root(Tst). In that case, we
have rightsibling(v) = ⊥ and hence we return repr(rightsibling(v)) = (0, 0).

Let us thus assume that (b, e) ̸= (0, n), i.e., v ̸= root(Tst). Using Proposition 7.35, in O(logϵ n) time we
compute (b′, e′) = repr(parent(v)). We then have b′ ≤ b < e ≤ e′. Next, we compare e and e′. If e = e′ then,
by definition, v is the rightmost child of its parent and hence we return repr(rightsibling(v)) = (0, 0). Let us
thus assume e < e′. We then have rightsibling(v) ̸= ⊥. Moreover, letting v′ = rightsibling(v) and P ′ = str(v′),
it then holds SA[e+ 1] ∈ Occ(P ′, T). This implies that, letting (b′′, e′′) = (e, e+ 1), we have (b′′, e′′) = repr(v′′),
where v′′ is a leaf of Tst such that P ′ is a prefix of str(v′′). Moreover, it holds sdepth(v′) ≥ sdepth(parent(v)) + 1,
and the node v′ does not have any ancestors at depth d ∈ (sdepth(parent(v)) . . sdepth(v′)). Consequently,
v′ = WA(v′′, sdepth(parent(v)) + 1). We thus proceed as follows. First, using Proposition 7.24, in O(logϵ n)
time we compute ℓ := sdepth(parent(v)). Then, using Proposition 7.29, in O(logϵ n) time we compute
(b′′′, e′′′) = repr(WA(v′′, ℓ+ 1)). By the above discussion, we have (b′′′, e′′′) = repr(rightsibling(v)). □

7.4.14 Implementation of leftsibling(v)

Proposition 7.39. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1 and repr(v), in
O(logϵ n) time we can compute repr(leftsibling(v)).

Proof. Denote (b, e) = repr(v). The algorithm is symmetrical to the one presented in the proof of Proposition 7.38.
More precisely, we replace the check e = e′ with b = b′. We also set (b′′, e′′) = (b−1, b) instead of (b′′, e′′) = (e, e+1).
□

7.4.15 Implementation of isleaf(v)

Proposition 7.40. Let v be an explicit node of Tst. Given repr(v), we can check if v is a leaf in O(1) time.

Proof. Recall, that |T | ≥ 2 and that T [n] is unique in T . This implies that the root of Tst has at least two children.
On the other hand, any other non-leaf node has at least two children by definition. Thus, letting (b, e) = repr(v),
and recalling that repr(v) = (lrank(v), rrank(v)), the node v is a leaf if and only if b+ 1 = e, which we can check
in O(1) time. □

7.4.16 Implementation of index(v)

Proposition 7.41. Let v be an explicit node of Tst. Given the data structure from Section 7.4.1 and repr(v), in
O(logϵ n) time we can compute index(v).

Proof. Denote (b, e) = repr(v) and P = str(v). Recall, that it holds repr(v) = (RangeBeg(P, T),RangeEnd(P, T)),
and hence Occ(P, T) = {SA[i]}i∈(b. .e]. Thus, to obtain index(v), it suffices to compute j = SA[i] for any i ∈ (b . . e].
Using Proposition 5.17, this takes O(logϵ n) time. □

7.4.17 Implementation of count(v)

Proposition 7.42. Let v be an explicit node of Tst. Given repr(v), we can compute count(v) in O(1) time.

Proof. Denote (b, e) = repr(v). Since by definition we have Occ(str(v), T) = {SA[i]}i∈(b. .e], in O(1) time we return
count(v) = |Occ(str(v), T)| = e− b. □

7.4.18 Implementation of letter(v, i)

Proposition 7.43. Let v be an explicit node of Tst and i ∈ [1 . . |str(v)|]. Given the data structure from
Section 7.4.1, repr(v), and the value i, we can compute letter(v, i) in O(logϵ n) time.

Proof. It suffices to find any j ∈ Occ(str(v), T) and return T [j + i − 1]. Using Proposition 7.41, we find j in
O(logϵ n) time. We then return the output symbol in O(1) time (recall, that the packed representation of T is
stored as part of CST(T)). □

Copyright © 2023
Copyright for this paper is retained by the authors5196

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

7.4.19 Implementation of isancestor(u, v)

Proposition 7.44. Let u and v be explicit nodes of Tst. Given repr(u) and repr(v), we can check if u is an
ancestor of v in O(1) time.

Proof. Denote (b, e) = repr(u), (b′, e′) = repr(v). The node u is an ancestor of v if and only if Occ(str(v), T) ⊆
Occ(str(u), T), which (by definition) holds if and only if b ≤ b′ < e′ ≤ e. □

7.4.20 Implementation of findleaf(j)

Proposition 7.45. Let j ∈ [1 . . n]. Given the data structure from Section 7.4.1 and the position j, in O(logϵ n)
time we can return repr(v), where v is a leaf of Tst satisfying str(v) = T [j . . n].

Proof. Let (b, e) = repr(v). Observe that by definition of v, we have Occ(str(v), T) = {j}. Thus, it must hold
{SA[i]}i∈(b. .e] = {j}. This implies, that it suffices to compute i = ISA[j] and then return that repr(v) = (i− 1, i).
Using Proposition 5.16, the computation of ISA[j] takes O(logϵ n) time. □

7.4.21 Construction Algorithm

Proposition 7.46. Given the packed representation of a text T ∈ [0 . . σ)n, we can construct the data structure
from Section 7.4.1 in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space.

Proof. The first part of the structure is constructed as follows. First, from a packed representation of T , we
construct CST(T) in O(n/ logσ n) time using Proposition 7.7. Then, using Propositions 7.14 and 7.23, we augment
CST(T) in O(nmin(1, log σ/

√
log n)) and O(n/ logσ n) time (respectively) and using O(n/ logσ n) working space

into the two components of the structure from Section 7.4.1. The overall runtime is thus O(nmin(1, log σ/
√
log n)).

Next, we compute T rev. With the help of the lookup table Lrev, we first compute T rev[1 . . n) = T [1 . . n) in
O(n/ logσ n) time. In O(1) time we then append the sentinel T rev[n] := 0. After that, analogously as above,
we construct the structures from Sections 7.2.1 and 7.3.1 for T rev, i.e., the second part of the structure from
Section 7.4.1. □

7.5 Summary

By combining Propositions 7.24 to 7.26, 7.28, 7.29, and 7.32 to 7.46 we obtain the following main result of this
section.

Theorem 7.1. Given any constant ϵ ∈ (0, 1) and the packed representation of a text T ∈ [0 . . σ)n with 2 ≤ σ < n1/7,
in O(nmin(1, log σ/

√
log n)) time and O(n/ logσ n) working space we can construct a representation of the suffix

tree of T occupying O(n/ logσ n) space and supporting all standard operations (see Table 1) in O(logϵ n) time.

We also immediately obtain the following general reduction.

Theorem 7.2. Consider a data structure answering prefix rank and selection queries that, for any string of length
m over alphabet [0 . . σ)ℓ, achieves the following complexities:

1. Space usage S(m, ℓ, σ),
2. Preprocessing time Pt(m, ℓ, σ),
3. Preprocessing space Ps(m, ℓ, σ),
4. Query time Q(m, ℓ, σ).

For every T ∈ [0 . . σ)n with 2 ≤ σ < n1/7, there exist m = O(n/ logσ n) and ℓ = O(logσ n) such that, given the
packed representation of T , we can in O(n/ logσ n+Pt(m, ℓ, σ)) time and O(n/ logσ n+Ps(m, ℓ, σ)) working space
construct a representation of the suffix tree of T occupying O(n/ logσ n + S(m, ℓ, σ)) space and supporting all
standard operations (see Table 1) in O(log log n+Q(m, ℓ, σ)) time.

Copyright © 2023
Copyright for this paper is retained by the authors5197

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

References

[1] Donald Adjeroh, Tim Bell, and Amar Mukherjee. The Burrows-Wheeler Transform: Data Compression,
Suffix Arrays, and Pattern Matching. Springer, Boston, MA, USA, 2008. doi:10.1007/978-0-387-78909-5.

[2] Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static pattern
matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

[3] Maxim Babenko, Paweł Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya. Wavelet trees meet
suffix trees. In 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 572–591, 2015.
doi:10.1137/1.9781611973730.39.

[4] Jérémy Barbay, Francisco Claude, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. Efficient fully-
compressed sequence representations. Algorithmica, 69(1):232–268, 2014. doi:10.1007/s00453-012-9726-3.

[5] Djamal Belazzougui. Linear time construction of compressed text indices in compact space. In 46th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 148–193, 2014. doi:10.1145/2591796.
2591885.

[6] Djamal Belazzougui, Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Alberto Ordóñez Pereira, Simon J.
Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In Data Compression Conference (DCC), pages
83–92, 2015. doi:10.1109/DCC.2015.69.

[7] Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing. ACM Trans.
Algorithms, 10(4):23:1–23:19, 2014. doi:10.1145/2635816.

[8] Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing sequences. ACM
Trans. Algorithms, 11(4):31:1–31:21, 2015. doi:10.1145/2629339.

[9] Djamal Belazzougui and Simon J. Puglisi. Range predecessor and Lempel-Ziv parsing. In 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2053–2071, 2016. doi:10.1137/1.9781611974331.
ch143.

[10] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In 4th Latin American Symposium
on Theoretical Informatics (LATIN), pages 88–94, 2000. doi:10.1007/10719839_9.

[11] Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj. Time-space trade-offs for
Lempel-Ziv compressed indexing. Theor. Comput. Sci., 713:66–77, 2018. doi:10.1016/j.tcs.2017.12.021.

[12] Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic indexing for packed strings.
In 28th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 6:1–6:11, 2017. doi:
10.4230/LIPIcs.CPM.2017.6.

[13] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and Oren Weimann.
Random access to grammar-compressed strings and trees. SIAM J. Comput., 44(3):513–539, 2015.
doi:10.1137/130936889.

[14] Christina Boucher, Ondrej Cvacho, Travis Gagie, Jan Holub, Giovanni Manzini, Gonzalo Navarro, and
Massimiliano Rossi. PFP compressed suffix trees. In 24th Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 60–72, 2021. doi:10.1137/1.9781611976472.5.

[15] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm. Technical Report
124, Digital Equipment Corporation, 1994. URL: https://www.hpl.hp.com/techreports/Compaq-DEC/
SRC-RR-124.pdf.

[16] Manuel Cáceres and Gonzalo Navarro. Faster repetition-aware compressed suffix trees based on block trees.
Inf. Comput., 285(Part):104749, 2022. doi:10.1016/j.ic.2021.104749.

[17] Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Compressed indexes for dynamic
text collections. ACM Trans. Algorithms, 3(2):21, 2007. doi:10.1145/1240233.1240244.

Copyright © 2023
Copyright for this paper is retained by the authors5198

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/978-0-387-78909-5
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1007/s00453-012-9726-3
https://doi.org/10.1145/2591796.2591885
https://doi.org/10.1145/2591796.2591885
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1145/2635816
https://doi.org/10.1145/2629339
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.1007/10719839_9
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.4230/LIPIcs.CPM.2017.6
https://doi.org/10.4230/LIPIcs.CPM.2017.6
https://doi.org/10.1137/130936889
https://doi.org/10.1137/1.9781611976472.5
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1016/j.ic.2021.104749
https://doi.org/10.1145/1240233.1240244

[18] Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range counting, and related
problems. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 161–173, 2010.
doi:10.1137/1.9781611973075.15.

[19] Bernard Chazelle. A functional approach to data structures and its use in multidimensional searching. SIAM
J. Comput., 17(3):427–462, 1988. doi:10.1137/0217026.

[20] Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro, and Nicola
Prezza. Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms, 17(1):8:1–8:39, 2021.
doi:10.1145/3426473.

[21] David R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1998. URL: https://uwspace.
uwaterloo.ca/bitstream/handle/10012/64/nq21335.pdf.

[22] Richard Cole, Tsvi Kopelowitz, and Moshe Lewenstein. Suffix trays and suffix trists: Structures for faster
text indexing. Algorithmica, 72(2):450–466, 2015. doi:10.1007/s00453-013-9860-6.

[23] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley, 2nd edition, 2006. doi:
10.1002/047174882X.

[24] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cambridge University
Press, Cambridge, UK, 2007. doi:10.1017/cbo9780511546853.

[25] Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms. In 7th Annual
Symposium on Combinatorial Pattern Matching (CPM), pages 130–140, 1996. doi:10.1007/3-540-61258-0\
_11.

[26] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix tree
construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/355541.355547.

[27] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In 41st IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 390–398, 2000. doi:10.1109/SFCS.2000.
892127.

[28] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581, 2005.
doi:10.1145/1082036.1082039.

[29] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proc. Am. Math. Soc.,
16(1):109–114, 1965. doi:10.2307/2034009.

[30] Johannes Fischer and Paweł Gawrychowski. Alphabet-dependent string searching with Wexponential search
trees. In 26th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 160–171, 2015. Full
version: https://arxiv.org/abs/1302.3347. doi:10.1007/978-3-319-19929-0_14.

[31] Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-bounded compressed suffix trees.
Theor. Comput. Sci., 410(51):5354–5364, 2009. doi:10.1016/j.tcs.2009.09.012.

[32] Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi. A faster grammar-
based self-index. In 6th International Conference on Language and Automata Theory and Applications (LATA),
pages 240–251, 2012. doi:10.1007/978-3-642-28332-1_21.

[33] Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi. LZ77-based
self-indexing with faster pattern matching. In 11th Latin American Symposium on Theoretical Informatics
(LATIN), pages 731–742, 2014. doi:10.1007/978-3-642-54423-1_63.

[34] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text searching in
BWT-runs bounded space. J. ACM, 67(1):1–54, apr 2020. doi:10.1145/3375890.

Copyright © 2023
Copyright for this paper is retained by the authors5199

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1137/0217026
https://doi.org/10.1145/3426473
https://uwspace.uwaterloo.ca/bitstream/handle/10012/64/nq21335.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/64/nq21335.pdf
https://doi.org/10.1007/s00453-013-9860-6
https://doi.org/10.1002/047174882X
https://doi.org/10.1002/047174882X
https://doi.org/10.1017/cbo9780511546853
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1145/355541.355547
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.2307/2034009
https://arxiv.org/abs/1302.3347
https://doi.org/10.1007/978-3-319-19929-0_14
https://doi.org/10.1016/j.tcs.2009.09.012
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1145/3375890

[35] Younan Gao, Meng He, and Yakov Nekrich. Fast preprocessing for optimal orthogonal range reporting and
range successor with applications to text indexing. In 28th Annual European Symposium on Algorithms
(ESA), pages 54:1–54:18, 2020. doi:10.4230/LIPIcs.ESA.2020.54.

[36] Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr Sankowski. Optimal
dynamic strings. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1509–1528,
2018. Full version: https://arxiv.org/abs/1511.02612. doi:10.1137/1.9781611975031.99.

[37] Simon Gog. Compressed suffix trees: design, construction, and applications. PhD thesis, University of Ulm,
2011. URL: http://vts.uni-ulm.de/docs/2011/7786/vts_7786_11228.pdf.

[38] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug and play with
succinct data structures. In 13th International Symposium on Experimental Algorithms (SEA), pages 326–337,
2014. doi:10.1007/978-3-319-07959-2_28.

[39] Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petri, and Simon J. Puglisi. Fixed block
compression boosting in FM-indexes: Theory and practice. Algorithmica, 81(4):1370–1391, 2019. doi:
10.1007/s00453-018-0475-9.

[40] Simon Gog, Alistair Moffat, and Matthias Petri. CSA++: Fast pattern search for large alphabets.
In 19th Workshop on Algorithm Engineering and Experiments (ALENEX), pages 73–82, 2017. doi:
10.1137/1.9781611974768.6.

[41] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text indexes.
In 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003. URL:
https://dl.acm.org/doi/10.5555/644108.644250.

[42] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching (extended abstract). In 32nd Annual ACM Symposium on Theory of Computing
(STOC), pages 397–406, 2000. doi:10.1145/335305.335351.

[43] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005. doi:10.1137/S0097539702402354.

[44] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology.
Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

[45] Torben Hagerup. Sorting and searching on the word RAM. In 15th Annual Symposium on Theoretical Aspects
of Computer Science (STACS), pages 366–398, 1998. doi:10.1007/BFb0028575.

[46] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-and-space barrier in constructing
full-text indices. In 44th IEEE Symposium on Foundations of Computer Science (FOCS), pages 251–260,
2003. doi:10.1109/SFCS.2003.1238199.

[47] Guy Jacobson. Space-efficient static trees and graphs. In 30th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 549–554, 1989. doi:10.1109/SFCS.1989.63533.

[48] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Hybrid compression of bitvectors for the FM-index.
In Data Compression Conference (DCC), pages 302–311, 2014. doi:10.1109/DCC.2014.87.

[49] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction. J. ACM,
53(6):918–936, 2006. doi:10.1145/1217856.1217858.

[50] Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: Sublinear-time BWT construction and
optimal LCE data structure. In 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 756–767, 2019. doi:10.1145/3313276.3316368.

[51] Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows-Wheeler Transform conjecture. In
61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 1002–1013, 2020.
doi:10.1109/FOCS46700.2020.00097.

Copyright © 2023
Copyright for this paper is retained by the authors5200

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.4230/LIPIcs.ESA.2020.54
https://arxiv.org/abs/1511.02612
https://doi.org/10.1137/1.9781611975031.99
http://vts.uni-ulm.de/docs/2011/7786/vts_7786_11228.pdf
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/s00453-018-0475-9
https://doi.org/10.1007/s00453-018-0475-9
https://doi.org/10.1137/1.9781611974768.6
https://doi.org/10.1137/1.9781611974768.6
https://dl.acm.org/doi/10.5555/644108.644250
https://doi.org/10.1145/335305.335351
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1109/SFCS.2003.1238199
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/DCC.2014.87
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1109/FOCS46700.2020.00097

[52] Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries and updates.
In 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1657–1670, 2022.
doi:10.1145/3519935.3520061.

[53] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: String attractors. In
50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 827–840, 2018. doi:
10.1145/3188745.3188814.

[54] Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis, University of Warsaw,
2018. URL: https://depotuw.ceon.pl/bitstream/handle/item/3614/1000-DR-INF-170341.pdf.

[55] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol., 10(3):R25, 2009. doi:
10.1186/gb-2009-10-3-r25.

[56] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinform., 25(14):1754–1760, 2009. doi:10.1093/bioinformatics/btp324.

[57] Ruiqiang Li, Chang Yu, Yingrui Li, Tak Wah Lam, Siu-Ming Yiu, Karsten Kristiansen, and Jun Wang.
SOAP2: An improved ultrafast tool for short read alignment. Bioinform., 25(15):1966–1967, 2009.
doi:10.1093/bioinformatics/btp336.

[58] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-scale algorithm design:
Biological sequence analysis in the era of high-throughput sequencing. Cambridge University Press, Cambridge,
UK, 2015. doi:10.1017/cbo9781139940023.

[59] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-text indexes. ACM
Trans. Algorithms, 4(3):32:1–32:38, 2008. doi:10.1145/1367064.1367072.

[60] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches. SIAM J. Comput.,
22(5):935–948, 1993. doi:10.1137/0222058.

[61] J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Space-efficient construction of compressed indexes in
deterministic linear time. In 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
408–424, 2017. doi:10.1137/1.9781611974782.26.

[62] J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Fast compressed self-indexes with deterministic linear-time
construction. Algorithmica, 82(2):316–337, 2020. doi:10.1007/s00453-019-00637-x.

[63] J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Text indexing and searching in sublinear time.
In 31st Annual Symposium on Combinatorial Pattern Matching (CPM), pages 24:1–24:15, 2020. doi:
10.4230/LIPIcs.CPM.2020.24.

[64] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Fast construction of wavelet trees. Theor. Comput.
Sci., 638:91–97, 2016. doi:10.1016/j.tcs.2015.11.011.

[65] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press, Cambridge,
UK, 2016. doi:10.1017/cbo9781316588284.

[66] Gonzalo Navarro. Indexing highly repetitive string collections, part I: Repetitiveness measures. ACM Comput.
Surv., 54(2), 2021. doi:10.1145/3434399.

[67] Gonzalo Navarro. Indexing highly repetitive string collections, part II: Compressed indexes. ACM Comput.
Surv., 54(2), 2021. doi:10.1145/3432999.

[68] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv., 39(1):2, 2007.
doi:10.1145/1216370.1216372.

[69] Gonzalo Navarro and Yakov Nekrich. Time-optimal top-k document retrieval. SIAM J. Comput., 46(1):80–113,
2017. doi:10.1137/140998949.

Copyright © 2023
Copyright for this paper is retained by the authors5201

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814
https://depotuw.ceon.pl/bitstream/handle/item/3614/1000-DR-INF-170341.pdf
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1017/cbo9781139940023
https://doi.org/10.1145/1367064.1367072
https://doi.org/10.1137/0222058
https://doi.org/10.1137/1.9781611974782.26
https://doi.org/10.1007/s00453-019-00637-x
https://doi.org/10.4230/LIPIcs.CPM.2020.24
https://doi.org/10.4230/LIPIcs.CPM.2020.24
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3432999
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1137/140998949

[70] Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theor. Comput. Sci., 762:41–50,
2019. doi:10.1016/j.tcs.2018.09.007.

[71] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Dynamic index and
LZ factorization in compressed space. Discret. Appl. Math., 274:116–129, 2020. doi:10.1016/j.dam.2019.
01.014.

[72] Enno Ohlebusch. Bioinformatics algorithms: Sequence analysis, genome rearrangements, and phylogenetic
reconstruction. Oldenbusch Verlag, Ulm, Germany, 2013.

[73] Enno Ohlebusch, Johannes Fischer, and Simon Gog. CST++. In 17th International Symposium on String
Processing and Information Retrieval (SPIRE), pages 322–333, 2010. doi:10.1007/978-3-642-16321-0_34.

[74] Nicola Prezza. A framework of dynamic data structures for string processing. In 16th International Symposium
on Experimental Algorithms (SEA), pages 11:1–11:15, 2017. doi:10.4230/LIPIcs.SEA.2017.11.

[75] Nicola Prezza and Giovanna Rosone. Space-efficient construction of compressed suffix trees. Theor. Comput.
Sci., 852:138–156, 2021. doi:10.1016/j.tcs.2020.11.024.

[76] Mihai Pătraşcu. Lower bounds for 2-dimensional range counting. In 39th Annual ACM Symposium on Theory
of Computing (STOC), pages 40–46, 2007. doi:10.1145/1250790.1250797.

[77] Luís M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed suffix trees. ACM Trans.
Algorithms, 7(4):53:1–53:34, 2011. doi:10.1145/2000807.2000821.

[78] Milan Rǔzić. Constructing efficient dictionaries in close to sorting time. In 35th International Colloquium on
Automata, Languages, and Programming (ICALP), pages 84–95, 2008. doi:10.1007/978-3-540-70575-8_8.

[79] Kunihiko Sadakane. Succinct representations of lcp information and improvements in the compressed suffix
arrays. In 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 225–232, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545410.

[80] Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst., 41(4):589–607,
2007. doi:10.1007/s00224-006-1198-x.

[81] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and Automata
Theory (SWAT/FOCS), pages 1–11, 1973. doi:10.1109/SWAT.1973.13.

[82] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. Trans. Inf. Theory,
23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

Copyright © 2023
Copyright for this paper is retained by the authors5202

D
ow

nl
oa

de
d

07
/1

1/
23

 to
 7

7.
11

1.
24

5.
10

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.tcs.2018.09.007
https://doi.org/10.1016/j.dam.2019.01.014
https://doi.org/10.1016/j.dam.2019.01.014
https://doi.org/10.1007/978-3-642-16321-0_34
https://doi.org/10.4230/LIPIcs.SEA.2017.11
https://doi.org/10.1016/j.tcs.2020.11.024
https://doi.org/10.1145/1250790.1250797
https://doi.org/10.1145/2000807.2000821
https://doi.org/10.1007/978-3-540-70575-8_8
http://dl.acm.org/citation.cfm?id=545381.545410
https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/TIT.1977.1055714

	Introduction
	Preliminaries
	(Prefix) Rank and Selection Queries
	Range Counting and Selection
	String Synchronizing Sets

	Technical Overview
	SA and ISA Queries
	Pattern Matching Queries
	Suffix Tree Queries

	Auxiliary Tools
	Weighted Ancestors
	Tries and Compact Tries
	Small Alphabet
	Large Alphabet

	(Prefix) Rank and Selection Queries
	Range Counting and Selection

	SA and ISA Queries
	The Index Core
	The Data Structure
	Navigation Primitives
	Construction Algorithm

	The Nonperiodic Positions
	The Data Structure
	Implementation of ISA Queries
	Implementation of SA Queries
	Construction Algorithm

	The Periodic Positions
	Preliminaries
	The Data Structure
	Navigation Primitives
	Implementation of ISA Queries
	Implementation of SA Queries
	Construction Algorithm

	The Final Data Structure
	The Data Structure
	Implementation of ISA Queries
	Implementation of SA Queries
	Construction Algorithm

	Summary

	Pattern Matching Queries
	The Index Core
	The Data Structure
	Navigation Primitives
	Implementation of Queries
	Construction Algorithm

	The Nonperiodic Patterns
	The Data Structure
	Implementation of Queries
	Construction Algorithm

	The Periodic Patterns
	Preliminaries
	The Data Structure
	Navigation Primitives
	Implementation of Queries
	Construction Algorithm

	The Final Data Structure
	The Data Structure
	Implementation of Queries
	Construction Algorithm

	Summary

	Suffix Tree Queries
	The Index Core
	The Data Structure
	Navigation Primitives
	Implementation of LCA(u, v)
	Implementation of child(v, c)
	Implementation of pred(v, c)
	Implementation of WA(v, d)
	Construction Algorithm

	The Nonperiodic Nodes
	The Data Structure
	Navigation Primitives
	Implementation of LCA(u, v)
	Implementation of child(v, c)
	Implementation of pred(v, c)
	Implementation of WA(v, d)
	Construction Algorithm

	The Periodic Nodes
	The Data Structure
	Navigation Primitives
	Implementation of LCA(u, v)
	Implementation of child(v, c)
	Implementation of pred(v, c)
	Implementation of WA(v, d)
	Construction Algorithm

	The Final Data Structure
	The Data Structure
	Implementation of sdepth(v)
	Implementation of LCA(u, v)
	Implementation of child(v, c)
	Implementation of pred(v, c)
	Implementation of WA(v, d)
	Implementation of wlink(v, c)
	Implementation of slink(v)
	Implementation of slink(v, i)
	Implementation of parent(v)
	Implementation of firstchild(v)
	Implementation of lastchild(v)
	Implementation of rightsibling(v)
	Implementation of leftsibling(v)
	Implementation of isleaf(v)
	Implementation of index(v)
	Implementation of count(v)
	Implementation of letter(v, i)
	Implementation of isancestor(u, v)
	Implementation of findleaf(j)
	Construction Algorithm

	Summary

